
SModelS Manual
Release 1.2.2

Federico Ambrogi, Juhi Dutta, Jan Heisig, Sabine Kraml, Suchita Kulkarni, Ursula Laa, Andre Lessa, Veronika Magerl, Wolfgang Magerl, Doris Proschofsky, Humberto Reyes-Gonzalez, Michael Traub, Jory Sonneveld, Wolfgang Waltenberger, Matthias Wolf, Alicia Wongel

Nov 28, 2018

Contents

1 Contents 2

2 Indices and tables 113

Python Module Index 114

These pages constitute the SModelS manual.

SModelS is an automatic, public tool for interpreting simplified-model results from the LHC. It is based on a gen-
eral procedure to decompose Beyond the Standard Model (BSM) collider signatures presenting a Z2 symmetry into
Simplified Model Spectrum (SMS) topologies. Our method provides a way to cast BSM predictions for the LHC in
a model independent framework, which can be directly confronted with the relevant experimental constraints. Our
concrete implementation currently focusses on supersymmetry searches with missing energy, for which a large variety
of SMS results from ATLAS and CMS are available. The main ingredients are

• the decomposition of the BSM spectrum into SMS topologies

• a database of experimental SMS results

• the interface between decomposition and results database (to check limits)

as illustrated in the graphics below.



1 Contents

1.1 What’s New

The major novelties of all releases since v1.0 are as follows:

New in Version 1.2.2:

• Updated official database, added T3GQ eff maps and a few ATLAS 13 TeV results, see github database release
page

• Database “official” now refers to a database without fastlim results, “official_fastlim”, to the official database
with fastlim

• List displaced signatures in missing topologies

• Improved description about lifetime reweighting in doc

• Fix in cluster for asymmetric masses

• Small improvements in the interactive plots tool

New in Version 1.2.1:

• Fix in particleNames.py for non-MSSM models

• Fixed the marginalize recipe

• Fixed the T2bbWWoff 44 signal regions plots in ConfrontPredictions in manual

https://github.com/SModelS/smodels-database-release/releases
https://github.com/SModelS/smodels-database-release/releases
marginalize.html
ConfrontPredictions.html


New in Version 1.2.0:

• Decomposition and experimental results can include non-MET BSM final states (e.g. heavy stable charged
particles)

• Added lifetime reweighting at decomposition for meta-stable particles

• Added finalState property for Elements

• Introduction of inclusive simplified models

• Inclusion of HSCP and R-hadron results in the database

New in Version 1.1.3:

• Support for covariance matrices and combination of signal regions (see combineSR in parameters file)

• New plotting tool added to smodelsTools (see Interactive Plots Maker)

• Path to particles.py can now be specified in parameters.ini file (see model in parameters file)

• Wildcards allowed when selecting analyses, datasets, txnames (see analyses, txnames and dataselector in pa-
rameters file)

• Option to show individual contribution from topologies to total theory prediction (see addTxWeights in param-
eters file)

• URLs are allowed as database paths (see path in parameters file)

• Python default changed from python2 to python3

• Fixed lastUpdate bug, now giving correct date

• Changes in pickling (e.g. subpickling, removing redundant zeroes)

• Added fixpermissions to smodelsTools.py, for system-wide installs (see Files Permissions Fixer)

• Fixed small issue with pair production of even particles

• Moved the code documentation to the manual

• Added option for installing within the source folder

New in Version 1.1.2:

• Database update only, the code is the same as v1.1.1

New in Version 1.1.1:

• C++ Interface

• Support for pythia8 (see Cross Section Calculator)

• improved binary database

• automated SLHA and LHE file detection

• Fix and improvements for missing topologies

• Added SLHA-type output

• Small improvements in interpolation and clustering



New in Version 1.1.0:

• the inclusion of efficiency maps (see EM-type results)

• a new and more flexible database format (see Database structure)

• inclusion of likelihood and 𝜒2 calculation for EM-type results (see likelihood calculation)

• extended information on the topology coverage

• inclusion of a database broswer tool for easy access to the information stored in the database (see database
browser)

• the database now supports also a more efficient binary format

• performance improvement for the decomposition of the input model

• inclusion of new simplified results to the database (including a few 13 TeV results)

• Fastlim efficiency maps can now also be used in SModelS

1.2 Installation and Deployment

Standard Installation

SModelS is a Python library that requires Python version 2.6 or later, including version 3, which is the default. It
depends on the following external Python libraries:

• unum>=4.0.0

• numpy>=1.13.0

• argparse

• requests>=2.0.0

• docutils>=0.3

• scipy>=1.0.0

• pyslha>=3.1.0

In addition, the cross section computer provided by smodelsTools.py requires:

• Pythia 8.2 (requires a C++ compiler) or Pythia 6.4.27 (requires gfortran)

• NLL-fast 1.2 (7 TeV), 2.1 (8 TeV), and 3.1 (13 TeV) (requires a fortran compiler)

These tools need not be installed separately, as the SModelS build system takes care of that. The current default
is that both Pythia6 and Pythia8 are installed together with NLLfast. Finally, the database browser provided by
smodelsTools.py requires IPython, while the interactive plotter requires plotly and pandas.

Installation Methods

• The first installation method installs SModelS in the source directory. After downloading the source from the
SModelS releases page and extracting it, run:

make smodels

https://arxiv.org/abs/1410.3012
http://arxiv.org/abs/hep-ph/0603175
http://pauli.uni-muenster.de/~akule_01/nllwiki/index.php/NLL-fast
https://ipython.org/
https://plot.ly/python/
https://pandas.pydata.org/
https://github.com/SModelS/smodels/releases


in the top-level directory. The installation will remove redundant folders, install the required dependencies
(using pip install) and compile Pythia and NLL-fast. If the cross section computer is not needed, one can
replace smodels with smodels_noexternaltools in the above command. In case the Python libraries can not be
successfully installed, the user can install them separately using his/her preferred method. Pythia and NLL-fast
can also be compiled separately running make externaltools.

• If Python’s setuptools is installed in your machine, SModelS and its dependencies can also be installed without
the use of pip. After downloading the source from the SModelS releases page and extracting it, run:

setup.py install

within the main smodels directory. If the python libraries are installed in a system folder (as is the default
behavior), it will be necessary to run the install command with superuser privilege. Alternatively, one can run
setup.py with the “–user” flag:

setup.py install --user

If setuptools is not installed, you can try to install the external libraries manually and then rerun setup.py. For
Ubuntu, SL6 machines and other platforms, a recipe is given below.

Note that this installation method will install smodels into the default system or user directory (e.g.
~/.local/lib/python3/site-packages/). Depending on your platform, the environment variables $PATH,
$PYTHONPATH, $LD_LIBRARY_PATH (or $DYLD_LIBRARY_PATH) might have to be set appropriately.

• Finally, if pip3 (or pip) is installed in your machine, it is also possible to install SModelS directly without the
need for downloading the source code:

pip3 install smodels

in case of system-wide installs or :

pip3 install --user smodels

for user-specific installations.

Note that this installation method will install smodels into the default system or user directory (e.g.
~/.local/lib/python3/site-packages/). Depending on your platform, the environment variables $PATH,
$PYTHONPATH, $LD_LIBRARY_PATH (or $DYLD_LIBRARY_PATH) might have to be set appropriately.
Be aware that the example files and the parameters file discussed in the manual will also be located in your
default system or user directory. Furthermore the database folder is not included (see database installation
below).

There is also a diagnostic tool available:

smodelsTools.py toolbox

should list and check all internal tools (Pythia and NLL-fast) and external (numpy, scipy, unum, . . . ) dependencies.

In case everything fails, please contact smodels-users@lists.oeaw.ac.at

Installing the SModelS Database

The installation methods explained above (except for pip install) also install SModelS’ database of experimental
results in the smodels-database subdirectory. The first time SModelS is run, a binary file will be built using this text
database folder, which can then be used in all subsequent runs. However, from v1.1.3 onwards it is recommended to
provide the URL of the official database as the database path when running SModelS (see path in parameters file).
In this case the corresponding database version binary file will be automatically downloaded and used. The available
database URLs can be found in the SModelS Database releases page .

https://github.com/SModelS/smodels/releases
mailto:smodels-users@lists.oeaw.ac.at
https://github.com/SModelS/smodels-database-release/releases


The complete list of analyses and results included in the database can be consulted at http://smodels.hephy.at/wiki/
ListOfAnalyses. We note that all the results in the official database release have been carefully validated and the
validation material can be found at http://smodels.hephy.at/wiki/Validation.

The database can conveniently be updated independently from SModelS code updates. It suffices to unpack any new
database tarball and replace the database directory or provide the path to the new folder, binary or URL address. In
the same fashion, one can easily add additional results as explained below.

Adding FastLim data

The official SModelS database can be augmented with data from the fastlim results. For using SModelS with the
text database, a tarball with the properly converted fastlim-1.0 efficiency maps can be found in the smodels-database
folder. The tarball then needs to be exploded in the top level directory of the database:

cd <smodels-database folder>
tar -xzvf smodels-v1.1-fastlim-1.0.tgz
rm smodels-v1.1-fastlim-1.0.tgz

Once the fastlim folders have been added to the database, SModelS auto-detects fastlim results and issues an acknowl-
edgement.

As discussed above, from v1.1.3 onwards it is also possible to directly download the database binary file using the
URLs provided in the SModelS Database releases page . Separate URLs are provided for the database including the
Fastlim maps, so the user can choose which database to use.

When using the Fastlim results, please properly cite the fastlim paper; for convenience, a bibtex file is provided in the
smodels-fastlim tarball.

Finally we point out that when converting the Fastlim efficiency maps efficiencies with a relative statistical uncertainty
greater than 25% were set to zero. Also, per default we discard zeroes-only results.

Adding one’s own results

The Database of Experimental Results is organized as files in an ordinary directory hierarchy. Therefore, adding
additional experimental results is a matter of copying and editing text files. Once the new folders and files have been
added following the database structure format, SModelS automatically rebuilds the binary (Pickle) database file. The
added results will then be available for using with the the SModelS tools.

System-specific Installation Instructions

Installation on Ubuntu >= 16.04

Installation on Ubuntu machines should be straightforward with superuser privileges (if you do not have superuser
privileges see instructions below):

• sudo apt install gfortran python-setuptools python-scipy python-numpy python-docutils python-argparse

• setup.py install

Note that the last command can be run as superuser, or with the “–user” flag.

Installation on SL7

Installation on an SL7 or CentOS7 is straightforward:

http://smodels.hephy.at/wiki/ListOfAnalyses
http://smodels.hephy.at/wiki/ListOfAnalyses
http://smodels.hephy.at/wiki/Validation
http://cern.ch/fastlim
https://github.com/SModelS/smodels-database-release/releases


• yum install gcc-c++ scipy numpy

• pip install unum pyslha argparse

Installation on SL6

Installation on an SL6 (Scientific Linux 6 or Scientific Linux CERN 6) machine is tricky, because SModelS requires a
more recent version of scipy than is provided by SL6. We succeeded to install SModelS on SL6 by doing:

• yum install gcc-c++ libstdc++-devel libevent-devel python-devel lapack lapack-devel blas blas-devel libgfortran
python-distutils-extra

followed by:

• pip install nose unum argparse numpy pyslha scipy

Note, that these steps can safely be done within a Python virtualenv. Pip can also be called with the “–user” flag.

Installation on SL5 and similar distributions

In some distributions like SL5, the Python default version may be smaller than 2.6. In these cases, virtualenv
has to be set up for a Python version >= 2.6. E.g. for Python 2.6, do virtualenv --python=python2.6
<envname>, and modify by hand the first line in the executable from #!/usr/bin/env python3 to #!/usr/
bin/env python2.6. Then perform the steps listed under Installation on SL6.

Installation on other platforms or without superuser privileges using Anaconda

Another easy and platform independent way of installing SModelS without superuser priviledges is via Anaconda
(https://www.continuum.io/downloads). Anaconda provides a local installation of pip as well as several additional
python packages. Here we assume a version of gfortran is already installed in your system.

• download and install Anaconda for Python 3.6 (https://www.continuum.io/downloads)

• make sure Anaconda’s bin and lib folders are added to your system and Python paths

PATH="<anaconda-folder>/bin:$PATH"
PYTHONPATH=$PYTHONPATH:"<anaconda-folder>/lib/python3.6/site-packages"

and then install SModelS as a user:

setup.py install --user

In order to make sure all libraries have been correctly installed, you can run:

smodelsTools.py toolBox

Installation of the C++ interface

SModelS v1.1.1 comes with a simple C++ interface, see the cpp directory. Obviously, a C++ compiler is need,
alongside with the python developers (header) files (libpython-dev on ubuntu, python-devel on rpm-based distros).

https://www.continuum.io/downloads
https://www.continuum.io/downloads


1.3 Using SModelS

SModelS can take SLHA or LHE files as input (see Basic Input). It ships with a command-line tool runSModelS.py,
which reports on the SMS decomposition and theory predictions in several output formats.

For users more familiar with Python and the SModelS basics, an example code Example.py is provided showing how
to access the main SModelS functionalities: decomposition, the database and computation of theory predictions.

The command-line tool (runSModelS.py) and the example Python code (Example.py) are described below.

Note: For non-MSSM (incl. non-SUSY) input models the user needs to write their own model.py file and specify
which BSM particles are even or odd under the assumed Z2 symmetry (see adding new particles). From version 1.2.0
onwards it is also necessary to define the BSM particle quantum numbers in the same file1.

runSModelS.py

runSModelS.py covers several different applications of the SModelS functionality, with the option of turning various
features on or off, as well as setting the basic parameters. These functionalities include detailed checks of input
SLHA files, running the decomposition, evaluating the theory predictions and comparing them to the experimental
limits available in the database, determining missing topologies and printing the output in several available formats.

Starting on v1.1, runSModelS.py is equipped with two additional functionalities. First, it can process a folder contain-
ing a set of SLHA or LHE file, second, it supports parallelization of this input folder.

The usage of runSModelS is:

runSModelS.py [-h] -f FILENAME [-p PARAMETERFILE] [-o OUTPUTDIR] [-d] [-t] [-C] [-V] [-c] [-v
VERBOSE] [-T TIMEOUT]

arguments:

-h, --help show this help message and exit

-f FILENAME, --filename FILENAME name of SLHA or LHE input file or a directory path
(required argument). If a directory is given, loop over all files in the direc-
tory

-p PARAMETERFILE, --parameterFile PARAMETERFILE name of parameter file, where
most options are defined (optional argument). If not set, use all parameters
from smodels/etc/parameters_default.ini

-o OUTPUTDIR, --outputDir OUTPUTDIR name of output directory (optional argument).
The default folder is: ./results/

-d, --development if set, SModelS will run in development mode and exit if any errors are
found.

-t, --force_txt force loading the text database

-C, --colors colored output

-V, --version show program’s version number and exit

-c, --run-crashreport parse crash report file and use its contents for a SModelS run. Supply the
crash file simply via ‘– filename myfile.crash’

1 We note that SLHA files including decay tables and cross sections, together with the corresponding model.py, can conveniently be generated
via the SModelS-micrOMEGAS interface, see arXiv:1606.03834

http://www.arXiv.org/abs/1606.03834


-v VERBOSE, --verbose VERBOSE sets the verbosity level (debug, info, warning, error). De-
fault value is info.

-T TIMEOUT, --timeout TIMEOUT define a limit on the running time (in secs).If not set, run
without a time limit. If a directory is given as input, the timeout will be
applied for each individual file.

A typical usage example is:

runSModelS.py -f inputFiles/slha/simplyGluino.slha -p parameters.ini -o ./ -v warning

The resulting output will be generated in the current folder, according to the printer options set in the parameters file.

The Parameters File

The basic options and parameters used by runSModelS.py are defined in the parameters file. An example parameter file,
including all available parameters together with a short description, is stored in parameters.ini. If no parameter
file is specified, the default parameters stored in smodels/etc/parameters_default.ini are used. Below
we give more detailed information about each entry in the parameters file.

• options: main options for turning SModelS features on or off

• checkInput (True/False): if True, runSModelS.py will run the file check tool on the input file and verify if the
input contains all the necessary information.

• doInvisible (True/False): turns invisible compression on or off during the decomposition.

• doCompress (True/False): turns mass compression on or off during the decomposition.

• computeStatistics (True/False): turns the likelihood and 𝜒2 computation on or off (see likelihood calculation).
If True, the likelihood and 𝜒2 values are computed for the EM-type results.

• testCoverage (True/False): set to True to run the coverage tool.

• combineSRs (True/False): set to True to use, whenever available, covariance matrices to combine signal regions.
NB this might take a few secs per point. Set to False to use only the most sensitive signal region (faster!).
Available v1.1.3 onwards.

• particles: defines the particle content of the BSM model

• model: pathname to the Python file that defines the particle content of the BSM model, given either in Unix
file notation (“/path/to/model.py”) or as Python module path (“path.to.model”). Defaults to share.models.mssm
which is a standard MSSM. See smodels/share/models folder for more examples. Directory name can be omit-
ted; in that case, the current working directory as well as smodels/share/models are searched for.

• parameters: basic parameter values for running SModelS

• sigmacut (float): minimum value for an element weight (in fb). Elements with a weight below sigmacut are
neglected during the decomposition of SLHA files (see Minimum Decomposition Weight). The default value is
0.03 fb. Note that, depending on the input model, the running time may increase considerably if sigmacut is too
low, while too large values might eliminate relevant elements.

• minmassgap (float): maximum value of the mass difference (in GeV) for perfoming mass compression. Only
used if doCompress = True

• maxcond (float): maximum allowed value (in the [0,1] interval) for the violation of upper limit conditions. A
zero value means the conditions are strictly enforced, while 1 means the conditions are never enforced. Only
relevant for printing the output summary.

• ncpus (int): number of CPUs. When processing multiple SLHA/LHE files, SModelS can run in a parallelized
fashion, splitting up the input files in equal chunks. ncpus = -1 parallelizes to as many processes as number of
CPU cores of the machine. Default value is 1. Warning: python already parallelizes many tasks internally.



• database: allows for selection of a subset of experimental results from the database

• path: the absolute (or relative) path to the database. The user can supply either the directory name of the
database, or the path to the pickle file. Also http addresses may be given, e.g. http://smodels.hephy.at/database/
official113. The path “official” refers to the official database of your SModelS version – without fastlim; “offi-
cial_fastlim” includes fastlim results. See the github database release page for a list of public database versions.

• analyses (list of results): set to [‘all’] to use all available results. If a list of experimental analyses is given,
only these will be used. For instance, setting analyses = CMS-PAS-SUS-13-008,ATLAS-CONF-2013-024 will
only use the experimental results from CMS-PAS-SUS-13-008 and ATLAS-CONF-2013-024. Wildcards (,
?, [<list-of-or’ed-letters>]) are expanded in the same way the shell does wildcard expansion for file names.
So analyses = CMS leads to evaluation of results from the CMS-experiment only, for example. SUS selects
everything containining SUS, no matter if from CMS or ATLAS. Furthermore selection of analyses can be
confined on their centre-of-mass energy with a suffix beginning with a colon and an energy string in unum-
style, like :13*TeV. Note that the asterisk behind the colon is not a wildcard. :13, :13TeV and :13 TeV are also
understood but discouraged.

• txnames (list of topologies): set to [‘all’] to use all available simplified model topologies. The topologies are
labeled according to the txname convention. If a list of txnames are given, only the corresponding topologies
will be considered. For instance, setting txnames = T2 will only consider experimental results for 𝑝𝑝 → 𝑞+𝑞 →
(𝑗𝑒𝑡 + �̃�0

1) + (𝑗𝑒𝑡 + �̃�0
1) and the output will only contain constraints for this topology. A list of all topologies

and their corresponding txnames can be found here Wildcards (*, ?, [<list-of-or’ed-letters>]) are expanded in
the same way the shell does wildcard expansion for file names. So, for example, txnames = T[12]*bb* picks
all txnames beginning with T1 or T2 and containg bb as of the time of writing were: T1bbbb, T1bbbt, T1bbqq,
T1bbtt, T2bb, T2bbWW, T2bbWWoff

• dataselector (list of datasets): set to [‘all’] to use all available data sets. If dataselector = upperLimit (efficien-
cyMap), only UL-type results (EM-type results) will be used. Furthermore, if a list of signal regions (data sets)
is given, only the experimental results containing these datasets will be used. For instance, if dataselector =
SRA mCT150,SRA mCT200, only these signal regions will be used. Wildcards (*, ?, [<list-of-or’ed-letters>])
are expanded in the same way the shell does wildcard expansion for file names. Wildcard examples are given
above.

• dataTypes dataType of the analysis (all, efficiencyMap or upperLimit). Can be wildcarded with usual shell
wildcards: * ? [<list-of-or’ed-letters>]. Wildcard examples are given above.

• printer: main options for the output format

• outputType (list of outputs): use to list all the output formats to be generated. Available output formats are:
summary, stdout, log, python, xml, slha.

• stdout-printer: options for the stdout or log printer

• printDatabase (True/False): set to True to print the list of selected experimental results to stdout.

• addAnaInfo (True/False): set to True to include detailed information about the txnames tested by each experi-
mental result. Only used if printDatabase=True.

• printDecomp (True/False): set to True to print basic information from the decomposition (topologies, total
weights, . . . ).

• addElementInfo (True/False): set to True to include detailed information about the elements generated by the
decomposition. Only used if printDecomp=True.

• printExtendedResults (True/False): set to True to print extended information about the theory predictions,
including the PIDs of the particles contributing to the predicted cross section, their masses and the expected
upper limit (if available).

• addCoverageID (True/False): set to True to print the list of element IDs contributing to each missing topology
(see coverage). Only used if testCoverage = True. This option should be used along with addElementInfo =
True so the user can precisely identify which elements were classified as missing.

http://smodels.hephy.at/database/official113
http://smodels.hephy.at/database/official113
https://github.com/SModelS/smodels-database-release/releases
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS13008
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2013-024/
http://smodels.hephy.at/wiki/SmsDictionary


• summary-printer: options for the summary printer

• expandedSummary (True/False): set True to include in the summary output all applicable experimental results,
False for only the strongest one.

• python-printer: options for the Python printer

• addElementList (True/False): set True to include in the Python output all information about all elements gen-
erated in the decomposition. If set to True the output file can be quite large.

• addTxWeights (True/False): set True to print the contribution from individual topologies to each theory pre-
diction. Available v1.1.3 onwards.

• xml-printer: options for the xml printer

• addElementList (True/False): set True to include in the xml output all information about all elements generated
in the decomposition. If set to True the output file can be quite large.

• addTxWeights (True/False): set True to print the contribution from individual topologies to each theory pre-
diction. Available v1.1.3 onwards.

The Output

The results of runSModelS.py are printed to the format(s) specified by the outputType in the parameters file. The
following formats are available:

• a human-readable screen output (stdout) or log output. These are intended to provide detailed information about
the database, the decomposition, the theory predictions and the missing topologies. The output complexity can
be controlled through several options in the parameters file. Due to its size, this output is not suitable for storing
the results from a large scan, being more appropriate for a single file input.

• a human-readable text file output containing a summary of the output. This format contains the main SModelS
results: the theory predictions and the missing topologies. It can be used for a large scan, since the output can
be made quite compact, using the options in the parameters file.

• a python dictionary printed to a file containing information about the decomposition, the theory predictions
and the missing topologies. The output can be significantly long, if all options in the parameters file are set to
True. However this output can be easily imported to a Python enviroment, making it easy to access the desired
information. For users familiar with the Python language this is the recommended format.

• a xml file containing information about the decomposition, the theory predictions and the missing topologies.
The output can be significantly long, if all options are set to True. Due to its broad usage, the xml output can be
easily converted to the user’s preferred format.

• a SLHA file containing information about the theory predictions and the missing topologies. The output follows
a SLHA-type format and contains a summary of the most constraining results and the missed topologies.

A detailed explanation of the information contained in each type of output is given in SModels Output.

Example.py

Although runSModelS.py provides the main SModelS features with a command line interface, users more familiar
with Python and the SModelS language may prefer to write their own main program. A simple example code for this
purpose is provided in examples/Example.py. Below we go step-by-step through this example code:

• Import the SModelS modules and methods. If the example code file is not located in the smodels installation
folder, simply add “sys.path.append(<smodels installation path>)” before importing smodels. Set SModelS
verbosity level.



from smodels import particlesLoader
from smodels.theory import slhaDecomposer,lheDecomposer
from smodels.tools.physicsUnits import fb, GeV, TeV
from smodels.theory.theoryPrediction import theoryPredictionsFor
from smodels.experiment.databaseObj import Database
from smodels.tools import coverage
from smodels.tools.smodelsLogging import setLogLevel
setLogLevel("info")

• Set the path to the database URL. Specify which database to use. It can be the path to the smodels-database
folder, the path to a pickle file or (starting with v1.1.3) a URL path.

# Set the path to the database
database = Database("official")

• Define the input model. By default SModelS assumes the MSSM particle content. For using SModelS with
a different particle content, the user must define the new particle content and set modelFile to the path of the
model file (see particles:model in Parameter File).

#Define your model (list of rEven and rOdd particles)
particlesLoader.load( 'smodels.share.models.mssm' ) #Make sure all the model

→˓particles are up-to-date

• Path to the input file. Specify the location of the input file. It must be a SLHA or LHE file (see Basic Input).

slhafile = 'inputFiles/slha/lightEWinos.slha'
lhefile = 'inputFiles/lhe/gluino_squarks.lhe'

• Set main options for decomposition. Specify the values of sigmacut and minmassgap:

sigmacut = 0.01 * fb
mingap = 5. * GeV

• Decompose model. Depending on the type of input format, choose either the slhaDecomposer.decompose or
lheDecomposer.decompose method. The doCompress and doInvisible options turn the mass compression and
invisible compression on/off.

# Decompose model (use slhaDecomposer for SLHA input or lheDecomposer for LHE
→˓input)

slhaInput = True
if slhaInput:

toplist = slhaDecomposer.decompose(slhafile, sigmacut, doCompress=True,
→˓doInvisible=True, minmassgap=mingap)

else:

• Access basic information from decomposition, using the topology list and topology objects:

# Access basic information from decomposition, using the topology list and
→˓topology objects:

print( "\n Decomposition Results: " )
print( "\t Total number of topologies: %i " %len(toplist) )
nel = sum([len(top.elementList) for top in toplist])
print( "\t Total number of elements = %i " %nel )
#Print information about the m-th topology (if it exists):
m = 2

(continues on next page)

theory.html#theory.slhaDecomposer.decompose
theory.html#theory.slhaDecomposer.decompose
theory.html#theory.topology.TopologyList
theory.html#theory.topology.Topology


(continued from previous page)

if len(toplist) > m:
top = toplist[m]
print( "\t\t %i-th topology = " %m,top,"with total cross section =",top.

→˓getTotalWeight() )
#Print information about the n-th element in the m-th topology:
n = 0
el = top.elementList[n]
print( "\t\t %i-th element from %i-th topology = " %(n,m),el, end="" )
print( "\n\t\t\twith final states =",el.getFinalStates(),"\n\t\t\twith cross

→˓section =",el.weight,"\n\t\t\tand masses = ",el.getMasses() )

output:

Decomposition Results:
Total number of topologies: 51
Total number of elements = 14985

2-th topology = [][2] with total cross section = ['8.00E+00
→˓[TeV]:3.05E-01 [pb]', '1.30E+01 [TeV]:5.21E-01 [pb]']

0-th element from 2-th topology = [[],[[b,b]]]
with final states = ['MET', 'MET']
with cross section = ['8.00E+00 [TeV]:2.44E-04 [pb]', '1.

→˓30E+01 [TeV]:1.17E-03 [pb]']
and masses = [[6.81E+01 [GeV]], [1.35E+02 [GeV], 6.81E+01

→˓[GeV]]]

• Load the experimental results to be used to constrain the input model. Here, all results are used:

listOfExpRes = database.getExpResults()

Alternatively, the getExpResults method can take as arguments specific results to be loaded.

• Print basic information about the results loaded. Below we show how to count the number of UL-type results
and EM-type results loaded:

nUL, nEM = 0, 0
for exp in listOfExpRes:

expType = exp.getValuesFor('dataType')[0]
if expType == 'upperLimit':

nUL += 1
elif expType == 'efficiencyMap':

nEM += 1
print( "\n Loaded Database with %i UL results and %i EM results " %(nUL,nEM) )

output:

Loaded Database with 55 UL results and 21 EM results

• Compute the theory predictions for each experimental result. The output is a list of theory prediction objects
(for each experimental result):

for expResult in listOfExpRes:
predictions = theoryPredictionsFor(expResult, toplist, combinedResults=False,

→˓marginalize=False)

• Print the results. For each experimental result, loop over the corresponding theory predictions and print the
relevant information:

experiment.html#experiment.databaseObj.Database.getExpResults
theory.html#theory.theoryPrediction.TheoryPrediction


for theoryPrediction in predictions:
dataset = theoryPrediction.dataset
datasetID = dataset.dataInfo.dataId
mass = theoryPrediction.mass
txnames = [str(txname) for txname in theoryPrediction.txnames]
PIDs = theoryPrediction.PIDs
print( "------------------------" )
print( "Dataset = ",datasetID ) #Analysis name
print( "TxNames = ",txnames )
print( "Prediction Mass = ",mass ) #Value for average cluster mass

→˓(average mass of the elements in cluster)
print( "Prediction PIDs = ",PIDs ) #Value for average cluster mass

→˓(average mass of the elements in cluster)
print( "Theory Prediction = ",theoryPrediction.xsection ) #Signal cross

→˓section
print( "Condition Violation = ",theoryPrediction.conditions ) #Condition

→˓violation values

output:

ATLAS-SUSY-2015-06
------------------------
Dataset = SR5j
TxNames = ['T1']
Prediction Mass = [[5.77E+02 [GeV], 6.81E+01 [GeV]], [5.77E+02 [GeV], 6.81E+01
→˓[GeV]]]
Prediction PIDs = [[[1000021, 1000022], [1000021, 1000022]]]
Theory Prediction = 1.30E+01 [TeV]:5.19E-06 [pb]
Condition Violation = {'None': None}

• Get the corresponding upper limit. This value can be compared to the theory prediction to decide whether a
model is excluded or not:

print( "UL for theory prediction = ",theoryPrediction.upperLimit )

output:

UL for theory prediction = 1.79E+00 [fb]

• Print the r-value, i.e. the ratio theory prediction/upper limit. A value of 𝑟 ≥ 1 means that an experimental
result excludes the input model. For EM-type results also compute the 𝜒2 and likelihood. Determine the most
constraining result:

print( "r = ",r )
#Compute likelihhod and chi^2 for EM-type results:
if dataset.dataInfo.dataType == 'efficiencyMap':

theoryPrediction.computeStatistics()
print( 'Chi2, likelihood=', theoryPrediction.chi2, theoryPrediction.

→˓likelihood )
if r > rmax:

rmax = r
bestResult = expResult.globalInfo.id

output:



r = 0.0029013935307768326
Chi2, likelihood= 2.3776849368423356 0.007169156710956845

• Print the most constraining experimental result. Using the largest r-value, determine if the model has been
excluded or not by the selected experimental results:

if rmax > 1.:
print( "(The input model is likely excluded by %s)" %bestResult )

else:
print( "(The input model is not excluded by the simplified model results)" )

output:

The largest r-value (theory/upper limit ratio) is 1.2039296443268397
(The input model is likely excluded by CMS-SUS-13-006)

• Identify missing topologies. Using the output from decomposition, identify the missing topologies and print
some basic information:

print( "Total cross section where we are outside the mass grid (fb): %10.3E\n"
→˓%(uncovered.getOutOfGridXsec()) )

print( "Total cross section in long cascade decays (fb): %10.3E\n" %(uncovered.
→˓getLongCascadeXsec()) )

print( "Total cross section in decays with asymmetric branches (fb): %10.3E\n"
→˓%(uncovered.getAsymmetricXsec()) )

#Print some of the missing topologies:
print( 'Missing topologies (up to 3):' )
for topo in uncovered.missingTopos.topos[:3]:

print( 'Topology:',topo.topo )
print( 'Contributing elements (up to 2):' )
for el in topo.contributingElements[:2]:

print( el,'cross-section (fb):', el.missingX )

#Print elements with long cascade decay:
print( '\nElements outside the grid (up to 2):' )
for topo in uncovered.outsideGrid.topos[:2]:

print( 'Topology:',topo.topo )
print( 'Contributing elements (up to 4):' )
for el in topo.contributingElements[:4]:

print( el,'cross-section (fb):', el.missingX )
print( '\tmass:',el.getMasses() )

output:

Total missing topology cross section (fb): 3.717E+03

Total cross section where we are outside the mass grid (fb): 9.984E+01

Total cross section in long cascade decays (fb): 8.992E+02

Total cross section in decays with asymmetric branches (fb): 2.790E+03

Missing topologies (up to 3):
Topology: [[],[]](MET,MET)

(continues on next page)



(continued from previous page)

Contributing elements (up to 2):
[[],[]] cross-section (fb): 0.45069449699999997

Elements outside the grid (up to 2):
Topology: [[[W]],[[Z]]](MET,MET)
Contributing elements (up to 4):
[[[W+]],[[Z]]] cross-section (fb): 0.3637955190752928

mass: [[2.93E+02 [GeV], 6.81E+01 [GeV]], [2.66E+02 [GeV], 6.81E+01 [GeV]]]

It is worth noting that SModelS does not include any statistical treatment for the results, for instance, correction factors
like the “look elsewhere effect”. Due to this, the results are claimed to be “likely excluded” in the output.

Notes:

• For an SLHA input file, the decays of final states (or Z2-even particles such as the Higgs, W,. . . ) are always
ignored during the decomposition. Furthermore, if there are two cross sections at different calculation
order (say LO and NLO) for the same process, only the highest order is used.

• The list of elements can be extremely long. Try setting addElementInfo = False and/or printDecomp =
False to obtain a smaller output.

• A comment of caution is in order regarding naively using the highest 𝑟-value reported by SModelS, as this
does not necessarily come from the most sensitive analysis. For a rigorous statistical interpretation, one
should use the 𝑟-value of the result with the highest expected 𝑟 (𝑟𝑒𝑥𝑝). Unfortunately, for UL-type results,
the expected limits are often not available; 𝑟𝑒𝑥𝑝 is then reported as N/A in the SModelS output.

1.4 SModelS Tools

Inside SModelS there is a number of tools that may be convenient for the user:

• a cross section calculator based on Pythia8 (or Pythia6) and NLLfast,

• SLHA and LHE file checkers to check your input files for completeness and sanity,

• a database browser to provide easy access to the database of experimental results,

• a plotting tool to make interactive plots based on plotly (v1.1.3 onwards),

• a file permissions fixer to fix a problem with file permissions for the cross section computers in system-wide
installs, and

• a toolbox to quickly show the state of the external tools.

Cross Section Calculator

This tool computes LHC production cross sections for MSSM particles and writes them out in SLHA convention. This
can in particular be convenient for adding cross sections to SLHA input files, see Basic Input. The calculation is done
at LO with Pythia8 or Pythia6.4 ; K-factors for colored particles are computed with NLLfast .

The usage of the cross section calculator is:

smodelsTools.py xseccomputer [-h] [-s SQRTS [SQRTS . . . ]] [-e NEVENTS] [-v VERBOSITY] [-c
NCPUS] [-p] [-P] [-q] [-C] [-k] [-6] [-8] [-n] [-N] [-O] -f FILENAME

arguments:

-h, --help show this help message and exit

http://home.thep.lu.se/~torbjorn/Pythia.html
http://pythia6.hepforge.org
http://pauli.uni-muenster.de/~akule_01/nllwiki/index.php/NLL-fast
https://plot.ly/python/
http://home.thep.lu.se/~torbjorn/Pythia.html
http://pythia6.hepforge.org
http://pauli.uni-muenster.de/~akule_01/nllwiki/index.php/NLL-fast


-s SQRTS, --sqrts SQRTS sqrt(s) TeV. Can supply more than one value (as a space separated
list). Default is both 8 and 13.

-e NEVENTS, --nevents NEVENTS number of events to be simulated.

-v VERBOSITY, --verbosity VERBOSITY Verbosity (debug, info, warning, error)

-c NCPUS, --ncpus NCPUS number of cores to be used simultaneously. -1 means ‘all’.

-p, --tofile write cross sections to file (only highest order)

-P, --alltofile write all cross sections to file, including lower orders

-q, --query only query if there are cross sections in the file

-C, --colors colored terminal output

-k, --keep do not unlink temporary directory

-6, --pythia6 use pythia6 for LO cross sections

-8, --pythia8 use pythia8 for LO cross sections (default)

-n, --NLO compute at the NLO level (default is LO)

-N, --NLL compute at the NLO+NLL level (takes precedence over NLO, default is
LO)

-O, --LOfromSLHA use LO cross sections from file to compute the NLO or NLL cross sections

-f FILENAME, --filename FILENAME SLHA file to compute cross sections for. If a directory
is given, compute cross sections for all files in directory.

Further Pythia parameters are defined in smodels/etc/pythia8.cfg (for Pythia 8) or smodels/etc/
pythia.card (for Pythia 6). .

A typical usage example is:

smodelsTools.py xseccomputer -s 8 13 -e 10000 -p -f inputFiles/slha/higgsinoStop.slha

which will compute 8 TeV and 13 TeV LO cross sections (at the LHC) for all MSSM processes using 10k MC events.
If, after the LO cross sections have been computed, one wants to add the NLO+NLL cross sections for gluinos and
squarks:

smodelsTools.py xseccomputer -s 8 13 -p -N -O -f inputFiles/slha/higgsinoStop.slha

The resulting file will then contain LO cross sections for all MSSM processes and NLO+NLL cross sections for the
available processes in NLLfast (gluino and squark production). When reading the input file, SModelS will then use
only the highest order cross sections available for each process.

• The cross section calculation is implemented by the computeXSec function

Input File Checks

As discussed in Basic Input, SModelS accepts both SLHA and LHE input files. It can be convenient to perform certain
sanity checks on these files as described below.

• The input file checks are implemented by the FileStatus class

http://pauli.uni-muenster.de/~akule_01/nllwiki/index.php/NLL-fast
tools.html#tools.xsecComputer.computeXSec
tools.html#tools.ioObjects.FileStatus


LHE File Checker

For a LHE input file only very basic checks are performed, namely that

• the file exists,

• it contains at least one event,

• the information on the total cross section and the center of mass energy can be found.

The usage of the LHE checker is simply:

smodelsTools.py lhechecker [-h] -f FILENAME

arguments:

-h, --help show this help message and exit

-f FILENAME, --filename FILENAME name of input LHE file

A typical usage example is:

smodelsTools.py lhechecker -f inputFiles/slha/gluino_squarks.lhe

SLHA File Checker

The SLHA file checker allows to perform quite rigorous checks of SLHA input files. Concretely, it verifies that

• the file exists and is given in SLHA format,

• the file contains masses and decay branching ratios in standard SLHA format,

• the file contains cross sections according to the SLHA format for cross sections,

In addition, one can ask that

• all decays listed in the DECAY block are kinematically allowed, i.e. the sum of masses of the decay products
may not exceed the mother mass. This check for “illegal decays” is turned off by default.

If any of the above tests fail (return a negative result), an error message is shown.

The usage of the SLHA checker is:

smodelsTools.py slhachecker [-h] [-xS] [-s SIGMACUT] [-illegal] [-dB] -f FILENAME

arguments:

-h, --help show this help message and exit

-xS, --xsec turn off the check for xsection blocks

-s SIGMACUT, --sigmacut SIGMACUT give sigmacut in fb

-illegal, --illegal turn on check for kinematically forbidden decays

-dB, --decayBlocks turn off the check for missing decay blocks

-f FILENAME, --filename FILENAME name of input SLHA file

A typical usage example is:

smodelsTools.py slhachecker -s 0.01 -f inputFiles/slha/lightSquarks.slha



Running this will print the status flag and a message with potential warnings and error messages.

Note: In SModelS versions prior to 1.2, the SLHA file checker also checked for the existence of displaced vertices
or heavy charged particles in the input file. Since the inclusion of HSCP signatures in SModelS, these checks are no
longer done by the SLHA file checker. However, if the input model contains a considerable fraction of cross-section
going into displaced vertex signatures, a warning is issued on the screen when running SModelS.

Database Browser

In several cases the user might be interested in an easy way to directly access the database of Experimental Results.
This can be conveniently done using the database browser. The browser owns several methods to select Experimental
Results or DataSets satisfying some user-defined conditions as well as to access the meta data and data inside each
Experimental Result.

The usage of the browser interface is:

smodelsTools.py database-browser [-h] -p PATH_TO_DATABASE [-t]

arguments:

-h, --help show this help message and exit

-p PATH_TO_DATABASE, --path_to_database PATH_TO_DATABASE path to SModelS
database

-t, --text load text database, dont even search for binary database file

A typical usage example is:

smodelsTools.py database-browser -p ./smodels-database

Loading the database may take a few seconds if the binary database file exists. Otherwise the pickle file will be created.
Starting the browser opens an IPython session, which can be used to select specific experimental results (or groups of
experimental results), check upper limits and/or efficiencies for specific masses/topologies and access all the available
information in the database. A simple example is given below:

In [1]: print ( browser ) #Print all experimental results in the browser
['ATLAS-SUSY-2015-01', 'ATLAS-SUSY-2015-01', 'ATLAS-SUSY-2015-02', 'ATLAS-SUSY-2015-02
→˓', ...

In [2]: browser.selectExpResultsWith(txName = 'T1tttt', dataType = 'upperLimit')
→˓#Select only the UL results with the topology T1tttt

In [3]: print ( browser ) #Print all experimental results in the browser (after
→˓selection)
['ATLAS-SUSY-2015-09', 'CMS-PAS-SUS-15-002', 'CMS-PAS-SUS-16-014', 'CMS-PAS-SUS-16-015
→˓', ...

In [4]: gluinoMass, LSPmass = 800.*GeV, 100.*GeV #Define masses for the T1tttt
→˓topology

In [5]: browser.getULFor('CMS-PAS-SUS-15-002','T1tttt',[[gluinoMass,LSPmass],
→˓[gluinoMass,LSPmass]]) #Get UL for a specific experimental result
Out[5]: 5.03E-02 [pb]

In [6]: for expResult in browser[:5]: #Get the upper limits for the first five of
→˓the selected results for the given topology and mass

(continues on next page)



(continued from previous page)

...: print ( expResult.getValuesFor('id'),'UL = ',expResult.
→˓getUpperLimitFor(txname='T1tttt',mass=[[gluinoMass,LSPmass],[gluinoMass,LSPmass]]) )

...:
['ATLAS-SUSY-2015-09'] UL = None
['CMS-PAS-SUS-15-002'] UL = 5.03E-02 [pb]
['CMS-PAS-SUS-16-014'] UL = 4.10E-02 [pb]
['CMS-PAS-SUS-16-015'] UL = 1.80E-02 [pb]
['CMS-PAS-SUS-16-016'] UL = 5.76E-02 [pb]

In [7]: for expResult in browser[:5]: #Print the luminosities for the first five
→˓selected experimental results

...: print ( expResult.getValuesFor('id'),expResult.getValuesFor('lumi') )

...:
['ATLAS-SUSY-2015-09'] [3.20E+00 [1/fb]]
['CMS-PAS-SUS-15-002'] [2.20E+00 [1/fb]]
['CMS-PAS-SUS-16-014'] [1.29E+01 [1/fb]]
['CMS-PAS-SUS-16-015'] [1.29E+01 [1/fb]]
['CMS-PAS-SUS-16-016'] [1.29E+01 [1/fb]]

Further Python example codes using the functionalities of the browser can be found in Howto’s.

• The Database browser tool is implemented by the Browser class

Interactive Plots Maker

This tool allows to easily produce interactive plots which relate the SModelS output with information on the user’s
model stored in the SLHA files. It gives 2d plots in the parameter space defined by the user, with additional user-
defined information appearing in hover boxes. The output is in html format for viewing in a web browser. The aim is
not to make publication-ready plots but to facilitate getting an overview of e.g. the properties of points in a scan. NB:
this needs SLHA model input and SModelS python output!

Required python packages are: plotly, pandas, pyslha, os, decimal

The usage of the interactive plots tool is:

smodelsTools.py interactive-plots [-h] [-p PARAMETERS] -f SMODELSFOLDER -s SLHAFOLDER
[-o OUTPUTFOLDER] [-N NPOINTS] [-v VERBOSITY]

arguments:

-h, --help show this help message and exit

-p PARAMETERS, --parameters PARAMETERS path to the parameters file
[./iplots_parameters.py]

-f SMODELSFOLDER, --smodelsFolder SMODELSFOLDER path to the smodels folder
with the SModelS python output files.

-s SLHAFOLDER, --slhaFolder SLHAFOLDER path to the SLHA folder with the SLHA in-
put files.

-o OUTPUTFOLDER, --outputFolder OUTPUTFOLDER path to the output folder, where
the plots will be stored. [./iplots]

-N NPOINTS, --npoints NPOINTS How many (randomly selected) points will be included in
the plot. If -1 all points will be read and included (default = -1).

-v VERBOSITY, --verbosity VERBOSITY Verbosity (debug, info, warning, error)

tools.html#tools.databaseBrowser.Browser


A typical usage example is:

smodelsTools.py interactive-plots -f inputFiles/scanExample/smodels-output/ -s
→˓inputFiles/scanExample/slha -p iplots_parameters.py -o results/iplots/

which will produce 3x9 plots in the gluino vs squark mass plane from a small scan example, viewable in a web browser.

iplots parameters file

The options for the inteactive plots tool are defined in a parameters file, iplots_parameters.py in the above
example. An example file, including all available parameters together with a short description, is stored in
iplots_parameters.py. Since the plotting information is model dependent, there is no default setting – the
iplots parameters file is mandatory input. Below we give more detailed information about each entry in this file.

• plot_title: main overall title for your plots, typically the model name.

• x and y axes: SLHA block and PDG code number of the variables you want to plot, e.g. ‘m_gluino’: [‘MASS’,
1000021].

– variable_x: In a dictionary form, give the name of the x-axis variable, and the block and PDG code number
to find it in the SLHA file. Example: variable_x = {‘m_gluino[GeV]’: [‘MASS’, 1000021]}.

– variable_y: same for the y-axis. Example: variable_y = {‘m_suR[GeV]’: [‘MASS’, 2000002]}

• spectrum hover information: defines which information from the input SLHA file will appear in the hover box.
The syntax is again a python dictonary.

– slha_hover_information: information from the input SLHA file, e.g. model parameters or masses.
Example: slha_hover_information = {‘m_gluino’: [‘MASS’, 1000021], ‘m_suR’: [‘MASS’, 2000002],
‘m_LSP’: [‘MASS’, 1000022]}

– ctau_hover_information: displays the mean decay length in meter for the listed particle(s). Example:
ctau_hover_information = {‘ctau_chi1+’: 1000024}

– BR_hover_information: defines for which particle(s) to display decay channels and branching ratios.
Example: BR_hover_information = {‘BR_gluino’: 1000021}. WARNING: Lists of branching ratios can
be very long, so the may not fit in the hover box. One can define the number of entries with BR_get_top,
e.g. BR_get_top = 5 (default: BR_get_top = ‘all’).

• SModelS hover information: defines, as a list of keywords, which information to display from the SModelS
output. Example: smodels_hover_information = [‘SmodelS_status’, ‘r_max’, ‘Tx’, ‘Analysis’, ‘file’]. The
options are:

– SmodelS_status: prints whether the point is excluded or not by SModelS

– r_max: shows the highest r-value for each parameter point

– chi2: shows the chi^2 value, if available (if not, the output is ‘none’)

– Tx: shows the topology/ies which give r_max

– Analysis: shows the experimental analysis from which the strongest constraint (r_max) comes from

– MT_max: shows the missing topology with the largest cross section (in SModelS bracket notation)

– MT_max_xsec: shows the cross section of MT_max

– MT_total_xsec: shows the total missing cross section (i.e. the sum of all missing topologies cross sec-
tions)

– MT_long_xsec: shows the total missing cross section in long cascade decays

– MT_asym_xsec: shows the total missing cross section in decays with asymmetric branches



– MT_outgrid_xsec: shows the total missing cross section outside the mass grids of the experimental results

– file: shows the name of the input spectrum file

• Choice of plots to make

– plot_data: which points you want to plot; the options are: all, non-excluded, excluded points. Example:
plot_data = [‘all’, ‘non-excluded’, ‘excluded’]

– plot_list: which quantities to plot in the x,y plane; the same options as for SModels hover infor-
mation apply. Example: plot_list = [‘SmodelS_status’,’r_max’, ‘chi2’, ‘Tx’, ‘Analysis’, ‘MT_max’,
‘MT_max_xsec’, ‘MT_total_xsec’, ‘MT_long_xsec’, ‘MT_asym_xsec’]

File Permissions Fixer

In case the software was installed under a different user than it is used (as is the case for system-wide installs), we ship
a simple tool that fixes the file permissions for the cross section calculation code.

The usage of the permissions fixer is:

smodelsTools.py fixpermissions [-h]

arguments:

-h, --help show this help message and exit

Execute the command as root, i.e.:

sudo smodelsTools.py fixpermissions

ToolBox

As a quick way to show the status of all external tools, use the toolbox:

smodelsTools.py toolbox [-h] [-c] [-l] [-m]

arguments:

-h, --help show this help message and exit

-c, --colors turn on terminal colors

-l, --long long output lines

-m, --make compile packages if needed

1.5 Detailed Guide to SModelS

Basic Concepts and Definitions

Throughout this manual, several concepts are used extensively. Here we define the most important ones, their respec-
tive nomenclature and some useful notation. The concepts related to the basic building blocks of the decomposition
of a full model into a sum of Simplified Models (or elements) are described in Theory Definitions, while the concepts
relevant for the database of experimental results are given in Database Definitions.



Simplified Model Definitions

The so-called theory module contains the basic tools necessary for decomposing the input model (either in LHE or
SLHA format) into simplified model topologies and using the output of the decomposition to compute the theoretical
prediction for a given experimental result.

The applicability of SModelS is currently restricted to models which contain a Z2 symmetry (R-parity in SUSY, K-
parity in UED, . . . ). This is required in order to provide a clear structure for the simplified model topologies appearing
during the decomposition of the input model. Below we describe the basic concepts and language used in SModelS to
describe the simplified model topologies.

Elements

A simplified model topology representing a specific cascade decay of a pair of BSM states produced in the hard
scattering is called an element in the SModelS language. Elements contain the Z2-even particles appearing in the
cascade decay and the masses of the BSM (Z2-odd) states which have decayed or appear in the last step of the decay.
Furthermore, the last BSM (Z2-odd) particle is classified according to its quantum numbers as a specific final state
class: MET, HSCP, R-hadron,etc. A representation of an element is shown below:

An element may also hold information about its corresponding weight (cross section times branching ratio times
efficiency).1 The overall properties of an element are illustrated in the scheme below:

SModelS works under the inherent assumption that, for collider purposes, all the essential properties of a BSM model
can be encapsulated by its elements. Such an assumption is extremely helpful to cast the theoretical predictions of
a specific BSM model in a model-independent framework, which can then be compared against the corresponding
experimental limits. For instance, as shown in the scheme above, only the masses of the BSM states and the quantum
number of the last BSM state are used, while other properties, such as their spins are ignored (the PID’s are, however,
stored for book-keeping).

Below we describe in more detail the element properties and their implementation in SModelS.

1 In order to treat the UL and EM map results on the same footing, SModelS applies a trivial binary efficiency to elements for UL-type results
as will be explained in detail later.

theory.html#theory


• Elements are described by the Element Class

Vertices

Each Z2-odd decay is represented by a vertex containing the outgoing states (one Z2-odd state and the Z2-even parti-
cles), as shown in the scheme above.

Z2-even Final States

Z2-even final states coming out of a vertex (see scheme above) usually correspond to Standard Model particles (elec-
trons, gauge bosons, Higgs,. . . ). However, if the input model contains Z2-even BSM states (such as additional Higgs
bosons), these also appear as final states. In contrast, stable or long-lived Z2-odd particles which might appear in the
detector (either as MET or charged tracks) are not classified as final states2 .

• Z2-even states are defined in smodels/share/default_particles.py

Z2-odd Intermediate States

The intermediate Z2-odd states are always assumed to consist of BSM particles with prompt Z2 conserving decays of
the form: (Z2-odd state) → (Z2-odd state’) + final states. The only information kept from the intermediate states are
their masses (see scheme above).

• Z2-odd states are defined by the input model file (see model in parameters file)

Z2-odd Final State Class

Besides the intermediate Z2-odd BSM states, due to the assumed Z2 symmetry, the element must also contain one
stable Z2-odd final state (at least in collider scales). The quantum numbers of this BSM final state are essential for
defining which type of signature this element represents. In an element the Z2-odd final state quantum numbers are
mapped to a final state class, as defined in the particleNames module. Some examples of final state classes are: ‘MET’,
‘HSCP’ and ‘RHadronQ’. Displaced decays, which currently cannot be tested in SModelS, are tracked with a proxy
final state class ‘Displaced’, and will appear only in missing topologies. New final state classes can also be easily
defined in this module.

Branches

A branch is the basic substructure of an element. It represents a series of cascade decays of a single initial Z2-odd
state. The diagram below illustrates an example of a branch.

The structure of each branch is fully defined by its number of vertices and the number of final states coming out of
each vertex. Furthermore, the branch also holds the information about the particle labels for the Z2-even final states
coming out of each vertex, the masses of the Z2-odd states and the Z2-odd final state class (e.g. ‘MET’), as shown
below.

2 In order to shorten the notation we sometimes refer to Z2-even final states simply as ‘’final states’‘. This should not be confused with the
Z2-odd final state class.

theory.html#theory.element.Element
theory.html#module-theory.particleNames


• Branches are described by the Branch Class

Element Representation: Bracket Notation

The structure and final states of elements are represented in textual form using a nested brackets notation. The scheme
below shows how to convert between the graphical and bracket representations of an element:

The brackets are ordered and nested in the following way. The outermost brackets correspond to the branches of the
element. The branches are sorted according to their size (see element sorting) and each branch contains an ordered
list of vertices. Each vertex contains a list of the Z2-even final states (sorted alphabetically) coming out of the vertex.
Schematically, for the example in the figure above, we have:

element = [branch1, branch2]
branch1 = [vertex1]

vertex1 = [l+,l-]
branch2 = [vertex1,vertex2]

vertex1 = [l+]
vertex2 = [nu]

Using the above scheme it is possible to unambiguously describe each element with a simple list of nested brackets.
However, in order to fully specify all the information relative to a single element, we must also include the list of
masses for the Z2-odd states, the list of Z2-odd final state classes and the element weight. The masses for the BSM
(Z2-odd) states can also be represented by a mass array for each branch, as shown below:

Finally the Z2-odd final state classes can also be represented as a list in addition to the bracket notation:

theory.html#theory.branch.Branch


Topologies

It is often useful to classify elements according to their overall structure or topology. Each topology corresponds to
an undressed element, removed of its Z2-even final states, Z2-odd final state class and Z2-odd masses. Therefore the
topology is fully determined by its number of branches, number of vertices in each branch and number of

Z2-even final states coming out of each vertex.

An example of a topology is shown below:

Within SModelS, elements are grouped according to their topology. Hence topologies represent a list of elements
sharing a common basic structure (same number of branches, vertices and final states in each vertex).

• Topologies are described by the Topology Class

Database Definitions

The so-called experiment module contains the basic tools necessary for handling the database of experimental results.
The SModelS database collects experimental results of SUSY searches from both ATLAS and CMS, which are used
to compute the experimental constraints on specific models. Starting with version 1.1, the SModelS database includes
two types of experimental constraints:

• Upper Limit (UL) constraints: constrains on 𝜎 × 𝐵𝑅 of simplified models, provided by the experimental col-
laborations (see UL-type results);

• Efficiency Map (EM) constraints: constrains the total signal (
∑︀

𝜎 × 𝐵𝑅 × 𝜖) in a specific signal region. Here
𝜖 denotes the acceptance times efficiency. These are either provided by the experimental collaborations or
computed by theory groups (see EM-type results);

Although the two types of constraints above are very distinct, both the folder structure and the object structure of
SModelS are sufficiently flexible to simutaneously handle both UL-type and EM-type results. Therefore, for both
UL-type and EM-type constraints, the database obeys the following structure:

• Database: collects a list of Experimental Results.

theory.html#theory.topology.Topology
experiment.html#experiment


– Experimental Result: each Experimental Result corresponds to an experimental preliminary result (i.e.
a CONF-NOTE or PAS) or publication and contains a list of DataSets as well as general information
about the result (luminosity, publication reference,. . . ).

* DataSet: a single DataSet corresponds to one signal region of the experimental note or publi-
cation*0. In case of UL-type results there is a single DataSet, usually corresponding to the best
signal region (for more details see DataSet). For EM-type results, there is one DataSet for each
signal region. Each DataSet contains the Upper Limit maps for Upper Limit results or the Effi-
ciency maps for Efficiency Map results.

· Upper Limit map: contains the upper limit constraints for UL-type results. Each map refers to
a single simplified model (or more precisely to a single element or sum of elements).

· Efficiency map: contains the efficiencies for EM-type results. Each map refers to a single
simplified model (or more precisely to a single element or sum of elements).

A schematic summary of the above structure can be seen below:

In the following sections we describe the main concepts and elements which constitute the SModelS database. More
details about the database folder structure and object struture can be found in Database of Experimental Results.

Database

Each publication or conference note can be included in the database as an Experimental Result. Hence, the database
is simply a collection of experimental results.

• The Database is described by the Database Class

Experimental Result

An experimental result contains all the relevant information corresponding to an experimental publication or prelim-
inary result. In particular it holds general information about the experimental analysis, such as the corresponding
luminosity, center of mass energy, publication reference, etc. The current version allows for two possible types of
experimental results: one containing upper limit maps (UL-type) and one containing efficiency maps (EM-type).

• Experimental Results are described by the ExpResult Class

0 The name Data Set is used instead of signal region because its concept is slightly more general. For instance, in the case of UL-type results, a
DataSet may not correspond to a single signal region, but to a combination of signal regions.

experiment.html#experiment.databaseObj.Database
experiment.html#experiment.expResultObj.ExpResult


Experimental Result: Upper Limit Type

Upper Limit (UL) experimental results contain the experimental constraints on the cross section times branching ratio
( 𝜎 × 𝐵𝑅 ) for Simplified Models from a specific experimental publication or preliminary result. These constraints
are typically given in the format of Upper Limit maps, which correspond to 95% confidence level (C.L.) upper limit
values on 𝜎 × 𝐵𝑅 as a function of the respective parameter space (usually BSM masses or slices over mass planes).
The UL values usually assume the best signal region (for a given point in parameter space), a combination of signal
regions or more involved limits from other methods. Hence, for UL results there is a single DataSet, containing one
or more UL maps. An example of a UL map is shown below:

Within SModelS, the above UL map is used to constrain the simplified model 𝑞 + 𝑞 →
(︀
𝑗𝑒𝑡 + �̃�0

1

)︀
+

(︀
𝑗𝑒𝑡 + �̃�0

1

)︀
.

Using the SModelS notation this simplified model is mapped to the element [[[𝑗𝑒𝑡]], [[𝑗𝑒𝑡]]], using the notation defined
in Bracket Notation. In addition to the constraint information, it is also possible to specificy a final state property for the
simplified model, which corresponds to the BSM final state signature (see Final State class). If no final state is defined,
the element is assumed to have a (𝑀𝐸𝑇,𝑀𝐸𝑇 ) final state signature. Usually a single preliminary result/publication
contains several UL maps, hence each UL-type experimental result contains several UL maps, each one constraining
different simplified models (elements or sum of elements). We also point out that the exclusion curve shown in the UL
map above is never used by SModelS.

Upper Limit Constraint

The upper limit constraint specifies which simplified model (represented by an element or sum of elements) is being
constrained by the respective UL map. For simple constraints as the one shown in the UL map above, there is a single
element being constrained ([[[𝑗𝑒𝑡]], [[𝑗𝑒𝑡]]]). In some cases, however, the constraint corresponds to a sum of elements.
As an example, consider the ATLAS analysis shown below:

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2013-049/


As we can see, the upper limits apply to the sum of the cross sections:

𝜎 = 𝜎([[[𝑒+]], [[𝑒−]]]) + 𝜎([[[𝜇+]], [[𝜇−]]])

In this case the UL constraint is simply:

[[[𝑒+]], [[𝑒−]]] + [[[𝜇+]], [[𝜇−]]]

where it is understood that the sum is over the weights of the respective elements and not over the elements themselves.

Note that the sum can be over particle charges, flavors or more complex combinations of elements. However, almost
all experimental results sum only over elements sharing a common topology.

Finally, in some cases the UL constraint assumes specific constributions from each element. For instance, in the
example above it is implicitly assumed that both the electron and muon elements contribute equally to the total cross
section. Hence these conditions must also be specified along with the constraint, as described in UL conditions.

Upper Limit Conditions

When the analysis constraints are non-trivial (refer to a sum of elements), it is often the case that there are implicit (or
explicit) assumptions about the contribution of each element. For instance, in the figure above, it is implicitly assumed
that each lepton flavor contributes equally to the summed cross section:

𝜎([[[𝑒+]], [[𝑒−]]]) = 𝜎([[[𝜇+]], [[𝜇−]]]) (condition)

Therefore, when applying these constraints to general models, one must also verify if these conditions are satisfied.
Once again we can express these conditions in bracket notation:

[[[𝑒+]], [[𝑒−]]] = [[[𝜇+]], [[𝜇−]]] (condition)

where it is understood that the condition refers to the weights of the respective elements and not to the elements
themselves.

In several cases it is desirable to relax the analysis conditions, so the analysis upper limits can be applied to a broader
spectrum of models. Once again, for the example mentioned above, it might be reasonable to impose instead:

[[[𝑒+]], [[𝑒−]]] ≃ [[[𝜇+]], [[𝜇−]]] (fuzzy condition)



The departure from the exact condition can then be properly quantified and one can decide whether the analysis upper
limits are applicable or not to the model being considered. Concretely, SModelS computes for each condition a number
between 0 and 1, where 0 means the condition is exactly satisfied and 1 means it is maximally violated. Allowing
for a 20% violation of a condition corresponds approximately to a ‘’condition violation value” (or simply condition
value) of 0.2. The condition values are given as an output of SModelS, so the user can decide what are the maximum
acceptable values.

Experimental Result: Efficiency Map Type

Unlike UL-type results, the main information held by Efficiency Map (EM) results are the efficiencies for simplified
models (represented by an element or sum of elements). These may be provided by the experimental collaborations
or independently computed by theory groups. Efficiency maps correspond to a grid of simulated acceptance times
efficiency ( 𝐴× 𝜖 ) values for a specific signal region. In the following we will refer to 𝐴× 𝜖 simply as efficiency and
denote it by 𝜖. Furthermore, additional information, such as the luminosity, number of observed and expected events,
etc is also stored in a EM-type result.

Another important difference between UL-type results and EM-type results is the existence of several signal regions,
which in SModelS are mapped to DataSets. While UL-type results contain a single DataSet (‘’signal region’‘), EM
results hold several DataSets, one for each signal region (see the database scheme above). Each DataSet contains one
or more efficiency maps, one for each element or sum of elements. The efficiency map is usually a function of the
BSM masses appearing in the element, as shown by the example below:

Within SModelS the above EM map is used to compute the efficiency for the element [[[𝑗𝑒𝑡]], [[𝑗𝑒𝑡]]], where we are
using the notation defined in Bracket Notation. Furthermore, a final state property can also be defined (see Final State
class). If no final state is given, the element is assumed to have a (𝑀𝐸𝑇,𝑀𝐸𝑇 ) final state signature. Usually there
are several EM maps for a single data set: one for each element or sum of elements. In order to use a language similar
to the one used in UL-type results, the element (or elements) for which the efficiencies correspond to are still called
constraint.

Although efficiencis are most useful for EM-type results, their concept can also be extended to UL-type results. For
the latter, the efficiencies for a given element are either 1, if the element appears in the UL constraint, or 0, otherwise.
Atlhough trivial, this extension allows us to treat EM-type results and UL-type results in a very similar fashion (see
Theory Predictions for more details).

Data Sets

Data sets are a way to conveniently group efficiency maps corresponding to the same signal region. As discussed in
UL-type results, data sets are not necessary for UL-type results, since in this case there is a single ‘’signal region’‘.



Nonetheless, data sets are also present in UL-type results in order to allow for a similar structure for both EM-type and
UL-type results (see database scheme).

For UL-type results the data set contains the UL maps as well as some basic information, such as the type of Experi-
mental Result (UL). On the other hand, for EM-type results, each data set contains the EM maps for the corresponding
signal region as well as some additional information: the observed and expected number of events in the signal region,
the signal upper limit, etc. In the folder structure shown in database scheme, the upper limit maps and efficiency maps
for each element (or sum of elements) are stored in files labeled accoring to the TxName convention.

• Data Sets are described by the DataSet Class

TxName Convention

Since using the bracket notation to describe the simplified models appearing in the upper limit or efficiency maps
can be rather lenghty, it is useful to define a shorthand notation for the constraints. SModelS adopts a notation based
on the CMS SMS conventions, where each specific constraint is labeled as T<constraint name>, which we refer as
TxName. For instance, the TxName corresponding to the constraint in the example above is TSlepSlep. A complete
list of TxNames can be found here.

• Upper limit and efficiency maps are described by the TxName Class

More details about the database folder structure and object structure can be found in Database of Experimental
Results.

SModelS Structure

The main ingredients relevant for SModelS are:

Basic Input

Basic Model Input

The main input for SModelS is the full model definition, which can be given in the two following forms:

• a SLHA (SUSY Les Houches Accord) file containing masses, branching ratios and cross sections for the BSM
states (see an example file here)

• a LHE (Les Houches Event) file containing parton level events (see an example file here)

The SLHA format is usually more compact and best suited for supersymmetric models. On the other hand, a LHE file
can always be generated for any BSM model (through the use of your favorite MC generator).*0 In this case, however,
the precision of the results is limited to the MC statistics used to generate the file. We also point out that all the decays
appearing in the LHE input are assumed to be prompt and this input format should no be used if the model contains
meta-stable particles.

In the case of SLHA input only, the production cross sections for the BSM states also have to be included in the
SLHA file as SLHA blocks, according to the SLHA cross section format (see example file). For the MSSM and
some of its extensions, they may be calculated automatically using Pythia and NLLfast, as discussed in cross section
calculator.

In the case of LHE input, the total production cross section as well as the center-of-mass energy should be listed in the
<init></init> block, according to the standard LHE format (see example file). Moreover, all the Z2-even particles
(see definition in final states) should be set as stable, since in SModelS they are effectively considered as final states.

0 SModelS can easily be used for non-SUSY models as long as they present a Z2-type symmetry. However, it is the responsibility of the user to
make sure that the SMS results in the database actually apply to the model under consideration.

experiment.html#experiment.datasetObj.DataSet
http://smodels.hephy.at/wiki/SmsDictionary
experiment.html#experiment.txnameObj.TxName
http://home.thep.lu.se/~torbjorn/Pythia.html
http://pauli.uni-muenster.de/~akule_01/nllwiki/index.php/NLL-fast


When generating the events it is also important to ensure that no mass smearing is applied, so the mass values for a
given particle are the same throughout the LHE file.

New Particles

Besides information about the masses and branching ratios, the user must also define which particles are Z2-odd states
(Intermediate states) and which are Z2-even (Final states). These definitions must be given in a model file, including
the particle’s quantum numbers, as illustrated in the mssm.py file. A path to a user’s own model file can be specified
in the parameter file, in the [particles] section.

SLHA Format for Cross Sections

A list of cross section blocks (one for each production process) must be included in the SLHA file for the SLHA-based
Decomposition. The SLHA format for each cross section block is shown below (see the Les Houches note):

The above example shows the cross section for 𝑝𝑝 → 𝜏−1 + 𝜈𝜏 at a center-of-mass energy of 8 TeV and at leading
order. The only information used by SModelS are the center-of-mass energy, the outgoing particle PDGs, the cross
section value and the QCD order. If the input file contains two cross sections for the same process but at different QCD
orders, only the highest order will be used.

• Reading of cross sections from an input file is implemented by the getXsecFromSLHAFile method

Decomposition into Simplified Models

Given an input model, the first task of SModelS is to decompose the full model into a sum of Simplified Models (or
elements in SModelS language). Based on the input format, which can be

• a SLHA file or

• a LHE file

(see Basic Input), two distinct (but similar) decomposition methods are applied: the SLHA-based or the LHE-based
decomposition.

SLHA-based Decomposition

The SLHA file describing the input model is required to contain the masses of all the BSM states as well as their
production cross sections, decay widths and branching ratios. All the above information must follow the guidelines of
the SLHA format. In particular, the cross sections also have to be included as SLHA blocks according to the SLHA
cross section format.

Once the production cross sections are read from the input file, all the cross sections for production of two Z2-odd
states are stored and serve as the initial step for the decomposition. (All the other cross sections with a different

http://phystev.cnrs.fr/wiki/2013:groups:tools:slha
theory.html#theory.crossSection.getXsecFromSLHAFile


number of Z2-odd states are ignored.) Starting from these primary mothers, all the possible decays are generated
according to the information contained in the DECAY blocks. This procedure is represented in the figure below:

Within SModelS all BSM particles are assumed to either decay promptly or to be stable (in detector scales). To deal
with BSM particles with small (non-zero) width SModelS computes the probability for prompt decay (ℱ𝑝𝑟𝑜𝑚𝑝𝑡) as
well as the probability for the particle to decay outside the detector (ℱ𝑙𝑜𝑛𝑔). If the particle has a considerable fraction
of its decays taking place inside the detector (i.e ℱ𝑙𝑜𝑛𝑔 + ℱ𝑝𝑟𝑜𝑚𝑝𝑡 ≪ 1), we include a third possibility, which is
simply labeled as a displaced decay, with the fraction given by ℱ𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑑 = 1 − ℱ𝑝𝑟𝑜𝑚𝑝𝑡 − ℱ𝑙𝑜𝑛𝑔.1 The branching
fraction rescaled by ℱ𝑙𝑜𝑛𝑔 describes the probability of a decay where the daughter BSM state traverses the detector
(thus is considered stable), while the branching fraction rescaled by ℱ𝑝𝑟𝑜𝑚𝑝𝑡 corresponds to a prompt decay which
will be followed by the next step in the cascade decay. Finally, the rescaling by ℱ𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑑 corresponds to the fraction
of displaced decays summed over all final states. This reweighting is illustrated in the figure below:

The precise values of ℱ𝑝𝑟𝑜𝑚𝑝𝑡 and ℱ𝑙𝑜𝑛𝑔 depend on the relevant detector size (𝐿), particle mass (𝑀 ), boost (𝛽) and
width (Γ), thus requiring a Monte Carlo simulation for each input model. Since this is not within the spirit of the
simplified model approach, we approximate the prompt and long-lived probabilities by:

ℱ𝑙𝑜𝑛𝑔 = exp

(︂
−Γ𝐿𝑜𝑢𝑡𝑒𝑟

⟨𝛾𝛽⟩

)︂
and ℱ𝑝𝑟𝑜𝑚𝑝𝑡 = 1 − exp

(︂
−Γ𝐿𝑖𝑛𝑛𝑒𝑟

⟨𝛾𝛽⟩

)︂
,

where 𝐿𝑜𝑢𝑡𝑒𝑟 is the effective size of the detector (which we take to be 10 m for both ATLAS and CMS), 𝐿𝑖𝑛𝑛𝑒𝑟 is
the effective radius of the inner detector (which we take to be 1 mm for both ATLAS and CMS). Finally, we take the
effective time dilation factor to be ⟨𝛾𝛽⟩ = 1.3 when computing ℱ𝑝𝑟𝑜𝑚𝑝𝑡 and ⟨𝛾𝛽⟩ = 1.43 when computing ℱ𝑙𝑜𝑛𝑔. We
point out that the above approximations are irrelevant if Γ is very large (ℱ𝑝𝑟𝑜𝑚𝑝𝑡 ≃ 1 and ℱ𝑙𝑜𝑛𝑔 ≃ 0) or close to zero
(ℱ𝑝𝑟𝑜𝑚𝑝𝑡 ≃ 0 and ℱ𝑙𝑜𝑛𝑔 ≃ 1). Only elements containing particles which have a considerable fraction of displaced
decays will be sensitive to the values chosen above.

Following the above procedure it is possible to construct all cascade decay possibilities (including the stable case) for
a given initial mother particle. Within the SModelS language each of the possible cascade decays corresponds to a
branch. In order to finally generate elements, all the branches are combined in pairs according to the production cross
sections, as shown below:

1 Note that the final states appearing in the displaced vertex are not stored during decomposition, since SModelS can not currently constrain
displaced decay signatures. As a result, all elements with displaced decays will be identified as missing topologies.



For instance, assume [b1,b2,b3] and [B1,B2] represent all possible branches (or cascade decays) for the primary
mothers A and B, respectively. Then, if a production cross section for 𝑝𝑝 → 𝐴 + 𝐵 is given in the input file, the
following elements will be generated:

[b1,B1], [b1,B2], [b2,B1], [b2,B2], [b3,B1] and [b3,B2]

Each of the elements generated according to the procedure just described will also store its weight, which equals its
production cross section times all the branching ratios appearing in it. In order to avoid a too large number of elements,
only those satisfying a minimum weight requirement are kept. Furthermore, the elements are grouped according to
their topologies. The final output of the SLHA decomposition is a list of such topologies, where each topology contains
a list of the elements generated during the decomposition.

• The SLHA decomposition is implemented by the SLHA decompose method

Minimum Decomposition Weight

Some models may contain a large number of new states and each may have a large number of possible decays. As
a result, long cascade decays are possible and the number of elements generated by the decomposition process may
become too large, and the computing time too long. For most practical purposes, however, elements with extremely
small weights (cross section times BRs times the width rescaling) can be discarded, since they will fall well below
the experimental limits. Therefore, during the SLHA decomposition, whenever an element is generated with a weight
below some minimum value, this element (and all elements derived from it) is ignored. The minimum weight to be
considered is given by the sigcut parameter and is easily adjustable (see slhaDecomposer.decompose).

Note that, when computing the theory predictions, the weight of several elements can be combined together. Hence
it is recommended to set the value of sigcut approximately one order of magnitude below the minimum signal cross
sections the experimental data can constrain.

LHE-based Decomposition

More general models can be input through an LHE event file containing parton-level events, including the production
of the primary mothers and their cascade decays. Each event can then be directly mapped to an element with the
element weight corresponding to the event weight. Finally, identical elements can be combined together (adding their
weights). The procedure is represented in the example below:

theory.html#theory.slhaDecomposer.decompose
theory.html#theory.slhaDecomposer.decompose
theory.html#theory.slhaDecomposer.decompose
theory.html#theory.slhaDecomposer.decompose


Notice that, for the LHE decomposition, the elements generated are restricted to the events in the input file. Hence, the
uncertainties on the elements weights (and which elements are actually generated by the model) are fully dependent
on the Monte Carlo statistics used to generate the LHE file. Also, when generating the events it is important to ensure
that no mass smearing is applied, so the events always contain the same mass value for a given particle.

Note that since all decays appearing in an LHE event are assumed to be prompt, the LHE-based decomposition
should not be used for models with meta-stable BSM particles.

• The LHE decomposition is implemented by the LHE decompose method

Compression of Elements

During the decomposition process it is possible to perform several simplifications on the elements generated. In both
the LHE and SLHA-based decompositions, two useful simplifications are possible: Mass Compression and Invisible
Compression. The main advantage of performing these compressions is that the simplified element is always shorter
(has fewer cascade decay steps), which makes it more likely to be constrained by experimental results. The details
behind the compression methods are as follows:

Mass Compression

In case of small mass differences, the decay of an intermediate state to a nearly degenerate one will in most cases
produce soft final states, which can not be experimentally detected. Consequently, it is a good approximation to
neglect the soft final states and compress the respective decay, as shown below:

After the compression, only the lightest of the two near-degenerate masses are kept in the element, as shown above.
The main parameter which controls the compression is minmassgap, which corresponds to the maximum value of 𝜖 in
the figure above to which the compression is performed:

if |𝑀𝑗 −𝑀𝑗+1| < 𝑚𝑖𝑛𝑚𝑎𝑠𝑠𝑔𝑎𝑝 → the decay is compressed
if |𝑀𝑗 −𝑀𝑗+1| > 𝑚𝑖𝑛𝑚𝑎𝑠𝑠𝑔𝑎𝑝 → the decay is NOT compressed

theory.html#theory.lheDecomposer.decompose
theory.html#theory.element.Element.massCompress


Note that the compression is an approximation since the final states, depending on the boost of the parent state, may
not always be soft. It is recommended to choose values of minmassgap between 1-10 GeV; the default value is 5 GeV.

• Mass compression is implemented by the massCompress method and can be easily turned on/off by the flag
doCompress in the SLHA or LHE decompositions.

Invisible Compression

Another type of compression is possible when the final states of the last decay are invisible. The most common
example is

𝐴 → 𝜈 + 𝐵

as the last step of the decay chain, where 𝐵 is an insivible particle leading to a MET signature (see final state class).
Since both the neutrino and 𝐵 are invisible, for all experimental purposes the effective MET object is 𝐵 + 𝜈 = 𝐴.
Hence it is possible to omit the last step in the cascade decay, resulting in a compressed element. Note that this
compression can be applied consecutively to several steps of the cascade decay if all of them contain only invisible
final states:

• Invisible compression is implemented by the invisibleCompress method and can be easily turned on/off by
the flag doInvisible in the SLHA or LHE decompositions.

Element Sorting

In order to improve the code performance, elements created during decomposition and sharing a commong topology
are sorted. Sorting allows for an easy ordering of the elements belonging to a topology and faster element comparison.
Elements are sorted according to their branches. Branches are compared according to the following properties:

• Number of vertices

• Number of final states in each vertex

• Final state (Z2-even) particles (particles belonging to the same vertex are alphabetically sorted)

• Mass array

• Final state signature

As an example, consider the three elements below:

theory.html#theory.element.Element.massCompress
theory.html#theory.element.Element.massCompress
theory.html#theory.element.Element.invisibleCompress


The correct ordering of the above elements is:

Element 3 < Element 2 < Element 1

Element 1 is ‘larger’ than the other two since it has a larger number of vertices. Elements 2 and 3 are identical, except
for their masses. Since the mass array of Element 3 is smaller than the one in Element 2, the former is ‘smaller’ than
the latter. Finally if all the branch features listed above are identical for both branches, the elements being compared
are considered to be equal. Futhermore, the branches belonging to the same element are also sorted. Hence, if an
element has two branches:

𝑒𝑙𝑒𝑚𝑒𝑛𝑡 = [𝑏𝑟𝑎𝑛𝑐ℎ1, 𝑏𝑟𝑎𝑛𝑐ℎ2],

it implies

𝑏𝑟𝑎𝑛𝑐ℎ1 < 𝑏𝑟𝑎𝑛𝑐ℎ2.

• Branch sorting is implemented by the sortBranches method

Theory Predictions

The decomposition of the input model as a sum of elements (simplified models) is the first step for confronting the
model with the experimental limits. The next step consists of computing the relevant signal cross sections (or theory
predictions) for comparison with the experimental limits. Below we describe the procedure for the computation of the
theory predictions after the model has been decomposed.

Computing Theory Predictions

As discussed in Database Definitions, the SModelS database allows for two types of experimental constraints: Upper
Limit constraints (see UL-type results) and Efficiency Map constraints (see EM-type results). Each of them requires
different theoretical predictions to be compared against experimental data.

UL-type results constrains the weight of one element or sum of elements. The element weight is defined as 𝜎×𝐵𝑅×ℱ ,
where 𝜎 is the total production cross-section, 𝐵𝑅 is the product of all branching ratios for the decays appearing in the
element and ℱ is the product of all the lifetime reweighting factors (ℱ𝑙𝑜𝑛𝑔 and ℱ𝑝𝑟𝑜𝑚𝑝𝑡), as discussed in the SLHA
decomposition (for the LHE-type decomposition ℱ = 1).

Therefore, in order to apply the experimental constraints, SModelS must first compute the theoretical value of 𝜎 ×
𝐵𝑅 × ℱ summing only over the elements appearing in the respective constraint. This is done applying a 1 (zero)
efficiency (𝜖) for the elements which appear (do not appear) in the constraint. Then the final theoretical prediction is
the sum over all elements with a non-zero value of

∑︀
𝜎 × 𝐵𝑅 × ℱ × 𝜖. This value can then be compared with the

respective 95% C.L. upper limit extracted from the UL map (see UL-type results).

On the other hand, EM-type results constrain the total signal (
∑︀

𝜎×𝐵𝑅×ℱ × 𝜖) in a given signal region (DataSet).
Consequently, in this case SModelS must compute 𝜎 × 𝐵𝑅 × ℱ × 𝜖 for each element, using the efficiency maps
for the corresponding DataSet. The final theoretical prediction is the sum over all elements with a non-zero value of

theory.html#theory.element.Element.sortBranches


𝜎 × 𝐵𝑅 × ℱ × 𝜖. This value can then be compared with the signal upper limit for the respective signal region (data
set).

For experimental results for which the covariance matrix is provided, it is possible to combine all the signal regions
(see Combination of Signal Regions). In this case the final theory prediction corresponds to the sum of 𝜎×𝐵𝑅×ℱ×𝜖
over all signal regions (and all elements) and the upper limit is computed for this sum.

Although the details of the theoretical prediction computation differ depending on the type of Experimental Result (UL-
type results or EM-type results), the overall procedure is common for both type of results. Below we schematically
show the main steps of the theory prediction calculation:

As shown above the procedure can always be divided in two main steps: Element Selection and Element Clustering.
Once the elements have been selected and clustered, the theory prediction for each DataSet is given by the sum of all
the element weights (𝜎 ×𝐵𝑅×ℱ × 𝜖) belonging to the same cluster:

theory prediction =
∑︁

𝑐𝑙𝑢𝑠𝑡𝑒𝑟

(element weight) =
∑︁

𝑐𝑙𝑢𝑠𝑡𝑒𝑟

(𝜎 ×𝐵𝑅×ℱ × 𝜖)

Below we describe in detail the element selection and element clustering methods for computing the theory predictions
for each type of Experimental Result separately.

• Theory predictions are computed using the theoryPredictionsFor method

Theory Predictions for Upper Limit Results

Computation of the signal cross sections for a given UL-type result takes place in two steps. First selection of the
elements generated by the model decomposition and then clustering of the selected elements according to their masses.
These two steps are described below.

Element Selection

An UL-type result holds upper limits for the cross sections of an element or sum of elements. Consequently, the first
step for computing the theory predictions for the corresponding experimental result is to select the elements that appear
in the UL result constraint. This is conveniently done attributing to each element an efficiency equal to 1 (0) if the
element appears (does not appear) in the constraint. After all the elements weights (𝜎 × 𝐵𝑅) have been rescaled by
these ‘’trivial” efficiencies, only the ones with non-zero weights are relevant for the signal cross section. The element
selection is then trivially achieved by selecting all the elements with non-zero weights.

The procedure described above is illustrated graphically in the figure below for the simple example where the con-
straint is [[[𝑒+]], [[𝑒−]]] + [[[𝜇+]], [[𝜇−]]].

theory.html#theory.theoryPrediction.theoryPredictionsFor


• The element selection is implemented by the getElementsFrom method

Element Clustering

Naively one would expect that after all the elements appearing in the constraint have been selected, it is trivial to
compute the theory prediction: one must simply sum up the weights (𝜎 × 𝐵𝑅 × ℱ) of all the selected elements.
However, the selected elements usually differ in their masses*0 and the experimental limit (see Upper Limit constraint)
assumes that all the elements appearing in the constraint have the same mass (or mass array). As a result, the selected
elements must be grouped into clusters of equal masses. When grouping the elements, however, one must allow for
small mass differences, since the experimental efficiencies should not be strongly sensitive to small mass differences.
For instance, assume two elements contain identical mass arrays, except for the parent masses which differ by 1
MeV. In this case it is obvious that for all experimental purposes the two elements have identical masses and should
contribute to the same theory prediction (e.g. their weights should be added when computing the signal cross section).
Unfortunately there is no way to unambiguously define ‘’similar masses” and the definition should depend on the
Experimental Result, since different results will be more or less sensitive to mass differences. SModelS uses an UL
map-dependent measure of the distance between two element masses, as described in Mass Distance.

If two of the selected elements have a mass distance smaller than a maximum value (defined by maxDist), they are
gouped in the same mass cluster, as illustrated by the example below:

0 As discussed in Database Definitions, UL-type results have a single DataSet.

theory.html#theoryPrediction._getElementsFrom
theory.html#theory.clusterTools.clusterElements


Once all the elements have been clustered, their weights can finally be added together and compared against the
experimental upper limit.

• The clustering of elements is implemented by the clusterElements method.

Mass Distance

As mentioned above, in order to cluster the elements it is necessary to determine whether two elements have similar
masses (see element and Bracket Notation for more details on element mass). Since an absolute definition of ‘’similar
masses” is not possible and the sensitivity to mass differences depends on the experimental result, SModelS uses an
‘’upper limit map-dependent” definition. For each element’s mass array, the upper limit for the corresponding mass
values is obtained from the UL map (see UL-type result). This way, each mass array is mapped to a single number (the
cross section upper limit for the experimental result). Then the distance between the two element’s masses is simply
given by the relative difference between their respective upper limits. More explicitly:

Element 𝐴 (𝑀𝐴 = [[𝑀1,𝑀2, ...], [𝑚1,𝑚2, ...]]) → Upper Limit(𝑀𝐴) = 𝑥

Element 𝐵 (𝑀𝐵 = [[𝑀1′,𝑀2′, ...], [𝑚1′,𝑚2′, ...]]) → Upper Limit(𝑀𝐵) = 𝑦

⇒ mass distance(𝐴,𝐵) =
|𝑥− 𝑦|

(𝑥 + 𝑦)/2

where 𝑀𝐴,𝑀𝐵 (𝑥, 𝑦) are the mass arrays (upper limits) for the elements A and B, respectively. If the mass distance
of two elements is smaller than maxDist, the two masses are considered similar.

Notice that the above definition of mass distance quantifies the experimental analysis sensitivity to mass differences,
which is the relevant parameter when clustering elements. Also, a check is performed to ensure that masses with very
distinct values but similar upper limits are not clustered together.

• The mass distance function is implemented by the distance method

Theory Predictions for Efficiency Map Results

In order to compute the signal cross sections for a given EM-type result, so it can be compared to the signal region
limits, it is first necessary to apply the efficiencies (see EM-type result) to all the elements generated by the model
decomposition. Notice that typically a single EM-type result contains several signal regions (DataSets) and there will

theory.html#theory.clusterTools.clusterElements
theory.html#theory.clusterTools.clusterElements
theory.html#theory.auxiliaryFunctions.distance


be a set of efficiencies (or efficiency maps) for each data set. As a result, several theory predictions (one for each data
set) will be computed. This procedure is similar (in nature) to the Element Selection applied in the case of an UL-type
result, except that now it must be repeated for several data sets (signal regions).

After the element’s weights have being rescaled by the corresponding efficiencies for the given data set (signal region),
all of them can be grouped together in a single cluster, which will provide a single theory prediction (signal cross
section) for each DataSet. Hence the element clustering discussed below is completely trivial. On the other hand the
element selection is slightly more involved than in the UL-type result case and will be discussed in more detail.

Element Selection

The element selection for the case of a EM-type result consists of rescaling all the elements weights by their efficien-
cies, according to the efficiency map of the corresponding DataSet. The efficiency for a given DataSet depends both
on the element mass and on its topology and particle content. In practice the efficiencies for most of the elements will
be extremely small (or zero), hence only a subset effectively contributes after the element selection†0. In the figure
below we illustrate the element selection for the case of a EM-type result/DataSet:

If, for instance, the analysis being considered vetoes 𝑗𝑒𝑡𝑠 and 𝜏 ‘s in the final state, we will have 𝜖2, 𝜖4 ≃ 0 for the
example in the figure above. Nonetheless, the element selection for a DataSet is usually more inclusive than the one
applied for the UL-type result, resulting in less conservative values for the theory prediction.

• The element selection is implemented by the getElementsFrom method

Element Clustering

Unlike the clustering required in the case of UL-type result (see Element Clustering for an UL analysis), after the
efficiencies have been applied to the element’s weights, there is no longer the necessity to group the elements according
to their masses, since the mass differences have already been accounted for by the different efficiencies. As a result,
after the element selection all elements belong to a single cluster:

0 When refering to an element mass, we mean all the intermediate state masses appearing in the element (or the element mass array). Two
elements are considered to have identical masses if their mass arrays are identical (see element and Bracket Notation for more details).

theory.html#theoryPrediction._getElementsFrom


• The (trivial) clustering of elements is implemented by the clusterElements method.

Database of Experimental Results

SModelS stores all the information about the experimental results in the Database. Below we describe both the
directory and object structure of the Database.

Database: Directory Structure

The Database is organized as files in an ordinary (UNIX) directory hierarchy, with a thin Python layer serving as the
access to the database. The overall structure of the directory hierarchy and its contents is depicted in the scheme below
(click to enlarge):

theory.html#theory.clusterTools.clusterElements


As seen above, the top level of the SModelS database categorizes the analyses by LHC center-of-mass energies,
√
𝑠:

• 8 TeV

• 13 TeV

Also, the top level directory contains a file called version with the version string of the database. The second level
splits the results up between the different experiments:

• 8TeV/CMS/

• 8TeV/ATLAS/

The third level of the directory hierarchy encodes the Experimental Results:

• 8TeV/CMS/CMS-SUS-12-024

• 8TeV/ATLAS/ATLAS-CONF-2013-047

• . . .

• The Database folder is described by the Database Class

Experimental Result Folder

Each Experimental Result folder contains:

experiment.html#experiment.databaseObj.Database


• a folder for each DataSet (e.g. data)

• a globalInfo.txt file

The globalInfo.txt file contains the meta information about the Experimental Result. It defines the center-of-
mass energy

√
𝑠, the integrated luminosity, the id used to identify the result and additional information about the

source of the data. Here is the content of CMS-SUS-12-024/globalInfo.txt as an example:

sqrts: 8.0*TeV
lumi: 19.4/fb
id: CMS-SUS-12-024
prettyName: \slash{E}_{T}+b
url: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS12024
arxiv: http://arxiv.org/abs/1305.2390
publication: http://www.sciencedirect.com/science/article/pii/S0370269313005339
contact: Keith Ulmer <keith.ulmer@cern.ch>, Josh Thompson <joshua.thompson@cern.ch>,
→˓Alessandro Gaz <alessandro.gaz@cern.ch>
private: False
implementedBy: Wolfgang Waltenberger
lastUpdate: 2015/5/11

• Experimental Result folder is described by the ExpResult Class

• globalInfo files are descrived by the Info Class

Data Set Folder

Each DataSet folder (e.g. data) contains:

• the Upper Limit maps for UL-type results or Efficiency maps for EM-type results (TxName.txt files)

• a dataInfo.txt file containing meta information about the DataSet

• Data Set folders are described by the DataSet Class

• TxName files are described by the TxName Class

• dataInfo files are described by the Info Class

Data Set Folder: Upper Limit Type

Since UL-type results have a single dataset (see DataSets), the info file only holds some trivial information, such as
the type of Experimental Result (UL) and the dataset id (None for UL-type results). Here is the content of CMS-SUS-
12-024/data/dataInfo.txt as an example:

dataType: upperLimit
dataId: None

For UL-type results, each TxName.txt file contains the UL map for a given simplified model (element or sum of
elements) as well as some meta information, including the corresponding constraint and conditions. The first few lines
of CMS-SUS-12-024/data/T1tttt.txt read:

txName: T1tttt
constraint: [[['t','t']],[['t','t']]]
condition: None
conditionDescription: None
figureUrl: https://twiki.cern.ch/twiki/pub/CMSPublic/PhysicsResultsSUS12024/T1tttt_
→˓exclusions_corrected.pdf

(continues on next page)

experiment.html#experiment.expResultObj.ExpResult
experiment.html#experiment.infoObj.Info
experiment.html#experiment.datasetObj.DataSet
experiment.html#experiment.txnameObj.TxName
experiment.html#experiment.infoObj.Info


(continued from previous page)

source: CMS
validated: True
axes: [[x, y], [x, y]]

If the finalState property is not provided, the simplified model is assumed to contain neutral BSM final states in
each branch, leading to a MET signature. However, if this is not the case, the non-MET final states must be explic-
itly listed in the TxName.txt file (see final state classes for more details). An example from the CMS-EXO-12-
026/data/THSCPM1b.txt file is shown below:

txName: THSCPM1b
constraint: [[],[]]
source: CMS
axes: [[x], [x]]
finalState: ['HSCP', 'HSCP']

The second block of data in the TxName.txt file contains the upper limits as a function of the BSM masses:

upperLimits: [[[[4.0000E+02*GeV,0.0000E+00*GeV],[4.0000E+02*GeV,0.0000E+00*GeV]],1.
→˓8158E+00*pb],
[[[4.0000E+02*GeV,2.5000E+01*GeV],[4.0000E+02*GeV,2.5000E+01*GeV]],1.8065E+00*pb],
[[[4.0000E+02*GeV,5.0000E+01*GeV],[4.0000E+02*GeV,5.0000E+01*GeV]],2.1393E+00*pb],
[[[4.0000E+02*GeV,7.5000E+01*GeV],[4.0000E+02*GeV,7.5000E+01*GeV]],2.4721E+00*pb],
[[[4.0000E+02*GeV,1.0000E+02*GeV],[4.0000E+02*GeV,1.0000E+02*GeV]],2.9297E+00*pb],
[[[4.0000E+02*GeV,1.2500E+02*GeV],[4.0000E+02*GeV,1.2500E+02*GeV]],3.3874E+00*pb],
[[[4.0000E+02*GeV,1.5000E+02*GeV],[4.0000E+02*GeV,1.5000E+02*GeV]],3.4746E+00*pb],
[[[4.0000E+02*GeV,1.7500E+02*GeV],[4.0000E+02*GeV,1.7500E+02*GeV]],3.5618E+00*pb],
[[[4.2500E+02*GeV,0.0000E+00*GeV],[4.2500E+02*GeV,0.0000E+00*GeV]],1.3188E+00*pb],
[[[4.2500E+02*GeV,2.5000E+01*GeV],[4.2500E+02*GeV,2.5000E+01*GeV]],1.3481E+00*pb],
[[[4.2500E+02*GeV,5.0000E+01*GeV],[4.2500E+02*GeV,5.0000E+01*GeV]],1.7300E+00*pb],

As we can see, the UL map is given as a Python array with the structure:
[[masses, upper limit], [masses, upper limit], ...].

Data Set Folder: Efficiency Map Type

For EM-type results the dataInfo.txt contains relevant information, such as an id to identify the DataSet (signal
region), the number of observed and expected background events for the corresponding signal region and the respective
signal upper limits. Here is the content of CMS-SUS-13-012-eff/3NJet6_1000HT1250_200MHT300/dataInfo.txt as
an example:

dataType: efficiencyMap
dataId: 3NJet6_1000HT1250_200MHT300
observedN: 335
expectedBG: 305
bgError: 41
upperLimit: 5.681*fb
expectedUpperLimit: 4.585*fb

For EM-type results, each TxName.txt file contains the efficiency map for a given simplified model (ele-
ment or sum of elements) as well as some meta information. Here is the first few lines of CMS-SUS-13-012-
eff/3NJet6_1000HT1250_200MHT300/T2.txt:

txName: T2
conditionDescription: None

(continues on next page)



(continued from previous page)

condition: None
constraint: [[['jet']],[['jet']]]
figureUrl: https://twiki.cern.ch/twiki/pub/CMSPublic/PhysicsResultsSUS13012/Fig_7a.pdf
validated: True
axes: 2*Eq(mother,x)_Eq(lsp,y)
publishedData: False

As seen above, the first block of data in the T2.txt file contains information about the element ([[[jet]], [[jet]]]) in
bracket notation for which the efficiencies refers to as well as reference to the original data source and some additional
information. As in the Upper Limit case, the simplified model is assumed to contain neutral BSM final states (MET
signature). For non-MET final states the finalState field must list the final state signatures. The second block of data
contains the efficiencies as a function of the BSM masses:

efficiencyMap: [[[[312.5*GeV, 12.5*GeV], [312.5*GeV, 12.5*GeV]], 0.00109],
[[[312.5*GeV, 62.5*GeV], [312.5*GeV, 62.5*GeV]], 0.00118],
[[[312.5*GeV, 112.5*GeV], [312.5*GeV, 112.5*GeV]], 0.00073],
[[[312.5*GeV, 162.5*GeV], [312.5*GeV, 162.5*GeV]], 0.00044],

...

As we can see the efficiency map is given as a Python array with the structure:
[[masses, efficiency], [masses, efficiency], ...].

Inclusive Simplified Models

If the analysis signal efficiencies are insensitive to some of the simplified model final states, it might be convenient to
define inclusive simplified models. A typical case are some of the heavy stable charged particle searches, which only
rely on the presence of a non-relativistic charged particle, which leads to an anomalous charged track signature. In
this case the signal efficiencies are highly insensitive to the remaining event activity and the corresponding simplified
models can be very inclusive. In order to handle this inclusive cases in the database we allow for wildcards when
specifying the constraints. For instance, the constraint for the CMS-EXO-13-006 eff/c000/THSCPM3.txt reads:

txName: THSCPM3
constraint: [[['*']],[['*']]]

and represents the (inclusive) simplified model:

Note that although the final state represented by “*” is any Z2-even final states, it must still correspond to a single
particle, since the topology specifies a 2-body decay for the initially produced BSM particle. Finally, it might be
useful to define even more inclusive simplified models, such as the one in CMS-EXO-13-006 eff/c000/THSCPM4.txt:



txName: THSCPM4
constraint: [[*],[['*']]]
finalState: ['MET', 'HSCP']

In the above case the simplified model corresponds to an HSCP being initially produced in association with any BSM
particle which leads to a MET signature. Notice that the notation “[*]” corresponds to any ‘branch, while [“*”] means
any particle:

In such cases the mass array for the arbitrary branch must also be specified as using wildcards:

efficiencyMap: [[['*',[5.5000E+01*GeV,5.0000E+01*GeV]],5.27e-06],
[['*',[1.5500E+02*GeV,5.0000E+01*GeV]],1.28e-07],
[['*',[1.5500E+02*GeV,1.0000E+02*GeV]],0.13],

Database: Object Structure

The Database folder structure is mapped to Python objects in SModelS. The mapping is almost one-to-one, except for
a few exceptions. Below we show the overall object structure as well as the folders/files the objects represent (click to
enlarge):



The type of Python object (Python class, Python list,. . . ) is shown in brackets. For convenience, below we explicitly
list the main database folders/files and the Python objects they are mapped to:

• Database folder → Database Class

• Experimental Result folder → ExpResult Class

• DataSet folder → DataSet Class

• globalInfo.txt file → Info Class

• dataInfo.txt file → Info Class

• Txname.txt file → TxName Class

Database: Binary (Pickle) Format

At the first time of instantiating the Database class, the text files in <database-path>. are loaded and parsed, and
the corresponding data objects are built. The efficiency and upper limit maps themselves are subjected to standard
preprocessing steps such as a principal component analysis and Delaunay triangulation (see Figure below). The
simplices defined during triangulation are then used for linearly interpolating the data grid, thus allowing SModelS
to compute efficiencies or upper limits for arbitrary mass values (as long as they fall inside the data grid). This
procedure provides an efficient and numerically robust way of dealing with generic data grids, including arbitrary
parametrizations of the mass parameter space, irregular data grids and asymmetric branches.

experiment.html#experiment.databaseObj.Database
experiment.html#experiment.databaseObj.ExpResult
experiment.html#experiment.datasetObj.DataSet
experiment.html#experiment.infoObj.Info
experiment.html#experiment.infoObj.Info
experiment.html#experiment.txnameObj.TxName
experiment.html#experiment.databaseObj.Database


For the sake of efficiency, the entire database – including the Delaunay triangulation – is then serialized into a pickle
file (<database-path>/database.pcl), which will be read directly the next time the database is loaded. If any changes in
the database folder structure are detected, the python or the SModelS version has changed, SModelS will automatically
re-build the pickle file. This action may take a few minutes, but it is again performed only once. If desired, the pickling
process can be skipped using the option force_load = ‘txt’ in the constructor of Database .

• The pickle file is created by the createBinaryFile method

Confronting Predictions with Experimental Limits

Once the relevant signal cross sections (or theory predictions) have been computed for the input model, these must
be compared to the respective upper limits. The upper limits for the signal are stored in the SModelS Database and
depend on the type of Experimental Result: UL-type or EM-type.

In the case of a UL-type result, the theory predictions typically consist of a list of signal cross sections (one for
each cluster) for the single data set (see Theory Predictions for Upper Limit Results for more details). Each theory
prediction must then be compared to its corresponding upper limit. This limit is simply the cross section upper limit
provided by the experimental publication or conference note and is extracted from the corresponding UL map (see
UL-type results).

For EM-type results there is a single cluster for each data set (or signal region), and hence a single signal cross section
value. This value must be compared to the upper limit for the corresponding signal region. This upper limit is easily
computed using the number of observed and expected events for the data set and their uncertainties and is typically
stored in the Database. Since most EM-type results have several signal regions (data sets), there will be one theory

experiment.html#experiment.databaseObj.Database
experiment.html#experiment.databaseObj.Database.createBinaryFile


prediction/upper limit for each data set. By default SModelS keeps only the best data set, i.e. the one with the largest
ratio (theory prediction)/(expected limit). (See below for combination of signal regions) Thus each EM-type result
will have a single theory prediction/upper limit, corresponding to the best data set (based on the expected limit). If the
user wants to have access to all the data sets, the default behavior can be disabled by setting useBestDataset=False in
theoryPredictionsFor (see Example.py).

The procedure described above can be applied to all the Experimental Results in the database, resulting in a list of
theory predictions and upper limits for each Experimental Result. A model can then be considered excluded by the
experimental results if, for one or more predictions, we have theory prediction > upper limit*0.

• The upper limits for a given UL-type result or EM-type result can be obtained using the getUpperLimitFor
method

Likelihood Computation

In the case of EM-type results, additional statistical information about the constrained model can be provided by the
SModelS output. Following the procedure detailed in CMS-NOTE-2017-001, we construct a simplified likelihood
which describes the plausibility of the data 𝐷, given a signal strength 𝜇:

ℒ(𝜇, 𝜃|𝐷) = 𝑃 (𝐷|𝜇 + 𝑏 + 𝜃) 𝑝(𝜃)

Here, 𝜃 denotes the nuisance parameter that describes the variations in the signal and background contribtions due
to systematic effects. We assume 𝑝(𝜃) to follow a Gaussian distribution centered around zero and with a variance of
𝛿2, whereas 𝑃 (𝐷) corresponds to a counting variable and is thus properly described by a Poissonian. The complete
likelihood thus reads:

ℒ(𝜇, 𝜃|𝐷) =
(𝜇 + 𝑏 + 𝜃)𝑛𝑜𝑏𝑠𝑒−(𝜇+𝑏+𝜃)

𝑛𝑜𝑏𝑠!
𝑒𝑥𝑝

(︂
− 𝜃2

2𝛿2

)︂
where 𝑛𝑜𝑏𝑠 is the number of observed events in the signal region. A test statistic 𝑇 can now be constructed from a
likelihood ratio test:

𝑇 = −2 ln
𝐻0

𝐻1
= −2 ln

(︂
ℒ(𝜇 = 𝑛signal, 𝜃|𝐷)

𝑠𝑢𝑝{ℒ(𝜇, 𝜃|𝐷) : 𝜇 ∈ R+}

)︂
As the signal hypothesis in the numerator presents a special case of the likelihood in the denominator, the Neyman-
Pearson lemma holds, and we can assume 𝑇 to be distributed according to a 𝜒2 distribution with one degree of freedom.
Because 𝐻0 assumes the signal strength of a particular model, 𝑇 = 0 corresponds to a perfect match between that
model’s prediction and the measured data. 𝑇 & 1.96 corresponds to a 95% confidence level upper limit. While 𝑛obs,
𝑏 and 𝛿𝑏 are directly extracted from the data set (coined observedN, expectedBG and bgError, respectively), 𝑛signal is
obtained from the calculation of the theory predictions. A default 20% systematical uncertainty is assumed for 𝑛signal,
resulting in 𝛿2 = 𝛿2𝑏 + (0.2𝑛signal)

2.

SModelS reports the 𝜒2 (𝑇 values) and likelihood for each EM-type result, together with the observed and expected 𝑟
values. We note that in the general case analyses may be correlated, so summing up the 𝑇 values will no longer follow
a 𝜒2

(𝑛) distribution. Therefore, for a conservative interpretation, only the result with the best expected limit should be
used. Moreover, for a statistically rigorous usage in scans, it is recommended to check that the analysis giving the
best expected limit does not wildly jump within continuous regions of parameter space that give roughly the same
phenomenology.

• The 𝜒2 for a given EM-type result is computed using the chi2 method

• The likelihood for a given EM-type result is computed using the likelihood method

0 The statistical significance of the exclusion statement is difficult to quantify exactly, since the model is being tested by a large number of results
simultaneously.

theory.html#theory.theoryPrediction.theoryPredictionsFor
experiment.html#experiment.expResultObj.ExpResult.getUpperLimitFor
experiment.html#experiment.expResultObj.ExpResult.getUpperLimitFor
https://cds.cern.ch/record/2242860?ln=en
tools.html#tools.simplifiedLikelihoods.LikelihoodComputer.chi2
tools.html#tools.simplifiedLikelihoods.LikelihoodComputer.likelihood


Combination of Signal Regions

If the experiment provides a covariance matrix together with the efficiency maps, signal regions can be combined.
This is implemented in SModelS v1.1.3 onwards, following as above the simplified likelihood approach described in
CMS-NOTE-2017-001.

SModelS allows for a marginalization as well as a profiling of the nuisances, with profiling being the default (an
example for using marginalisation can be found in How To’s). Since CPU performance is a concern in SModelS, we
try to aggregate the official results, which can comprise >100 signal regions, to an acceptable number of aggregate
regions. Here acceptable means as few aggregate regions as possible without loosing in precision or constraining
power. The CPU time scales roughly linearly with the number of signal regions, so aggregating e.g. from 80 to 20
signal regions means gaining a factor 4 in computing time.

Under the assumptions described in CMS-NOTE-2017-001, the likelihood for the signal hypothesis when combining
signal regions is given by:

ℒ(𝜇, 𝜃|𝐷) =

𝑁∏︁
𝑖=1

(𝜇𝑠𝑟𝑖 + 𝑏𝑖 + 𝜃𝑖)
𝑛𝑖
𝑜𝑏𝑠𝑒−(𝜇𝑠𝑟𝑖+𝑏𝑖+𝜃𝑖)

𝑛𝑖
𝑜𝑏𝑠!

𝑒𝑥𝑝

(︂
−1

2
𝜃𝑇𝑉 −1𝜃

)︂
where the product is over all 𝑁 signal regions, 𝜇 is the overall signal strength, 𝑠𝑟𝑖 the relative signal strength in each
signal region and 𝑉 represents the covariance matrix. Note, however, that unlike the case of a single signal region, we
do not include any signal uncertainties, since this should correspond to a second order effect.

Using the above likelihood we compute a 95% confidence level limit on 𝜇 using the 𝐶𝐿𝑠 (𝐶𝐿𝑠𝑏/𝐶𝐿𝑏) limit from the
test statistic 𝑞𝜇, as described in Eq. 14 in G. Cowan et al., Asymptotic formulae for likelihood-based tests. We then
search for the value 𝐶𝐿𝑠 = 0.95 using the Brent bracketing technique available through the scipy optimize library.
Note that the limit computed through this procedure applies to the total signal yield summed over all signal regions
and assumes that the relative signal strengths in each signal region are fixed by the signal hypothesis. As a result, the
above limit has to be computed for each given input model (or each theory prediction), thus considerably increasing
CPU time.

When using runSModelS.py, the combination of signal regions is turned on or off with the parameter op-
tions:combineSRs, see parameter file. Its default value is False, in which case only the result from the best expected
signal region (best SR) is reported. If combineSRs = True, both the combined result and the one from the best SR are
quoted.

In the figure below we show the constraints on the simplified model T2bbWWoff when using the best signal region
(left), all the 44 signal regions considered in CMS-PAS-SUS-16-052 (center) and the aggregated signal regions in-
cluded in the SModelS database (right). As we can see, while the curve obtained from the combination of all 44 signal
regions is much closer to the official exclusion than the one obtained using only the best SR. Finally, the aggregated
result included in the SModelS database (total of 17 aggregate regions) comes with little loss in constraining power,
although it considerable reduces the running time.

https://cds.cern.ch/record/2242860?ln=en
https://cds.cern.ch/record/2242860?ln=en
https://arxiv.org/abs/1007.1727
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.brentq.html
http://smodels.hephy.at/wiki/SmsDictionary#T2bbWWoff
http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/SUS-16-052/


Best signal region 44 signal regions 17 aggregate regions

Figure: Comparison of exclusion curves for CMS-PAS-SUS-16-052 using only the best signal region (left), the com-
bination of 17 aggregate signal regions (center), and the combination of all 44 signal regions (right).

Topology Coverage

The constraints provided by SModelS are obviously limited by its database and the available set of simplified model
interpretations provided by the experimental collaborations or computed by theory groups. Therefore it is interesting
to identify classes of missing simplified models (or missing topologies) which are relevant for a given input model, but
are not constrained by the SModelS database. This task is performed as a last step in SModelS, once the decomposition
and the theory predictions have been computed.

Given the decomposition output (list of elements), as well as the database information, it finds and classifies the
elements which are not tested by any of the experimental results in the database. These elements are grouped into the
following classes:

• missingTopos: elements which are not tested by any of the experimental results in the database (independent of
the element mass). The missing topologies are further classified as:

– longCascade: elements with long cascade decays (more than one intermediate particle in one of the
branches);

– asymmetricBranches: elements where the first branch differs from the second branch (but that are not
considered as long cascade decays).

• outsideGrid: elements which could be tested by one or more experimental result, but are not constrained because
the mass array is outside the mass grid;

In order to classify the elements, the tool loops over all the elements found in the decomposition and checks if they
are tested by one or more experimental results in the database*0. All the elements which are not tested by any of the
experimental results in the database (independent of their masses) are added to the missingTopos class. The remaining
elements which do appear in one or more of the experimental results, but have not been tested because their masses
fall outside the efficiency or upper limit grids (see EM-type results and UL-type results), are added to the outsideGrid
class.

Usually the list of missing or outsideGrid elements is considerably long. Hence, to compress this list, all elements
differing only by their masses (with the same final states) or electric charges are combined. Moreover, by default,
electrons and muons are combined to light leptons (denoted “l”): gluons and light quarks are combined into jets. The
missing topologies are then further classified (if applicable) into longCascade or asymmetricBranches topologies.

0 If mass or invisible compression are turned on, elements which can be compressed are not considered, to avoid double counting.

http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/SUS-16-052/


The topologies for each of the four categories are then grouped according to the final state (for the missingTopos and
outsideGrid classes) or according to the PDG ids of the initially produced motherparticles (for the longCascade and
asymmetricBranches classes). We note that for the latter the elements deriving from different mother particles, but with
the same final states and mass configuration cannot be distinguished, and are therefore combined in this grouping. The
full list of mother PDG id pairs can be accessed in the python printout or the comment of the text printout.

The topology coverage tool is normally called from within SModelS (e.g. when running runSModelS.py) by setting
testCoverage=True in the parameters file. In the output, contributions in each category are ordered by cross section.
By default only the ones with the ten largest cross sections are shown.

• The topology coverage tool is implemented by the Uncovered class

In the following we discuss each of these in more detail.

Output Description

A detailed description of the possible output formats generated by running SModelS and their content is given below.
For simplicity we will assume that all printer options in the parameters file are set to True, so the output information
is maximal*0.

Screen (Stdout) Output

The stdout (or log output) is intended to provide extensive information about the database, the decomposition, the
theory predictions and the missing topologies. It is most convenient if the input is a single file and not a folder, since
the output is quite extensive. If all the options in stdout-printer are set to True (see parameters file), the screen output
contains the following information:

• information about the basic input parameters and the status of the run:

Input status: 1
Decomposition output status: 1 #decomposition was successful
# Input File: inputFiles/slha/gluino_squarks.slha
# maxcond = 0.2
# minmassgap = 5.
# ncpus = 1
# sigmacut = 0.01
# Database version: 1.2.0

• a list of all the experimental results considered (if printDatabase = True). Note that this list corresponds to all
the results selected in the database options (see parameters file). If addAnaInfo = True, for each experimental
result entry a list of all the simplified models (or elements) constrained by the analysis is also shown using the
bracket notation including the Z2-odd final state class:

=======================================================
|| ||
|| Selected Experimental Results ||
|| ||
=======================================================

========================================================
Experimental Result ID: ATLAS-SUSY-2015-01
Tx Labels: ['T2bb']
Sqrts: 1.30E+01 [TeV]

-----------------------------
Elements tested by analysis:

(continues on next page)

0 Some of the output may change depending on the database version used.

tools.html#tools.coverage.Uncovered


(continued from previous page)

[[[b]],[[b]]] (MET, MET)
========================================================

[[[t,t]],[[t,t]]] (MET, MET)
========================================================
Experimental Result ID: ATLAS-SUSY-2013-18
Tx Labels: ['T1bbbb', 'T1tttt']
Sqrts: 8.00E+00 [TeV]

-----------------------------
Elements tested by analysis:

[[[b,b]],[[b,b]]] (MET, MET)
[[[t,t]],[[t,t]]] (MET, MET)

========================================================

• a full list of the topologies generated by the decomposition (if printDecomp = True). Each topology entry
contains basic information about the topology as well as the number of elements with this topology and the
sum over all the elements weights. If addElementInfo = True, the elements belonging to each topology are
also explicitly shown, as well as the element’s mass, final states, weight, the PIDs of the intermediate particles
contributing to the element and the element ID:

=======================================================
|| ||
|| Topologies Table ||
|| ||
=======================================================

=====================================================
Topology:
Number of vertices: [0, 0]
Number of vertex parts: [[], []]
Total Global topology weight :
Sqrts: 8.00E+00 [TeV], Weight:4.81E-04 [pb]
Sqrts: 1.30E+01 [TeV], Weight:1.58E-03 [pb]

Total Number of Elements: 1
.....................................................................

→˓....
Element:
Element ID: 1
Particles in element: [[], []]
Final states in element: ['MET', 'MET']
The element masses are
Branch 0: [1.29E+02 [GeV]]
Branch 1: [1.29E+02 [GeV]]

The element PIDs are
PIDs: [[1000022], [1000022]]
The element weights are:
Sqrts: 8.00E+00 [TeV], Weight:4.81E-04 [pb]
Sqrts: 1.30E+01 [TeV], Weight:1.58E-03 [pb]

=====================================================
Topology:
Number of vertices: [0, 1]
Number of vertex parts: [[], [1]]
Total Global topology weight :
Sqrts: 8.00E+00 [TeV], Weight:1.16E-03 [pb]
Sqrts: 1.30E+01 [TeV], Weight:3.71E-03 [pb]

(continues on next page)



(continued from previous page)

Total Number of Elements: 7
.....................................................................

→˓....
Element:
Element ID: 2
Particles in element: [[], [['W+']]]
Final states in element: ['MET', 'MET']
The element masses are
Branch 0: [1.29E+02 [GeV]]
Branch 1: [2.69E+02 [GeV], 1.29E+02 [GeV]]

The element PIDs are
PIDs: [[1000022], [1000024, 1000022]]
The element weights are:
Sqrts: 8.00E+00 [TeV], Weight:2.40E-04 [pb]
Sqrts: 1.30E+01 [TeV], Weight:2.63E-04 [pb]

.....................................................................
→˓....

Element:
Element ID: 3
Particles in element: [[], [['W-']]]
Final states in element: ['MET', 'MET']
The element masses are
Branch 0: [1.29E+02 [GeV]]
Branch 1: [2.69E+02 [GeV], 1.29E+02 [GeV]]

The element PIDs are
PIDs: [[1000022], [-1000024, -1000022]]
The element weights are:
Sqrts: 8.00E+00 [TeV], Weight:4.01E-05 [pb]

• a list of all the theory predictions obtained and the corresponding experimental result upper limit. For each
experimental result, the corresponding id, signal region (data set) and sqrts as well as the constrained simplified
models (txnames) are printed. After this basic information, the signal cross section (theory prediction), the list
of condition values (if applicable) and the corresponding observed upper limit are shown. Also, if available,
the expected upper limit is included. If computeStatistics = True, the 𝜒2 and likelihood values are printed (see
likelihood calculation). Finally, if printExtendedResults = True, basic information about the elements being
constrained, such as their masses, IDs and PIDs, is also shown.

=======================================================
|| ||
|| Theory Predictions and ||
|| Experimental Constraints ||
|| ||
=======================================================

---------------Analysis Label = CMS-SUS-16-036
-------------------Dataset Label = (UL)
-------------------Txname Labels = ['T2']
Analysis sqrts: 1.30E+01 [TeV]
Theory prediction: 1.17E-02 [pb]
Theory conditions:[None]
Observed experimental limit: 7.68E+00 [fb]
Observed r-Value: 1.5212733123965445

(continues on next page)



(continued from previous page)

Masses in branch 0: [9.91E+02 [GeV], 1.29E+02 [GeV]]
Masses in branch 1: [9.91E+02 [GeV], 1.29E+02 [GeV]]
Contributing elements: [28, 29, 30, 34, 35, 36, 37, 38, 39, 40]
PIDs:[[-2000004, -1000022], [2000004, 1000022]]
PIDs:[[-2000004, -1000022], [2000002, 1000022]]

---------------Analysis Label = CMS-SUS-16-033
-------------------Dataset Label = (UL)
-------------------Txname Labels = ['T2']
Analysis sqrts: 1.30E+01 [TeV]
Theory prediction: 1.17E-02 [pb]
Theory conditions:[None]
Observed experimental limit: 8.64E+00 [fb]
Observed r-Value: 1.35282642984693
Masses in branch 0: [9.91E+02 [GeV], 1.29E+02 [GeV]]
Masses in branch 1: [9.91E+02 [GeV], 1.29E+02 [GeV]]
Contributing elements: [28, 29, 30, 34, 35, 36, 37, 38, 39, 40]
PIDs:[[-2000004, -1000022], [2000004, 1000022]]

• summary information about the missing topologies, if testCoverage = True. The first information corresponds to
the total input cross-section considered, which corresponds to the cross-section summed over all elements after
decomposition. Note that this value might differ from the total input model cross-section, since it includes the
lifetime reweighting and the effect of skipping elements with a weight below the minimum decomposition weight.
The total missing topology cross section shown corresponds to the sum of cross sections of all elements which
are not tested by any experimental result. If, however, the element is constrained by one or more experimental
results, but its mass is outside the efficiency or upper limit grids (see EM-type results and UL-type results), its
cross section is included in the total cross section outside the grid. Finally, the elements which contribute to the
total missing topology cross section are subdivided into elements with long decays or with asymmetric branches
(see coverage tool for more details)

Total cross section considered (fb): 3.635E+03
Total missing topology cross section (fb): 3.037E+03
Total cross section where we are outside the mass grid (fb): 3.376E+00
Total cross section in long cascade decays (fb): 1.317E+03
Total cross section in decays with asymmetric branches (fb): 1.686E+03

• detailed information about the missing topologies with highest cross sections. The element cross section
(weight) as well as its description in bracket notation and BSM final state classification are included. If ad-
dCoverageID = True, all the elements IDs contributing to the missing topology are shown. These IDs can be
traced back to the corresponding elements using the decomposition information obtained with printDecomp =
True and addElementInfo = True.

================================================================================
Missing topologies with the highest cross sections (up to 10):
Sqrts (TeV) Weight (fb) Element description
13.0 1.482E+02 # [[[jet],[W]],[[jet,jet],[W]]](MET,MET)

Contributing elements [987, 988, 989, 990, 1001, 1002, 1003, 1004, 1033, 1034, 1035,
→˓1036, 1047, 1048, 1049, 1050, 1061, 1062, 1063, 1064, 1075, 1076, 1077, 1078]

• detailed information about the topologies which are outside the experimental results grid. If addCoverageID =
True, all the elements IDs contributing to the missing topology are shown.

================================================================================
Contributions outside the mass grid (up to 10):
Sqrts (TeV) Weight (fb) Element description

(continues on next page)



(continued from previous page)

13.0 1.438E+00 # [[[t],[W]],[[t],[W]]](MET,MET)
Contributing elements [813, 814, 815]

• information about the missing topologies with long cascade decays. The long cascade decays are classified by
the initially produced mother particles. If more than one pair of mothers are contributing to the same class of
elements, the full list is given in the comment. For definiteness all lists are sorted. If addCoverageID = True,
all the elements IDs contributing to the missing topology are shown.

Mother1 Mother2 Weight (fb) # allMothers
1000021 2000002 3.696E+02 # [[1000021, 2000002]]
Contributing elements [1560, 1561, 1562, 1563, 1564, 1916, 1917, 1921, 1925, 1929,
→˓1930, 1934, 1938, 1942, 1946, 1950, 1951, 1955, 1965, 1969, 1973, 1977, 1981, 1985,
→˓1989, 1993, 1997, 2001, 2005, 2009, 2013, 2017, 2028, 2032, 2036, 2040, 2044, 2048,
→˓2052, 2056, 2060, 2064, 2068, 2072, 2076, 2080, 2084, 2087, 2091, 2095, 2099, 2102,
→˓2106, 2110, 2114, 2118, 2122, 2125, 2129, 2130, 3302, 3305, 3309, 3313, 3317, 3320,
→˓3324, 3328, 3332, 3336, 3340, 3343, 3347, 3348, 3361, 3365, 3369, 3373, 3377, 3381,
→˓3385, 3389, 3393, 3397, 3401, 3405, 3409, 3413, 3433, 3437, 3441, 3445, 3449, 3453,
→˓3457, 3461, 3465, 3469, 3473, 3477, 3481, 3485, 3505, 3509, 3513, 3517, 3521, 3525,
→˓3529, 3533, 3537, 3541, 3545, 3549, 3553, 3557, 3561, 3564, 3568, 3572, 3576, 3579,
→˓3583, 3587, 3591, 3595, 3599, 3602, 3606, 3607, 3618, 3622, 3626, 3630, 3634, 3638,
→˓3642, 3646, 3650, 3654, 3658, 3662, 3666, 3670, 3690, 3694, 3698, 3702, 3706, 3710,
→˓3714, 3718, 3722, 3726, 3730, 3734, 3738, 3742, 3762, 3766, 3770, 3774, 3778, 3782,
→˓3786, 3790, 3794, 3798, 3802, 3806, 3810, 3814, 3834, 3838, 3842, 3846, 3850, 3854,
→˓3858, 3862, 3866, 3870, 3874, 3878, 3882, 3886, 3906, 3910, 3914, 3918, 3922, 3926,
→˓3930, 3934, 3938, 3942, 3946, 3950, 3954, 3958, 3962, 3965, 3969, 3973, 3977, 3980,
→˓3984, 3988, 3992, 3996, 4000, 4003, 4007, 4008, 4019, 4023, 4027, 4031, 4035, 4039,
→˓4043, 4047, 4051, 4055, 4059, 4063, 4067, 4071, 4075, 4076, 4080, 4084, 4088, 4089,
→˓4093, 4097, 4101, 4105, 4109, 4110, 4114, 4123, 4127, 4131, 4135, 4139, 4143, 4147,
→˓4151, 4155, 4159, 4163, 4167, 4171, 4174]
1000021 2000001 2.031E+02 # [[1000021, 2000001], [1000021, 2000003]]
Contributing elements [1971, 1975, 1979, 1987, 1991, 1995, 1999, 2003, 2011, 2019,
→˓2034, 2038, 2042, 2050, 2054, 2058, 2062, 2066, 2074, 2082, 3311, 3315, 3326, 3330,
→˓3334, 3338, 3367, 3371, 3375, 3383, 3387, 3391, 3395, 3399, 3407, 3415, 3435, 3439,
→˓3443, 3447, 3455, 3459, 3463, 3467, 3471, 3479, 3487, 3507, 3511, 3515, 3519, 3527,
→˓3531, 3535, 3539, 3543, 3551, 3559, 3624, 3628, 3632, 3640, 3644, 3648, 3652, 3656,
→˓3664, 3672, 3692, 3696, 3700, 3704, 3712, 3716, 3720, 3724, 3728, 3736, 3744, 3764,
→˓3768, 3772, 3776, 3784, 3788, 3792, 3796, 3800, 3808, 3816, 3836, 3840, 3844, 3848,
→˓3856, 3860, 3864, 3868, 3872, 3880, 3888, 3908, 3912, 3916, 3920, 3928, 3932, 3936,
→˓3940, 3944, 3952, 3960, 4025, 4029, 4033, 4041, 4045, 4049, 4053, 4057, 4065, 4073,
→˓4129, 4133, 4137, 4145, 4149, 4153, 4157, 4161, 4169, 1919, 1923, 1927, 1932, 1936,
→˓1940, 1944, 1948, 1953, 1957, 1967, 1983, 2007, 2015, 2030, 2046, 2070, 2078, 2086,
→˓2089, 2093, 2097, 2101, 2104, 2108, 2112, 2116, 2120, 2124, 2127, 2132, 3304, 3307,
→˓3319, 3322, 3342, 3345, 3350, 3363, 3379, 3403, 3411, 3451, 3475, 3483, 3523, 3547,
→˓3555, 3563, 3566, 3570, 3574, 3578, 3581, 3585, 3589, 3593, 3597, 3601, 3604, 3609,
→˓3620, 3636, 3660, 3668, 3708, 3732, 3740, 3780, 3804, 3812, 3852, 3876, 3884, 3924,
→˓3948, 3956, 3964, 3967, 3971, 3975, 3979, 3982, 3986, 3990, 3994, 3998, 4002, 4005,
→˓4010, 4021, 4037, 4061, 4069, 4078, 4082, 4086, 4091, 4095, 4099, 4103, 4107, 4112,
→˓4116, 4125, 4141, 4165, 4173, 4176]

• information about the missing topologies with asymmetric decays. The asymmetric branch decays are classified
by the initially produced mother particles. If more than one pair of mothers are contributing to the same class of
elements, the full list is given in the comment. For definiteness all lists are sorted. If addCoverageID = True,
all the elements IDs contributing to the missing topology are shown.

Mother1 Mother2 Weight (fb) # allMothers
1000021 1000021 5.297E+02 # [[1000021, 1000021]]

(continues on next page)



(continued from previous page)

Contributing elements [565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576,
→˓577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593,
→˓ 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609,
→˓610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 1414, 1415, 1416, 1417, 1418,
→˓ 1419, 1420, 1421, 1422, 1423, 1424, 1425, 1426, 1428, 1429, 1430, 1431, 1432, 1433,
→˓ 1434, 1435, 1436, 1437, 1438, 1439, 1441, 1442, 1443, 1444, 1445, 1446, 1447, 1448,
→˓ 1449, 1450, 1451, 1453, 1454, 1455, 1456, 1457, 1458, 1459, 1460, 1461, 1462, 1464,
→˓ 1465, 1466, 1467, 1468, 1470, 1471, 1472, 1474, 1475, 1476, 1477, 1478, 1479, 1480,
→˓ 1481, 1486, 1487, 1488, 1489, 1493, 1494, 1495, 1496, 1499, 1500, 1501, 1502, 1504,
→˓ 1505, 1506, 1507, 1509, 1510, 1511, 1513, 1514, 1516]
1000002 1000021 4.149E+02 # [[1000002, 1000021], [1000004, 1000021]]
Contributing elements [466, 478, 480, 492, 494, 504, 506, 1027, 1028, 1029, 1030,
→˓1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1055, 1056, 1057, 1058,
→˓1059, 1060, 1061, 1062, 1063, 1064, 1065, 1066, 1068, 422, 423, 424, 425, 426, 427,
→˓428, 429, 430, 431, 432, 433, 434, 435, 468, 470, 472, 482, 484, 496, 498, 508, 510,
→˓ 514, 518, 523, 527, 531, 535, 539, 543, 547, 551, 556, 560, 1067, 1083, 1084, 1085,
→˓ 1086, 1087, 1088, 1089, 1090, 1091, 1092, 1093, 1094, 1095, 1096, 1111, 1112, 1113,
→˓ 1114, 1115, 1116, 1117, 1118, 1119, 1120, 1121, 1122, 1123, 1124, 1222, 1223, 1224,
→˓ 1225, 1226, 1227, 1228, 1229, 1230, 1231, 1265, 1266, 1267, 1268, 1269, 1270, 1271,
→˓ 1272, 1273, 1274, 1275, 1276, 1277, 1278, 1321, 1322, 1323, 1324, 1325, 1326, 1327,
→˓ 1328, 1329, 1330, 1331, 1332, 1333, 1334, 1377, 1378, 1379, 1380, 1381, 1382, 1383,
→˓ 1384, 1385, 1386, 1387, 1388, 1389, 477, 491, 1009, 1010, 1011, 1012, 1013, 1014,
→˓1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 1025, 1026]

Log Output

The log-type output is identical to the screen output, except that it is redirected to a .log file. The filename is set as the
<input file>.log and stored in the output folder (see the runSModelS options).

Summary File Output

The summary-type output is similar to the screen output, but restricted to the list of theory predictions and model
coverage. The output is printed to the file <input file>.smodels and stored in the output folder (see the runSModelS
options).

Below we describe in detail the blocks contained in the summary output:

• information about the basic input parameters and the status of the run:

Input status: 1
Decomposition output status: 1 #decomposition was successful
# Input File: inputFiles/slha/gluino_squarks.slha
# maxcond = 0.2
# minmassgap = 5.
# ncpus = 1
# sigmacut = 0.01
# Database version: 1.2.0

• a list of all the theory predictions obtained and the corresponding experimental result upper limit. If expanded-
Summary = False only the most constraining experimental result is printed. For each theory prediction entry,
the corresponding experimental result id, the signal region (data set) used (only for EM-type results) and the
experimental result sqrts is printed. Furthermore, the txnames contributing to the signal cross section, the theory
cross section (Theory_Value), the observed upper limit (Exp_limit), the (theory cross section)/(observed upper
limit) ratio (r) and, when available, the (theory cross section)/(expected upper limit) ratio (r_expect) are also



printed. For UL-type results the condition violation (see upper limit conditions) is also included. Finally, if
computeStatistics = True, the 𝜒2 and likelihood values (for EM-type results) are printed:

#Analysis Sqrts Cond_Violation Theory_Value(fb) Exp_limit(fb) r r_expected

CMS-SUS-16-036 1.30E+01 0.0 1.169E+01 7.683E+00 1.521E+00 N/A
Signal Region: (UL)
Txnames: T2

--------------------------------------------------------------------------------
CMS-SUS-16-033 1.30E+01 0.0 1.169E+01 8.639E+00 1.353E+00 N/A

Signal Region: (UL)
Txnames: T2

--------------------------------------------------------------------------------
ATLAS-SUSY-2013-02 8.00E+00 0.0 6.270E-01 1.818E+00 3.449E-01 4.146E-01
Signal Region: SR2jt
Txnames: T1, T2
Chi2, Likelihood = 1.302E-01 1.276E-03

• the maximum value for the (theory cross section)/(observed upper limit) ratio. If this value is higher than 1 the
input model is likely excluded by one of the experimental results (see confronting predictions)

================================================================================
The highest r value is = 1.5212733123965445

• summary information about the missing topologies, if testCoverage = True. The first information corresponds
to the total input cross-section considered, which corresponds to the cross-section summed over all elements
after decomposition. Note that this value might differ from the total input model cross-section, since it includes
the lifetime reweighting and the effect of skipping elements with a weight below the minimum decomposition
weight. The total missing topology cross section corresponds to the sum of all elements cross sections which
are not tested by any experimental result. If, however, the element is constrained by one or more experimental
results, but its mass is outside the efficiency or upper limit grids (see EM-type results and UL-type results), its
cross section is included in the total cross section outside the grid. Finally, the elements which contribute to the
total missing topology cross section are subdivided into elements with long decays or with asymmetric branches
(see coverage tool for more details)

Total cross section considered (fb): 3.635E+03
Total missing topology cross section (fb): 3.037E+03
Total cross section where we are outside the mass grid (fb): 3.376E+00
Total cross section in long cascade decays (fb): 1.317E+03
Total cross section in decays with asymmetric branches (fb): 1.686E+03

• detailed information about the missing topologies with highest cross sections. The element cross section
(weight) as well as its description in bracket notation and final states is included.

================================================================================
Missing topologies with the highest cross sections (up to 10):
Sqrts (TeV) Weight (fb) Element description
13.0 1.482E+02 # [[[jet],[W]],[[jet,jet],[W]]](MET,MET)
13.0 1.445E+02 # [[[jet,jet],[W]],[[jet],[jet,jet],[W]]](MET,MET)

• detailed information about the topologies which are outside the experimental results grid:

================================================================================
Contributions outside the mass grid (up to 10):
Sqrts (TeV) Weight (fb) Element description
13.0 1.438E+00 # [[[t],[W]],[[t],[W]]](MET,MET)
13.0 2.871E-01 # [[[b],[higgs]],[[b],[higgs]]](MET,MET)



• information about the missing topologies with long cascade decays:

Missing topos: long cascade decays (up to 10 entries), sqrts = 13 TeV:
Mother1 Mother2 Weight (fb) # allMothers
1000021 2000002 3.696E+02 # [[1000021, 2000002]]
1000021 2000001 2.031E+02 # [[1000021, 2000001], [1000021, 2000003]]
1000002 1000021 1.612E+02 # [[1000002, 1000021]]

• information about the missing topologies with asymmetric decays:

Missing topos: asymmetric branches (w/o long cascades, up to 10), sqrts = 13 TeV
Mother1 Mother2 Weight (fb) # allMothers
1000021 1000021 5.297E+02 # [[1000021, 1000021]]
1000002 1000021 4.149E+02 # [[1000002, 1000021], [1000004, 1000021]]
1000021 2000002 2.134E+02 # [[1000021, 2000002]]

Python Output

The Python-type output is similar to the screen output, however converted to a Python dictionary. If all options are
set to True, it includes information about the decomposition, the list of theory predictions and model coverage. The
output is printed to the file <input file>.py and stored in the output folder (see the runSModelS options).

Below we describe in detail the dictionary keys and values contained in the Python dictionary output:

• information about the basic input parameters and the status of the run stored under the OutputStatus key:

smodelsOutput = {
'OutputStatus': {'sigmacut': 0.01, 'minmassgap': 5.0, 'maxcond': 0.2, 'ncpus': 1,
→˓'file status': 1, 'decomposition status': 1, 'warnings': 'Input fil

• a full list of the elements generated by the decomposition (if addElementList = True) stored under the Element
key. Each list entry contains basic information about the elements. The list can be considerably long, so it is
recommended to set addElementList to False, unless the decomposition information is required by the user.

'Element': [{'ID': 1, 'Particles': '[[], []]', 'Masses (GeV)': [[129.0], [129.0]],
→˓'PIDs': [[[1000022], [1000022]]], 'Weights (fb)': {'xsec 8.0 TeV': 0.480, 'xsec 13.
→˓0 TeV': 1.580}, 'final states': ['MET', 'MET']},
{'ID': 2, 'Particles': "[[], [['W+']]]", 'Masses (GeV)': [[129.0], [269.0,129.0]],
→˓'PIDs': [[[1000022], [1000024, 1000022]]], 'Weights (fb)': {'xsec 8.0 TeV': 0.2404,
→˓'xsec 13.0 TeV': 0.263}, 'final states': ['MET', 'MET']},..]

• a list of all the theory predictions obtained for the experimental results, stored under the ExptRes key. For each
list entry, the corresponding result id, the experimental result type (if UL-type result or EM-type result), the
signal region (data set ID), the sqrts and luminosity, the constrained simplified models (txnames), the signal
cross section (theory prediction), the corresponding observed upper limit and the maximum condition violation
(see upper limit conditions) are shown. The masses of the elements contributing to the signal cross section (if
unique) and the 𝜒2 likelihood values (if computeStatistics = True) are also included. Finally, if addTxWeights
= True, the weight contribution of each txname is also included:

'ExptRes': [{'maxcond': 0.0, 'theory prediction (fb)': 11.68725, 'upper limit (fb)':
→˓7.68,
'expected upper limit (fb)': None, 'TxNames': ['T2'], 'Mass (GeV)': [[991.3084, 129.
→˓0], [991.4, 129.0]],
'AnalysisID': 'CMS-SUS-16-036', 'DataSetID': None, 'AnalysisSqrts (TeV)': 13.0,
'lumi (fb-1)': 35.9, 'dataType': 'upperLimit',
'r': 1.52127, 'r_expected': None, 'TxNames weights (fb)': {'T2': 11.687}},...]



• a list of missing topologies (if testCoverage = True), stored under the Missed Topologies key. For each list entry,
the element cross section (weight), the element IDs contributing to the topology and the element description in
bracket notation and final states is included.

'Missed Topologies': [{'sqrts (TeV)': 13.0, 'weight (fb)': 148.16,
'element': "[[[jet],[W]],[[jet,jet],[W]]](MET,MET)", 'element IDs': [987, 988,...]},..
→˓.]

• a list of topologies which are outside the experimental results grid (if testCoverage = True), stored under the
Outside Grid key. For each list entry, the element cross section (weight) and the element description in bracket
notation and final states is included.

'Outside Grid': [{'sqrts (TeV)': 13.0, 'weight (fb)': 1.58, 'element': "[[[jet]],[[t,
→˓t]]](MET,MET)"},...]

• a list of topologies with long cascade decays (if testCoverage = True), stored under the Long Cascades key. For
each list entry, the element cross section (weight) and the PIDs of the mothers are included. The mother PIDs
are given in a nested list, as more than one pair might contribute to the same class of elements.

'Long Cascades': [{'sqrts (TeV)': 13.0, 'weight (fb)': 369.58, 'mother PIDs':
→˓[[1000021, 2000002]]},...]

• a list of topologies with asymmetric branch decays (if testCoverage = True), stored under the Asymmetric
Branches key. For each list entry, the element cross section (weight) and the PIDs of the mothers are included.
The mother PIDs are given in a nested list, as more than one pair might contribute to the same class of elements.

'Asymmetric Branches': [{'sqrts (TeV)': 13.0, 'weight (fb)': 529.73, 'mother PIDs':
→˓[[1000021, 1000021]]},...]

XML Output

The xml-type output is identical to the python output, however converted to a xml format. The output is printed to the
file <input file>.xml and stored in the output folder (see the runSModelS options).

Since the output information and options are the same as described for python output, we simply show below an
excerpt of the xml file to illustrate the output format:

<?xml version="1.0" ?>
<smodelsOutput>

<Element_List>
<Element>

<ID>1</ID>
<Masses_GeV_List>

<Masses_GeV_List>
<Masses_GeV>129.0</Masses_GeV>

</Masses_GeV_List>
<Masses_GeV_List>

<Masses_GeV>129.0</Masses_GeV>
</Masses_GeV_List>

</Masses_GeV_List>
<PIDs_List>

<PIDs_List>
<PIDs_List>

<PIDs>1000022</PIDs>
</PIDs_List>

(continues on next page)



(continued from previous page)

<PIDs_List>
<PIDs>1000022</PIDs>

</PIDs_List>
</PIDs_List>

</PIDs_List>
<Particles>[[], []]</Particles>
<Weights_fb>

<xsec_13.0_TeV>1.5801581999999998</xsec_13.0_TeV>
<xsec_8.0_TeV>0.48082062600000003</xsec_8.0_TeV>

</Weights_fb>
<final_states_List>

<final_states>MET</final_states>
<final_states>MET</final_states>

</final_states_List>
</Element>

<ExptRes_List>
<ExptRes>

<AnalysisID>CMS-SUS-16-036</AnalysisID>
<AnalysisSqrts_TeV>13.0</AnalysisSqrts_TeV>
<DataSetID>None</DataSetID>
<Mass_GeV_List>

<Mass_GeV_List>
<Mass_GeV>991.3084550191742</Mass_GeV>
<Mass_GeV>129.0</Mass_GeV>

</Mass_GeV_List>
<Mass_GeV_List>

<Mass_GeV>991.4592631024188</Mass_GeV>
<Mass_GeV>129.0</Mass_GeV>

</Mass_GeV_List>
</Mass_GeV_List>
<TxNames_List>

<TxNames>T2</TxNames>
</TxNames_List>
<TxNames_weights_fb>

<T2>11.687259769407873</T2>
</TxNames_weights_fb>
<dataType>upperLimit</dataType>
<expected_upper_limit_fb>None</expected_upper_limit_fb>
<lumi_fb-1>35.9</lumi_fb-1>
<maxcond>0.0</maxcond>
<r>1.5212733123965445</r>
<r_expected>None</r_expected>
<theory_prediction_fb>11.687259769407875</theory_prediction_fb>
<upper_limit_fb>7.682550975009415</upper_limit_fb>

</ExptRes>

SLHA Output

An SLHA-type output format is also available containing a summary of the theory predictions and missing topologies.
The file contains the SLHA-type blocks: SModelS_Settings, SModelS_Exclusion, SModelS_Missing_Topos, SMod-
elS_Outside_Grid, SModelS_Long_Cascade and SModelS_Asymmetric_Branches. Below we give a description of
each block together with a sample output.

• information about the main input parameters:



BLOCK SModelS_Settings
0 v1.2.0 #SModelS version
1 1.2.0 #database version
2 0.2 #maximum condition violation
3 1 #compression (0 off, 1 on)
4 5. #minimum mass gap for mass compression [GeV]
5 0.01 #sigmacut [fb]

• information about the status of the input model: excluded (1), not excluded (0) or not tested (-1):

BLOCK SModelS_Exclusion
0 0 1 #output status (-1 not tested, 0 not excluded, 1
→˓excluded)

• followed by the list of experimental results. If the model is excluded, all results with 𝑟-value greater than
one are shown. If the point is not excluded, only the result with the highest 𝑟-value is displayed. For each
experimental result, the Txname, the 𝑟-value, the condition violation and the experimental result ID are shown.
If computeStatistics = True, the 𝜒2 and likelihood values for EM-type results are also printed:

1 0 T2 #txname
1 1 1.521E+00 #r value
1 2 1.521E+00 #expected r value
1 3 0.00 #condition violation
1 4 CMS-SUS-16-036 #analysis
1 5 (UL) #signal region
1 6 N/A #Chi2
1 7 N/A #Likelihood

• a list of missing topologies (up to 10) and their weights (if testCoverage = True):

BLOCK SModelS_Missing_Topos #sqrts[TeV] weight[fb] description
0 13 1.482E+02 [[[jet],[W]],[[jet,jet],[W]]] ('MET', 'MET')
1 13 1.445E+02 [[[jet,jet],[W]],[[jet],[jet,jet],[W]]] ('MET', 'MET')
2 13 1.047E+02 [[[b,t],[W]],[[jet,jet],[W]]] ('MET', 'MET')

• a list of topologies which are outside the experimental results grid (if testCoverage = True):

BLOCK SModelS_Outside_Grid #sqrts[TeV] weight[fb] description
0 13 1.590E+00 [[[jet]],[[t,t]]] ('MET', 'MET')
1 13 1.438E+00 [[[t],[W]],[[t],[W]]] ('MET', 'MET')

• a list of topologies with long cascade decays (if testCoverage = True):

BLOCK SModelS_Asymmetric_Branches #Mother1 Mother2 Weight[fb] allMothers
0 1000021 1000021 5.297E+02 [[1000021,1000021]]
1 1000002 1000021 4.149E+02 [[1000002,1000021],[1000004,1000021]]

• a list of topologies with asymmetric branch decays (if testCoverage = True):

9 13 6.214E+01 [[[jet],[W]],[[jet,jet],[higgs]]] ('MET', 'MET')

BLOCK SModelS_Outside_Grid #sqrts[TeV] weight[fb] description
0 13 1.590E+00 [[[jet]],[[t,t]]] ('MET', 'MET')



1.6 How To’s

Below we provide a few examples for using SModelS and some of the SModelS tools as a Python library*0.

To try out the examples in interactive mode:

Main examples:

• How to run SModelS using a parameter file (download the Python code here, IPython notebook here)

• How to run SModelS as a python library (download the Python code here, IPython notebook here)

Examples displaying several functionalities:

• How to load the database (download the Python code here, IPython notebook here)

• How to obtain experimental upper limits (download the Python code here, IPython notebook here)

• How to obtain experimental efficiencies (download the Python code here, IPython notebook here)

• How to print decomposition results (download the Python code here, IPython notebook here)

• How to print theory predictions (download the Python code here, IPython notebook here)

• How to compare theory predictions with experimental limits (download the Python code here, IPython note-
book here)

• How to compute the likelihood and chi2 for a theory predictions (download the Python code here, IPython
notebook here)

• How to find missing topologies (download the Python code here, IPython notebook here)

• How to generate ascii graphs (download the Python code here, IPython notebook here)

• How to marginalize a combined limit instead of profiling it (download the Python code here, IPython notebook
here)

Examples using the cross-section computer:

• How to compute leading order cross sections (for MSSM) (download the Python code here, IPython notebook
here)

• How to compute next-to-leading order cross sections (for MSSM) (download the Python code here, IPython
notebook here)

Examples using the Database Browser

• How to obtain upper limits (download the Python code here, IPython notebook here)

• How to select specific results (download the Python code here, IPython notebook here)

Examples using the Interactive Plots tool

• How to make interactive plots (download the Python code here, IPython notebook here)

0 Some of the output may change depending on the database version used.

runWithParameterFile.html
runAsLibrary.html
load_database.html
lookup_upper_limit.html
lookup_efficiency.html
print_decomposition.html
print_theoryPrediction.html
compareUL.html
compute_likelihood.html
missingTopologies.html
ascii_graph_from_lhe.html
marginalize.html
lo_xsecs_from_slha.html
nll_xsecs_from_slha.html
browserExample2.html
browserExample3.html
interactivePlotsExample.html


1.7 SModelS Code Documentation

These pages constitute the SModelS code documentation.

Contents

theory package

Submodules

theory.auxiliaryFunctions module

theory.auxiliaryFunctions.cGtr(weightA, weightB)
Define the auxiliary greater function.

Return a number between 0 and 1 depending on how much it is violated (0 = A > B, 1 = A << B).

Returns XSectioList object with the values for each label.

theory.auxiliaryFunctions.cSim(*weights)
Define the auxiliar similar function.

Return the maximum relative difference between any element weights of the list, normalized to [0,1].

Returns XSectionList object with the values for each label.

theory.auxiliaryFunctions.distance(xmass1, xmass2)
Define distance between two mass positions in upper limit space. The distance is defined as d = 2*|xmass1-
xmass2|/(xmass1+xmass2).

Parameters

• xmass1 – upper limit value (in fb) for the mass1

• xmass2 – upper limit value (in fb) for the mass2

Returns relative mass distance in upper limit space

theory.auxiliaryFunctions.index_bisect(inlist, el)
Return the index where to insert item el in inlist. inlist is assumed to be sorted and a comparison function (lt
or cmp) must exist for el and the other elements of the list. If el already appears in the list, inlist.insert(el) will
insert just before the leftmost el already there.

theory.auxiliaryFunctions.massAvg(massList, method=’weighted’, weights=None)
Compute the average mass of massList according to method.

If method=weighted but weights were not properly defined, switch method to harmonic. If massList contains a
zero mass, switch method to mean.

Parameters

• method – possible values: harmonic, mean, weighted

• weights – weights of elements (only for weighted average)

theory.auxiliaryFunctions.massPosition(mass, txdata)
Give mass position in upper limit space. Use the analysis experimental limit data. :param txdata: TxNameData
object holding the data and interpolation



theory.branch module

class theory.branch.Branch(info=None, finalState=None)
Bases: object

An instance of this class represents a branch. A branch-element can be constructed from a string (e.g.,
(‘[b,b],[W]’).

Variables

• masses – list of masses for the intermediate states

• particles – list of particles (strings) for the final states

• PIDs – a list of the pdg numbers of the intermediate states appearing in the branch. If
the branch represents more than one possible pdg list, PIDs will correspond to a nested list
(PIDs = [[pid1,pid2,. . . ],[pidA,pidB,. . . ])

• maxWeight – weight of the branch (XSection object)

copy()
Generate an independent copy of self. Faster than deepcopy.

Returns Branch object

decayDaughter(brDictionary, massDictionary)
Generate a list of all new branches generated by the 1-step cascade decay of the current branch daughter.

Parameters

• brDictionary – dictionary with the decay information for all intermediate states (val-
ues are br objects, see pyslha)

• massDictionary – dictionary containing the masses for all intermediate states.

Returns list of extended branches (Branch objects). Empty list if daughter is stable or if daugh-
terID was not defined.

getInfo()
Get branch topology info from particles.

Returns dictionary containing vertices and number of final states information

getLength()
Returns the branch length (number of R-odd particles).

Returns length of branch (number of R-odd particles)

particlesMatch(other)
Compare two Branches for matching particles, allow for inclusive particle labels (such as the ones defined
in particles.py). Includes the final state in the comparison.

Parameters other – branch to be compared (Branch object)

Returns True if branches are equal (particles and masses match); False otherwise.

setFinalState(finalState=None)
If finalState = None, define the branch final state according to the PID of the last R-odd particle appearing
in the cascade decay. Else set the final state to the finalState given :parameter finalState: String defining
the final state

setInfo()
Defines the number of vertices (vertnumb) and number of particles in each vertex (vertpats) properties, if
they have not been defined yet.



sortParticles()
Sort the particles inside each vertex

class theory.branch.InclusiveBranch
Bases: theory.branch.Branch

A branch wildcard class. It will return True when compared to any other branch object with the same final state.

getInfo()
Get branch topology info from particles.

Returns dictionary containing vertices and number of final states information

class theory.branch.InclusiveInt
Bases: int

A integer wildcard class. It will return True when compared to any other integer object.

class theory.branch.InclusiveList
Bases: list

A list wildcard class. It will return True when compared to any other list object.

theory.branch.decayBranches(branchList, brDictionary, massDictionary, sigcut=0.00E+00 [fb])
Decay all branches from branchList until all unstable intermediate states have decayed.

Parameters

• branchList – list of Branch() objects containing the initial mothers

• brDictionary –

dictionary with the decay information for all intermediate states (values are br objects,
see pyslha).

It may also contain information about long-lived particles.

• massDictionary – dictionary containing the masses for all intermediate states.

• promptDictionary – optional dictionary with the fraction of prompt and non-prompt
decays. Allows to deal with quasi-stable or long-lived particles If not given, all particles are
considered to always decay promptly or to be stable.

• sigcut – minimum sigma*BR to be generated, by default sigcut = 0. (all branches are
kept)

Returns list of branches (Branch objects)

theory.clusterTools module

class theory.clusterTools.ElementCluster
Bases: object

An instance of this class represents a cluster. This class is used to store the relevant information about a cluster
of elements and to manipulate this information.

Variables elements – list of elements in the cluster (Element objects)

getAvgMass()
Return the average mass of all elements belonging to the cluster. If the cluster does not refer to a TxName
(i.e. in efficiency map results) AND the cluster contains more than one element (assuming they differ in
the masses), returns None.



Returns average mass array

getDataType()
Checks to which type of data (efficiency map or upper limit) the cluster refers to. It uses the cluster.txnames
attribute. If not defined, returns None :return: upperLimits or efficiencyMap (string)

getIDs()
Return list of all element IDs appearing in the cluster :return: list of element IDs

getPIDs()
Return the list of all PIDs appearing in all elements in the cluster, i.e. [ [[pdg1, pdg2,. . . ],[pdg3,pdg4,. . . ]],
[[pdg1’, pdg2’,. . . ],[pdg3’,pdg4’,. . . ]]

Returns list of PIDs

getTotalXSec()
Return the sum over the cross sections of all elements belonging to the cluster.

Returns sum of weights of all the elements in the cluster (XSectionList object)

class theory.clusterTools.IndexCluster(massMap=None, posMap=None, wMap=None, in-
dices=set(), txdata=None)

Bases: object

An instance of this class represents a cluster storing element indices. This auxiliary class is used to store element
indices and positions in upper limit space. It is only used by the clustering algorithm.

Variables

• indices – list of integers mapping the cluster elements to their position in the list (1st
element -> index 0, 2nd element -> index 1,. . . )

• avgPosition – position in upper limit space for the cluster average mass

• massMap – dictionary with indices as keys and the corresponding element mass as values

• positionMap – dictionary with indices as keys and the corresponding element position
in upper limit space as values

• weightMap – dictionary with indices as keys and the corresponding element weight as
values

• txdata – TxNameData object to be used for computing distances in UL space

add(iels)
Add an index or a list of indices to the list of indices and update the avgPosition value.

copy()
Returns a copy of the index cluster (faster than deepcopy).

remove(iels)
Remove an index or a list of indices to the list of indices and update the avgPosition value.

theory.clusterTools.clusterElements(elements, maxDist)
Cluster the original elements according to their mass distance.

Parameters

• elements – list of elements (Element objects)

• txname – TxName object to be used for computing distances in UL space

• maxDist – maximum mass distance for clustering two elements

Returns list of clusters (ElementCluster objects)



theory.clusterTools.groupAll(elements)
Create a single cluster containing all the elements. Skip mother elements which contain the daughter in the list
(avoids double counting).

Parameters elements – List of Element objects

Returns ElementCluster object containing all unique elements

theory.crossSection module

class theory.crossSection.XSection
Bases: object

An instance of this class represents a cross section.

This class is used to store the information of a single cross section (value, paritcle ids, center of mass, order and
label).

order = 0 (LO), 1 (NLO) or 2 (NLL).

copy()
Generates an independent copy of self.

Faster than deepcopy.

niceStr()
Generates a more human readable string. The string format is: Sqrts: self.info.sqrts, Weight: self.value

pid

class theory.crossSection.XSectionInfo(sqrts=None, order=None, label=None)
Bases: object

An instance of this class represents information regarding a cross section.

This class is used to store information of a cross section (center of mass, order and label).

copy()
Generate an independent copy of self.

Faster than deepcopy.

class theory.crossSection.XSectionList(infoList=None)
Bases: object

An instance of this class represents a list of cross sections.

This class is used to store a list of cross sections. The list is sorted by cross section, highest cross section first.

add(newxsec)
Append a XSection object to the list.

combineWith(newXsecs)
Add a new list of cross sections.

If the new cross sections already appear (have same order and sqrts), add its value to the original value,
otherwise append it to the list. The particle IDs are ignored when adding cross sections. Hence, they are
set to (None, None) if any cross sections are combined.

copy()
Generates an independent copy of itself. Faster than deepcopy.

delete(xSec)
Delete the cross section entry from the list.



getDictionary(groupBy=’pids’)
Convert the list of XSection objects to a nested dictionary.

First level keys are the particles IDs (if groupBy == pids) or labels (if groupBy == labels) and values are
the cross section labels or particle IDs and the cross section value.

getInfo()
Get basic info about the cross sections appearing in the list (order, value and label).

Returns list of XSectionInfo objects

getMaxXsec()
Get the maximum cross section value appearing in the list.

getMinXsec()
Get minimum cross section value appearing in the list.

getPIDpairs()
Get all particle ID pairs appearing in the list.

getPIDs()
Get all particle IDs appearing in the list.

getXsecsFor(item)
Return a list of XSection objects for item (label, pid, sqrts).

niceStr()

order()
Order the cross section in the list by their PDG pairs

removeLowerOrder()
Keep only the highest order cross section for each process in the list.

Remove order information and set default labels.

sort()
sort the xsecs by the values

theory.crossSection.getXsecFromLHEFile(lhefile, addEvents=True)
Obtain cross sections from input LHE file.

Parameters

• lhefile – LHE input file with unweighted MC events

• addEvents – if True, add cross sections with the same mothers, otherwise return the event
weight for each pair of mothers

Returns a XSectionList object

theory.crossSection.getXsecFromSLHAFile(slhafile, useXSecs=None, xsecUnit=1.00E+00
[pb])

Obtain cross sections for pair production of R-odd particles from input SLHA file. The default unit for cross
section is pb.

Parameters

• slhafile – SLHA input file with cross sections

• useXSecs – if defined enables the user to select cross sections to use. Must be a XSecIn-
foList object

• xsecUnit – cross section unit in the input file (must be a Unum unit)

Returns a XSectionList object



theory.element module

class theory.element.Element(info=None, finalState=None)
Bases: object

An instance of this class represents an element. This class possesses a pair of branches and the element weight
(cross-section * BR).

Variables

• branches – list of branches (Branch objects)

• weight – element weight (cross-section * BR)

• motherElements – only for elements generated from a parent element by mass compres-
sion, invisible compression,etc. Holds a pair of (whence, mother element), where whence
describes what process generated the element

checkConsistency()
Check if the particles defined in the element exist and are consistent with the element info.

Returns True if the element is consistent. Print error message and exits otherwise.

combineMotherElements(el2)
Combine mother elements from self and el2 into self

Parameters el2 – element (Element Object)

combinePIDs(el2)
Combine the PIDs of both elements. If the PIDs already appear in self, do not add them to the list.

Parameters el2 – element (Element Object)

compressElement(doCompress, doInvisible, minmassgap)
Keep compressing the original element and the derived ones till they can be compressed no more.

Parameters

• doCompress – if True, perform mass compression

• doInvisible – if True, perform invisible compression

• minmassgap – value (in GeV) of the maximum mass difference for compression (if
mass difference < minmassgap, perform mass compression)

Returns list with the compressed elements (Element objects)

copy()
Create a copy of self. Faster than deepcopy.

Returns copy of element (Element object)

getDaughters()
Get a pair of daughter IDs (PDGs of the last intermediate state appearing the cascade decay), i.e. [
[pdgLSP1,pdgLSP2] ] Can be a list, if the element combines several daughters: [ [pdgLSP1,pdgLSP2],
[pdgLSP1’,pdgLSP2’]]

Returns list of PDG ids

getEinfo()
Get element topology info from branch topology info.

Returns dictionary containing vertices and number of final states information

getFinalStates()
Get the array of particles in the element.



Returns list of particle strings

getMasses()
Get the array of masses in the element.

Returns list of masses (mass array)

getMothers()
Get a pair of mother IDs (PDGs of the first intermediate state appearing the cascade decay), i.e. [ [pdg-
MOM1,pdgMOM2] ] Can be a list, if the element combines several mothers: [ [pdgMOM1,pdgMOM2],
[pdgMOM1’,pdgMOM2’]]

Returns list of PDG ids

getPIDs()
Get the list of IDs (PDGs of the intermediate states appearing the cascade decay), i.e. [
[[pdg1,pdg2,. . . ],[pdg3,pdg4,. . . ]] ]. The list might have more than one entry if the element combines
different pdg lists: [ [[pdg1,pdg2,. . . ],[pdg3,pdg4,. . . ]], [[pdg1’,pdg2’,. . . ],[pdg3’,pdg4’,. . . ]], . . . ]

Returns list of PDG ids

getParticles()
Get the array of particles in the element.

Returns list of particle strings

hasTopInList(elementList)
Check if the element topology matches any of the topologies in the element list.

Parameters elementList – list of elements (Element objects)

Returns True, if element topology has a match in the list, False otherwise.

invisibleCompress()
Perform invisible compression.

Returns compressed copy of the element, if element ends with invisible particles; None, if com-
pression is not possible

massCompress(minmassgap)
Perform mass compression.

Parameters minmassgap – value (in GeV) of the maximum mass difference for compression
(if mass difference < minmassgap -> perform mass compression)

Returns compressed copy of the element, if two masses in this element are degenerate; None, if
compression is not possible;

particlesMatch(other, branchOrder=False)
Compare two Elements for matching particles only. Allow for inclusive particle labels (such as the ones
defined in particles.py) and includes final state comparison. If branchOrder = False, check both branch
orderings.

Parameters

• other – element to be compared (Element object)

• branchOrder – If False, check both orderings, otherwise check the same branch order-
ing

Returns True, if particles match; False, else;



setFinalState(finalStates)
If finalStates = None, define the element final states according to the PID of the last R-odd particle appear-
ing in the cascade decay. Else set the final states according to the finalStates list (must match the branch
ordering)

Parameters finalStates – List with final state labels (must match the branch ordering)

setMasses(mass, sameOrder=True, opposOrder=False)
Set the element masses to the input mass array.

Parameters

• mass – list of masses ([[masses for branch1],[masses for branch2]])

• sameOrder – if True, set the masses to the same branch ordering If True and opposOr-
der=True, set the masses to the smaller of the two orderings.

• opposOrder – if True, set the masses to the opposite branch ordering. If True and
sameOrder=True, set the masses to the smaller of the two orderings.

sortBranches()
Sort branches. The smallest branch is the first one. See the Branch object for definition of branch size and
comparison

switchBranches()
Switch branches, if the element contains a pair of them.

Returns element with switched branches (Element object)

toStr()
Returns a string with the element represented in bracket notation, including the final states, e.g.
[[[jet]],[[jet]] (MET,MET)

theory.exceptions module

exception theory.exceptions.SModelSTheoryError(value=None)
Bases: Exception

Class to define SModelS specific errors

theory.lheDecomposer module

theory.lheDecomposer.decompose(lhefile, inputXsecs=None, nevts=None, doCompress=False,
doInvisible=False, minmassgap=-1.00E+00 [GeV])

Perform LHE-based decomposition.

Parameters

• lhefile – LHE file with e.g. pythia events, may be given as URL (though http and ftp
only)

• inputXsecs – xSectionList object with cross sections for the mothers appearing in the
LHE file. If None, use information from file.

• nevts – (maximum) number of events used in the decomposition. If None, all events from
file are processed.

• doCompress – mass compression option (True/False)

• doInvisible – invisible compression option (True/False)



• minmassgap – minimum mass gap for mass compression (only used if doCompress=True)

Returns list of topologies (TopologyList object)

theory.lheDecomposer.elementFromEvent(event, weight=None)
Creates an element from a LHE event and the corresponding event weight.

Parameters

• event – LHE event

• weight – event weight. Must be a XSectionList object (usually with a single entry) or
None if not specified.

Returns element

theory.lheReader module

class theory.lheReader.LheReader(filename, nmax=None)
Bases: object

An instance of this class represents a reader for LHE files.

close()
Close the lhe file, if open.

event()
Get next event.

Returns SmsEvent; None if no event is left to be read.

next()
Get next element in iteration.

Needed for the iterator.

class theory.lheReader.Particle
Bases: object

An instance of this class represents a particle.

class theory.lheReader.SmsEvent(eventnr=None)
Bases: object

Event class featuring a list of particles and some convenience functions.

add(particle)
Add particle to the event.

getMom()
Return the pdgs of the mothers, None if a problem occurs.

metaInfo(key)
Return the meta information of ‘key’, None if info does not exist.

theory.particleNames module

class theory.particleNames.InclusiveStr
Bases: str

A string wildcard class. It will return True when compared to any other string.



theory.particleNames.elementsInStr(instring, removeQuotes=True)
Parse instring and return a list of elements appearing in instring. instring can also be a list of strings.

Parameters

• instring – string containing elements (e.g. “[[[‘e+’]],[[‘e-‘]]]+[[[‘mu+’]],[[‘mu-‘]]]”)

• removeQuotes – If True, it will remove the quotes from the particle labels. Set to False,
if one wants to run eval on the output.

Returns list of elements appearing in instring in string format

theory.particleNames.getFinalStateLabel(pid)
Given the particle PID, returns the label corresponding to its final state (e.g. 1000022 -> MET, 1000023 ->
HSCP,. . . ) :parameter pid: PDG code for particle (must appear in particles.py) :return: Final state string (e.g.
MET, HSCP,. . . )

theory.particleNames.getName(pdg)
Convert pdg number to particle name according to the dictionaries rOdd and rEven.

Returns particle name (e.g. gluino, mu-, . . . )

theory.particleNames.getPdg(name)
Convert a name to the pdg number according to the dictionaries rOdd and rEven.

Returns particle pdg; None, if name could not be resolved

theory.particleNames.simParticles(plist1, plist2, useDict=True)
Compares two lists of particle names. Allows for dictionary labels (Ex: L = l, l+ = l, l = l-,. . . ). Ignores particle
ordering inside the list

Parameters

• plist1 – first list of particle names, e.g. [‘l’,’jet’]

• plist2 – second list of particle names

• useDict – use the translation dictionary, i.e. allow e to stand for e+ or e-, l+ to stand for
e+ or mu+, etc

Returns True/False if the particles list match (ignoring order)

theory.particleNames.vertInStr(instring)
Parses instring (or a list of strings) and returns the list of particle vertices appearing in instring.

Parameters instring – string containing elements (e.g. “[[[‘e+’]],[[‘e-‘]]]+[[[‘mu+’]],[[‘mu-
‘]]]”)

Returns list of elements appearing in instring in string format

theory.slhaDecomposer module

theory.slhaDecomposer.decompose(slhafile, sigcut=1.00E-01 [fb], doCompress=False, doInvisi-
ble=False, minmassgap=-1.00E+00 [GeV], useXSecs=None)

Perform SLHA-based decomposition.

Parameters

• slhafile – the slha input file. May be an URL (though http, ftp only).

• sigcut – minimum sigma*BR to be generated, by default sigcut = 0.1 fb

• doCompress – turn mass compression on/off

• doInvisible – turn invisible compression on/off



• minmassgap – maximum value (in GeV) for considering two R-odd particles degenerate
(only revelant for doCompress=True )

• useXSecs – optionally a dictionary with cross sections for pair production, by default
reading the cross sections from the SLHA file.

Returns list of topologies (TopologyList object)

theory.slhaDecomposer.writeIgnoreMessage(keys, rEven, rOdd)

theory.theoryPrediction module

theoryPrediction._getElementsFrom(smsTopList, dataset)
Get elements that belong to any of the TxNames in dataset (appear in any of constraints in the result). Loop
over all elements in smsTopList and returns a copy of the elements belonging to any of the constraints (i.e. have
efficiency != 0). The copied elements have their weights multiplied by their respective efficiencies.

Parameters

• dataset – Data Set to be considered (DataSet object)

• smsTopList – list of topologies containing elements (TopologyList object)

Returns list of elements (Element objects)

class theory.theoryPrediction.TheoryPrediction
Bases: object

An instance of this class represents the results of the theory prediction for an analysis.

Variables

• analysis – holds the analysis (ULanalysis or EManalysis object) to which the prediction
refers

• xsection – xsection of the theory prediction (relevant cross section to be compared with
the experimental limits). For EM-type analyses, it corresponds to sigma*eff, for UL-type
analyses, eff is considered to be 1. It is a XSection object.

• conditions – list of values for the analysis conditions (only for upper limit-type analysis,
e.g. analysis=ULanalysis)

• mass – mass of the cluster to which the theory prediction refers (only for upper limit-type
analysis, e.g. analysis=ULanalysis)

analysisId()
Return experimental analysis ID

computeStatistics(marginalize=False, deltas_rel=0.2)
Compute the likelihood, chi2 and expected upper limit for this theory prediction. The resulting values
are stored as the likelihood and chi2 attributes. :param marginalize: if true, marginalize nuisances. Else,
profile them. :param deltas_rel: relative uncertainty in signal (float). Default value is 20%.

dataId()
Return ID of dataset

dataType()
Return the type of dataset

describe()

getRValue(expected=False)
Get the r value = theory prediction / experimental upper limit



getUpperLimit(expected=False, deltas_rel=0.2)
Get the upper limit on sigma*eff. For UL-type results, use the UL map. For EM-Type returns the cor-
responding dataset (signal region) upper limit. For combined results, returns the upper limit on the total
sigma*eff (for all signal regions/datasets).

Parameters

• expected – return expected Upper Limit, instead of observed.

• deltas_rel – relative uncertainty in signal (float). Default value is 20%.

Returns upper limit (Unum object)

getmaxCondition()
Returns the maximum xsection from the list conditions

Returns maximum condition xsection (float)

class theory.theoryPrediction.TheoryPredictionList(theoryPredictions=None)
Bases: object

An instance of this class represents a collection of theory prediction objects.

Variables _theoryPredictions – list of TheoryPrediction objects

append(theoryPred)

theory.theoryPrediction.theoryPredictionsFor(expResult, smsTopList, maxMass-
Dist=0.2, useBestDataset=True, com-
binedResults=True, marginalize=False,
deltas_rel=0.2)

Compute theory predictions for the given experimental result, using the list of elements in smsTopList. For each
Txname appearing in expResult, it collects the elements and efficiencies, combine the masses (if needed) and
compute the conditions (if exist).

Parameters

• expResult – expResult to be considered (ExpResult object)

• smsTopList – list of topologies containing elements (TopologyList object)

• maxMassDist – maximum mass distance for clustering elements (float)

• useBestDataset – If True, uses only the best dataset (signal region). If False, returns
predictions for all datasets (if combinedResults is False), or only the combinedResults (if
combinedResults is True).

• combinedResults – add theory predictions that result from combining datasets.

• marginalize – If true, marginalize nuisances. If false, profile them.

• deltas_rel – relative uncertainty in signal (float). Default value is 20%.

Returns a TheoryPredictionList object containing a list of TheoryPrediction objects

theory.topology module

class theory.topology.Topology(elements=None)
Bases: object

An instance of this class represents a topology.

Variables

• vertnumb – list with number of vertices in each branch



• verparts – list with number of final states in each branch

• elementList – list of Element objects with this common topology

addElement(newelement)
Add an Element object to the elementList.

For all the pre-existing elements, which match the new element, add weight. If no pre-existing ele-
ments match the new one, add it to the list. OBS: newelement MUST ALREADY BE SORTED (see
element.sort())

Parameters newelement – element to be added (Element object)

Returns True, if the element was added. False, otherwise

checkConsistency()
Check if the all the elements in elementList are consistent with the topology (same number of vertices and
final states)

Returns True if all the elements are consistent. Print error message and exits otherwise.

describe()
Create a detailed description of the topology.

Returns list of strings with a description of the topology

getElements()
Get list of elements of the topology.

Returns elementList (list of Element objects)

getTotalWeight()
Return the sum of all elements weights.

Returns sum of weights of all elements (XSection object)

class theory.topology.TopologyList(topologies=[])
Bases: object

An instance of this class represents an iterable collection of topologies.

Variables topos – list of topologies (Topology objects)

add(newTopology)
Check if elements in newTopology matches an entry in self.topos.

If it does, add weight. If the same topology exists, but not the same element, add element. If neither
element nor topology exist, add the new topology and all its elements.

Parameters newTopology – Topology object

addElement(newelement)
Add an Element object to the corresponding topology in the list. If the element topology does not match
any of the topologies in the list, create a new topology and insert it in the list. If the element topology
already exists, add it to the respective topology. :parameter newelement: element to be added (Element
object) :returns: True, if the element was added. False, otherwise

addList(topoList)
Adds topologies in topoList using the add method.

compressElements(doCompress, doInvisible, minmassgap)
Compress all elements in the list and included the compressed elements in the topology list.

Parameters

• doCompress – if True, perform mass compression



• doInvisible – if True, perform invisible compression

• minmassgap – value (in GeV) of the maximum mass difference for compression (if
mass difference < minmassgap, perform mass compression)

describe()
Returns string with basic information about the topology list.

getElements()
Return a list with all the elements in all the topologies.

getTotalWeight()
Return the sum of all topologies total weights.

hasTopology(topo)
Checks if topo appears in any of the topologies in the list.

Parameters topo – Topology object

Returns True if topo appears in the list, False otherwise.

index(topo)
Uses bisect to find the index where of topo in the list. If topo does not appear in the list, returns None.

Parameters topo – Topology object

Returns position of topo in the list. If topo does not appear in the list, return None.

insert(index, topo)

Module contents

experiment package

Submodules

experiment.databaseObj module

class experiment.databaseObj.Database(base=None, force_load=None, discard_zeroes=True,
progressbar=False, subpickle=True)

Bases: object

Database object. Holds a list of ExpResult objects.

Variables

• base – path to the database (string)

• force_load – force loading the text database (“txt”), or binary database (“pcl”), dont
force anything if None

• expResultList – list of ExpResult objects

base
This is the path to the base directory.

checkBinaryFile()

checkPathName(path, discard_zeroes)
checks the path name, returns the base directory and the pickle file name. If path starts with http or ftp,
fetch the description file and the database. returns the base directory and the pickle file name



createBinaryFile(filename=None)
create a pcl file from the text database, potentially overwriting an old pcl file.

createExpResult(root)
create, from pickle file or text files

databaseVersion
The version of the database, read from the ‘version’ file.

fetchFromScratch(path, store, discard_zeroes)
fetch database from scratch, together with description. :param store: filename to store json file.

fetchFromServer(path, discard_zeroes)

getExpResults(analysisIDs=[’all’], datasetIDs=[’all’], txnames=[’all’], dataTypes=[’all’], useSu-
perseded=False, useNonValidated=False, onlyWithExpected=False)

Returns a list of ExpResult objects.

Each object refers to an analysisID containing one (for UL) or more (for Efficiency maps) dataset (signal
region) and each dataset containing one or more TxNames. If analysisIDs is defined, returns only the
results matching one of the IDs in the list. If dataTypes is defined, returns only the results matching a
dataType in the list. If datasetIDs is defined, returns only the results matching one of the IDs in the list. If
txname is defined, returns only the results matching one of the Tx names in the list.

Parameters

• analysisID – list of analysis ids ([CMS-SUS-13-006,. . . ]). Can be wildcarded with
usual shell wildcards: * ? [<letters>] Furthermore, the centre-of-mass energy can be cho-
sen as suffix, e.g. “:13*TeV”. Note that the asterisk in the suffix is not a wildcard.

• datasetIDs – list of dataset ids ([ANA-CUT0,. . . ]). Can be wildcarded with usual shell
wildcards: * ? [<letters>]

• txnames – list of txnames ([TChiWZ,. . . ]). Can be wildcarded with usual shell wild-
cards: * ? [<letters>]

• dataTypes – dataType of the analysis (all, efficiencyMap or upperLimit) Can be wild-
carded with usual shell wildcards: * ? [<letters>]

• useSuperseded – If False, the supersededBy results will not be included

• useNonValidated – If False, the results with validated = False will not be included

• onlyWithExpected – Return only those results that have expected values also. Note
that this is trivially fulfilled for all efficiency maps.

Returns list of ExpResult objects or the ExpResult object if the list contains only one result

inNotebook()
Are we running within a notebook? Has an effect on the progressbar we wish to use.

loadBinaryFile(lastm_only=False)
Load a binary database, returning last modified, file count, database.

Parameters lastm_only – if true, the database itself is not read.

Returns database object, or None, if lastm_only == True.

loadDatabase()
if no binary file is available, then load the database and create the binary file. if binary file is available,
then check if it needs update, create new binary file, in case it does need an update.

loadTextDatabase()
simply loads the textdabase



needsUpdate()
does the binary db file need an update?

updateBinaryFile()
write a binar db file, but only if necessary.

class experiment.databaseObj.ExpResultList(expResList)
Bases: object

Holds a list of ExpResult objects for printout.

Variables expResultList – list of ExpResult objects

experiment.datasetObj module

class experiment.datasetObj.CombinedDataSet(expResult)
Bases: object

Holds the information for a combined dataset (used for combining multiple datasets).

combinedLikelihood(nsig, marginalize=False, deltas_rel=0.2)
Computes the (combined) likelihood to observe nobs events, given a predicted signal “nsig”, with nsig
being a vector with one entry per dataset. nsig has to obey the datasetOrder. Deltas is the error on the
signal. :param nsig: predicted signal (list) :param deltas_rel: relative uncertainty in signal (float). Default
value is 20%.

Returns likelihood to observe nobs events (float)

getCombinedUpperLimitFor(nsig, expected=False, deltas_rel=0.2)
Get combined upper limit.

Parameters

• nsig – list of signal events in each signal region/dataset. The list should obey the ordering
in globalInfo.datasetOrder.

• expected – return expected, not observed value

• deltas_rel – relative uncertainty in signal (float). Default value is 20%.

Returns upper limit on sigma*eff

getDataSet(datasetID)
Returns the dataset with the corresponding dataset ID. If the dataset is not found, returns None.

Parameters datasetID – dataset ID (string)

Returns DataSet object if found, otherwise None.

getID()
Return the ID for the combined dataset

getType()
Return the dataset type (combined)

sortDataSets()
Sort datasets according to globalInfo.datasetOrder.

totalChi2(nsig, marginalize=False, deltas_rel=0.2)
Computes the total chi2 for a given number of observed events, given a predicted signal “nsig”, with
nsig being a vector with one entry per dataset. nsig has to obey the datasetOrder. Deltas is the error on
the signal efficiency. :param nsig: predicted signal (list) :param deltas_rel: relative uncertainty in signal
(float). Default value is 20%.



Returns chi2 (float)

class experiment.datasetObj.DataSet(path=None, info=None, createInfo=True, dis-
card_zeroes=True)

Bases: object

Holds the information to a data set folder (TxName objects, dataInfo,. . . )

checkForRedundancy()
In case of efficiency maps, check if any txnames have overlapping constraints. This would result in double
counting, so we dont allow it.

chi2(nsig, deltas_rel=0.2, marginalize=False)
Computes the chi2 for a given number of observed events “nobs”, given number of signal events “nsig”,
and error on signal “deltas”. nobs, expectedBG and bgError are part of dataInfo. :param nsig: pre-
dicted signal (float) :param deltas_rel: relative uncertainty in signal (float). Default value is 20%. :param
marginalize: if true, marginalize nuisances. Else, profile them. :return: chi2 (float)

folderName()
Name of the folder in text database.

getAttributes(showPrivate=False)
Checks for all the fields/attributes it contains as well as the attributes of its objects if they belong to
smodels.experiment.

Parameters showPrivate – if True, also returns the protected fields (_field)

Returns list of field names (strings)

getEfficiencyFor(txname, mass)
convenience function. same as self.getTxName(txname).getEfficiencyFor(m)

getID()
Return the dataset ID

getSRUpperLimit(alpha=0.05, expected=False, compute=False, deltas_rel=0.2)
Computes the 95% upper limit on the signal*efficiency for a given dataset (signal region). Only to be used
for efficiency map type results.

Parameters

• alpha – Can be used to change the C.L. value. The default value is 0.05 (= 95% C.L.)

• expected – Compute expected limit ( i.e. Nobserved = NexpectedBG )

• deltas_rel – relative uncertainty in signal (float). Default value is 20%.

• compute – If True, the upper limit will be computed from expected and observed number
of events. If False, the value listed in the database will be used instead.

Returns upper limit value

getTxName(txname)
get one specific txName object.

getType()
Return the dataset type (EM/UL)

getUpperLimitFor(mass=None, expected=False, txnames=None, compute=False, alpha=0.05,
deltas_rel=0.2)

Returns the upper limit for a given mass and txname. If the dataset hold an EM map result the upper limit
is independent of the input txname or mass.

Parameters



• txname – TxName object or txname string (only for UL-type results)

• mass – Mass array with units (only for UL-type results)

• alpha – Can be used to change the C.L. value. The default value is 0.05 (= 95% C.L.)
(only for efficiency-map results)

• deltas_rel – relative uncertainty in signal (float). Default value is 20%.

• expected – Compute expected limit, i.e. Nobserved = NexpectedBG (only for
efficiency-map results)

• compute – If True, the upper limit will be computed from expected and observed number
of events. If False, the value listed in the database will be used instead.

Returns upper limit (Unum object)

getValuesFor(attribute=None)
Returns a list for the possible values appearing in the DataSet for the required attribute.

Parameters attribute – name of a field in the database (string). If not defined it will return
a dictionary with all fields and their respective values

Returns list of values

likelihood(nsig, deltas_rel=0.2, marginalize=False)
Computes the likelihood to observe nobs events, given a predicted signal “nsig”, assuming “deltas” error
on the signal efficiency. The values observedN, expectedBG, and bgError are part of dataInfo. :param
nsig: predicted signal (float) :param deltas_rel: relative uncertainty in signal (float). Default value is 20%.
:param marginalize: if true, marginalize nuisances. Else, profile them. :returns: likelihood to observe nobs
events (float)

experiment.exceptions module

exception experiment.exceptions.DatabaseNotFoundException(value)
Bases: Exception

This exception is used when the database cannot be found.

exception experiment.exceptions.SModelSExperimentError(value=None)
Bases: Exception

Class to define SModelS specific errors

experiment.expResultObj module

class experiment.expResultObj.ExpResult(path=None, discard_zeroes=True)
Bases: object

Object containing the information and data corresponding to an experimental result (experimental conference
note or publication).

Variables

• path – path to the experimental result folder (i.e. ATLAS-CONF-2013-047)

• globalInfo – Info object holding the data in <path>/globalInfo.txt

• datasets – List of DataSet objects corresponding to the dataset folders in <path>



getAttributes(showPrivate=False)
Checks for all the fields/attributes it contains as well as the attributes of its objects if they belong to
smodels.experiment.

Parameters showPrivate – if True, also returns the protected fields (_field)

Returns list of field names (strings)

getDataset(dataId)
retrieve dataset by dataId

getEfficiencyFor(txname, mass, dataset=None)
Convenience function. Get the efficiency for a specific dataset for a a specific txname. Equivalent to:
self.getDataset ( dataset ).getEfficiencyFor ( txname, mass )

getTxNames()
Returns a list of all TxName objects appearing in all datasets.

getTxnameWith(restrDict={})
Returns a list of TxName objects satisfying the restrictions. The restrictions specified as a dictionary.

Parameters restrDict – dictionary containing the fields and their allowed values. E.g. {‘tx-
name’ : ‘T1’, ‘axes’ : . . . .} The dictionary values can be single entries or a list of values. For
the fields not listed, all values are assumed to be allowed.

Returns list of TxName objects if more than one txname matches the selection criteria or a
single TxName object, if only one matches the selection.

getUpperLimitFor(dataID=None, alpha=0.05, expected=False, txname=None, mass=None, com-
pute=False)

Computes the 95% upper limit (UL) on the signal cross section according to the type of result. For an
Efficiency Map type, returns the UL for the signal*efficiency for the given dataSet ID (signal region). For
an Upper Limit type, returns the UL for the signal*BR for the given mass array and Txname.

Parameters

• dataID – dataset ID (string) (only for efficiency-map type results)

• alpha – Can be used to change the C.L. value. The default value is 0.05 (= 95% C.L.)
(only for efficiency-map results)

• expected – Compute expected limit, i.e. Nobserved = NexpectedBG (only for
efficiency-map results)

• txname – TxName object or txname string (only for UL-type results)

• mass – Mass array with units (only for UL-type results)

• compute – If True, the upper limit will be computed from expected and observed number
of events. If False, the value listed in the database will be used instead.

Returns upper limit (Unum object)

getValuesFor(attribute=None)
Returns a list for the possible values appearing in the ExpResult for the required attribute
(sqrts,id,constraint,. . . ). If there is a single value, returns the value itself.

Parameters attribute – name of a field in the database (string). If not defined it will return
a dictionary with all fields and their respective values

Returns list of values or value

hasCovarianceMatrix()

id()



writePickle(dbVersion)
write the pickle file

experiment.infoObj module

class experiment.infoObj.Info(path=None)
Bases: object

Holds the meta data information contained in a .txt file (luminosity, sqrts, experimentID,. . . ). Its attributes are
generated according to the lines in the .txt file which contain “info_tag: value”.

Variables path – path to the .txt file

addInfo(tag, value)
Adds the info field labeled by tag with value value to the object.

Parameters

• tag – information label (string)

• value – value for the field in string format

dirName(up=0)
directory name of path. If up>0, we step up ‘up’ directory levels.

getInfo(infoLabel)
Returns the value of info field.

Parameters infoLabel – label of the info field (string). It must be an attribute of the Global-
Info object

experiment.metaObj module

class experiment.metaObj.Meta(pathname, discard_zeroes=None, mtime=None, filecount=None,
hasFastLim=None, databaseVersion=None, format_version=201,
python=’3.6.2 (default, Apr 5 2018, 00:59:42) n[GCC 5.4.0
20160609]’)

Bases: object

cTime()

current_version = 201
The Meta object holds all meta information regarding the database, like number of analyses, last time of
modification, . . . This info is needed to understand if we have to re-pickle.

determineLastModified(force=False)
compute the last modified timestamp, plus count number of files. Only if text db

getPickleFileName()
get canonical pickle file name

isPickle()
is this meta info from a pickle file?

lastModifiedSubDir(subdir)
Return the last modified timestamp of subdir (working recursively) plus the number of files.

Parameters

• subdir – directory name that is checked



• lastm – the most recent timestamp so far, plus number of files

Returns the most recent timestamp, and the number of files

needsUpdate(current)
do we need an update, with respect to <current>. so <current> is the text database, <self> the pcl.

printFastlimBanner()
check if fastlim appears in data. If yes, print a statement to stdout.

sameAs(other)
check if it is the same database version

versionFromFile()
Retrieves the version of the database using the version file.

experiment.txnameObj module

class experiment.txnameObj.Delaunay1D(data)
Bases: object

Uses a 1D data array to interpolate the data. The attribute simplices is a list of N-1 pair of ints with the indices
of the points forming the simplices (e.g. [[0,1],[1,2],[3,4],. . . ]).

checkData(data)
Define the simplices according to data. Compute and store the transformation matrix and simplices
self.point.

find_index(xlist, x)
Efficient way to find x in a list. Returns the index (i) of xlist such that xlist[i] < x <= xlist[i+1]. If x >
max(xlist), returns the length of the list. If x < min(xlist), returns 0. vertices = np.take(self.tri.simplices,
simplex, axis=0) temp = np.take(self.tri.transform, simplex, axis=0) d=temp.shape[2] delta = uvw - temp[:,
d]

Parameters

• xlist – List of x-type objects

• x – object to be searched for.

Returns Index of the list such that xlist[i] < x <= xlist[i+1].

find_simplex(x, tol=0.0)
Find 1D data interval (simplex) to which x belongs

Parameters

• x – Point (float) without units

• tol – Tolerance. If x is outside the data range with distance < tol, extrapolate.

Returns simplex index (int)

class experiment.txnameObj.TxName(path, globalObj, infoObj)
Bases: object

Holds the information related to one txname in the Txname.txt file (constraint, condition,. . . ) as well as the data.

addInfo(tag, value)
Adds the info field labeled by tag with value value to the object.

Parameters



• tag – information label (string)

• value – value for the field in string format

getEfficiencyFor(mass)
For upper limit results, checks if the input mass falls inside the upper limit grid. If it does, returns efficiency
= 1, else returns efficiency = 0. For efficiency map results, checks if the mass falls inside the efficiency
map grid. If it does, returns the corresponding efficiency value, else returns efficiency = 0.

Parameters element – Element object

Returns efficiency (float)

getInfo(infoLabel)
Returns the value of info field.

Parameters infoLabel – label of the info field (string). It must be an attribute of the Tx-
NameInfo object

getValueFor(massarray, expected=False)
Access txnameData and txnameDataExp to get value for massarray.

Parameters

• massarray – mass array values (with units), i.e.
[[100*GeV,10*GeV],[100*GeV,10*GeV]]

• expected – query self.txnameDataExp

hasElementAs(element)
Verify if the conditions or constraint in Txname contains the element. Check both branch orderings.

Parameters element – Element object

Returns A copy of the element on the correct branch ordering appearing in the Txname con-
straint or condition.

hasLikelihood()
can I construct a likelihood for this map? True for all efficiency maps, and for upper limits maps with
expected Values.

hasOnlyZeroes()

class experiment.txnameObj.TxNameData(value, datatag, Id, accept_errors_upto=0.05)
Bases: object

Holds the data for the Txname object. It holds Upper limit values or efficiencies.

computeV(values)
Compute rotation matrix _V, and triangulation self.tri

Parameters values – Nested array with the data values

countNonZeros(mp)
count the nonzeros in a vector

evaluateString(value)
Evaluate string.

Parameters value – String expression.

flattenArray(objList)
Flatten any nested list to a 1D list.

Parameters objList – Any list or nested list of objects (e.g.
[[[100.,100.],1.],[[200.,200.],2.],..]



Returns 1D list (e.g. [100.,100.,1.,200.,200.,2.,..])

formatInput(value, shapeArray)
Format value according to the shape in shapeArray. If shapeArray contains entries = *, the corresponding
entries in value will be ignored.

Parameters

• value – Array to be formatted (e.g. [[200.,100.],[200.,100.]])

• shapeArray – Array with format info (e.f. [‘*’,[float,float]])

Returns formatted array [[200.,100.]]

getDataShape(value)
Stores the data format (mass shape) and store it for future use. If there are wildcards (mass or branch =
None), store their positions.

Parameters value – list of data points

getUnits(value)
Get standard units for the input object. Uses the units defined in physicsUnits.standardUnits. (e.g.
[[100*GeV,100.*GeV],3.*pb] -> returns [[GeV,GeV],fb] [[100*GeV,3.],[200.*GeV,2.*pb]] -> returns
[[GeV,1.],[GeV,fb]] )

Parameters value – Object containing units (e.g. [[100*GeV,100.*GeV],3.*pb])

Returns Object with same structure containing the standard units used to normalize the data.

getValueFor(massarray)
Interpolates the value and returns the UL or efficiency for the respective massarray

Parameters massarray – mass array values (with units), i.e.
[[100*GeV,10*GeV],[100*GeV,10*GeV]]

interpolate(point, fill_value=nan)

loadData(value)
Uses the information in value to generate the data grid used for interpolation.

onlyZeroValues()
check if the map is zeroes only

removeUnits(value)
Remove units from unum objects. Uses the units defined in physicsUnits.standard units to normalize the
data.

Parameters value – Object containing units (e.g. [[100*GeV,100.*GeV],3.*pb])

Returns Object normalized to standard units (e.g. [[100,100],3000])

removeWildCards(value)
Remove all entries = ‘*’ from value.

Parameters value – usually a list containing floats and ‘*’ (e.g. [[200.,’*’],’*’],0.4],..)

round_to_n(x, n)



Module contents

tools package

Submodules

tools.asciiGraph module

tools.asciiGraph.asciidraw(element, labels=True, html=False, border=False)
Draw a simple ASCII graph on the screen.

tools.caching module

class tools.caching.Cache
Bases: object

a class for storing results from interpolation

static add(key, value)

n_stored = 1000

static reset()
completely reset the cache

static size()

tools.colors module

class tools.colors.Colors
Bases: object

blue

cyan

debug

error

green

info

magenta

red

reset

warn

yellow



tools.coverage module

class tools.coverage.Uncovered(topoList, sumL=True, sumJet=True, sqrts=None)
Bases: object

Object collecting all information of non-tested/covered elements :ivar topoList: sms topology list :ivar sumL: if
true, sum up electron and muon to lepton, for missing topos :ivar sumJet: if true, sum up jets, for missing topos
:ivar sqrts: Center of mass energy. If defined it will only consider cross-sections for this value. Otherwise the
highest sqrts value will be used.

addPrevMothers(el)

fill(topoList)
Check all elements, categorise those not tested / missing, classify long cascade decays and asymmetric
branches Fills all corresponding objects :ivar topoList: sms topology list

getAllMothers(topoList)
Find all IDs of mother elements, only most compressed element can be missing topology :ivar topoList:
sms topology list

getAsymmetricXsec(sqrts=None)

getLongCascadeXsec(sqrts=None)

getMissingX(el)
Calculate total missing cross section of element, by recursively checking if mothers are covered :ivar el:
Element :returns: missing cross section in fb as number

getMissingXsec(sqrts=None)
Calculate total missing topology cross section at sqrts. If no sqrts is given use self.sqrts :ivar sqrts: sqrts

getOutOfGridXsec(sqrts=None)

getOutsideX(el)
Calculate total outside grid cross section of element, by recursively checking if mothers are covered :ivar
el: Element :returns: missing cross section in fb as number

getTotalXsec(sqrts=None)
Calculate total cross-section from decomposition (excluding compressed elements) :ivar sqrts: sqrts

hasAsymmetricBranches(el)
Return True if Element branches are not equal :ivar el: Element

hasLongCascade(el)
Return True if element has more than 3 particles in the decay chain :ivar el: Element

inOutsideGridMothers(el)

inPrevMothers(el)

isMissingTopo(el)
A missing topology is not a mother element, not covered, and does not have mother which is covered :ivar
el: Element

class tools.coverage.UncoveredClass(motherPIDs, el)
Bases: object

Object collecting all elements contributing to the same uncovered class, defined by the mother PIDs. :ivar
motherPIDs: PID of initially produces particles, sorted and without charge information :ivar el: Element

add(motherPIDs, el)
Add Element to this UncoveredClass object if motherPIDs match and return True, else return False :ivar
motherPIDs: PID of initially produces particles, sorted and without charge information :ivar el: Element



combine(other)

getWeight()
Calculate weight at sqrts :ivar sqrts: sqrts

isSubset(other)
True if motherPIDs of others are subset of the motherPIDs of this UncoveredClass

class tools.coverage.UncoveredClassifier
Bases: object

Object collecting elements with long cascade decays or asymmetric branches. Objects are grouped according to
the initially produced particle PID pair.

addToClasses(el)
Add Element in corresponding UncoveredClass, defined by mother PIDs. If no corresponding class in
self.classes, add new UncoveredClass :ivar el: Element

combine()

getMotherPIDs(el)

getSorted(sqrts)
Returns list of UncoveredClass objects in self.classes, sorted by weight :ivar sqrts: sqrts for weight lookup

remove(cl)
Remove element where mother pids match exactly

class tools.coverage.UncoveredList(sumL, sumJet, sqrts)
Bases: object

Object to find and collect UncoveredTopo objects, plus printout functionality :ivar sumL: if true sum electrons
and muons to leptons :ivar sumJet: if true, sum up jets :ivar sqrts: sqrts, for printout

addToTopos(el)
adds an element to the list of missing topologies if the element contributes to a missing topology that is
already in the list, add weight to topology :parameter el: element to be added

generalName(instr)
generalize by summing over charges e, mu are combined to l :parameter instr: element as string :returns:
string of generalized element

class tools.coverage.UncoveredTopo(topo, contributingElements=[])
Bases: object

Object to describe one missing topology result / one topology outside the mass grid :ivar topo: topology de-
scription :ivar weights: weights dictionary

tools.crashReport module

class tools.crashReport.CrashReport
Bases: object

Class that handles all crash report information.

createCrashReportFile(inputFileName, parameterFileName)
Create a new SModelS crash report file.

A SModelS crash report file contains:

• a timestamp

• SModelS version



• platform information (CPU architecture, operating system, . . . )

• Python version

• stack trace

• input file name

• input file content

• parameter file name

• parameter file content

Parameters

• inputFileName – relative location of the input file

• parameterFileName – relative location of the parameter file

createUnknownErrorMessage()
Create a message for an unknown error.

tools.crashReport.createStackTrace()
Return the stack trace.

tools.crashReport.readCrashReportFile(crashReportFileName)
Read a crash report file to use its input and parameter file sections for a SModelS run.

Parameters crashReportFileName – relative location of the crash report file

tools.databaseBrowser module

class tools.databaseBrowser.Browser(database, force_txt=False)
Bases: object

Browses the database, exits if given path does not point to a valid smodels-database. Browser can be restricted
to specified run or experiment.

getAttributes(showPrivate=False)
Checks for all the fields/attributes it contains as well as the attributes of its objects if they belong to
smodels.experiment.

Parameters showPrivate – if True, also returns the protected fields (_field)

Returns list of field names (strings)

getEfficiencyFor(expid, dataset, txname, massarray)
Get an efficiency for the given experimental id, the dataset name, the txname, and the massarray. Can only
be used for EfficiencyMap-type experimental results. Interpolation is done, if necessary.

Parameters

• expid – experimental id (string)

• dataset – dataset name (string)

• txname – txname (string).

• massarray – list of masses with units, e.g. [[ 400.*GeV, 100.*GeV],[400.*GeV,
100.*GeV]]

Returns efficiency



getULFor(expid, txname, massarray, expected=False)
Get an upper limit for the given experimental id, the txname, and the massarray. Can only be used for UL
experimental results. Interpolation is done, if necessary.

Parameters

• expid – experimental id (string)

• txname – txname (string). ONLY required for upper limit results

• massarray – list of masses with units, e.g. [[ 400.*GeV, 100.*GeV],[400.*GeV,
100.*GeV]]

• expected – If true, return expected upper limit, otherwise return observed upper limit.

Returns upper limit [fb]

getULForSR(expid, datasetID)
Get an upper limit for the given experimental id and dataset (signal region). Can only be used for efficiency-
map results. :param expid: experimental id (string) :param datasetID: string defining the dataset id, e.g.
ANA5-CUT3. :return: upper limit [fb]

getValuesFor(attribute=None, expResult=None)
Returns a list for the possible values appearing in the database for the required attribute
(sqrts,id,constraint,. . . ).

Parameters

• attribute – name of a field in the database (string). If not defined it will return a
dictionary with all fields and their respective values

• expResult – if defined, restricts the list to the corresponding expResult. Must be an
ExpResult object.

Returns list of values

loadAllResults()
Saves all the results from database to the _selectedExpResults. Can be used to restore all results to _se-
lectedExpResults.

selectExpResultsWith(**restrDict)
Loads the list of the experimental results (pair of InfoFile and DataFile) satisfying the restrictions to the
_selectedExpResults. The restrictions specified as a dictionary.

Parameters restrDict – selection fields and their allowed values. E.g. lumi = [19.4/fb,
20.3/fb], txName = ‘T1’,. . . .} The values can be single entries or a list of values. For the
fields not listed, all values are assumed to be allowed.

tools.databaseBrowser.main(args)
IPython interface for browsing the Database.

tools.externalPythonTools module

class tools.externalPythonTools.ExternalPythonTool(importname, optional=False)
Bases: object

An instance of this class represents the installation of unum. As it is python-only, we need this only for instal-
lation, not for running (contrary to nllfast or pythia).

checkInstallation()
The check is basically done in the constructor



compile()

installDirectory()
Just returns the pythonPath variable

pathOfExecutable()
Just returns the pythonPath variable

tools.interactivePlots module

class tools.interactivePlots.DataHolder(smodelsFolder, slhaFolder, parameterFile)
Bases: object

A simple class to store the required data for producing the interactive plots

fillWith(smodelsDict, slhaData)
Fill the dictionary (data_dict) with the desired data from the smodels output dictionary (smodelsDict) and
the pyslha.Doc object slhaData

initializeDataDict()
Initializes an empty dictionary with the plotting options.

loadData(npoints=-1)
Reads the data from the smodels and SLHA folders. If npoints > 0, it will limit the number of points in the
plot to npoints.

Parameters npoints – Number of points to be plotted (int). If < 0, all points will be used.

loadParameters()
Reads the parameters from the plotting parameter file.

makePlots(outFolder)
Uses the data in self.data_dict to produce the plots.

Parameters outFolder – Path to the output folder.

tools.interactivePlots.main(args)
Create the interactive plots using the input from argparse

Parameters args – argparser.Namespace object containing the options for makePlots

tools.interactivePlots.makePlots(smodelsFolder, slhaFolder, outputFolder, parameters,
npoints, verbosity)

Main interface for the interactive-plots.

Parameters

• smodelsFolder – Path to the folder containing the SModelS python output

• slhaFolder – Path to the folder containing the SLHA files corresponding to the SModelS
output

• parameters – Path to the parameter file setting the options for the interactive plots

• npoints – Number of points used to produce the plot. If -1, all points will be used.

• verbosity – Verbosity of the output (debug,info,warning,error)

Returns True if the plot creation was successfull



tools.interactivePlotsHelpers module

tools.interactivePlotsHelpers.create_index_html(path_to_plots, plot_data, plot_title,
plot_list, plot_descriptions)

Fills the index.html file with links to the interactive plots.

tools.interactivePlotsHelpers.data_frame_excluded_nonexcluded(data_frame_all)
Generate sub data frames for excluded and non-excluded points

tools.interactivePlotsHelpers.fill_hover(data_frame_all, SMod-
elS_hover_information, slha_hover_information,
ctau_hover_information,
BR_hover_information)

Generates the text of the hover, according to users’s requests.

tools.interactivePlotsHelpers.get_BR(data_dict, slhaData, BR_hover_information,
BR_get_top)

Gets the requested branching ratios from the slha file, that will go into de hover.

tools.interactivePlotsHelpers.get_asymmetric_branches(data_dict, smodelsOutput)
Extracts the asymmetric branches info from the .py output. If requested, the data will be appended on each
corresponding list

tools.interactivePlotsHelpers.get_ctau(data_dict, slhaData, ctau_hover_information)
Computes the requested ctaus, that will go into de hover.

tools.interactivePlotsHelpers.get_entry(inputDict, *keys)
Get entry key in dictionary inputDict. If a list of keys is provided, it will assumed nested dictionaries (e.g.
key1,key2 will return inputDict[key1][key2]).

tools.interactivePlotsHelpers.get_expres(data_dict, smodelsOutput)
Extracts the Expres info from the .py output. If requested, the data will be appended on each corresponding list

tools.interactivePlotsHelpers.get_long_cascades(data_dict, smodelsOutput)
Extracts the Long cascade info from the .py output. If requested, the data will be appended on each correspond-
ing list

tools.interactivePlotsHelpers.get_missed_topologies(data_dict, smodelsOuptut)
Extracts the Missed topologies info from the .py output. If requested, the data will be appended on each corre-
sponding list

tools.interactivePlotsHelpers.get_outside_grid(data_dict, smodelsOutput)
Extracts the outside grid info from the .py output. If requested, the data will be appended on each corresponding
list.

tools.interactivePlotsHelpers.get_slha_data(slhaFile)
Uses pyslha to read the SLHA file. Return a pyslha.Doc objec, if successful.

tools.interactivePlotsHelpers.get_slha_file(smodelsDict)
Returns the file name of the SLHA file corresponding to the output in smodelsDict

tools.interactivePlotsHelpers.get_slha_hover_info(data_dict, slhaData,
slha_hover_information)

Gets the requested slha info from eachh slha file, to fill the hover.

tools.interactivePlotsHelpers.get_variable(data_dict, slhaData, slha_hover_information,
variable)

Gets the variable from the slha file.

tools.interactivePlotsHelpers.get_xy_axis(variable_x, variable_y)
Retrieves the names of the x and y axis variables.



tools.interactivePlotsHelpers.import_python_output(smodelsFile)
Imports the smodels output from each .py file.

tools.interactivePlotsHelpers.make_continuous_plots_all(cont_plots, x_axis,
y_axis, path_to_plots,
data_frame_all, plot_data,
plot_title, variable_x, vari-
able_y, plot_descriptions)

Generate plots with continuous z axis variables, using all data points

tools.interactivePlotsHelpers.make_continuous_plots_excluded(cont_plots,
x_axis, y_axis,
path_to_plots,
data_frame_excluded,
plot_data,
plot_title, vari-
able_x, variable_y,
plot_descriptions)

Generate plots with continuous z axis variables, using excluded data points

tools.interactivePlotsHelpers.make_continuous_plots_nonexcluded(cont_plots,
x_axis, y_axis,
path_to_plots,
data_frame_nonexcluded,
plot_data,
plot_title,
variable_x,
variable_y,
plot_descriptions)

Generate plots with continuous z axis variables, using non-excluded data points

tools.interactivePlotsHelpers.make_data_frame(data_dict)
Transform the main dictionary in a data frame.

tools.interactivePlotsHelpers.make_discrete_plots_all(disc_plots, x_axis,
y_axis, path_to_plots,
data_frame_all, plot_data,
plot_title, variable_x, vari-
able_y, plot_descriptions)

Generate plots with discrete z axis variables, using all data points

tools.interactivePlotsHelpers.make_discrete_plots_excluded(disc_plots, x_axis,
y_axis, path_to_plots,
data_frame_excluded,
plot_data,
plot_title, vari-
able_x, variable_y,
plot_descriptions)

Generate plots with discrete z axis variables, using excluded data points

tools.interactivePlotsHelpers.make_discrete_plots_nonexcluded(disc_plots,
x_axis, y_axis,
path_to_plots,
data_frame_nonexcluded,
plot_data,
plot_title,
variable_x,
variable_y,
plot_descriptions)



Generate plots with discrete z axis variables, using non-excluded data points

tools.interactivePlotsHelpers.output_status(smodelsDict)
Check the smodels output status in the file, if it’s -1, it will append ‘none’ to each list in the dictionary.

tools.interactivePlotsHelpers.plot_description()
Generate a description for each plot.

tools.interactivePlotsHelpers.separate_cont_disc_plots(plot_list, data_dict)
Generate sub lists of plots with discrete and conitnuous z axis variables.

tools.ioObjects module

class tools.ioObjects.FileStatus
Bases: object

Object to run several checks on the input file. It holds an LheStatus (SlhaStatus) object if inputType = lhe (slha)

checkFile(inputFile, sigmacut=None)
Run checks on the input file.

Parameters

• inputFile – path to input file

• sigmacut – sigmacut in fb

class tools.ioObjects.LheStatus(filename)
Bases: object

Object to check if input lhe file contains errors.

Variables filename – path to input LHE file

evaluateStatus()
run status check

class tools.ioObjects.OutputStatus(status, inputFile, parameters, databaseVersion)
Bases: object

Object that holds all status information and has a predefined printout.

addWarning(warning)
Append warning to warnings.

Parameters warning – warning to be appended

updateSLHAStatus(status)
Update SLHA status.

Parameters status – new SLHA status flag

updateStatus(status)
Update status.

Parameters status – new status flag

class tools.ioObjects.Qnumbers(pid)
Bases: object

An instance of this class represents quantum numbers.

Get quantum numbers (spin*2, electrical charge*3, color dimension) from qNumbers.



class tools.ioObjects.ResultList(theoPredictionsList=[], maxcond=1.0)
Bases: object

Class that collects a list of theory predictions plus the corresponding upper limits.

addTheoPrediction(theoPred, maxcond)
Add a result to the theoryPredictions, unless it violates maxcond.

Parameters

• theoPred – a Theory Prediction object to be added to ResultList

• maxcond – maximum condition violation

getBestExpected()
Find EM result with the highest expected R vaue. :returns: Theory Prediction object

getR(theoPred, expected=False)
Calculate R value.

Parameters theoPred – Theory Prediction object

Returns R value = weight / upper limit

isEmpty()
Check if outputarray is empty.

sort()
Reverse sort theoryPredictions by R value.

class tools.ioObjects.SlhaStatus(filename, maxDisplacement=0.01, sigmacut=3.00E-02 [fb],
findMissingDecayBlocks=True, findIllegalDecays=False,
checkXsec=True)

Bases: object

An instance of this class represents the status of an SLHA file. The output status is: = 0 : the file is not checked,
= 1: the check is ok = -1: case of a physical problem, e.g. charged LSP, = -2: case of formal problems, e.g. no
cross sections

degenerateChi()
Check if chi01 is lsp and chipm1 is NLSP. If so, check mass splitting. This function is not used, the limit
is arbitrary.

deltaMass(pid1, pid2)
Calculate mass splitting between particles with pid1 and pid2.

Returns mass difference

emptyDecay(pid)
Check if any decay is listed for the particle with pid

Parameters pid – PID number of particle to be checked

Returns True if the decay block is missing or if it is empty, None otherwise

evaluateStatus()
Get status summary from all performed checks.

Returns a status flag and a message for explanation

findIllegalDecay(findIllegal)
Find decays for which the sum of daughter masses excels the mother mass

Parameters findIllegal – True if check should be run

Returns status flag and message



findLSP(returnmass=None)
Find lightest particle (not in rEven).

Returns pid, mass of the lsp, if returnmass == True

findLonglivedParticles(findLonglived)
Find meta-stable particles that decay to visible particles and stable charged particles.

Returns status flag, message

findMissingDecayBlocks(findMissingBlocks)
For all non-rEven particles listed in mass block, check if decay block is written

Returns status flag and message

findNLSP(returnmass=None)
Find second lightest particle (not in rEven).

Returns pid ,mass of the NLSP, if returnmass == True

getDecayWidth(pid)
Get the decay-width for particle with pid, if it exists.

getDecayWidths()
Get all decay-widths as a dictionary {pid: width}.

getLifetime(pid, ctau=False)
Compute lifetime from decay-width for a particle with pid.

Parameters

• pid – PID of particle

• ctau – set True to multiply lifetime by c

Returns lifetime

hasXsec(checkXsec)
Check if XSECTION table is present in the slha file.

Parameters checkXsec – set True to run the check

Returns status flag, message

massDiffLSPandNLSP()
Get the mass difference between the lsp and the nlsp.

read()
Get pyslha output object.

sumBR(pid)
Calculate the sum of all branching ratios for particle with pid.

Parameters pid – PID of particle

Returns sum of branching ratios as given in the decay table for pid

testLSP(checkLSP)
Check if LSP is charged.

Parameters checkLSP – set True to run the check

Returns status flag, message

visible(pid, decay=None)
Check if pid is detectable. If pid is not known, consider it as visible. If pid not SM particle and decay =
True, check if particle or decay products are visible.



tools.lheChecks module

tools.lheChecks.main(args)

tools.modelTester module

tools.modelTester.checkForSemicolon(strng, section, var)

tools.modelTester.getAllInputFiles(inFile)
Given inFile, return list of all input files

Parameters inFile – Path to input file or directory containing input files

Returns List of all input files, and the directory name

tools.modelTester.getParameters(parameterFile)
Read parameter file, exit in case of errors

Parameters parameterFile – Path to parameter File

Returns ConfigParser read from parameterFile

tools.modelTester.loadDatabase(parser, db)
Load database

Parameters

• parser – ConfigParser with path to database

• db – binary database object. If None, then database is loaded, according to databasePath. If
True, then database is loaded, and text mode is forced.

Returns database object, database version

tools.modelTester.loadDatabaseResults(parser, database)
Load database entries specified in parser

Parameters

• parser – ConfigParser, containing analysis and txnames selection

• database – Database object

Returns List of experimental results

tools.modelTester.runSetOfFiles(inputFiles, outputDir, parser, databaseVersion, listOfExpRes,
timeout, development, parameterFile, jobnr)

Loop over all input files in inputFiles with testPoint

Parameters

• inputFiles – list of input files to be tested

• outputDir – path to directory where output is be stored

• parser – ConfigParser storing information from parameter.ini file

• databaseVersion – Database version (printed to output file)

• listOfExpRes – list of ExpResult objects to be considered

• development – turn on development mode (e.g. no crash report)

• parameterFile – parameter file, for crash reports

• jobnr – number of process, in parallel mode. mostly for debugging.



Returns printers output

tools.modelTester.runSingleFile(inputFile, outputDir, parser, databaseVersion, listOfExpRes,
timeout, development, parameterFile)

Call testPoint on inputFile, write crash report in case of problems

Parameters

• inputFile – path to input file

• outputDir – path to directory where output is be stored

• parser – ConfigParser storing information from parameter.ini file

• databaseVersion – Database version (printed to output file)

• listOfExpRes – list of ExpResult objects to be considered

• crashReport – if True, write crash report in case of problems

• timeout – set a timeout for one model point (0 means no timeout)

Returns output of printers

tools.modelTester.testPoint(inputFile, outputDir, parser, databaseVersion, listOfExpRes)
Test model point defined in input file (running decomposition, check results, test coverage)

Parameters

• inputFile – path to input file

• outputDir – path to directory where output is be stored

• parser – ConfigParser storing information from parameters file

• databaseVersion – Database version (printed to output file)

• listOfExpRes – list of ExpResult objects to be considered

Returns output of printers

tools.modelTester.testPoints(fileList, inDir, outputDir, parser, databaseVersion, listOfExpRes,
timeout, development, parameterFile)

Loop over all input files in fileList with testPoint, using ncpus CPUs defined in parser

Parameters

• fileList – list of input files to be tested

• inDir – path to directory where input files are stored

• outputDir – path to directory where output is stored

• parser – ConfigParser storing information from parameter.ini file

• databaseVersion – Database version (printed to output files)

• listOfExpRes – list of ExpResult objects to be considered

• timeout – set a timeout for one model point (0 means no timeout)

• development – turn on development mode (e.g. no crash report)

• parameterFile – parameter file, for crash reports

Returns printer(s) output, if not run in parallel mode



tools.nllFastWrapper module

class tools.nllFastWrapper.NllFastWrapper(sqrts, nllfastVersion, testParams, testCondition)
Bases: smodels.tools.wrapperBase.WrapperBase

An instance of this class represents the installation of nllfast.

getKfactorsFor(pIDs, slhafile, pdf=’cteq’)
Read the NLLfast grid and returns a pair of k-factors (NLO and NLL) for the PIDs pair.

Returns k-factors = None, if NLLfast does not contain the process; uses the slhafile to obtain
the SUSY spectrum.

class tools.nllFastWrapper.NllFastWrapper13
Bases: tools.nllFastWrapper.NllFastWrapper

An instance of this class represents the installation of nllfast 8.

class tools.nllFastWrapper.NllFastWrapper7
Bases: tools.nllFastWrapper.NllFastWrapper

An instance of this class represents the installation of nllfast 7.

class tools.nllFastWrapper.NllFastWrapper8
Bases: tools.nllFastWrapper.NllFastWrapper

An instance of this class represents the installation of nllfast 8.

tools.physicsUnits module

tools.printer module

class tools.printer.BasicPrinter(output, filename)
Bases: object

Super class to handle the basic printing methods

addObj(obj)
Adds object to the Printer.

Parameters obj – A object to be printed. Must match one of the types defined in formatObj

Returns True if the object has been added to the output. If the object does not belong to the
pre-defined printing list toPrint, returns False.

filename

flush()
Format the objects added to the output, print them to the screen or file and remove them from the printer.

mkdir()
create directory to file, if necessary

openOutFile(filename, mode)
creates and opens a data sink, creates path if needed

setOptions(options)
Store the printer specific options to control the output of each printer. Each option is stored as a printer
attribute.

Parameters options – a list of (option,value) for the printer.



class tools.printer.MPrinter
Bases: object

Master Printer class to handle the Printers (one printer/output type)

addObj(obj)
Adds the object to all its Printers:

Parameters obj – An object which can be handled by the Printers.

flush()
Ask all printers to write the output and clear their cache. If the printers return anything other than None,
we pass it on.

setOutPutFiles(filename, silent=False)
Set the basename for the output files. Each printer will use this file name appended of the respective
extension (i.e. .py for a python printer, .smodels for a summary printer,. . . )

Parameters

• filename – Input file name

• silent – dont comment removing old files

setPrinterOptions(parser)
Define the printer types and their options.

Parameters parser – ConfigParser storing information from the parameters file

class tools.printer.PyPrinter(output=’stdout’, filename=None)
Bases: tools.printer.BasicPrinter

Printer class to handle the printing of one single pythonic output

flush()
Write the python dictionaries generated by the object formatting to the defined output

setOutPutFile(filename, overwrite=True, silent=False)
Set the basename for the text printer. The output filename will be filename.py. :param filename: Base
filename :param overwrite: If True and the file already exists, it will be removed. :param silent: dont
comment removing old files

class tools.printer.SLHAPrinter(output=’file’, filename=None)
Bases: tools.printer.TxTPrinter

Printer class to handle the printing of slha format summary output. It uses the facilities of the TxTPrinter.

setOutPutFile(filename, overwrite=True, silent=False)
Set the basename for the text printer. The output filename will be filename.smodels. :param filename:
Base filename :param overwrite: If True and the file already exists, it will be removed. :param silent: dont
comment removing old files

class tools.printer.SummaryPrinter(output=’stdout’, filename=None)
Bases: tools.printer.TxTPrinter

Printer class to handle the printing of one single summary output. It uses the facilities of the TxTPrinter.

setOutPutFile(filename, overwrite=True, silent=False)
Set the basename for the text printer. The output filename will be filename.smodels. :param filename:
Base filename :param overwrite: If True and the file already exists, it will be removed. :param silent: dont
comment removing old files

class tools.printer.TxTPrinter(output=’stdout’, filename=None)
Bases: tools.printer.BasicPrinter



Printer class to handle the printing of one single text output

setOutPutFile(filename, overwrite=True, silent=False)
Set the basename for the text printer. The output filename will be filename.log.

Parameters

• filename – Base filename

• overwrite – If True and the file already exists, it will be removed.

• silent – dont comment removing old files

class tools.printer.XmlPrinter(output=’stdout’, filename=None)
Bases: tools.printer.PyPrinter

Printer class to handle the printing of one single XML output

convertToElement(pyObj, parent, tag=”)
Convert a python object (list,dict,string,. . . ) to a nested XML element tree. :param pyObj: python object
(list,dict,string. . . ) :param parent: XML Element parent :param tag: tag for the daughter element

flush()
Get the python dictionaries generated by the object formatting to the defined output and convert to XML

setOutPutFile(filename, overwrite=True, silent=False)
Set the basename for the text printer. The output filename will be filename.xml. :param filename: Base
filename :param overwrite: If True and the file already exists, it will be removed. :param silent: dont
comment removing old files

tools.pythia6Wrapper module

class tools.pythia6Wrapper.Pythia6Wrapper(configFile=’<install>/smodels/etc/pythia.card’,
executablePath=’<install>/smodels/lib/pythia6/pythia_lhe’,
srcPath=’<install>/smodels/lib/pythia6/’)

Bases: smodels.tools.wrapperBase.WrapperBase

An instance of this class represents the installation of pythia6.

checkFileExists(inputFile)
Check if file exists, raise an IOError if it does not.

Returns absolute file name if file exists.

replaceInCfgFile(replacements={’NEVENTS’: 10000, ’SQRTS’: 8000})
Replace strings in the config file by other strings, similar to setParameter.

This is introduced as a simple mechanism to make changes to the parameter file.

Parameters replacements – dictionary of strings and values; the strings will be replaced
with the values; the dictionary keys must be strings present in the config file

run(slhafile, lhefile=None, unlink=True)
Execute pythia_lhe with n events, at sqrt(s)=sqrts.

Parameters

• slhafile – input SLHA file

• lhefile – option to write LHE output to file; if None, do not write output to disk. If lhe
file exists, use its events for xsecs calculation.

• unlink – Clean up temp directory after running pythia



Returns List of cross sections

setParameter(param=’MSTP(163)’, value=6)
Modifies the config file, similar to .replaceInCfgFile.

It will set param to value, overwriting possible old values.

unlink(unlinkdir=True)
Remove temporary files.

Parameters unlinkdir – remove temp directory completely

tools.pythia8Wrapper module

class tools.pythia8Wrapper.Pythia8Wrapper(configFile=’<install>/smodels/etc/pythia8.cfg’,
executablePath=’<install>/smodels/lib/pythia8/pythia8.exe’,
srcPath=’<install>/smodels/lib/pythia8/’)

Bases: smodels.tools.wrapperBase.WrapperBase

An instance of this class represents the installation of pythia8.

checkFileExists(inputFile)
Check if file exists, raise an IOError if it does not.

Returns absolute file name if file exists.

chmod()
chmod 755 on pythia executable, if it exists. Do nothing, if it doesnt exist.

run(slhaFile, lhefile=None, unlink=True)
Run pythia8.

Parameters

• slhaFile – SLHA file

• lhefile – option to write LHE output to file; if None, do not write output to disk. If lhe
file exists, use its events for xsecs calculation.

• unlink – clean up temporary files after run?

Returns List of cross sections

unlink(unlinkdir=True)
Remove temporary files.

Parameters unlinkdir – remove temp directory completely

tools.pythia8particles module

tools.pythonTools module

class tools.pythonTools.PythonToolWrapper(importname)
Bases: object

An instance of this class represents the installation of unum. As it is python-only, we need this only for instal-
lation, not for running (contrary to nllfast or pythia).

checkInstallation()
The check is basically done in the constructor



compile()

installDirectory()
Just returns the pythonPath variable

pathOfExecutable()
Just returns the pythonPath variable

tools.runSModelS module

tools.runSModelS.main()

tools.runSModelS.run(inFile, parameterFile, outputDir, db, timeout, development)
Provides a command line interface to basic SModelS functionalities.

Parameters

• inFile – input file name (either a SLHA or LHE file) or directory name (path to directory
containing input files)

• parameterFile – File containing the input parameters (default = smod-
els/etc/parameters_default.ini)

• outputDir – Output directory to write a summary of results to

• db – supply a smodels.experiment.databaseObj.Database object, so the database doesn’t
have to be loaded anymore. Will render a few parameters in the parameter file irrelevant.
If None, load the database as described in parameterFile, If True, force loading the text
database.

• timeout – set a timeout for one model point (0 means no timeout)

• development – turn on development mode (e.g. no crash report)

tools.runtime module

tools.runtime.filetype(filename)
obtain information about the filetype of an input file, currently only used to discriminate between slha and lhe
files.

Returns filetype as string(“slha” or “lhe”), None if file does not exist, or filetype is unknown.

tools.runtime.nCPUs()
obtain the number of CPU cores on the machine, for several platforms and python versions.

tools.simplifiedLikelihoods module

class tools.simplifiedLikelihoods.Data(observed, backgrounds, covariance,
third_moment=None, nsignal=None,
name=’model’, deltas_rel=0.2)

Bases: object

A very simple observed container to collect all the data needed to fully define a specific statistical model

convert(obj)
Convert object to numpy arrays. If object is a float or int, it is converted to a one element array.

correlations()
Correlation matrix, computed from covariance matrix. Convenience function.



diagCov()
Diagonal elements of covariance matrix. Convenience function.

isLinear()
Statistical model is linear, i.e. no quadratic term in poissonians

isScalar(obj)
Determine if obj is a scalar (float or int)

sandwich()
Sandwich product

signals(mu)
Returns the number of expected signal events, for all datasets, given total signal strength mu.

Parameters mu – Total number of signal events summed over all datasets.

totalCovariance(nsig)
get the total covariance matrix, taking into account also signal uncertainty for the signal hypothesis <nsig>.
If nsig is None, the predefined signal hypothesis is taken.

var_s(nsig=None)
The signal variances. Convenience function.

Parameters nsig – If None, it will use the model expected number of signal events, otherwise
will return the variances for the input value using the relative signal uncertainty defined for
the model.

zeroSignal()
Is the total number of signal events zero?

class tools.simplifiedLikelihoods.LikelihoodComputer(data, ntoys=10000)
Bases: object

chi2(nsig, marginalize=False)
Computes the chi2 for a given number of observed events nobs given the predicted background nb, error on
this background deltab, expected number of signal events nsig and the relative error on signal (deltas_rel).
:param marginalize: if true, marginalize, if false, profile :param nsig: number of signal events :return: chi2
(float)

dLdMu(mu, signal_rel, theta_hat)
d (ln L)/d mu, if L is the likelihood. The function whose root gives us muhat, i.e. the mu that maximizes
the likelihood.

Parameters

• mu – total number of signal events

• signal_rel – array with the relative signal strengths for each dataset (signal region)

• theta_hat – array with nuisance parameters

debug_mode = False

findMuHat(signal_rel)
Find the most likely signal strength mu given the relative signal strengths in each dataset (signal region).

Parameters signal_rel – array with relative signal strengths

Returns mu_hat, the total signal yield.

findThetaHat(nsig)
Compute nuisance parameter theta that maximizes our likelihood (poisson*gauss).



getSigmaMu(signal_rel)
Get a rough estimate for the variance of mu around mu_max.

Parameters signal_rel – array with relative signal strengths in each dataset (signal region)

getThetaHat(nobs, nb, nsig, covb, max_iterations)
Compute nuisance parameter theta that maximizes our likelihood (poisson*gauss).

likelihood(nsig, marginalize=False, nll=False)
compute likelihood for nsig, profiling the nuisances :param marginalize: if true, marginalize, if false,
profile :param nll: return nll instead of likelihood

marginalizedLLHD1D(nsig, nll)
Return the likelihood (of 1 signal region) to observe nobs events given the predicted background nb, error
on this background (deltab), expected number of signal events nsig and the relative error on the signal
(deltas_rel).

Parameters

• nsig – predicted signal (float)

• nobs – number of observed events (float)

• nb – predicted background (float)

• deltab – uncertainty on background (float)

Returns likelihood to observe nobs events (float)

marginalizedLikelihood(nsig, nll)
compute the marginalized likelihood of observing nsig signal event

nll(theta)
probability, for nuicance parameters theta, as a negative log likelihood.

nllHess(theta)
the Hessian of nll as a function of the thetas. Makes it easier to find the maximum likelihood.

nllprime(theta)
the derivative of nll as a function of the thetas. Makes it easier to find the maximum likelihood.

probMV(nll, theta)
probability, for nuicance parameters theta :params nll: if True, compute negative log likelihood

profileLikelihood(nsig, nll)
compute the profiled likelihood for nsig. Warning: not normalized. Returns profile likelihood and error
code (0=no error)

class tools.simplifiedLikelihoods.UpperLimitComputer(ntoys=10000, cl=0.95)
Bases: object

debug_mode = False

ulSigma(model, marginalize=False, toys=None, expected=False)

upper limit obtained from the defined Data (using the signal prediction for each signal re-
gio/dataset), by using the q_mu test statistic from the CCGV paper (arXiv:1007.1727).

Params marginalize if true, marginalize nuisances, else profile them

Params toys specify number of toys. Use default is none

Params expected compute the expected value, not the observed.

Returns upper limit on production xsec (efficiencies unfolded)



tools.simplifiedLikelihoods.getLogger()
Configure the logging facility. Maybe adapted to fit into your framework.

tools.slhaChecks module

tools.slhaChecks.main(args)

tools.smodelsLogging module

class tools.smodelsLogging.ColorizedStreamHandler(stream=None)
Bases: logging.StreamHandler

format(record)
Format the specified record.

If a formatter is set, use it. Otherwise, use the default formatter for the module.

should_color()

tools.smodelsLogging.getLogLevel(asString=False)
obtain the current log level. :params asString: return string, not number.

tools.smodelsLogging.getLogger()

tools.smodelsLogging.setLogLevel(level)
set the log level of the central logger. can either be directly an integer ( e.g. logging.DEBUG ), or “debug”,
“info”, “warning”, or “error”.

tools.smodelsTools module

tools.smodelsTools.main()

tools.stringTools module

tools.stringTools.cleanWalk(topdir)
perform os.walk, but ignore all hidden files and directories

tools.stringTools.concatenateLines(oldcontent)
of all lines in the list “oldcontent”, concatenate the ones that end with or ,

tools.timeOut module

exception tools.timeOut.NoTime(value=None)
Bases: Exception

The time out exception. Raised when the running time exceeds timeout

class tools.timeOut.Timeout(sec)
Bases: object

Timeout class using ALARM signal.

raise_timeout(*args)



tools.toolBox module

class tools.toolBox.ToolBox
Bases: object

A singleton-like class that keeps track of all external tools. Intended to make installation and deployment easier.

add(instance)
Adds a tool by passing an instance to this method.

checkInstallation(make=False, printit=True, long=False)
Checks if all tools listed are installed properly, returns True if everything is ok, False otherwise.

compile()
Tries to compile and install tools that are not yet marked as ‘installed’.

get(tool, verbose=True)
Gets instance of tool from the toolbox.

initSingleton()
Initializes singleton instance (done only once for the entire class).

installationOk(ok)
Returns color coded string to signal installation issues.

listOfTools()
Returns a simple list with the tool names.

tools.toolBox.main(args)

tools.wrapperBase module

class tools.wrapperBase.WrapperBase
Bases: object

An instance of this class represents the installation of an external tool.

An external tool encapsulates a tool that is executed via commands.getoutput. The wrapper defines how the tool
is tested for proper installation and how the tool is executed.

absPath(path)
Get the absolute path of <path>, replacing <install> with the installation directory.

basePath()
Get the base installation path.

checkInstallation(compile=True)
Checks if installation of tool is correct by looking for executable and executing it. If check is False and
compile is True, then try and compile it.

Returns True, if everything is ok

chmod()
chmod 755 on executable, if it exists. Do nothing, if it doesnt exist.

compile()
Try to compile the tool.

complain()

installDirectory()



Returns the installation directory of the tool

pathOfExecutable()

Returns path of executable

tempDirectory()
Return the temporary directory name.

tools.wrapperBase.ok(b)

Returns ‘ok’ if b is True, else, return ‘error’.

tools.xsecComputer module

class tools.xsecComputer.ArgsStandardizer
Bases: object

simple class to collect all argument manipulators

checkAllowedSqrtses(order, sqrtses)
check if the sqrtses are ‘allowed’

checkNCPUs(ncpus, inputFiles)

getInputFiles(args)
geth the names of the slha files to run over

getOrder(args)
retrieve the order in perturbation theory from argument list

getPythiaVersion(args)

getSqrtses(args)
extract the sqrtses from argument list

queryCrossSections(filename)

writeToFile(args)

class tools.xsecComputer.XSecComputer(maxOrder, nevents, pythiaVersion)
Bases: object

cross section computer class, what else?

addHigherOrders(sqrts, slhafile)
add higher order xsecs

addXSecToFile(xsecs, slhafile, comment=None, complain=True)
Write cross sections to an SLHA file.

Parameters

• xsecs – a XSectionList object containing the cross sections

• slhafile – target file for writing the cross sections in SLHA format

• comment – optional comment to be added to each cross section block

• complain – complain if there are already cross sections in file

compute(sqrts, slhafile, lhefile=None, unlink=True, loFromSlha=None, pythiacard=None)
Run pythia and compute SUSY cross sections for the input SLHA file.

Parameters



• sqrts – sqrt{s} to run Pythia, given as a unum (e.g. 7.*TeV)

• slhafile – SLHA file

• lhefile – LHE file. If None, do not write pythia output to file. If file does not exist,
write pythia output to this file name. If file exists, read LO xsecs from this file (does not
run pythia).

• unlink – Clean up temp directory after running pythia

• loFromSlha – If True, uses the LO xsecs from the SLHA file to compute the higher
order xsecs

• pythiaCard – Optional path to pythia.card. If None, uses /etc/pythia.card

Returns XSectionList object

computeForBunch(sqrtses, inputFiles, unlink, lOfromSLHA, tofile, pythiacard=None)
compute xsecs for a bunch of slha files

computeForOneFile(sqrtses, inputFile, unlink, lOfromSLHA, tofile, pythiacard=None)
compute the cross sections for one file. :param sqrtses: list of sqrt{s} tu run pythia, as a unum (e.g. 7*TeV)

xsecToBlock(xsec, inPDGs=(2212, 2212), comment=None, xsecUnit=1.00E+00 [pb])
Generate a string for a XSECTION block in the SLHA format from a XSection object.

Parameters

• inPDGs – defines the PDGs of the incoming states (default = 2212,2212)

• comment – is added at the end of the header as a comment

• xsecUnit – unit of cross sections to be written (default is pb). Must be a Unum unit.

tools.xsecComputer.main(args)

Module contents

Indices and tables

• genindex

• modindex

• search

1.8 C++ Interface

Since v1.1.1, a simple C++ interface is provided, see the smodels/cpp directory in the source code.

Its usage is documented in run.cpp:

#include <SModelS.h>
#include <iostream>
#include <string>

/** example only */

using namespace std;

int main( int argc, char * argv[] )

(continues on next page)



(continued from previous page)

{
/** initialise SModelS, load database, second argument (installdir) must point to

→˓smodels

* installation top-level directory */
SModelS smodels ( "./parameters.ini", "../" );
/** run over one single file or directory */
int ret = smodels.run ( "test.slha" );

}

A sample Makefile is also provided. The python header files have to be installed.

2 Indices and tables

• genindex

• search



Python Module Index

a
asciiGraph, 89
auxiliaryFunctions, 65

b
branch, 66

c
caching, 89
clusterTools, 67
colors, 89
coverage, 90
crashReport, 91
crossSection, 69

d
databaseBrowser, 92
datasetObj, 81

e
element, 71
exceptions, 83
experiment, 89
experiment.__init__, 89
experiment.databaseObj, 79
experiment.datasetObj, 81
experiment.exceptions, 73
experiment.expResultObj, 83
experiment.infoObj, 85
experiment.metaObj, 85
experiment.txnameObj, 86
expResultObj, 83
externalPythonTools, 93

i
infoObj, 85
interactive_plots, 94
interactivePlotsHelpers, 95
ioObjects, 97

l
lheChecks, 100
lheDecomposer, 73
lheReader, 74

m
metaObj, 85
modelTester, 100

n
nllFastWrapper, 102

p
particleNames, 74
physicsUnits, 102
printer, 102
Pythia6Wrapper, 104
pythia8Wrapper, 105
pythonTools, 105

r
runSModelS, 106
runtime, 106

s
simplifiedLikelihoods, 106
slhaChecks, 109
slhaDecomposer, 75
smodelsLogging, 109
smodelsTools, 109
stringTools, 109

t
theory, 79
theory.__init__, 79
theory.auxiliaryFunctions, 65
theory.branch, 66
theory.clusterTools, 67
theory.crossSection, 69
theory.element, 71
theory.exceptions, 73
theory.lheDecomposer, 73
theory.lheReader, 74
theory.particleNames, 74
theory.slhaDecomposer, 75
theory.theoryPrediction, 76
theory.topology, 77
theoryPrediction, 76
timeOut, 109
toolBox, 110
tools, 112
tools.__init__, 112
tools.asciiGraph, 89
tools.caching, 89
tools.colors, 89
tools.coverage, 90
tools.crashReport, 91
tools.databaseBrowser, 92
tools.externalPythonTools, 93
tools.interactivePlots, 94
tools.interactivePlotsHelpers, 95
tools.ioObjects, 97

114



tools.lheChecks, 100
tools.modelTester, 100
tools.nllFastWrapper, 102
tools.physicsUnits, 102
tools.printer, 102
tools.pythia6Wrapper, 104
tools.pythia8particles, 105
tools.pythia8Wrapper, 105
tools.pythonTools, 105
tools.runSModelS, 106
tools.runtime, 106
tools.simplifiedLikelihoods, 106
tools.slhaChecks, 109
tools.smodelsLogging, 109
tools.smodelsTools, 109
tools.stringTools, 109
tools.timeOut, 109
tools.toolBox, 110
tools.wrapperBase, 110
tools.xsecComputer, 111
topology, 77
txnameObj, 86

w
wrapperBase, 110

x
xsecComputer, 111



Index

Symbols
_getElementsFrom() (in module theoryPrediction), 76

A
absPath() (tools.wrapperBase.WrapperBase method), 110
add() (theory.clusterTools.IndexCluster method), 68
add() (theory.crossSection.XSectionList method), 69
add() (theory.lheReader.SmsEvent method), 74
add() (theory.topology.TopologyList method), 78
add() (tools.caching.Cache static method), 89
add() (tools.coverage.UncoveredClass method), 90
add() (tools.toolBox.ToolBox method), 110
addElement() (theory.topology.Topology method), 78
addElement() (theory.topology.TopologyList method), 78
addHigherOrders() (tools.xsecComputer.XSecComputer

method), 111
addInfo() (experiment.infoObj.Info method), 85
addInfo() (experiment.txnameObj.TxName method), 86
addList() (theory.topology.TopologyList method), 78
addObj() (tools.printer.BasicPrinter method), 102
addObj() (tools.printer.MPrinter method), 103
addPrevMothers() (tools.coverage.Uncovered method),

90
addTheoPrediction() (tools.ioObjects.ResultList method),

98
addToClasses() (tools.coverage.UncoveredClassifier

method), 91
addToTopos() (tools.coverage.UncoveredList method),

91
addWarning() (tools.ioObjects.OutputStatus method), 97
addXSecToFile() (tools.xsecComputer.XSecComputer

method), 111
analysisId() (theory.theoryPrediction.TheoryPrediction

method), 76
append() (theory.theoryPrediction.TheoryPredictionList

method), 77
ArgsStandardizer (class in tools.xsecComputer), 111
asciidraw() (in module tools.asciiGraph), 89
asciiGraph (module), 89
auxiliaryFunctions (module), 65

B
base (experiment.databaseObj.Database attribute), 79
basePath() (tools.wrapperBase.WrapperBase method),

110
Basic Concepts and Definitions, 22
Basic Input, 31
BasicPrinter (class in tools.printer), 102
blue (tools.colors.Colors attribute), 89
Branch (class in theory.branch), 66

branch (module), 66
Browser (class in tools.databaseBrowser), 92

C
C++ Interface, 112
Cache (class in tools.caching), 89
caching (module), 89
cGtr() (in module theory.auxiliaryFunctions), 65
checkAllowedSqrtses() (tools.xsecComputer.ArgsStandardizer

method), 111
checkBinaryFile() (experiment.databaseObj.Database

method), 79
checkConsistency() (theory.element.Element method), 71
checkConsistency() (theory.topology.Topology method),

78
checkData() (experiment.txnameObj.Delaunay1D

method), 86
checkFile() (tools.ioObjects.FileStatus method), 97
checkFileExists() (tools.pythia6Wrapper.Pythia6Wrapper

method), 104
checkFileExists() (tools.pythia8Wrapper.Pythia8Wrapper

method), 105
checkForRedundancy() (experiment.datasetObj.DataSet

method), 82
checkForSemicolon() (in module tools.modelTester), 100
checkInstallation() (tools.externalPythonTools.ExternalPythonTool

method), 93
checkInstallation() (tools.pythonTools.PythonToolWrapper

method), 105
checkInstallation() (tools.toolBox.ToolBox method), 110
checkInstallation() (tools.wrapperBase.WrapperBase

method), 110
checkNCPUs() (tools.xsecComputer.ArgsStandardizer

method), 111
checkPathName() (experiment.databaseObj.Database

method), 79
chi2() (experiment.datasetObj.DataSet method), 82
chi2() (tools.simplifiedLikelihoods.LikelihoodComputer

method), 107
chmod() (tools.pythia8Wrapper.Pythia8Wrapper

method), 105
chmod() (tools.wrapperBase.WrapperBase method), 110
cleanWalk() (in module tools.stringTools), 109
close() (theory.lheReader.LheReader method), 74
clusterElements() (in module theory.clusterTools), 68
clusterTools (module), 67
Code Documentation, 64
ColorizedStreamHandler (class in

tools.smodelsLogging), 109
Colors (class in tools.colors), 89

116



colors (module), 89
combine() (tools.coverage.UncoveredClass method), 90
combine() (tools.coverage.UncoveredClassifier method),

91
CombinedDataSet (class in experiment.datasetObj), 81
combinedLikelihood() (experi-

ment.datasetObj.CombinedDataSet method),
81

combineMotherElements() (theory.element.Element
method), 71

combinePIDs() (theory.element.Element method), 71
combineWith() (theory.crossSection.XSectionList

method), 69
compile() (tools.externalPythonTools.ExternalPythonTool

method), 93
compile() (tools.pythonTools.PythonToolWrapper

method), 105
compile() (tools.toolBox.ToolBox method), 110
compile() (tools.wrapperBase.WrapperBase method),

110
complain() (tools.wrapperBase.WrapperBase method),

110
compressElement() (theory.element.Element method), 71
compressElements() (theory.topology.TopologyList

method), 78
compute() (tools.xsecComputer.XSecComputer method),

111
computeForBunch() (tools.xsecComputer.XSecComputer

method), 112
computeForOneFile() (tools.xsecComputer.XSecComputer

method), 112
computeStatistics() (the-

ory.theoryPrediction.TheoryPrediction
method), 76

computeV() (experiment.txnameObj.TxNameData
method), 87

concatenateLines() (in module tools.stringTools), 109
Confronting Theory Predictions with Data, 49
convert() (tools.simplifiedLikelihoods.Data method), 106
convertToElement() (tools.printer.XmlPrinter method),

104
copy() (theory.branch.Branch method), 66
copy() (theory.clusterTools.IndexCluster method), 68
copy() (theory.crossSection.XSection method), 69
copy() (theory.crossSection.XSectionInfo method), 69
copy() (theory.crossSection.XSectionList method), 69
copy() (theory.element.Element method), 71
correlations() (tools.simplifiedLikelihoods.Data method),

106
countNonZeros() (experiment.txnameObj.TxNameData

method), 87
coverage (module), 90
CrashReport (class in tools.crashReport), 91
crashReport (module), 91

create_index_html() (in module
tools.interactivePlotsHelpers), 95

createBinaryFile() (experiment.databaseObj.Database
method), 79

createCrashReportFile() (tools.crashReport.CrashReport
method), 91

createExpResult() (experiment.databaseObj.Database
method), 80

createStackTrace() (in module tools.crashReport), 92
createUnknownErrorMessage()

(tools.crashReport.CrashReport method),
92

crossSection (module), 69
cSim() (in module theory.auxiliaryFunctions), 65
cTime() (experiment.metaObj.Meta method), 85
current_version (experiment.metaObj.Meta attribute), 85
cyan (tools.colors.Colors attribute), 89

D
Data (class in tools.simplifiedLikelihoods), 106
data_frame_excluded_nonexcluded() (in module

tools.interactivePlotsHelpers), 95
Database (class in experiment.databaseObj), 79
Database Definitions, 26
Database Structure, 42
databaseBrowser (module), 92
DatabaseNotFoundException, 83
databaseVersion (experiment.databaseObj.Database at-

tribute), 80
DataHolder (class in tools.interactivePlots), 94
dataId() (theory.theoryPrediction.TheoryPrediction

method), 76
DataSet (class in experiment.datasetObj), 82
datasetObj (module), 81
dataType() (theory.theoryPrediction.TheoryPrediction

method), 76
debug (tools.colors.Colors attribute), 89
debug_mode (tools.simplifiedLikelihoods.LikelihoodComputer

attribute), 107
debug_mode (tools.simplifiedLikelihoods.UpperLimitComputer

attribute), 108
decayBranches() (in module theory.branch), 67
decayDaughter() (theory.branch.Branch method), 66
decompose() (in module theory.lheDecomposer), 73
decompose() (in module theory.slhaDecomposer), 75
Decomposition into Simplified Models, 32
degenerateChi() (tools.ioObjects.SlhaStatus method), 98
Delaunay1D (class in experiment.txnameObj), 86
delete() (theory.crossSection.XSectionList method), 69
deltaMass() (tools.ioObjects.SlhaStatus method), 98
describe() (theory.theoryPrediction.TheoryPrediction

method), 76
describe() (theory.topology.Topology method), 78
describe() (theory.topology.TopologyList method), 79



determineLastModified() (experiment.metaObj.Meta
method), 85

diagCov() (tools.simplifiedLikelihoods.Data method),
107

dirName() (experiment.infoObj.Info method), 85
distance() (in module theory.auxiliaryFunctions), 65
dLdMu() (tools.simplifiedLikelihoods.LikelihoodComputer

method), 107

E
Element (class in theory.element), 71
element (module), 71
ElementCluster (class in theory.clusterTools), 67
elementFromEvent() (in module theory.lheDecomposer),

74
elementsInStr() (in module theory.particleNames), 74
emptyDecay() (tools.ioObjects.SlhaStatus method), 98
error (tools.colors.Colors attribute), 89
evaluateStatus() (tools.ioObjects.LheStatus method), 97
evaluateStatus() (tools.ioObjects.SlhaStatus method), 98
evaluateString() (experiment.txnameObj.TxNameData

method), 87
event() (theory.lheReader.LheReader method), 74
exceptions (module), 83
experiment (module), 89
experiment.__init__ (module), 89
experiment.databaseObj (module), 79
experiment.datasetObj (module), 81
experiment.exceptions (module), 73, 83
experiment.expResultObj (module), 83
experiment.infoObj (module), 85
experiment.metaObj (module), 85
experiment.txnameObj (module), 86
ExpResult (class in experiment.expResultObj), 83
ExpResultList (class in experiment.databaseObj), 81
expResultObj (module), 83
ExternalPythonTool (class in tools.externalPythonTools),

93
externalPythonTools (module), 93

F
fetchFromScratch() (experiment.databaseObj.Database

method), 80
fetchFromServer() (experiment.databaseObj.Database

method), 80
filename (tools.printer.BasicPrinter attribute), 102
FileStatus (class in tools.ioObjects), 97
filetype() (in module tools.runtime), 106
fill() (tools.coverage.Uncovered method), 90
fill_hover() (in module tools.interactivePlotsHelpers), 95
fillWith() (tools.interactivePlots.DataHolder method), 94
find_index() (experiment.txnameObj.Delaunay1D

method), 86

find_simplex() (experiment.txnameObj.Delaunay1D
method), 86

findIllegalDecay() (tools.ioObjects.SlhaStatus method),
98

findLonglivedParticles() (tools.ioObjects.SlhaStatus
method), 99

findLSP() (tools.ioObjects.SlhaStatus method), 98
findMissingDecayBlocks() (tools.ioObjects.SlhaStatus

method), 99
findMuHat() (tools.simplifiedLikelihoods.LikelihoodComputer

method), 107
findNLSP() (tools.ioObjects.SlhaStatus method), 99
findThetaHat() (tools.simplifiedLikelihoods.LikelihoodComputer

method), 107
flattenArray() (experiment.txnameObj.TxNameData

method), 87
flush() (tools.printer.BasicPrinter method), 102
flush() (tools.printer.MPrinter method), 103
flush() (tools.printer.PyPrinter method), 103
flush() (tools.printer.XmlPrinter method), 104
folderName() (experiment.datasetObj.DataSet method),

82
format() (tools.smodelsLogging.ColorizedStreamHandler

method), 109
formatInput() (experiment.txnameObj.TxNameData

method), 88

G
generalName() (tools.coverage.UncoveredList method),

91
get() (tools.toolBox.ToolBox method), 110
get_asymmetric_branches() (in module

tools.interactivePlotsHelpers), 95
get_BR() (in module tools.interactivePlotsHelpers), 95
get_ctau() (in module tools.interactivePlotsHelpers), 95
get_entry() (in module tools.interactivePlotsHelpers), 95
get_expres() (in module tools.interactivePlotsHelpers), 95
get_long_cascades() (in module

tools.interactivePlotsHelpers), 95
get_missed_topologies() (in module

tools.interactivePlotsHelpers), 95
get_outside_grid() (in module

tools.interactivePlotsHelpers), 95
get_slha_data() (in module tools.interactivePlotsHelpers),

95
get_slha_file() (in module tools.interactivePlotsHelpers),

95
get_slha_hover_info() (in module

tools.interactivePlotsHelpers), 95
get_variable() (in module tools.interactivePlotsHelpers),

95
get_xy_axis() (in module tools.interactivePlotsHelpers),

95
getAllInputFiles() (in module tools.modelTester), 100



getAllMothers() (tools.coverage.Uncovered method), 90
getAsymmetricXsec() (tools.coverage.Uncovered

method), 90
getAttributes() (experiment.datasetObj.DataSet method),

82
getAttributes() (experiment.expResultObj.ExpResult

method), 83
getAttributes() (tools.databaseBrowser.Browser method),

92
getAvgMass() (theory.clusterTools.ElementCluster

method), 67
getBestExpected() (tools.ioObjects.ResultList method),

98
getCombinedUpperLimitFor() (experi-

ment.datasetObj.CombinedDataSet method),
81

getDataSet() (experiment.datasetObj.CombinedDataSet
method), 81

getDataset() (experiment.expResultObj.ExpResult
method), 84

getDataShape() (experiment.txnameObj.TxNameData
method), 88

getDataType() (theory.clusterTools.ElementCluster
method), 68

getDaughters() (theory.element.Element method), 71
getDecayWidth() (tools.ioObjects.SlhaStatus method), 99
getDecayWidths() (tools.ioObjects.SlhaStatus method),

99
getDictionary() (theory.crossSection.XSectionList

method), 69
getEfficiencyFor() (experiment.datasetObj.DataSet

method), 82
getEfficiencyFor() (experiment.expResultObj.ExpResult

method), 84
getEfficiencyFor() (experiment.txnameObj.TxName

method), 87
getEfficiencyFor() (tools.databaseBrowser.Browser

method), 92
getEinfo() (theory.element.Element method), 71
getElements() (theory.topology.Topology method), 78
getElements() (theory.topology.TopologyList method), 79
getExpResults() (experiment.databaseObj.Database

method), 80
getFinalStateLabel() (in module theory.particleNames),

75
getFinalStates() (theory.element.Element method), 71
getID() (experiment.datasetObj.CombinedDataSet

method), 81
getID() (experiment.datasetObj.DataSet method), 82
getIDs() (theory.clusterTools.ElementCluster method), 68
getInfo() (experiment.infoObj.Info method), 85
getInfo() (experiment.txnameObj.TxName method), 87
getInfo() (theory.branch.Branch method), 66
getInfo() (theory.branch.InclusiveBranch method), 67

getInfo() (theory.crossSection.XSectionList method), 70
getInputFiles() (tools.xsecComputer.ArgsStandardizer

method), 111
getKfactorsFor() (tools.nllFastWrapper.NllFastWrapper

method), 102
getLength() (theory.branch.Branch method), 66
getLifetime() (tools.ioObjects.SlhaStatus method), 99
getLogger() (in module tools.simplifiedLikelihoods), 108
getLogger() (in module tools.smodelsLogging), 109
getLogLevel() (in module tools.smodelsLogging), 109
getLongCascadeXsec() (tools.coverage.Uncovered

method), 90
getMasses() (theory.element.Element method), 72
getmaxCondition() (the-

ory.theoryPrediction.TheoryPrediction
method), 77

getMaxXsec() (theory.crossSection.XSectionList
method), 70

getMinXsec() (theory.crossSection.XSectionList
method), 70

getMissingX() (tools.coverage.Uncovered method), 90
getMissingXsec() (tools.coverage.Uncovered method),

90
getMom() (theory.lheReader.SmsEvent method), 74
getMotherPIDs() (tools.coverage.UncoveredClassifier

method), 91
getMothers() (theory.element.Element method), 72
getName() (in module theory.particleNames), 75
getOrder() (tools.xsecComputer.ArgsStandardizer

method), 111
getOutOfGridXsec() (tools.coverage.Uncovered method),

90
getOutsideX() (tools.coverage.Uncovered method), 90
getParameters() (in module tools.modelTester), 100
getParticles() (theory.element.Element method), 72
getPdg() (in module theory.particleNames), 75
getPickleFileName() (experiment.metaObj.Meta

method), 85
getPIDpairs() (theory.crossSection.XSectionList

method), 70
getPIDs() (theory.clusterTools.ElementCluster method),

68
getPIDs() (theory.crossSection.XSectionList method), 70
getPIDs() (theory.element.Element method), 72
getPythiaVersion() (tools.xsecComputer.ArgsStandardizer

method), 111
getR() (tools.ioObjects.ResultList method), 98
getRValue() (theory.theoryPrediction.TheoryPrediction

method), 76
getSigmaMu() (tools.simplifiedLikelihoods.LikelihoodComputer

method), 107
getSorted() (tools.coverage.UncoveredClassifier method),

91
getSqrtses() (tools.xsecComputer.ArgsStandardizer



method), 111
getSRUpperLimit() (experiment.datasetObj.DataSet

method), 82
getThetaHat() (tools.simplifiedLikelihoods.LikelihoodComputer

method), 108
getTotalWeight() (theory.topology.Topology method), 78
getTotalWeight() (theory.topology.TopologyList method),

79
getTotalXSec() (theory.clusterTools.ElementCluster

method), 68
getTotalXsec() (tools.coverage.Uncovered method), 90
getTxName() (experiment.datasetObj.DataSet method),

82
getTxNames() (experiment.expResultObj.ExpResult

method), 84
getTxnameWith() (experiment.expResultObj.ExpResult

method), 84
getType() (experiment.datasetObj.CombinedDataSet

method), 81
getType() (experiment.datasetObj.DataSet method), 82
getULFor() (tools.databaseBrowser.Browser method), 92
getULForSR() (tools.databaseBrowser.Browser method),

93
getUnits() (experiment.txnameObj.TxNameData

method), 88
getUpperLimit() (theory.theoryPrediction.TheoryPrediction

method), 76
getUpperLimitFor() (experiment.datasetObj.DataSet

method), 82
getUpperLimitFor() (experi-

ment.expResultObj.ExpResult method),
84

getValueFor() (experiment.txnameObj.TxName method),
87

getValueFor() (experiment.txnameObj.TxNameData
method), 88

getValuesFor() (experiment.datasetObj.DataSet method),
83

getValuesFor() (experiment.expResultObj.ExpResult
method), 84

getValuesFor() (tools.databaseBrowser.Browser method),
93

getWeight() (tools.coverage.UncoveredClass method), 91
getXsecFromLHEFile() (in module theory.crossSection),

70
getXsecFromSLHAFile() (in module the-

ory.crossSection), 70
getXsecsFor() (theory.crossSection.XSectionList

method), 70
green (tools.colors.Colors attribute), 89
groupAll() (in module theory.clusterTools), 68

H
hasAsymmetricBranches() (tools.coverage.Uncovered

method), 90
hasCovarianceMatrix() (experi-

ment.expResultObj.ExpResult method),
84

hasElementAs() (experiment.txnameObj.TxName
method), 87

hasLikelihood() (experiment.txnameObj.TxName
method), 87

hasLongCascade() (tools.coverage.Uncovered method),
90

hasOnlyZeroes() (experiment.txnameObj.TxName
method), 87

hasTopInList() (theory.element.Element method), 72
hasTopology() (theory.topology.TopologyList method),

79
hasXsec() (tools.ioObjects.SlhaStatus method), 99
How To’s, 63

I
id() (experiment.expResultObj.ExpResult method), 84
import_python_output() (in module

tools.interactivePlotsHelpers), 95
InclusiveBranch (class in theory.branch), 67
InclusiveInt (class in theory.branch), 67
InclusiveList (class in theory.branch), 67
InclusiveStr (class in theory.particleNames), 74
index() (theory.topology.TopologyList method), 79
index_bisect() (in module theory.auxiliaryFunctions), 65
IndexCluster (class in theory.clusterTools), 68
Info (class in experiment.infoObj), 85
info (tools.colors.Colors attribute), 89
infoObj (module), 85
initializeDataDict() (tools.interactivePlots.DataHolder

method), 94
initSingleton() (tools.toolBox.ToolBox method), 110
inNotebook() (experiment.databaseObj.Database

method), 80
inOutsideGridMothers() (tools.coverage.Uncovered

method), 90
inPrevMothers() (tools.coverage.Uncovered method), 90
insert() (theory.topology.TopologyList method), 79
Installation and Deployment, 4
installationOk() (tools.toolBox.ToolBox method), 110
installDirectory() (tools.externalPythonTools.ExternalPythonTool

method), 94
installDirectory() (tools.pythonTools.PythonToolWrapper

method), 106
installDirectory() (tools.wrapperBase.WrapperBase

method), 110
interactive_plots (module), 94
interactivePlotsHelpers (module), 95
interpolate() (experiment.txnameObj.TxNameData

method), 88



invisibleCompress() (theory.element.Element method),
72

ioObjects (module), 97
isEmpty() (tools.ioObjects.ResultList method), 98
isLinear() (tools.simplifiedLikelihoods.Data method),

107
isMissingTopo() (tools.coverage.Uncovered method), 90
isPickle() (experiment.metaObj.Meta method), 85
isScalar() (tools.simplifiedLikelihoods.Data method), 107
isSubset() (tools.coverage.UncoveredClass method), 91

L
lastModifiedSubDir() (experiment.metaObj.Meta

method), 85
lheChecks (module), 100
lheDecomposer (module), 73
LheReader (class in theory.lheReader), 74
lheReader (module), 74
LheStatus (class in tools.ioObjects), 97
likelihood() (experiment.datasetObj.DataSet method), 83
likelihood() (tools.simplifiedLikelihoods.LikelihoodComputer

method), 108
LikelihoodComputer (class in

tools.simplifiedLikelihoods), 107
listOfTools() (tools.toolBox.ToolBox method), 110
loadAllResults() (tools.databaseBrowser.Browser

method), 93
loadBinaryFile() (experiment.databaseObj.Database

method), 80
loadData() (experiment.txnameObj.TxNameData

method), 88
loadData() (tools.interactivePlots.DataHolder method),

94
loadDatabase() (experiment.databaseObj.Database

method), 80
loadDatabase() (in module tools.modelTester), 100
loadDatabaseResults() (in module tools.modelTester),

100
loadParameters() (tools.interactivePlots.DataHolder

method), 94
loadTextDatabase() (experiment.databaseObj.Database

method), 80

M
magenta (tools.colors.Colors attribute), 89
main() (in module tools.databaseBrowser), 93
main() (in module tools.interactivePlots), 94
main() (in module tools.lheChecks), 100
main() (in module tools.runSModelS), 106
main() (in module tools.slhaChecks), 109
main() (in module tools.smodelsTools), 109
main() (in module tools.toolBox), 110
main() (in module tools.xsecComputer), 112

make_continuous_plots_all() (in module
tools.interactivePlotsHelpers), 96

make_continuous_plots_excluded() (in module
tools.interactivePlotsHelpers), 96

make_continuous_plots_nonexcluded() (in module
tools.interactivePlotsHelpers), 96

make_data_frame() (in module
tools.interactivePlotsHelpers), 96

make_discrete_plots_all() (in module
tools.interactivePlotsHelpers), 96

make_discrete_plots_excluded() (in module
tools.interactivePlotsHelpers), 96

make_discrete_plots_nonexcluded() (in module
tools.interactivePlotsHelpers), 96

makePlots() (in module tools.interactivePlots), 94
makePlots() (tools.interactivePlots.DataHolder method),

94
marginalizedLikelihood()

(tools.simplifiedLikelihoods.LikelihoodComputer
method), 108

marginalizedLLHD1D() (tools.simplifiedLikelihoods.LikelihoodComputer
method), 108

massAvg() (in module theory.auxiliaryFunctions), 65
massCompress() (theory.element.Element method), 72
massDiffLSPandNLSP() (tools.ioObjects.SlhaStatus

method), 99
massPosition() (in module theory.auxiliaryFunctions), 65
Meta (class in experiment.metaObj), 85
metaInfo() (theory.lheReader.SmsEvent method), 74
metaObj (module), 85
Missing Topologies, 52
mkdir() (tools.printer.BasicPrinter method), 102
modelTester (module), 100
MPrinter (class in tools.printer), 102

N
n_stored (tools.caching.Cache attribute), 89
nCPUs() (in module tools.runtime), 106
needsUpdate() (experiment.databaseObj.Database

method), 80
needsUpdate() (experiment.metaObj.Meta method), 86
next() (theory.lheReader.LheReader method), 74
niceStr() (theory.crossSection.XSection method), 69
niceStr() (theory.crossSection.XSectionList method), 70
nll() (tools.simplifiedLikelihoods.LikelihoodComputer

method), 108
NllFastWrapper (class in tools.nllFastWrapper), 102
nllFastWrapper (module), 102
NllFastWrapper13 (class in tools.nllFastWrapper), 102
NllFastWrapper7 (class in tools.nllFastWrapper), 102
NllFastWrapper8 (class in tools.nllFastWrapper), 102
nllHess() (tools.simplifiedLikelihoods.LikelihoodComputer

method), 108



nllprime() (tools.simplifiedLikelihoods.LikelihoodComputer
method), 108

NoTime, 109

O
ok() (in module tools.wrapperBase), 111
onlyZeroValues() (experiment.txnameObj.TxNameData

method), 88
openOutFile() (tools.printer.BasicPrinter method), 102
order() (theory.crossSection.XSectionList method), 70
Output Description, 53
output_status() (in module tools.interactivePlotsHelpers),

97
OutputStatus (class in tools.ioObjects), 97

P
Particle (class in theory.lheReader), 74
particleNames (module), 74
particlesMatch() (theory.branch.Branch method), 66
particlesMatch() (theory.element.Element method), 72
pathOfExecutable() (tools.externalPythonTools.ExternalPythonTool

method), 94
pathOfExecutable() (tools.pythonTools.PythonToolWrapper

method), 106
pathOfExecutable() (tools.wrapperBase.WrapperBase

method), 111
physicsUnits (module), 102
pid (theory.crossSection.XSection attribute), 69
plot_description() (in module

tools.interactivePlotsHelpers), 97
printer (module), 102
printFastlimBanner() (experiment.metaObj.Meta

method), 86
probMV() (tools.simplifiedLikelihoods.LikelihoodComputer

method), 108
profileLikelihood() (tools.simplifiedLikelihoods.LikelihoodComputer

method), 108
PyPrinter (class in tools.printer), 103
Pythia6Wrapper (class in tools.pythia6Wrapper), 104
Pythia6Wrapper (module), 104
Pythia8Wrapper (class in tools.pythia8Wrapper), 105
pythia8Wrapper (module), 105
pythonTools (module), 105
PythonToolWrapper (class in tools.pythonTools), 105

Q
Qnumbers (class in tools.ioObjects), 97
queryCrossSections() (tools.xsecComputer.ArgsStandardizer

method), 111

R
raise_timeout() (tools.timeOut.Timeout method), 109
read() (tools.ioObjects.SlhaStatus method), 99

readCrashReportFile() (in module tools.crashReport), 92
red (tools.colors.Colors attribute), 89
remove() (theory.clusterTools.IndexCluster method), 68
remove() (tools.coverage.UncoveredClassifier method),

91
removeLowerOrder() (theory.crossSection.XSectionList

method), 70
removeUnits() (experiment.txnameObj.TxNameData

method), 88
removeWildCards() (experi-

ment.txnameObj.TxNameData method),
88

replaceInCfgFile() (tools.pythia6Wrapper.Pythia6Wrapper
method), 104

reset (tools.colors.Colors attribute), 89
reset() (tools.caching.Cache static method), 89
ResultList (class in tools.ioObjects), 97
round_to_n() (experiment.txnameObj.TxNameData

method), 88
run() (in module tools.runSModelS), 106
run() (tools.pythia6Wrapper.Pythia6Wrapper method),

104
run() (tools.pythia8Wrapper.Pythia8Wrapper method),

105
runSetOfFiles() (in module tools.modelTester), 100
runSingleFile() (in module tools.modelTester), 101
runSModelS (module), 106
runtime (module), 106

S
sameAs() (experiment.metaObj.Meta method), 86
sandwich() (tools.simplifiedLikelihoods.Data method),

107
selectExpResultsWith() (tools.databaseBrowser.Browser

method), 93
separate_cont_disc_plots() (in module

tools.interactivePlotsHelpers), 97
setFinalState() (theory.branch.Branch method), 66
setFinalState() (theory.element.Element method), 72
setInfo() (theory.branch.Branch method), 66
setLogLevel() (in module tools.smodelsLogging), 109
setMasses() (theory.element.Element method), 73
setOptions() (tools.printer.BasicPrinter method), 102
setOutPutFile() (tools.printer.PyPrinter method), 103
setOutPutFile() (tools.printer.SLHAPrinter method), 103
setOutPutFile() (tools.printer.SummaryPrinter method),

103
setOutPutFile() (tools.printer.TxTPrinter method), 104
setOutPutFile() (tools.printer.XmlPrinter method), 104
setOutPutFiles() (tools.printer.MPrinter method), 103
setParameter() (tools.pythia6Wrapper.Pythia6Wrapper

method), 105
setPrinterOptions() (tools.printer.MPrinter method), 103



should_color() (tools.smodelsLogging.ColorizedStreamHandler
method), 109

signals() (tools.simplifiedLikelihoods.Data method), 107
simParticles() (in module theory.particleNames), 75
simplifiedLikelihoods (module), 106
size() (tools.caching.Cache static method), 89
slhaChecks (module), 109
slhaDecomposer (module), 75
SLHAPrinter (class in tools.printer), 103
SlhaStatus (class in tools.ioObjects), 98
SModelS Guide, 22
SModelS Manual, 1
SModelS Structure, 31
SModelS Tools, 16
SModelSExperimentError, 83
smodelsLogging (module), 109
SModelSTheoryError, 73
smodelsTools (module), 109
SmsEvent (class in theory.lheReader), 74
sort() (theory.crossSection.XSectionList method), 70
sort() (tools.ioObjects.ResultList method), 98
sortBranches() (theory.element.Element method), 73
sortDataSets() (experiment.datasetObj.CombinedDataSet

method), 81
sortParticles() (theory.branch.Branch method), 66
stringTools (module), 109
sumBR() (tools.ioObjects.SlhaStatus method), 99
SummaryPrinter (class in tools.printer), 103
switchBranches() (theory.element.Element method), 73

T
tempDirectory() (tools.wrapperBase.WrapperBase

method), 111
testLSP() (tools.ioObjects.SlhaStatus method), 99
testPoint() (in module tools.modelTester), 101
testPoints() (in module tools.modelTester), 101
theory (module), 79
Theory Definitions, 22
Theory Predictions, 37
theory.__init__ (module), 79
theory.auxiliaryFunctions (module), 65
theory.branch (module), 66
theory.clusterTools (module), 67
theory.crossSection (module), 69
theory.element (module), 71
theory.exceptions (module), 73
theory.lheDecomposer (module), 73
theory.lheReader (module), 74
theory.particleNames (module), 74
theory.slhaDecomposer (module), 75
theory.theoryPrediction (module), 76
theory.topology (module), 77
TheoryPrediction (class in theory.theoryPrediction), 76
theoryPrediction (module), 76

TheoryPredictionList (class in theory.theoryPrediction),
77

theoryPredictionsFor() (in module the-
ory.theoryPrediction), 77

Timeout (class in tools.timeOut), 109
timeOut (module), 109
ToolBox (class in tools.toolBox), 110
toolBox (module), 110
tools (module), 112
tools.__init__ (module), 112
tools.asciiGraph (module), 89
tools.caching (module), 89
tools.colors (module), 89
tools.coverage (module), 90
tools.crashReport (module), 91
tools.databaseBrowser (module), 92
tools.externalPythonTools (module), 93
tools.interactivePlots (module), 94
tools.interactivePlotsHelpers (module), 95
tools.ioObjects (module), 97
tools.lheChecks (module), 100
tools.modelTester (module), 100
tools.nllFastWrapper (module), 102
tools.physicsUnits (module), 102
tools.printer (module), 102
tools.pythia6Wrapper (module), 104
tools.pythia8particles (module), 105
tools.pythia8Wrapper (module), 105
tools.pythonTools (module), 105
tools.runSModelS (module), 106
tools.runtime (module), 106
tools.simplifiedLikelihoods (module), 106
tools.slhaChecks (module), 109
tools.smodelsLogging (module), 109
tools.smodelsTools (module), 109
tools.stringTools (module), 109
tools.timeOut (module), 109
tools.toolBox (module), 110
tools.wrapperBase (module), 110
tools.xsecComputer (module), 111
Topology (class in theory.topology), 77
topology (module), 77
TopologyList (class in theory.topology), 78
toStr() (theory.element.Element method), 73
totalChi2() (experiment.datasetObj.CombinedDataSet

method), 81
totalCovariance() (tools.simplifiedLikelihoods.Data

method), 107
TxName (class in experiment.txnameObj), 86
TxNameData (class in experiment.txnameObj), 87
txnameObj (module), 86
TxTPrinter (class in tools.printer), 103



U
ulSigma() (tools.simplifiedLikelihoods.UpperLimitComputer

method), 108
Uncovered (class in tools.coverage), 90
UncoveredClass (class in tools.coverage), 90
UncoveredClassifier (class in tools.coverage), 91
UncoveredList (class in tools.coverage), 91
UncoveredTopo (class in tools.coverage), 91
unlink() (tools.pythia6Wrapper.Pythia6Wrapper method),

105
unlink() (tools.pythia8Wrapper.Pythia8Wrapper method),

105
updateBinaryFile() (experiment.databaseObj.Database

method), 81
updateSLHAStatus() (tools.ioObjects.OutputStatus

method), 97
updateStatus() (tools.ioObjects.OutputStatus method), 97
UpperLimitComputer (class in

tools.simplifiedLikelihoods), 108
Using SModelS, 7

V
var_s() (tools.simplifiedLikelihoods.Data method), 107
versionFromFile() (experiment.metaObj.Meta method),

86
vertInStr() (in module theory.particleNames), 75
visible() (tools.ioObjects.SlhaStatus method), 99

W
warn (tools.colors.Colors attribute), 89
What’s New, 2
WrapperBase (class in tools.wrapperBase), 110
wrapperBase (module), 110
writeIgnoreMessage() (in module the-

ory.slhaDecomposer), 76
writePickle() (experiment.expResultObj.ExpResult

method), 84
writeToFile() (tools.xsecComputer.ArgsStandardizer

method), 111

X
XmlPrinter (class in tools.printer), 104
XSecComputer (class in tools.xsecComputer), 111
xsecComputer (module), 111
XSection (class in theory.crossSection), 69
XSectionInfo (class in theory.crossSection), 69
XSectionList (class in theory.crossSection), 69
xsecToBlock() (tools.xsecComputer.XSecComputer

method), 112

Y
yellow (tools.colors.Colors attribute), 89

Z
zeroSignal() (tools.simplifiedLikelihoods.Data method),

107


	Contents
	Indices and tables
	Python Module Index

