

 Navigation

 	
 index

 	
 next |

 	SMILE 0.1.0 documentation

What is SMILE?

[image: _images/smile_example.png]
SMILE is the State Machine Interface Library for Experiments. The goal when
developing SMILE was to create an east-to-use experiment building library
that allows for millisecond-accurate timing. SMILE was written so that the end
user doesn’t have to worry about the intricacies of timing, event handling, or
logging data.

Inspired by the concept of a state machine, SMILE works by storing the current
status of releveant input events, then initiating an action depending on a
predetermined set of rules. With the support of the versatile Python
programming language and Kivy, a module create for video game development,
SMILE is powerful and flexible while still being simple to use.

What does a SMILE experiment look like?

Below is hello.py, an example of what the simplest SMILE experiment looks like:

from smile.common import *

exp = Experiment()

Label(text="Hello, World!", duration=5)

exp.run()

In order to run this experiment from a computer that has SMILE installed, you
would use your favorite OS’s command prompt and run the following line:

>> python hello.py -s SubjectID

This program creates a full-screen window with a black background and the words
Hello, World! in white text in the center–just like that, we are SMILEing!

Now let us go through our SMILE experiment line by line and see what each of
them does.

First is the line exp = Experiment(). This line is the initialization line
for SMILE. This tells SMILE that it should prepare to see states being declared.

Second is the line Label(text=”Hello, World!”, duration=5). Label is a
SMILE visual state that displays text onto the screen. Certain SMILE states take
a duration, and we are setting this state’s duration to 5. This means the
state will remain active on the screen for 5 seconds.

Third is the line exp.run(). This line signals to SMILE that you have finished
building your experiment and that it is ready to run. SMILE will then run your
experiment from start to finish and exit the experiment window when it has
finished.

Whats Next?

To help you get ready to SMILE, the first section of this documentation is the
SMILE installation and the installation of its dependencies. After that is a
section that delves deeper into SMILE and how to write more complicated
experiments.

	Installation of SMILE!

	SMILE Tutorial Basics!

	SMILE States

	Special Examples

	Full Experiments

	Data accessing and Processing

	Advanced SMILEing

	Seeking Help?

	SMILE package

Funding Sources

Development of SMILE made possible by grants from:

[image: _images/ccbs.jpg]
 [https://cog.osu.edu]

 Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SMILE 0.1.0 documentation

Installation of SMILE!

Getting ready to SMILE? Then you are in the right place. This guide will tell
you how to install SMILE and the package that SMILE is dependent upon, Kivy!
Scroll down to the appropriate operating system and follow the directions
provided to install Kivy, SMILE, and any extra needed packages.

Installing SMILE on Windows

Before installing anything, make sure that you have python installed and that
you can run python through your command prompt.

Also, it is important to have pip installed to your python. Without pip
you will not be able to run the commands needed to install SMILE. To install
pip, click the link below and follow the instructions.

-Get pip [https://pip.pypa.io/en/stable/installing/]

The next thing you need to install after pip is kivy. Kivy is the display
backend for SMILE. Note that you do not need to know anything about how to use
kivy to figure out how to use SMILE.

To install kivy on your windows machine, run the following line in your command
prompt.

> python -m pip install docutils pygments pypiwin32 kivy.deps.sdl2 kivy.deps.glew
> python -m pip install kivy.deps.gstreamer --extra-index-url https://kivy.org/downloads/packages/simple/

Then run this line in your command prompt.

> python -m pip install kivy

Note

If you run into any trouble installing kivy onto your windows machine, please check the kivy website for more detailed instructions.

After running the last command, it is now time to download SMILE. Download
SMILE from the github link provided and then extract it.

-SMILE Download [https://github.com/compmem/smile/tree/master]

Now, in your command prompt, navigate to the newly extracted smile download
folder that contains setup.py and run the following line.

> python -m pip install .

The final thing you need to install to gain access to all of SMILE’s
functionality is PYO. PYO is used to play and record sound with SMILE. Download
and install the windows version of PYO from their website. The link is provided
below.

-PYO Download [http://ajaxsoundstudio.com/software/pyo/]

Note

When PYO asks for a directory to install to, choose C:Python27. If that folder doesn’t already exist, create it and then attempt to install PYO into that folder

With that, you are finished installing SMILE. Congrats! Head over to
The SMILE Tutorial to start SMILING. This will cover a more
advance look into how SMILE works.

Sync Pulsing on Windows

To use sync pulsing on windows via the parallel port, you must install
Inpout32, or include inpout32.dll in the same folder as your experiment.

Windows Troubleshooting

If you are trying to replace an older version of SMILE, or if you just need
to upgrade your current version, you must run the following command while the
Anaconda command prompt is in the SMILE download folder.

> pip install . --upgrade

If you would like to use any of the audio options of SMILE, pyo is required. If
you find that you can’t install pyo, it is because you are not using the 32 bit
version of Python. You can install SMILE on 64 versions of Python, but you will
lose the ability to play sound files. Your ability to play sound while
presenting a video file, however, will not be inhibited.

If you are trying to install SMILE to an Anaconda distribution of python, you
must use 64 bit. We have found that the 32 bit version of GStreamer that
Anaconda provides will not work well with Kivy, and will error out. Please use
the 64 bit version of Anaconda if you choose to install SMILE to it.

If you are installing SMILE to a Python separate from Anaconda, but still have
Anaconda installed on that machine, you may encounter a weird pathing error.
We are still looking into what causes it, and it doesn’t happen to everyone, but
we would still like you to be aware that you may run into some problems.

Installing SMILE on Mac

The first step is to download and install Kivy. The following link will take you
to the Mac-Kivy install guide.

-Mac-Kivy Install Guide [http://kivy.org/docs/installation/installation-macosx.html]

After you install Kivy, you must download and install SMILE. The following is a
link to the SMILE download page, where you will download the zip, and extract
it to an easy to find place.

-SMILE Download [https://github.com/compmem/smile/tree/master]

Now, all you have to do is open the terminal and navigate to the
newly extracted smile download folder. This folder should contain setup.py. Run
the following line to install SMILE to your special Kivy distribution of python.

$ kivy -m pip install .

Easy. SMILE should have installed without any issue.

The final thing you need to install to gain access to all of SMILE’s
functionality is PYO. Download and install the Mac version of PYO from their
website. The link is provided below.

-PYO Download [http://ajaxsoundstudio.com/software/pyo/]

With that, you are finished installing SMILE. Congrats! Head over to
The SMILE Tutorial to start SMILING. This will cover a more
advance look into how SMILE works.

Mac Troubleshooting

If you are trying to replace an older version of SMILE, or if you just need
to upgrade your current version, you must run the following command while the
Anaconda command prompt is in the SMILE download folder.

$ kivy -m pip install . --upgrade

If you require any additional packages to run your experiment, you must use
kivy to install them. Like above, you use the kivy -m pip install line to
install any additional packages to the python that is linked to kivy.

Installing SMILE with Linux

SMILE requires Kivy to run properly, but if you would like to use the
smile.sound functionality, you need to download and install PYO as well. Run
the following in your command line to install both Kivy and PYO at the same
time.

$ sudo aptitude install python-pyo python-kivy

If you are running something besides a Debian based linux system, the above line
will look different. It depends on your prefered package manager.

Then, download SMILE from github and extract it to a place you can find later.
The download link is the following:

-SMILE Download [https://github.com/compmem/smile/tree/kivy]

Next, navigate to the newly extracted smile folder that contains setup.py, and
run the following line in your terminal window.

$ python -m pip install .

This will add SMILE to your python distribution.

With that, you are finished installing SMILE. Congrats! Head over to
The SMILE Tutorial to start SMILING. This will cover a more
advance look into how SMILE works.

Sync pulsing on Linux

To use sync pulsing on linux over a parallel port, you must install
PyParallel [https://github.com/pyparallel/pyparallel/]. Install it via pip
or your favorite package manager.

Linux Troubleshooting

To be added when problems are found.

 Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SMILE 0.1.0 documentation

SMILE Tutorial Basics!

Hello SMILErs! This tutorial is for people just starting out in the world of
SMILE. Further in this documentation, there is a more advanced tutorial. If you
are brand new to SMILE and want to learn the basics line by line, you are in the
right place.

Running a SMILE Experiment

After installing SMILE, there is only one thing needed to run a SMILE
experiment, and that is a fully coded experiment file. SMILE uses python to run
its experiments, so to run SMILE you must run the .py file with python.

If you followed our instructions for installing SMILE, Linux and Windows users
would use the following line in a command prompt to run their SMILE experiments:

>> python filename.py -s SubjectID

If you are an OSX user, you just replace the python in the previous line
with kivy:

$ kivy filename.py -s SubjectID

Notice the -s in the commands above. This is a command line argument for
SMILE. SMILE has 3 command line arguments.

	-s : Subject ID, whatever identifier you would like to use for a particular run of the experiment. The next argument passed -s will be the subject ID for the purposes of where to save data on your system.

	-f : Fullscreen, if -f is present in the command line, SMILE will run in windowed mode.

	-c : CSV, if -c is present, SMILE will save out all of its .slog data files as .csv data files as well. Not Recommended

Before you learn how to code SMILE experiments, it is important to understand
a few things about how SMILE works. The next section goes over how SMILE
first builds then runs experiments.

Build Time V.S. Run Time

The difference between Build Time and Run Time is the most important
concept to understand when learning to use SMILE. There are 2 lines of
code that designate the start of BT and then the start of RT. Those
lines are exp = Experiment() and exp.run() respectively.

exp = Experiment() initializes the instance of an Experiment. All calls to a
state must take place after this line! Once this line is run,
BT starts. BT, or Experimental Build Time, is the section of the
code that sets up how the experiment will run.

During Experimental Build Time, all calls to the different states of SMILE
define how your experiment will run to SMILE. SMILE sees each of those states
and uses them to setup the rules of how your state machine will flow from one
state to another. When SMILE see the with Parallel(): state, it will know
that all of the states that are defined within should run at the same time.
When SMILE sees one Label following another Label, SMILE will know
that the second Label should not show up on the screen until the first
one has finished running.

During Experimental Run Time, all of the timing and intricacies of SMILE’s
backend are run. Once exp.run() is called, SMILE will start whatever the first
state you defined in the experiment is and continue with the rest of your
experiment afterwards.

Note

During RT, SMILE will not run any non-SMILE code. SMILE will only run the prebuilt state-machine. If you need to run any kind of python during your experiment, use the Func state.

Another thing to look out for when programming the experiment how variables are
set and used in BT. A local variable in between exp = Experiment() and
exp.run() cannot be set and expected to actually set during RT.
In order to set and get local variables during RT, set and get
must be used through the local Experiment
variable. To set this kind of variable, exp.variable_name must be added to the
beginning of the variable name. Doing this creates a Set
state in SMILE that will run during RT. An example is as follows.

exp.variableName = lbl.appear_time['time']

For more information about setting in RT see the Setting a Variable in RT
section of Advanced SMILEing

What are References?

Since SMILE will build the experiment before it runs it, we needed to think of a
way to reference variables before the variables were created. That is why we
developed the Ref. The Ref, very basically, is a
delayed function call. Using Ref**s, SMILE is able to hold onto a reference to
data that hasn’t been created yet in your experiment. **Ref**s are
powerful in that they are recursive. That means that if you apply a basic
operation to a **Ref (i.e. +, -, , or /) it will create a new **Ref* that
contains both sides of the operation, and the operation function itself.

from smile.ref import Ref
a = Ref.object(5)
b = Ref.object(6)
c = a + b
print c.eval()

In the above example, a and b are refs that are created to contain only an
object. Ref.object() will return a Ref that will, when being evaluated
later, check to see what the value of the object is at that moment and return
that value. The above example creates 2 integer references. The third line
c = a + b is an example of creating a recursive reference. When c tries to
evaluate itself, it will attempt to evaluate a and b, then add them
together and return the result. The above example will print out the number 11
when it finishes running.

Note

You should not have to ever call .eval() for a reference. This was just an example to demonstrate how we use references in SMILE’s backend. SMILE calls .eval() automatically.

References can also create a Reference object that contains a conditional
expression to be evaluated later. These are important when building
SMILE If states. Say for instance the experimenter
would like to present “CONGRATS” on screen if the participant responded in less
than three seconds, and “FAILURE” if the participant took longer than three seconds
to respond. The experimenter would need to rely on a Referenced conditional statement,
where Ref.cond(cond, true_val, false_val) can return any kind of object if
true or false. Say you want to display “jubba” if a participant presses “J” and
“bubba” if the participant presses “K”. SMILE allows you to use cond to do
this in 1 line rather than use an If state. For the above example, please
see the Ref docstring.

A Done state is a unique state that will wait until the
value of a reference is made available. A reference is made available the first
time something calls .eval()

Warning

This state is not for regular use. It should only be used when encountering the NotAvailableError. Misuse of the Done state, the experiment will have hang-ups in the framerate or running of the experiment.

For more information about Ref and Func
please see Preforming Functions and Operations in RT

The next section of the doc will go over some simple SMILE tutorials and
introduce you to the states you can add to a SMILE experiment.

Looping over Lists! In Style

The following example will walkthrough the basics of looping over a list. This
walkthrough is divided into sections of code and explanation with the combined
code sections given at the end of the example.

Before we start, create a new directory called exp and create a file called
randWord1.py. In this file, the stimulus can be defined.

words=['plank', 'dear', 'adopter',
 'initial', 'pull', 'complicated',
 'ascertain', 'biggest']

random.shuffle(words)

The file has created a list of words that will be randomly sorted when compiled.
From here, Loop is used to loop over the list of words.
Before that, however, the preliminary variables must be established. After,
exp = Experiment() begins the building process.

#Needed Preliminary Parameters of the Experiment
interStimulusDuration=1
stimulusDuration=2

#We are ready to start building the Experiment!
exp = Experiment()

The default state in which Experiment runs in is the
Serial state. Serial just
means that every other state defined inside of it runs in order, first in first
out. So every state defined after exp = Experiment() will be executed fifo
style. Next, a staple of every SMILE experiment, the
Loop state is needed to be defined.

with Loop(words) as trial:
 Label(text=trial.current, duration=stimulusDuration)
 Wait(interStimulusDuration)

exp.run()

The list of words that are to be looped act as a parameter in Loop. This tells
SMILE to loop over words. Loop also creates a reference variable. In this
instance, the reference variable is called trial. trial acts as a link
between the experiment’s building and running states. Until exp.run() is
called, trial will not have a value. The next line defines a
Label state that displays text for a duration. By
default, it displays in the middle of the experiment window. Notice
trial.current: In order to access the numbers from the random list,
trial.current is used instead of words[x]. trial.current is a way to tell
SMILE to access the current member of the words list while looping.

Warning

Do not try to access or test the value of trial.current. trial.current is a reference variable, so you will not be able to test its value outside of a SMILE state.

Finished rand_word_1.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	from smile.common import *
import random
words = ['plank', 'dear', 'adopter',
 'initial', 'pull', 'complicated',
 'ascertain', 'biggest']

random.shuffle(words)

#Needed Parameters of the Experiment
interStimulusDuration=1
stimulusDuration=2

#We are ready to start building the Experiment!
exp = Experiment()

with Loop(words) as trial:
 Label(text=trial.current, duration=stimulusDuration)
 Wait(interStimulusDuration)

exp.run()

And Now, With User Input!

The final step in the SMILE tutorial is to add user input and logging.
In this experiment example, a participant is presented with words, one a time.
The participant is told to press the J key if the presented word contains an
even number of letters, or press K the number of letters is odd. The
participant has 4 seconds to make a response.

This tutorial will also teach how to compare trial.current comparisons.
First, create a directory called WordRemember and create a file within the
directory called randWord2.py. Now, the word list must migrate to our new file
from the previous file in the tutorial. This file will be slightly edited to
make sure that the experiment will be able to tell which key is the correct key
for each trial.

key_dic = ['J', 'K']
words = ['plank', 'dear', 'thopter',
 'initial', 'pull', 'complicated',
 'ascertain', 'biggest']

temp = []

for i in range(len(words)):
 condition = len(words[i])%2
 temp.append({'stimulus':words[i], 'condition':key_dic[condition]})

words = temp
random.shuffle(words)

The list of words is now a list of dictionaries, in which words[x][‘stimulus’]
will provide the word and words[x][‘condition’] will provide whether the
word has an even or an odd length. Similar to the last example, the next step
is to initialize all of our experiment parameters. key_list is which
keys the participant will be pressing later.

#Needed Parameters of the Experiment
interStimulusDuration=1
maxResponseTime=4

#We are ready to start building the Experiment!
exp = Experiment()

Notice the line change from stimulusDuration=2 to maxResponseTime=4.
Now, the basic loop can be set up.
The first thing needed to be added to this loop is the UntilDone(): state. A
UntilDone state will run its children
in Serial until the parent state has finished.

The following is an example before the loop was edited:

###########EXAMPLE, NOT PART OF EXPERIMENT#########
Label(text='Im on the screen for at most 5 seconds')
with UntilDone():
 Label(text='Im On the screen for 3 seconds!', duration=3)
 Wait(2)

As you can see, The first Label is on the screen for 5
seconds because the UntilDone state does not end until
the second Label runs for 3 seconds and the
Wait runs for 2 seconds.

Now to implement this state into the loop:

with Loop(words) as trial:

 Label(text=trial.current['stimulus'])
 with UntilDone():
 kp = KeyPress(keys=key_dic)

 Wait(interStimulusDuration)

exp.run()

This displays the number of the current trial until a key is pressed, after which
the loop waits for the inter-stimulus duration that was predefined earlier. The
next step entails editing kp = KeyPress(keys=keys) to include the response
time duration. Also needed is the ability to add a check to see if the participant
answered correctly. This will require the use of trial.current[‘condition’],
which is a listgen value set earlier.

with Loop(words) as trial:
 Label(text=trial.current['stimulus'])
 with UntilDone():
 kp = KeyPress(keys=key_dic, duration=maxResponseTime,
 correct_resp=trial.current['condition'])
 Wait(interStimulusDuration)
exp.run()

The last thing needed to complete the experiment is to add, at the end of the
Loop(), the Log. Wherever a Log
state is placed in the experiment, it will save out a .slog file to a folder
called data in the experiment directory under a predetermined name put in the
name field.

Log(name='Loop',
 correct=kp.correct,
 time_to_respond=kp.rt)

With this line, each iteration of the loop in the experiment will save a
line into Loop.slog containing all of the values defined in the Log() call.

The loop will look as follows:

with Loop(words) as trial:
 Label(text=trial.current['stimulus'])
 with UntilDone():
 kp = KeyPress(keys=key_dic, duration=maxResponseTime,
 correct_resp=trial.current['condition'])

 Wait(interStimulusDuration)
 Log(name='Loop',
 correct=kp.correct,
 time_to_respond=kp.rt)

Finished rand_word_2.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

	from smile.common import *
import random

words = ['plank', 'dear', 'thopter',
 'initial', 'pull', 'complicated',
 'ascertain', 'biggest']

temp = []

for i in range(len(words)):
 condition = len(words[i])%2
 temp.append({'stimulus':words[i], 'condition':key_dic[condition]})

words = temp
random.shuffle(words)

#Needed Parameters of the Experiment
interStimulusDuration=1
maxResponseTime = 4
key_dic = ['J', 'K']

#We are ready to start building the Experiment!
exp = Experiment()

with Loop(words) as trial:
 Label(text=trial.current['stimulus'])
 with UntilDone():
 kp = KeyPress(keys=key_dic, duration=maxResponseTime,
 correct_resp=trial.current['condition'])
 Wait(interStimulusDuration)
 Log(name='Loop',
 correct=kp.correct,
 time_to_respond=kp.rt)

exp.run()

Now you are ready to get SMILEing! The next section of this documentation goes
over every state that SMILE has to offer!

 Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SMILE 0.1.0 documentation

SMILE States

The States of SMILE

Below is the list of most of the SMILE states you will ever need when running an
experiment. Each state has a rudimentary tutorial on how to use them. If you
need more information about what a specific state does, then checkout each
state’s docstring.

The Flow States of SMILE

One of the basic types of SMILE states are the Flow states. Flow
states are states that control the flow of the experiment.

Serial State

A Serial state is a state that has children and runs its children one after
another. All states defined between the lines exp = Experiment() and
exp.run() in an experiment will exist as children of a Serial state. Once
one state ends, the Serial state will call the next state’s
start method. Like any flow state, the use of the with pythonic keyword
is required and makes the source code look clean and readable. Below is an example
of the Serial state.

Note

For many examples, Action State Label will be used. This state merely displays text on the
screen, similar to the “print” python command. For more details on Label,
click Label.

The following two experiments are equivalent.

from smile.common import *

exp = Experiment()

Label(text="First state", duration=2)
Label(text="Second state", duration=2)
Label(text="Third state", duration=2)

exp.run()

from smile.common import *

exp = Experiment()

with Serial():
 Label(text="First state", duration=2)
 Label(text="Second state", duration=2)
 Label(text="Third state", duration=2)

exp.run()

As shown above, the default state of an experiment is a Serial state in
which all of the states initialized between exp = Experiment() and
exp.run() are children.

For more details, see the Serial docstring.

Parallel State

A Parallel state is a state that has children and runs those children
simultaneously with each other, which we call parallel. The key to a Parallel state is that it
will not end unless all of its children end. Once it has no more children running, the current
state will schedule its own end call, allowing the next state to run.

The exception to this rule is a parameter called blocking. It is a Boolean
property of every state. If set to False and the state exists as a child of a
Parallel state, it will not prevent the Parallel state from calling its own
end method. This means a Parallel will end when all of its blocking
states have called their end method. All remaining, non-blocking states
will have their cancel method called to allow the Parallel state to end.

An example below has 3 Label states that will disappear from the screen at
the same time, despite having 3 different durations.

from smile.common import *

exp = Experiment()

with Parallel():
 Label(text='This one is in the middle', duration=3)
 Label(text='This is on top', duration=5, blocking=False,
 center_y=exp.screen.center_y+100)
 Label(text='This is on the bottom', duration=10, blocking=False,
 center_y=exp.screen.center_y-100)

exp.run()

Because the second and third Label in the above example are non-blocking,
the Parallel state will end after the first Label‘s duration of 3 seconds
instead of the third Label‘s duration which was 10 seconds.

For more details, see the Parallel docstring.

Meanwhile State

A Meanwhile state is one of two parallel with previous states. A Meanwhile
will run all of its children in a Serial state and then run that in
Parallel with the previous state in the stack. A Meanwhile state will
end when either all of its children have left, or if the previous state
has left. In simpler terms, a Meanwhile state runs while the previous state
is still running. If the previous state ends before the Meanwhile has
ended, then the Meanwhile will cancel all of its remaining
children.

If a Meanwhile is created and there is no previous state, then all of the children of the Meanwhile will
run until they end or until the experiment is over. An example of this would be if Meanwhile were inserted
right after the line exp = Experiment().

The following example shows how to use a Meanwhile to create an instructions
screen that waits for a keypress to continue.

from smile.common import *

exp = Experiment()

KeyPress()
with Meanwhile():
 Label(text="THESE ARE YOUR INSTRUCTIONS, PRESS ENTER")

exp.run()

As soon as the KeyPress state ends, the Label will disappear off the screen
because the Meanwhile will have canceled it.

For more details, see the Meanwhile docstring.

UntilDone State

An UntilDone state is one of two parallel with previous states. An
UntilDone state will run all of its children in a Serial state and then run
them in a Parallel with the previous state. An UntilDone state will
end when all of its children are finished. Once the UntilDone ends, it will cancel the previous state if still running.

If an UntilDone is created and there is no previous state (right after
the exp = Experiment() line), all of the children of the UntilDone will
run until they end. The experiment will then end.

The following example shows how to use an UntilDone to create an instructions
screen that waits for a keypress to continue.

from smile.common import *

exp = Experiment()

Label(text="THESE ARE YOUR INSTRUCTIONS, PRESS ENTER")
with UntilDone():
 KeyPress()

exp.run()

For more details, see the UntilDone docstring.

Wait State

A Wait state is a very simple state that has a lot of power behind it. This is particularly useful when
coordinating the timings different action states. There are other options which can add to the wait to make it more complicated.
The jitter parameter allows for the Wait to pause an experiment for the duration plus a random number between 0 and jitter
seconds.

The unique characteristic a Wait state has is the ability to wait until a conditional
is evaluated to True. The Wait will create a Ref that will
call_back Wait to alert it to a change in value. Once that change evaluates
to True, the Wait state will stop waiting and call its own end method.

An example below outlines how to use all the functionality of Wait. This
example wants a Label to appear on the screen right after another Label
does. Since the first Wait has a jitter, it is impossible to detect how
long that would be, so there resides a second Wait wait until lb1 has an
appear_time.

from smile.common import *

exp = Experiment()

with Parallel():
 with Serial():
 Wait(duration=3, jitter=2)
 lb16 = Label(text="Im on the screen now", duration=2)
 with Serial():
 Wait(until=lb1.appear_time['time']!=None)
 lb2 = Label(text="Me Too!", duration=2,
 center_y=exp.screen.center_y-100)

exp.run()

For more details, see the Wait docstring.

If, Elif, and Else States

These 3 states are how SMILE handles branching in an experiment. Only a
If state is needed to create a branch. Through the use
of the Elif and the Else
state, much more complex experiments can be created.

An If state runs all of its children in serial only if its conditional
statement is considered True. Below is a simple of an If state.

from smile.common import *
exp = Experiment()
exp.a = 1
exp.b = 1
with If exp.a == exp.b:
 Label(text="CORRECT")
exp.run()

Here, exp.a == exp.b is the conditional statement. This If state expresses
that if the conditional exp.a == exp.b is True, then the experiment will
display the Label “CORRECT”. In this case, if the conditional was False
(say exp.b = 2 instead of 1), then the experiment will not display the Label.

An Elif statement, short for “Else if”, is another conditional statement. It
functions the same as the pythonic “elif”. An Else statement is identical to
the pythonic “else”. The following is a 4 option if test.

from smile.common import *

exp = Experiment()

Label(text='PRESS A KEY')
with UntilDone():
 kp = KeyPress()

with If(kp.pressed == "SPACEBAR"):
 Label(text="YOU PRESSED SPACE", duration=3)

with Elif(kp.pressed == "J"):
 Label(text="YOU PRESSED THE J KEY", duration=3)

with Elif(kp.pressed == "F"):
 Label(text="YOU PRESSED THE K KEY", duration=3)

with Else():
 Label(text="I DONT KNOW WHAT YOU PRESSED", duration=3)

exp.run()

For more details, see the:py:class:~smile.state.If, Elif, or Else docstrings.

Loop State

A Loop state can handle any kind of looping needed. The
main use for a Loop state is to loop over a list of dictionaries that contain
stimuli. Loops can also be created by passing in a conditional parameter.
Lastly, instead of looping over a list of dictionaries, Loop states can be used to
loop an exact number of times by passing in a number as a parameter.

A Loop state requires a variable to be defined to access all of the information
about the loop. This can be performed by utilizing the pythonic as keyword.
with Loop(list_of_dic) as trial: is the line that defines the loop. If access
to the current iteration of a loop is needed, ‘trial.current’ can be utilized.

Refer to the :py:class:`~smile.state.Loop`* docstring
for information on how to access the different properties of a Loop.

Below is an example of all 3 loops.

List of Dictionaries

from smile.common import *

#List Gen
list_of_dic = [{'stim':"STIM 1", 'dur':3},
 {'stim':"STIM 2", 'dur':2},
 {'stim':"STIM 3", 'dur':5},
 {'stim':"STIM 4", 'dur':1}]

Initialize the Experiment
exp = Experiment()

The *as* operator allows one to gain access
to the data inside the *Loop* state
with Loop(list_of_dic) as trial:
 Label(text=trial.current['stim'], duration=trial.current['dur'])

exp.run()

Loop a number of times:

from smile.common import *

exp = Experiment()

with Loop(10):
 Label(text='This will show up 10 times!', duration=1)
 Wait(1)

exp.run()

Loop while something is true:

from smile.common import *

exp = Experiment()

exp.test = 0

Never use *and* or *or*. Always use *&* and *|* when dealing
with references. Conditional References only work with
absolute operators, not *and* or *or*
with Loop(conditional = (exp.test < 10)):
 Label(text='This will show up 10 times!', duration=1)
 Wait(1)
 exp.test = exp.test + 1

exp.run()

For more details, see the Loop docstrings.

The Action States of SMILE

The other basic type of SMILE states are the Action states. The Action
states handle both the input and output in experiments. The following are
subclasses of WidgetState.

Note

Heads up: All visual states that are wrapped by WidgetState are Kivy Widgets.
That means all of their individual sets of parameters are located on Kivy’s
website. For all of the parameters that every single WidgetState shares,
refer to the WidgetState Doctring.

Debug

Debug is a State that is
primarily used to print out the values of references to the command line. This
State should not be used as a replacement for print during experimental
runtime. It should only be used to print the current values of references during
the experimental runtime.

You can give a Debug state a name to distinguish it from other Debug states
that you might be running. Debug work with keyword arguments. Below is
an example for how to properly use the Debug state and the sample output
that it produces.

from smile.common import *

exp = Experiment()

lbl = Label(text="Hello, World", duration=2)
Wait(until=lbl.disappear_time)
Debug(name="Label appear debug", appear=lbl.appear_time['time'],
 disappear=lbl.disappear_time['time'])

exp.run()

And it would output:

DEBUG (file: 'debug_example.py', line: 7, name: Label appear debug) - lag=0.012901s
 appear: 1468255447.360574
 disappear: 1468255449.359951

For more details, see the Debug docstring.

Func

Func is a State that can run a
function during Experimental Runtime. The first argument is always the name of
the function and the rest of the arguments are sent to the function. You can pass
in parameters to the Func state the same way you would pass them into the
function you are wanting to run during experimental runtime. In order to access
the return value of the function passed in, you need to access the .result
attribute of the Func state.

The following is an example on how to run a predefined function during
experimental runtime.

from smile.common import *

def pre_func(i):
 return i * 50.7777

exp = Experiment()

with Loop(100) as lp:
 rtrn = Func(pre_func,lp.i)
 Debug(i = rtrn.result)

exp.run()

For more details click Func.

Label

Label is a WidgetState that displays text on the screen for a duration.
The parameter to interface with its output is called text. The label will display
any string that is passed into text. Text_size can also be set, which is a tuple
that contains (width, height) of the area the text resides in. If a goal in an experiment
is to display multiple lines of text on the screen, this parameter is helpful through passing
in (width_of_text, None) so the amount of text is not restricted in the vertical direction.

The following is a Label displaying the word “BabaBooie”:

from smile.common import *

exp = Experiment()

Label(text="Hello, World", duration=2, text_size=(500,None))

exp.run()

For more details, see the Label docstring.

Image

Image is a WidgetState that displays an image on the screen for a
duration. The parameter to interface with its output is called source. A string
path-name is passed into the desired image to be presented onto the screen. The allow_stretch
parameter can be set to True if the original image needs to be presented at a different
size. The allow_stretch parameter will stretch the image to the size of the widget
without changing the original ratio of width to height.

By setting allow_stretch to True and keep_ratio to False the image will stretch
to fill the entirety of the widget.

Below is an example of an image at the path “test_image.png” to be presented to
the center of the screen:

from smile.common import *

exp = Experiment()

Image(source="test_image.png", duration=3)

exp.run()

For more details, see the Image docstring.

Video

Video is a WidgetState that shows a video on the screen for a duration.
The parameter to interface with its output is called source. A string path-name to the video
can be passed in to present the video on the screen. The video will play from the beginning
for the duration of the video. The allow_stretch parameter can be set to True if changing
the video size from the original size is desired. Afterwards, the video will attempt to fill
the size of the Video Widget without changing the aspect ratio. Setting the keep_ratio
parameter to False will completely fill the Video Widget with the video. There is also the
position parameter, which has to be between 0 and the duration parameter, telling
the video where to start.

Below is an example of playing a video at the path “test_video.mp4” that starts
4 seconds into the video and plays for the entire duration (duration=None):

from smile.common import *

exp = Experiment()

Video(source="test_video.mp4", position=4)

exp.run()

For more details, see the Video docstring.

Vertex Instructions

Each Vertex Instruction outlined in video.py displays a predefined shape
on the screen for a duration. The following are all of the basic Vertex
Instructions that SMILE implements:

	Bezier

	Mesh

	Point

	Triangle

	Quad

	Rectangle

	BorderImage

	Ellipse

The parameters for each of these vary, but just like any other SMILE state,
they take the same parameters as the default State class. They are Kivy
widgets wrapped in our WidgetState class. Kivy documentation can be referred to
for understanding how to use them or what parameters they take.

Beep

Beep is a state that plays a beep noise at a set frequency and volume for
a duration. The four parameters needed to set the output of this Beep
are freq, volume, fadein, and fadeout. freq and volume are used to
set the frequency and the volume of the Beep. freq defaults to 400 Hz
and volume defaults to .5 the max system volume. fadein and fadeout are
in seconds, and they represent the time it takes to get from 0 to volume and
volume to 0 respectively.

Below is an example of a beep at 555hz for 2 seconds with no fade in or out while
at 50% volume:

from smile.common import *

exp = Experiment()

Beep(freq=555, volume=0.5, duration=2)

exp.run()

For more details, see the Beep docstring.

SoundFile

SoundFile is a state that plays a sound file - such as an mp3 - for a duration
that defaults to the duration of the file. The parameter used to interface
with the output of this state is filename. filename is the path name to the
sound file saved on the computer. volume is a float from 1 to 0 where 1 is
the max system volume.

The start parameter allows for sound files to begin at the desired point in the audio file.
By using the start parameter, the audio will begin however many seconds into the audio file as
desired.

The end parameter allows for sound files to end before the original end of the audio.
The end parameter must be set to however many seconds from the beginning of the sound file
it is desired to end at. The parameter must be greater than the value of start.

If the loop parameter is set to True, the sound file will run on a loop for the
duration of the State.

Below is an example of playing a sound file at path “test_sound.mp3” at 50%
volume for the full duration of the sound file:

from smile.common import *

exp = Experiment()

SoundFile(source="test_sound.mp3", volume=0.5)

exp.run()

For more details, see the SoundFile docstring.

RecordSoundFile

RecordSoundFile will record any sound coming into a microphone for the
duration of the state. The audio recording will be saved to an audio file named
after what is passed into the filename parameter.

Below is an example of recording sound for 10 seconds while looking at a Label
that says “PLEASE TALK TO YOUR COMPUTER”. It then saves the recording as “new_sound.mp3”:

from smile.common import *

exp = Experiment()

Label(text="PLEASE TALK TO YOUR COMPUTER")
UntilDone to cancel the label after the sound file
is done recording.
with UntilDone():
 RecordSoundFile(filename="new_sound.mp3", duration = 10)

exp.run()

For more details, see the RecordSoundFile docstring.

Button

Button is a visual and an input state that draws a button on the screen
with optional text in the button for a specified duration. Every button can be set to have
a name that can be referenced by ButtonPress states to determine
if the correct button was pressed. See the SMILE tutorial example for
ButtonPress for more information.

Below is an example of a Form, where a Label state will
ask someone to type in an answer to a TextInput. Then
they will press the button when they are finished typing:

from smile.common import *

from smile.video import TextInput

exp = Experiment()

Show both the Label and the TextInput at the same time
during the experiment
with Parallel():
 # Required to show the mouse on the screen during the experiment!
 MouseCursor()
 Label(text="Hello, Tell me about your day!", center_y=exp.screen.center_y+50)
 TextInput(text="", width=500, height=200)

When the button is pressed, the Button state ends, causing
the parallel to cancel all of its children, the Label and the
TextInput
with UntilDone():
 # A ButtonPress will end whenever one of its child buttons
 # is pressed.
 with ButtonPress():
 Button(text="Enter")

exp.run()

For more details, see the Button docstring.

ButtonPress

ButtonPress is a parent state, much like Parallel, that will run until
a button inside of it is pressed. When defining a ButtonPress state, The name
of a button inside of the parent state can be designated as the correct button to
press by passing the string name of the correct Button or Buttons into
the correct_resp parameter. Refer to the ButtonPress example in the SMILE
tutorial document.

The following is an example of choosing between 3 buttons where only one of the buttons
is the correct button to click:

from smile.common import *

exp = Experiment()

A ButtonPress will end whenever one of its child buttons
is pressed.
with ButtonPress(correct_resp=['First_Choice']) as bp:
 # Required to do anything with buttons.
 MouseCursor()
 Label(text="Choose WISELY")
 # Define both buttons, giving both unique names
 Button(name="First_Choice",text="LEFT CHOICE", center_x=exp.screen.center_x-200)
 Button(name="Second_Choice",text="RIGHT CHOICE", center_x=exp.screen.center_x+200)
Label(text=bp.pressed, duration=2)

exp.run()

For more details, see the ButtonPress docstring.

KeyPress

KeyPress is an input state that waits for a keyboard press during its
duration. A list of strings can be passed in as parameters that are
acceptable keyboard buttons into keys. A correct key can be selected by passing
in its string name as a parameter to correct_resp.

Access to the information about the KeyPress state by can be achieved by using
the following attributes:

-pressed : a string that is the name of the key that was pressed.
-press_time : a float value of the time when the key was pressed.
-correct : a boolean that is whether or not they pressed the correct_resp
-rt : a float that is the reaction time of the keypress. It is press_time - base_time.

The following is a keypress example that will identify what keys were pressed.

from smile.common import *

exp = Experiment()

with Loop(10):
 # Wait until any key is pressed
 kp = KeyPress()
 # Even though kp.pressed is a reference, you are able
 # to concatenate strings together
 Label(text="You Pressed :" + kp.pressed, duration = 2)

exp.run()

For more details, see the KeyPress docstring.

KeyRecord

KeyRecord is an input state that records all of the keyboard inputs for its
duration. This state will write out each keypress during its duration to a
.slog file.

The following example will save out a .slog file into log_bob.slog after
recording all of the keypresses during a 10 second period:

from smile.common import *

exp = Experiment()

KeyRecord(name="Bob", duration = 10)

exp.run()

For more details, see the KeyRecord docstring.

MouseCursor

MouseCursor is a visual state that shows the mouse for its duration. In
order to effectively use ButtonPress and Button states, MouseCursor
in parallel must be used. Refer to the ButtonPress example in the
SMILE tutorial page for more information.

The cursor image and the offset of the image can also be set as parameters
to this state. Any image passed in filename will be presented on the screen, replacing
the default mouse cursor.

The following example is of a mouse cursor that needs to be presented with an
imaginary image to be displayed as the cursor. Since the imaginary image is
100 by 100 pixels, and it points to the center of the image, we want the offset
of the cursor to be (50,50) so that the actual click of the mouse is in the
correct location:

from smile.common import *

exp = experiment()

MouseCursor(duration = 10, filename="mouse_test_pointer.png", offset=(50,50))

exp.run()

For more details, see the MouseCursor docstring.

For more useful mouse tutorials, see the Mouse Stuff section of the Tutorial
document.

 Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SMILE 0.1.0 documentation

Special Examples

This section is designed to develop techniques on how to use more
advanced states and advanced interactions with other states in SMILE.
For more detailed real life examples of experiments, reference
Full Experiments page!

Subroutine

A subroutine is a stand-alone state that performs a specific action; an action that is
often called multiple times in an experiment. The experiment will provide parameters
for the subroutine, but not alter the subroutine itself.

Note

It’s the experiment’s responsibility to save logging information that comes from the subroutine. The coder should make sure that the subroutine is providing the desired information to the experiment, which the experiment may save.

This tutorial covers how to write custom subroutine states.In
SMILE, a subroutine state is used.
to compartmentalize a block of states that a researcher reuses in different experiments.
The following example is an overview of a list presentation subroutine.

First, create a new directory called ListPresentTest and then create a new file
in that directory called list_present.py. Next, import the necessary packages and
define the subroutine for the list presentation.

from smile.common import *

@Subroutine
def ListPresent(self,
 listOfWords=[],
 interStimDur=.5,
 onStimDur=1,
 fixation=True,
 fixDur=1,
 interOrientDur=.2):

By placing @Subroutine above the subroutine definition, the compiler is told
to treat this as a SMILE subroutine. The subroutine will
eventually present a fixation cross, wait, present the stimulus, wait again, and
then repeat for all of the list items it is passed. Just like calling a function
or declaring a state, call subroutine in the body of the
experiment and pass in the variables into main_list_present.py, which will be
created later.

Warning

Always have self as the first argument when defining a subroutine. If you don’t, your code will not work as intended.

A powerful feature of subroutine is that any variable
declared into ‘self’ can be accessed outside of the subroutine. So, add a few of
the following to the subroutine:

@Subroutine
def ListPresent(self,
 listOfWords=[],
 interStimDur=.5,
 onStimDur=1,
 fixDur=1,
 interOrientDur=.2):

 self.timing = []

The only variable needed for later testing is an element to hold all of the
timing information to pass out into the experiment.

Next, add the stimulus loop:

@Subroutine
def ListPresent(self,
 listOfWords=[],
 interStimDur=.5,
 onStimDur=1,
 fixDur=1,
 interOrientDur=.2):
 self.timing = []

 with Loop(listOfWords) as trial:
 fix = Label(text='+', duration=fixDur)
 oriWait = Wait(interOrientDur)
 stim = Label(text=trial.current, duration=onStimDur)
 stimWait = Wait(interStimDur)
 self.timing += [Ref(dict,
 fix_dur=fix.duration,
 oriWait_dur=oriWait.duration,
 stim_dur=stim.duration,
 stimWait_dur=stimWait.duration)]

At this point the subroutine is finished. The mainListPresent.py needs to be
written next. All that is needed is generation of a list of words to be passed
into the new subroutine.

Finished main_list_present.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	from smile.common import *
from list_present import ListPresent
import random

WORDS_TO_DISPLAY = ['The', 'Boredom', 'Is', 'The', 'Reason', 'I',
 'started', 'Swimming', 'It\'s', 'Also', 'The',
 'Reason', 'I','Started', 'Sinking','Questions',
 'Dodge','Dip','Around','Breath','Hold']
INTER_STIM_DUR = .5
STIM_DUR = 1
INTER_ORIENT_DUR = .2
ORIENT_DUR = 1
random.shuffle(WORDS_TO_DISPLAY)
exp = Experiment()

lp = ListPresent(listOfWords=WORDS_TO_DISPLAY, interStimDur=INTER_STIM_DUR,
 onStimDur=STIM_DUR, fixDur=ORIENT_DUR,
 nterOrientDur=INTER_ORIENT_DUR)
Log(name='LISTPRESENTLOG',
 timing=lp.timing)
exp.run()

Finished list_present.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	from smile.common import *

@Subroutine
def ListPresent(self,
 listOfWords=[],
 interStimDur=.5,
 onStimDur=1,
 fixDur=1,
 interOrientDur=.2):
 self.timing = []
 with Loop(listOfWords) as trial:
 fix = Label(text='+', duration=fixDur)
 oriWait = Wait(interOrientDur)
 stim = Label(text=trial.current, duration=onStimDur)
 stimWait = Wait(interStimDur)
 self.timing += [Ref(dict,
 fix_dur=fix.duration,
 oriWait_dur=oriWait.duration,
 stim_dur=stim.duration,
 stimWait_dur=stimWait.duration)]

ButtonPress

In this section, the ButtonPress state and the
MouseCursor state will be examined. The following is a
simple experient that allows a participant to click a button on the screen and
then reports if the correct button was chosen.

Notice that this code, ButtonPress, acts as a
Parallel state. This means that all of the states defined within
ButtonPress become its children. The field correct that is passed into
ButtonPress takes the name of the correct button for the participant
as a string.

When defining Buttons within button press, the name attribute of each should
be set to something different. That way, when reviewing post-experiment
data, it is easy to distinguish which button the participant pressed.

When making an experiment with buttons, the cursor used to make the selections (such as a mouse cursor)
is a necessesary consideration. The MouseCursor state handles this.
By default, the experiment hides the mouse cursor. In
order to allow the participant to see where they are clicking, a MouseCursor
state must be included in the ButtonPress state. If the
participant needs to use the mouse for the duration of an experiment,
call the MouseCursor state just after assignment of the
Experiment variable.

Finished button_press_example.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	from smile.common import *

exp = Experiment()

#From here you can see setup for a ButtonPress state.
with ButtonPress(correct_resp='left', duration=5) as bp:
 MouseCursor()
 Button(name='left', text='left', left=exp.screen.left,
 bottom=exp.screen.bottom)
 Button(name='right', text='right', right=exp.screen.right,
 bottom=exp.screen.bottom)
 Label(text='PRESS THE LEFT BUTTON FOR A CORRECT ANSWER!')
Wait(.2)
with If(bp.correct):
 Label(text='YOU PICKED CORRECT', color='GREEN', duration=1)
with Else():
 Label(text='YOU WERE DEAD WRONG', color='RED', duration=1)

exp.run()

 Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SMILE 0.1.0 documentation

Full Experiments

Below are a few links to full, recognizable experiments that were coded up in
SMILE. They include the idea behind the experiment, an explanation of the code,
and they include a mini-analysis of the data collected. These real world examples
will provide a better understanding into exactly how to code a
SMILE experiment in real world conditions, rather than in bite-sized samples of
code.

Experiments

	Stroop Task
	The Experiment

	Analysis

	stroop.py in Full

	config.py in Full

	gen_stim.py in Full

	CITATION

	Sternberg Task
	The Experiment

	Analysis

	stern.py in Full

	config.py in Full

	gen_stim.py in Full

	CITATION

	Free Recall
	The Experiment

	Analysis

	free_recall.py in Full

	config.py in Full

	gen_stim.py in Full

	CITATION

	IAT Mouse Tracking
	The Experiment

	Analysis

	iat_mouse.py in full

	config.py in Full

	gen_stim.py in Full

	CITATION

 Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SMILE 0.1.0 documentation

 	Full Experiments

Stroop Task

[image: ../../_images/stroop.png]
This is the stroop task. The participant is required to view a list of words,
appearing one at a time on the screen, and say out loud the color of the text.
Each sound file corresponding to each trial are saved out as .wav files, with
the block and trial number in the filename.

The Experiment

First, let’s do the imports that we need for this experiment. We are also going
to execute the config.py file and the gen_stim.py file.

from smile.common import *
from smile.audio import RecordSoundFile

#execute both the configuration file and the
#stimulus generation file
from config import *
from gen_stim import *

For this experiment we defined two functions that would generate our list of
lists of dictionaries full of the information we need to run each trial of our
experiment. The first is called gen_lists(). The following is gen_stim.py.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

	def gen_lists():
 #First, let's define some variables.
 num_of_blocks = 4 #This is an arbitrary number of blocks.
 len_of_blocks = 24 #Once again, an arbitrary number of words in the block.
 total_words = num_of_blocks * len_of_blocks #The total number of words.
 dict_list = [] #The list to hold the dictionaries
 sample_list = [] #This list will hold a few dictionaries in order to provide a sample.

 """
 We will be creating dictionaries with the following keys:
 word The actual word.
 color The color the word will be presented as.
 matched True or false (True if the word describes its own color, false otherwise.)

 """

 #So, now we begin to create the lists.
 for y in range (num_of_blocks):
 for x in range(len_of_blocks/8):
 block_list = []
 #This block will create the matched word/color pairs.
 r_trial = {'word':'red', 'color':'RED', 'matched':True}
 block_list.append(r_trial)
 sample_list.append(r_trial)
 b_trial = {'word':'blue', 'color':'BLUE', 'matched':True}
 block_list.append(b_trial)
 sample_list.append(b_trial)
 g_trial = {'word':'green', 'color':'GREEN', 'matched':True}
 block_list.append(g_trial)
 sample_list.append(g_trial)
 o_trial = {'word':'orange', 'color':'ORANGE', 'matched':True}
 block_list.append(o_trial)
 sample_list.append(o_trial)

 #This set of four will create the mismatched color lists.
 rf_trial = {'word':'red', 'color':randomize_color('red', x%3), 'matched':False}
 block_list.append(rf_trial)
 sample_list.append(rf_trial)
 bf_trial = {'word':'blue', 'color':randomize_color('blue', x%3), 'matched':False}
 block_list.append(bf_trial)
 sample_list.append(bf_trial)
 gf_trial = {'word':'green', 'color':randomize_color('green', x%3), 'matched':False}
 block_list.append(gf_trial)
 sample_list.append(gf_trial)
 of_trial = {'word':'orange', 'color':randomize_color('orange', x%3), 'matched':False}
 block_list.append(of_trial)
 sample_list.append(of_trial)

 #And now we shuffle the lists to ensure randomness.
 shuffle(block_list)
 dict_list.append(block_list)
 shuffle(dict_list)
 return(dict_list, sample_list)

Inside this function we call another function that we used to give us the color
of the mismatched trials. This function is called randomize_color().
This function will return a string representative of the color that that text
of this trial will be. The following is the rest of gen_stim.py.

:lineno-start: 54

#This function will essentially select a random color from blue, orange, green, and red from amongst the colors that the inputted word is not.
def randomize_color(sColor, iColor):

 final_color = ''
 if(sColor == 'red'):
 if(iColor == 0):
 final_color = 'BLUE'
 elif(iColor == 1):
 final_color = 'ORANGE'
 else:
 final_color = 'GREEN'
 elif(sColor == 'blue'):
 if(iColor == 0):
 final_color = 'RED'
 elif(iColor == 1):
 final_color = 'GREEN'
 else:
 final_color = 'ORANGE'
 elif(sColor == 'green'):
 if(iColor == 0):
 final_color = 'ORANGE'
 elif(iColor == 1):
 final_color = 'BLUE'
 else:
 final_color = 'RED'
 elif(sColor == 'orange'):
 if(iColor == 0):
 final_color = 'RED'
 elif(iColor == 1):
 final_color = 'GREEN'
 else:
 final_color = 'BLUE'
 return final_color
#Generate the Stimulus
trials, sample_list = gen_lists(NUMBLOCKS, LENBLOCKS)

Now that we have our list gen setup, let’s run our list gen and setup our
experiment variables. The following is config.py.

	1
2
3
4
5
6
7
8
9

	#Read in the instructions
instruct_text = open('stroop_instructions.rst', 'r').read()
RSTFONTSIZE = 30
RSTWIDTH = 900
NUMBLOCKS = 4
LENBLOCKS = 24
recDuration = 2
interBlockDur = 2
interStimulusInterval = 2

Now we can start building our stroop experiment. The first line we run is
exp = Experiment() to tell SMILE that we are ready to start defining the
states in our state machine. The main states we are going to need when
presenting any stimulus, in our case Labels of text, are Loops.
The other state will be needed is the Wait state, to
provide a much needed slight delay in the stimulus.

Below are the first few lines of our experiment. We setup the experiment
variables and the loops that drive our experiment.

#Define the Experiment Variable
exp = Experiment()

#Show the instructions as an RstDocument Viewer on the screen
init_text = RstDocument(text=instruct_text, font_size=RSTFONTSIZE, width=RSTWIDTH, top=exp.screen.top, height=exp.screen.height)
with UntilDone():
 #Once you press any key, the UntilDone will cancel the RstDocument,
 #allowing the rest of the experiment to continue running.
 keypress = KeyPress()

#Initialize the block counter, only used because we need
#unique names for the .wav files later.
exp.blockNum = 0

#Initialize the Loop as "with Loop(list_like) as reference_variable_name:"
with Loop(trials) as block:
 #Initialize the trial counter, only used because we need
 #unique names for the .wav files later.
 exp.trialNum = 0

 inter_stim = Label(text = '+', font_size = 80, duration = interBlockDur)
 #Initialize the Loop as "with Loop(list_like) as reference_variable_name:"
 with Loop(block.current) as trial:

We have now declared our 2 loops. One is to loop over our blocks, and one is to
loop over our trials in each block. We also put an inter-stimulus fixation cross
to show the participant where the stimulus will be presented. The next step is
to define how our action states will work.

 #Display the word, with the appropriate colored text
 t = Label(text=trial.current['word'], font_size=48, color=trial.current['color'])
 with UntilDone():
 #The Label will stay on the screen for as long as
 #the RecordSoundFile state is active. The filename
 #for this state is different for each trial in each block.
 rec = RecordSoundFile(filename="b_" + Ref(str,exp.blockNum) + "_t_" + Ref(str, exp.trialNum),
 duration=recDuration)
 #Log the color and word that was presented on the screen,
 #as well as the block and trial number
 Log(name='Stroop', stim_word=trial.current['word'], stim_color=trial.current['color'],
 block_num=exp.blockNum, trial_num=exp.trialNum)
 Wait(interStimulusInterval)
 #Wait for a duration then present the fixation
 #cross again.
 inter_stim = Label(text = '+', font_size = 80, duration = interBlockDur)
 #Increase the trialNum
 exp.trialNum += 1
 #Increase the blockNum
 exp.blockNum += 1
#Run the experiment!
exp.run()

Analysis

The main way to analyze this data is to run all of your .wav files through
some kind of program that deals with sifting through the important information
that each file contains to remove errors. That info is what word they are saying
in it and how long, from the start of recording, it took them to respond. With
those two peices of information, you would be able to run stats on them along with
the data from the experiment, i.e. the color and the text of the presented item
during each trial.

How you go about getting the info from the .wav files might be hard, but
getting the data from SMILE and into a data-frame is fairly easy. Below is a
the few lines of code you would use to get at all of the data from all of your
participants.

	1
2
3
4
5
6
7
8
9

	from smile.log as lg
#define subject pool
subjects = ["s000/","s001/","s002/"]
dic_list = []
for sbj in subjects:
 #get at all the different subjects
 dic_list.append(lg.log2dl(log_filename="data/" + sbj + "Log_Stroop"))
#print out all of the stimulus words of the first subject's first trial
print dic_list[0]['stim_word']

You can also translate all of the .slog files into .csv files easily by
running the command log2csv() for each participant. An example of this is
located below.

	1
2
3
4
5
6

	from smile.log as lg
#define subject pool
subjects = ["s000/","s001/","s002/"]
for sbj in subjects:
 #Get at all the subjects data, naming the csv appropriately.
 lg.log2csv(log_filename="data/" + sbj + "Log_Stroop", csv_filename=sbj + "_Stroop")

stroop.py in Full

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

	from smile.common import *
from smile.audio import RecordSoundFile
from random import *
from math import *

#execute both the configuration file and the
#stimulus generation file
from config import *
from gen_stim import *

#Define the Experiment Variable
exp = Experiment()

#Show the instructions as an RstDocument Viewer on the screen
init_text = RstDocument(text=instruct_text, font_size=RSTFONTSIZE, width=RSTWIDTH, top=exp.screen.top, height=exp.screen.height)
with UntilDone():
 #Once you press any key, the UntilDone will cancel the RstDocument,
 #allowing the rest of the experiment to continue running.
 keypress = KeyPress()

#Initialize the block counter, only used because we need
#unique names for the .wav files later.
exp.blockNum = 0

#Initialize the Loop as "with Loop(list_like) as reference_variable_name:"
with Loop(trials) as block:
 #Initialize the trial counter, only used because we need
 #unique names for the .wav files later.
 exp.trialNum = 0

 inter_stim = Label(text = '+', font_size = 80, duration = interBlockDur)
 #Initialize the Loop as "with Loop(list_like) as reference_variable_name:"
 with Loop(block.current) as trial:
 #Display the word, with the appropriate colored text
 t = Label(text=trial.current['word'], font_size=48, color=trial.current['color'])
 with UntilDone():
 #The Label will stay on the screen for as long as
 #the RecordSoundFile state is active. The filename
 #for this state is different for each trial in each block.
 rec = RecordSoundFile(filename="b_" + Ref(str,exp.blockNum) + "_t_" + Ref(str, exp.trialNum),
 duration=recDuration)
 #Log the color and word that was presented on the screen,
 #as well as the block and trial number
 Log(name='Stroop', stim_word=trial.current['word'], stim_color=trial.current['color'],
 block_num=exp.blockNum, trial_num=exp.trialNum)
 Wait(interStimulusInterval)
 #Wait for a duration then present the fixation
 #cross again.
 inter_stim = Label(text = '+', font_size = 80, duration = interBlockDur)
 #Increase the trialNum
 exp.trialNum += 1
 #Increase the blockNum
 exp.blockNum += 1
#Run the experiment!
exp.run()

config.py in Full

	1
2
3
4
5
6
7
8

	instruct_text = open('stroop_instructions.rst', 'r').read()
RSTFONTSIZE = 30
RSTWIDTH = 900
NUMBLOCKS = 4
LENBLOCKS = 24
recDuration = 2
interBlockDur = 2
interStimulusInterval = 2

gen_stim.py in Full

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

	def gen_lists(num_of_blocks, len_of_blocks):
 #First, let's define some variables.
 total_words = num_of_blocks * len_of_blocks #The total number of words.
 dict_list = [] #The list to hold the dictionaries
 sample_list = [] #This list will hold a few dictionaries in order to provide a sample.

 """
 We will be creating dictionaries with the following keys:
 word The actual word.
 color The color the word will be presented as.
 matched True or false (True if the word describes its own color, false otherwise.)

 """

 #Now we begin to create the lists.
 for y in range (num_of_blocks):
 for x in range(len_of_blocks/8):
 block_list = []
 #This block will create the matched word/color pairs.
 r_trial = {'word':'red', 'color':'RED', 'matched':True}
 block_list.append(r_trial)
 sample_list.append(r_trial)
 b_trial = {'word':'blue', 'color':'BLUE', 'matched':True}
 block_list.append(b_trial)
 sample_list.append(b_trial)
 g_trial = {'word':'green', 'color':'GREEN', 'matched':True}
 block_list.append(g_trial)
 sample_list.append(g_trial)
 o_trial = {'word':'orange', 'color':'ORANGE', 'matched':True}
 block_list.append(o_trial)
 sample_list.append(o_trial)

 #This set of four will create the mismatched color lists.
 rf_trial = {'word':'red', 'color':randomize_color('red', x%3), 'matched':False}
 block_list.append(rf_trial)
 sample_list.append(rf_trial)
 bf_trial = {'word':'blue', 'color':randomize_color('blue', x%3), 'matched':False}
 block_list.append(bf_trial)
 sample_list.append(bf_trial)
 gf_trial = {'word':'green', 'color':randomize_color('green', x%3), 'matched':False}
 block_list.append(gf_trial)
 sample_list.append(gf_trial)
 of_trial = {'word':'orange', 'color':randomize_color('orange', x%3), 'matched':False}
 block_list.append(of_trial)
 sample_list.append(of_trial)

 #And now we shuffle the lists to ensure randomness.
 shuffle(block_list)
 dict_list.append(block_list)
 shuffle(dict_list)
 return(dict_list, sample_list)

#This function will essentially select a random color from blue, orange, green, and red from amongst the colors that the inputted word is not.
def randomize_color(sColor, iColor):

 final_color = ''
 if(sColor == 'red'):
 if(iColor == 0):
 final_color = 'BLUE'
 elif(iColor == 1):
 final_color = 'ORANGE'
 else:
 final_color = 'GREEN'
 elif(sColor == 'blue'):
 if(iColor == 0):
 final_color = 'RED'
 elif(iColor == 1):
 final_color = 'GREEN'
 else:
 final_color = 'ORANGE'
 elif(sColor == 'green'):
 if(iColor == 0):
 final_color = 'ORANGE'
 elif(iColor == 1):
 final_color = 'BLUE'
 else:
 final_color = 'RED'
 elif(sColor == 'orange'):
 if(iColor == 0):
 final_color = 'RED'
 elif(iColor == 1):
 final_color = 'GREEN'
 else:
 final_color = 'BLUE'
 return final_color
#Generate the Stimulus
trials, sample_list = gen_lists(NUMBLOCKS, LENBLOCKS)

CITATION

Stroop, J.R. (1935), "Studies of interference in serial verbal reactions", Journal of Experimental Psychology 18 (6): 643–662

 Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SMILE 0.1.0 documentation

 	Full Experiments

Sternberg Task

[image: ../../_images/stern.png]
This is the Sternberg task. Developed by Saul Sternberg in the 1960’s, this task
is designed to test a participants working memory by asking them to view a list
of several stimuli, usually words, numbers, or letters, and then showing them
a stimuli that may or may not have been in that list. They are then required to
make a judgement on whether or not that word was in the list. Below is the
SMILE version of that classic task. We use Action states like KeyPress
and Label in this experiment, as well as Flow
states like UntilDone and Loop.

Each participant of this experiment will have a different log that will contain
all of the information about each block, as well as all of the information that
would be needed to run analysis of this experiment, i.e. reaction times.

The Experiment

First, let’s do the imports of the experiment. Below is the start of stern.py.
We will also execute the configuration file and the stimulus generation file.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	# global imports
import random
import string
load all the states
from smile.common import *

#execute both the configuration file and the
#stimulus generation file
from config import *
from gen_stim import *

Easy! Now, let’s also set up all the experiment variables. These are all the
variables that are needed for generating stimuli, durations of states, and
little things like instructions and the keys for KeyPress states. The
following is config.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	# config vars
NUM_TRIALS = 2
#The trials, shuffled, for the stimulus generation.
NUM_ITEMS = [2,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4]
random.shuffle(NUM_ITEMS)
ITEMS = string.ascii_lowercase
#instructions written in another document
instruct_text = open('stern_instructions.rst', 'r').read()
RSTFONTSIZE = 30
RSTWIDTH = 900
STUDY_DURATION = 1.2
STUDY_ISI = .4
RETENTION_INTERVAL = 1.0
#KeyPress stuff
RESP_KEYS = ['J','K']
RESP_DELAY = .2
ORIENT_DURATION = 1.0
ORIENT_ISI = .5
ITI = 1.0
FONTSIZE = 30

Next is the generation of our stimuli. In SMILE, the best practice is to
generate lists of dictionaries to loop over, that way you don’t have to do any
calculations during the actual experiments. Next is the definition of a function
that was written to generate a stern trial called stern_trial(), as well as
where we call it to generate our stimulus. The following is gen_stim.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	# generate sternberg trial
def stern_trial(nitems=2, lure_trial=False,):
 if lure_trial:
 condition = 'lure'
 items = random.sample(ITEMS,nitems+1)
 else:
 condition = 'target'
 items = random.sample(ITEMS,nitems)
 # append a test item
 items.append(random.sample(items,1)[0])
 trial = {'nitems':nitems,
 'study_items':items[:-1],
 'test_item':items[-1],
 'condition':condition,}
 return trial

trials = []
for i in NUM_ITEMS:
 # add target trials
 trials.extend([stern_trial(i,lure_trial=False) for t in range(NUM_TRIALS)])
 # add lure trials
 trials.extend([stern_trial(i,lure_trial=True) for t in range(NUM_TRIALS)])

shuffle and number
random.shuffle(trials)
for t in range(len(trials)):
 trials[t]['trial_num'] = t

After we generate our stimulus we need to set up our experiment. The comments in
the following code explain what every few lines do.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

	#Define the experiment
exp = Experiment()
#Present the instructions to the participant
init_text = RstDocument(text=instruct_text, width=RSTWIDTH, font_size=RSTFONTSIZE, top=exp.screen.top, height=exp.screen.height)
with UntilDone():
 #Once the KeyPress is detected, the UntilDone
 #cancels the RstDocument
 keypress = KeyPress()
loop over study block
with Loop(trials) as trial:
 #Setup the list of study times.
 exp.study_times = []
 # orient stim
 orient = Label(text='+',duration=ORIENT_DURATION, font_size=FONTSIZE)
 Wait(ORIENT_ISI)
 # loop over study items
 with Loop(trial.current['study_items']) as item:
 # present the letter
 ss = Label(text=item.current, duration=STUDY_DURATION, font_size=FONTSIZE)
 # wait some jittered amount
 Wait(STUDY_ISI)
 # append the time
 exp.study_times+=[ss.appear_time['time']]
 # Retention interval
 Wait(RETENTION_INTERVAL - STUDY_ISI)
 # present the letter
 test_stim = Label(text=trial.current['test_item'], bold=True, font_size=FONTSIZE)
 with UntilDone():
 # wait some before accepting input
 Wait(RESP_DELAY)
 #After the KeyPress is detected, the UntilDone
 #cancels the Label test_stim and allows the
 #experiment to continue.
 ks = KeyPress(keys=RESP_KEYS,
 base_time=test_stim.appear_time['time'])
 # Log the trial
 Log(trial.current,
 name="Stern",
 resp=ks.pressed,
 rt=ks.rt,
 orient_time=orient.appear_time['time'],
 study_times=exp.study_times,
 test_time=test_stim.appear_time['time'],
 correct=(((trial.current['condition']=='target')&
 (ks.pressed==RESP_KEYS[0])) |
 ((trial.current['condition']=='lure')&
 (ks.pressed==RESP_KEYS[1]))))
 Wait(ITI)
run that exp!
exp.run()

Analysis

When coding your experiment, you don’t have to worry about losing any data
because all of it is saved out into .slog files anyway. The thing you do have
to worry about is whether or not you want that data to be easily available or if
you want to spend hours slogging through your data. We made it easy for you
to pick which data you want saved out during the running of your experiment with
use of the Log state.

The relevant data that we need from a Sternberg task would be the reaction
times for every test event, all of the presented letters from the study and
test portion of the experiment, and whether they answered correctly or not. In
the Log that we defined in our experiment above, we saved a little more than
that out, because it is better to save out data and not need it, then to not
save it and need it later.

If you would like to grab your data from the .slog files to analyze your data
in python, you need to use the log2dl(). This function will
read in all of the .slog files with the same base name, and convert them into
one long list of dictionaries. Below is a the few lines of code you would use to
get at all of the data from three imaginary participants, named as s000, s001,
and s002.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	from smile.log as lg
#define subject pool
subjects = ["s000/","s001/","s002/"]
dic_list = []
for sbj in subjects:
 #get at all the different subjects
 dic_list.append(lg.log2dl(log_filename="data/" + sbj + "Log_Stern"))
#print out all of the study times in the first study block for
#participant one, block one
print dic_list[0]['study_times']

You can also translate all of the .slog files into .csv files easily by
running the command log2csv() for each participant. An example of this is
located below.

	1
2
3
4
5
6

	from smile.log as lg
#define subject pool
subjects = ["s000/","s001/","s002/"]
for sbj in subjects:
 #Get at all the subjects data, naming the csv appropriately.
 lg.log2csv(log_filename="data/" + sbj + "Log_Stern", csv_filename=sbj + "_Stern")

stern.py in Full

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

	# global imports
import random
import string
load all the states
from smile.common import *

#execute both the configuration file and the
#stimulus generation file
from config import *
from gen_stim import *

#Define the experiment
exp = Experiment()
#Present the instructions to the participant
init_text = RstDocument(text=instruct_text, width=RSTWIDTH, font_size=RSTFONTSIZE top=exp.screen.top, height=exp.screen.height)
with UntilDone():
 #Once the KeyPress is detected, the UntilDone
 #cancels the RstDocument
 keypress = KeyPress()
loop over study block
with Loop(trials) as trial:
 #Setup the list of study times.
 exp.study_times = []
 # orient stim
 orient = Label(text='+',duration=ORIENT_DURATION, font_size=FONTSIZE)
 Wait(ORIENT_ISI)
 # loop over study items
 with Loop(trial.current['study_items']) as item:
 # present the letter
 ss = Label(text=item.current, duration=STUDY_DURATION, font_size=FONTSIZE)
 # wait some jittered amount
 Wait(STUDY_ISI)
 # append the time
 exp.study_times+=[ss.appear_time['time']]
 # Retention interval
 Wait(RETENTION_INTERVAL - STUDY_ISI)
 # present the letter
 test_stim = Label(text=trial.current['test_item'], bold=True, font_size=FONTSIZE)
 with UntilDone():
 # wait some before accepting input
 Wait(RESP_DELAY)
 #After the KeyPress is detected, the UntilDone
 #cancels the Label test_stim and allows the
 #experiment to continue.
 ks = KeyPress(keys=RESP_KEYS,
 base_time=test_stim.appear_time['time'])
 # Log the trial
 Log(trial.current,
 name="Stern",
 resp=ks.pressed,
 rt=ks.rt,
 orient_time=orient.appear_time['time'],
 study_times=exp.study_times,
 test_time=test_stim.appear_time['time'],
 correct=(((trial.current['condition']=='target')&
 (ks.pressed==RESP_KEYS[0])) |
 ((trial.current['condition']=='lure')&
 (ks.pressed==RESP_KEYS[1]))))
 Wait(ITI)
run that exp!
exp.run()

config.py in Full

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	# config vars
NUM_TRIALS = 2
NUM_ITEMS = [2,3,4]
ITEMS = string.ascii_lowercase
instruct_text = open('stern_instructions.rst', 'r').read()
RSTFONTSIZE = 30
RSTWIDTH = 900
STUDY_DURATION = 1.2
STUDY_ISI = .4
RETENTION_INTERVAL = 1.0
RESP_KEYS = ['J','K']
RESP_DELAY = .2
ORIENT_DURATION = 1.0
ORIENT_ISI = .5
ITI = 1.0
FONTSIZE = 30

gen_stim.py in Full

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	# generate Sternberg trial
def stern_trial(nitems=2, lure_trial=False,):
 if lure_trial:
 condition = 'lure'
 items = random.sample(ITEMS,nitems+1)
 else:
 condition = 'target'
 items = random.sample(ITEMS,nitems)
 # append a test item
 items.append(random.sample(items,1)[0])
 trial = {'nitems':nitems,
 'study_items':items[:-1],
 'test_item':items[-1],
 'condition':condition,}
 return trial

trials = []
for i in NUM_ITEMS:
 # add target trials
 trials.extend([stern_trial(i,lure_trial=False) for t in range(NUM_TRIALS)])
 # add lure trials
 trials.extend([stern_trial(i,lure_trial=True) for t in range(NUM_TRIALS)])

shuffle and number
random.shuffle(trials)
for t in range(len(trials)):
 trials[t]['trial_num'] = t

CITATION

Sternberg, S. (1966), "High-speed scanning in human memory", Science 153 (3736), 652-654

 Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SMILE 0.1.0 documentation

 	Full Experiments

Free Recall

[image: ../../_images/free_recall.png]
Free-Recall is a psychological paradigm where the participant is shown a list of
words and is then asked to recall the displayed words in any order immediately
after being shown or after a period of delay.

The kind of Free-Recall Experiment that we wrote is the Immediate Free-Recall
task. Our participant will view 10, 15, or 20 words and then be asked to recall
as many words as possible from the list in 20, 30, or 40 seconds respectively.
This experiment will show you how to use the Subroutine
called FreeKey, as well as things like Label
and Loop.

Below we will show you the best practices for coding an experiment like this one.

The Experiment

The best thing to do when coding a SMILE experiment is to break up the
experiment into 3 different files: the experiment file with all the SMILE code,
the config file with all the experimental variables, and the stimulus
generation file.

The first thing we will look at is free_recall.py. In this file we need to
import smile as well as execute the config.py and the gen_stim.py.

	1
2
3
4
5
6
7
8

	#freekey.py
from smile.common import *
from smile.freekey import FreeKey

#execute both the configuration file and the
#stimulus generation file
from config import *
from gen_stim import *

Inside config.py we setup any variables that will need to be used during the
experiment as well as open any files that we might need for list generation or
instructions for the participant.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	#Names of the stimulus files
filenameL = "pools/living.txt"
filenameN = "pools/nonliving.txt"

#Open the files and combine them
L = open(filenameL)
N = open(filenameN)
stimList = L.read().split('\n')
stimList.append(N.read().split('\n'))

#Open the instructions file
instruct_text = open('freekey_instructions.rst', 'r').read()

#Define the Experimental Variables
ISI = 2
IBI = 2
STIMDUR = 2
PFI = 4
FONTSIZE = 40
RSTFONTSIZE = 30
RSTWIDTH = 900

MINFKDUR = 20

NUMBLOCKS = 6
NUMPERBLOCK = [10,15,20]

Next we can take a look into our list gen. Simply, we generate a list of
dictionaries where study points to a list of words and duration points
to the duration that the participants have to freely recall the words.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	import random

#Shuffle the stimulus
random.shuffle(stimList)

blocks = []
#Loop NUMBLOCKS times
for i in range(NUMBLOCKS):
 tempList = []
 #For each block, loop either 10, 15, or 20 times
 #Counter balanced to have equal numbers of each
 for x in range(NUMPERBLOCK[i%len(NUMPERBLOCK)]):
 tempList.append(stimList.pop())
 #Create tempBlock
 tempBlock = {"study":tempList,
 "duration":(MINFKDUR + 10*i%len(NUMPERBLOCK))}
 blocks.append(tempBlock)
#Shuffle the newly created list of blocks
random.shuffle(blocks)

Finally we can get to the fun stuff! We now can start programming our SMILE
experiment. The comments in the following section of code explain why we do each
part of the experiment.

#Initialize the Experiment
exp = Experiment()

#Show the instructions to the participant
RstDocument(text=instruct_text, base_font_size=RSTFONTSIZE, width=RSTWIDTH, height=exp.screen.height)
with UntilDone():
 #When a KeyPress is detected, the UntilDone
 #will cancel the RstDocument state
 KeyPress()
#Start the experiment Loop
with Loop(blocks) as block:
 Wait(IBI)
 with Loop(block.current['study']) as study:
 #Present the Fixation Cross
 Label(text="+", duration=ISI, font_size=FONTSIZE)
 #Present the study item
 Label(text=study.current, duration=STIMDUR, font_size=FONTSIZE)
 Wait(PFI)
 #Start FreeKey
 fk = FreeKey(Label(text="XXXXXXX", font_size=FONTSIZE), max_duration=block.current['duration'])
 #Log everything!
 Log(block,
 name="FreeKey",
 responses = fk.responses)
#Run the experiment
exp.run()

Analysis

When coding your experiment, you don’t have to worry about losing any data
because all of it is saved out into .slog files anyway. The thing you do have
to worry about is whether or not you want that data to be easily available or if you
want to spend hours slogging through your data. We made it easy for you
to pick which data you want saved out during the running of your experiment with
use of the Log state.

Relevant data from the Free-Recall task would be the responses from each
FreeKey state. In the Log that we used in the experiment above, we
log everything in each block of the experiment, i.e. the stimulus and the
duration that they are allowed to respond in, and the responses from FreeKey.

If you would like to grab your data from the .slog files to analyze your data
in python, you need to use the log2dl(). This function will
read in all of the .slog files with the same base name, and convert them into
one long list of dictionaries. Below is a the few lines of code you would use to
get at all of the data from three imaginary participants, named as s000, s001,
and s002.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	from smile.log as lg
#define subject pool
subjects = ["s000/","s001/","s002/"]
dic_list = []
for sbj in subjects:
 #get at all the different subjects
 dic_list.append(lg.log2dl(log_filename="data/" + sbj + "Log_FreeKey"))
#print out all of the study times in the first study block for
#participant one, block one
print dic_list[0]['study_times']

You can also translate all of the .slog files into .csv files easily by
running the command log2csv() for each participant. An example of this is
located below.

	1
2
3
4
5
6

	from smile.log as lg
#define subject pool
subjects = ["s000/","s001/","s002/"]
for sbj in subjects:
 #Get at all the subjects data, naming the csv appropriately.
 lg.log2csv(log_filename="data/" + sbj + "Log_FreeKey", csv_filename=sbj + "_FreeKey")

free_recall.py in Full

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

	#freekey.py
from smile.common import *
from smile.freekey import FreeKey

#execute both the configuration file and the
#stimulus generation file
from config import *
from gen_stim import *

#Initialize the Experiment
exp = Experiment()

#Show the instructions to the participant
RstDocument(text=instruct_text, base_font_size=RSTFONTSIZE, width=RSTWIDTH, height=exp.screen.height)
with UntilDone():
 #When a KeyPress is detected, the UntilDone
 #will cancel the RstDocument state
 KeyPress()
#Start the experiment Loop
with Loop(blocks) as block:
 Wait(IBI)
 with Loop(block.current['study']) as study:
 #Present the Fixation Cross
 Label(text="+", duration=ISI, font_size=FONTSIZE)
 #Present the study item
 Label(text=study.current, duration=STIMDUR, font_size=FONTSIZE)
 Wait(PFI)
 #Start FreeKey
 fk = FreeKey(Label(text="XXXXXXX", font_size=FONTSIZE), max_duration=block.current['duration'])
 #Log everything!
 Log(block,
 name="FreeKey",
 responses = fk.responses)
#Run the experiment
exp.run()

config.py in Full

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

	#Names of the stimulus files
filenameL = "pools/living.txt"
filenameN = "pools/nonliving.txt"

#Open the files and combine them
L = open(filenameL)
N = open(filenameN)
stimList = L.read().split('\n')
stimList.append(N.read().split('\n'))

#Open the instructions file
instruct_text = open('freekey_instructions.rst', 'r').read()

#Define the Experimental Variables
ISI = 2
IBI = 2
STIMDUR = 2
PFI = 4
FONTSIZE = 40
RSTFONTSIZE = 30
RSTWIDTH = 900

MINFKDUR = 20

NUMBLOCKS = 6
NUMPERBLOCK = [10,15,20]

gen_stim.py in Full

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	import random

#Shuffle the stimulus
random.shuffle(stimList)

blocks = []
#Loop NUMBLOCKS times
for i in range(NUMBLOCKS):
 tempList = []
 #For each block, loop either 10, 15, or 20 times
 #Counter balanced to have equal numbers of each
 for x in range(NUMPERBLOCK[i%len(NUMPERBLOCK)]):
 tempList.append(stimList.pop())
 #Create tempBlock
 tempBlock = {"study":tempList,
 "duration":(MINFKDUR + 10*i%len(NUMPERBLOCK))}
 blocks.append(tempBlock)
#Shuffle the newly created list of blocks
random.shuffle(blocks)

CITATION

Murdock, Bennet B. (1962), "The serial position effect of free recall", Journal of Experimental Psychology 64 (5): 482–488

Waugh, Nancy C. (1961), "Free versus serial recall", Journal of Experimental Psychology 62 (5): 496–502

 Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SMILE 0.1.0 documentation

 	Full Experiments

IAT Mouse Tracking

[image: ../../_images/iat_mouse.png]
The IAT, or Implicit-Association Test, was introduced by Anthony Greenwald et al.
in 1998. This task is designed to get at the individual differences in our
implicit associations with different concepts that make up our lives. The basic
IAT requires the participant to rapidly categorize two target concepts with an
attribute, such that the response times will be faster with strongly associated
pairings and slower for weakly associated pairings. The key here is that
the participant should act as quickly as they can so this experiment can better
get at the implicit associations rather than the surface level associations.

The study that we are showing off in smile (Yu, Wang, Wang et al. 2012)
designed an IAT that incorporated mouse tracking into their study to better
get at the underlying mechanisms of implicit-association. We ask our
participants to view names of flowers, names of bugs, positively associated
nouns, and negatively associated nouns and to classify them into categories.
The blocks of stimuli will be better explained below in the Stimulus Generation
section of this document.

This SMILE experiment will utilize many of the Mouse
Classes in mouse.py, including MouseCursor and
MouseRecord. We will also be using many of the SMILE
flow states like Loop and Meanwhile
and If. Along with the use of Mouse states, we will
be using ButtonPress as our main form of input for the
experiment.

The Experiment

When writing any experiment in smile, it is usually best to split it over
multiple files so that you can better organize your experiment. In this example,
we split our experiment into 3 different files, gen_stim.py, config.py, and
iat_mouse.py.

In iat_mouse.py we have the imports that we need for the experiment. Below are
those imports.

	1
2
3

	from smile.common import *
from config import *
from gen_stim import *

Our experiment first imports smile.commmon, where all of the most used states
are imported from, as well as config and gen_stim. Let’s take a look into config,
where we set and define our global variables for the experiment.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	#RST VARIABLES
RSTFONTSIZE = 50
RSTWIDTH = 600
instruct1 = open('iat_mouse_instructions1.rst', 'r').read()
instruct2 = open('iat_mouse_instructions2.rst', 'r').read()
instruct3 = open('iat_mouse_instructions3.rst', 'r').read()
instruct4 = open('iat_mouse_instructions4.rst', 'r').read()
instruct5 = open('iat_mouse_instructions5.rst', 'r').read()
instruct6 = open('iat_mouse_instructions6.rst', 'r').read()
instruct7 = open('iat_mouse_instructions7.rst', 'r').read()

#MOUSE MOVING VARIABLES
WARNINGDURATION = 2.0
MOUSEMOVERADIUS = 100
MOUSEMOVEINTERVAL = 0.400

#BUTTON VARIABLES
BUTTONHEIGHT = 150
BUTTONWIDTH = 200

#GENERAL VARIABLES
FONTSIZE = 40
INTERTRIALINTERVAL = 0.750

After defining our global variables, we should define our stimulus generator. In
gen_stim.py we define a function that generates lists of dictionaries that
represent out blocks of trials. The following is our gen_stim.py, where we
first set up our lists of stimuli to be pulled from.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	import random as rm
from config import instruct1,instruct2,instruct3,instruct4,instruct5,instruct6,instruct7

WORDLISTS FROM Greenwald et al. 1998
filenameI = "pools/insects.txt"
filenameF = "pools/flowers.txt"
filenameP = "pools/positives.txt"
filenameN = "pools/negatives.txt"

I = open(filenameI)
F = open(filenameF)
P = open(filenameP)
N = open(filenameN)

stimListI = I.read().split('\n')
stimListF = F.read().split('\n')
stimListP = P.read().split('\n')
stimListN = N.read().split('\n')

#pop off the trailing line
stimListI.pop(len(stimListI)-1)
stimListF.pop(len(stimListF)-1)
stimListP.pop(len(stimListP)-1)
stimListN.pop(len(stimListN)-1)

Next we define our gen_blocks() function. At the bottom of gen_stim.py we
also call gen_blocks() so our iat_mouse.py doesn’t have to.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

	def gen_blocks(type):

 sampI = rm.sample(stimListI, 10)
 sampF = rm.sample(stimListF, 10)
 sampP = rm.sample(stimListP, 10)
 sampN = rm.sample(stimListN, 10)

 #Generate the blocks
 list1 = {"left_word":"flower", "right_word":"insect", "instruct":instruct1,
 "words":([{"correct":"right", "center_word":I} for I in sampI] +
 [{"correct":"left", "center_word":F} for F in sampF])}

 list2 = {"left_word":"positive", "right_word":"negative", "instruct":instruct2,
 "words":([{"correct":"left", "center_word":P} for P in sampP] +
 [{"correct":"right", "center_word":N} for N in sampN])}

 list3 = {"left_word":"flower positive", "right_word":"insect negative", "instruct":instruct3,
 "words":([{"correct":"right", "center_word":I} for I in rm.sample(sampI[:], 5)] +
 [{"correct":"left", "center_word":F} for F in rm.sample(sampF[:], 5)] +
 [{"correct":"left", "center_word":P} for P in rm.sample(sampP[:], 5)] +
 [{"correct":"right", "center_word":N} for N in rm.sample(sampN[:], 5)])}

 list4 = {"left_word":"flower positive", "right_word":"insect negative", "instruct":instruct4,
 "words":([{"correct":"right", "center_word":I} for I in sampI] +
 [{"correct":"left", "center_word":F} for F in sampF] +
 [{"correct":"left", "center_word":P} for P in sampP] +
 [{"correct":"right", "center_word":N} for N in sampN])}

 list5 = {"left_word":"insect", "right_word":"flower", "instruct":instruct5,
 "words":[{"correct":"left", "center_word":I} for I in sampI] + [{"correct":"right", "center_word":F} for F in sampF]}

 list6 = {"left_word":"insect positive", "right_word":"flower negative", "instruct":instruct6,
 "words":([{"correct":"left", "center_word":I} for I in rm.sample(sampI[:], 5)] +
 [{"correct":"right", "center_word":F} for F in rm.sample(sampF[:], 5)] +
 [{"correct":"left", "center_word":P} for P in rm.sample(sampP[:], 5)] +
 [{"correct":"right", "center_word":N} for N in rm.sample(sampN[:], 5)])}

 list7 = {"left_word":"insect positive", "right_word":"flower negative", "instruct":instruct7,
 "words":([{"correct":"left", "center_word":I} for I in sampI] +
 [{"correct":"right", "center_word":F} for F in sampF] +
 [{"correct":"left", "center_word":P} for P in sampP] +
 [{"correct":"right", "center_word":N} for N in sampN])}
 rm.shuffle(list1['words'])
 rm.shuffle(list2['words'])
 rm.shuffle(list3['words'])
 rm.shuffle(list4['words'])
 rm.shuffle(list5['words'])
 rm.shuffle(list6['words'])
 rm.shuffle(list7['words'])

 #If type 1, then do critical compatible lists
 if type == 1:
 return [list1, list2, list3, list4, list5, list6, list7]
 #if type 2, then do critical incompatible lists
 else:
 return [list5, list2, list6, list7, list1, list3, list4]
#GenBlocks
BLOCKS = gen_blocks(1)

Now we can look at the rest of iat_mouse.py. The following is the setup of the
block loop and the setup of the trial loop. At the beginning of each loop, you
will see a new instructions page and will not be able to go on with the experiment
until you press a key. The block loop will loop over the BLOCKS that were
defined in gen_stim.py, whereas the trial loop will loop over the words key
that is attached to each block’s dictionary.

#Set up the Block loop, where *block* is a
#Reference to the variable you are looping over
with Loop(BLOCKS) as block:
 #Show the instructions to the participant
 RstDocument(text=block.current['instruct'], base_font_size=RSTFONTSIZE, width=RSTWIDTH, height=exp.screen.height)
 with UntilDone():
 #When a KeyPress is detected, the UntilDone
 #will cancel the RstDocument state
 KeyPress()
 #Setup a loop over each Trial in a Block. *block.current* references the
 #current iteration of the loop, which is a dictionary that contains the list
 #words. *trial* will be our reference to the current word in our loop.
 with Loop(block.current['words']) as trial:

The core of this experiment is the trial level loop. Below is the code that defines
the states that run each and every trial for the participant. This is the section
of code that defines the button press, the things that happen while
the buttons are waiting to be pressed, and the Log the logs out the information
from each trial. It also sets up the MouseRecord that tracks the mouse positions
that need to be analyzed for this experiment.

 #initialize our testing variable in Experiment Runtime
 #exp.something = something will create a Set state
 exp.mouse_test = False
 #The following is a ButtonPress state. This state works like KeyPress,
 #but instead waits for any of the buttons that are its children to be
 #pressed.
 with ButtonPress(correct_resp=trial.current['correct']) as bp:
 #block.current is a dictionary that has all of the information we
 #would need during each individual block, including the text that is
 #in these buttons, which differs from block to block
 Button(text=block.current['left_word'], name="left", left=0,
 top=exp.screen.top, width = BUTTONWIDTH, height=BUTTONHEIGHT, text_size = (170, None),
 font_size=FONTSIZE, halign='center')
 Button(text=block.current['right_word'], name="right",
 right=exp.screen.right, top=exp.screen.top,
 width = BUTTONWIDTH, height = BUTTONHEIGHT, text_size = (170, None),
 font_size=FONTSIZE, halign='center')
 #Required to see the mouse on the screen!
 MouseCursor()
 #while those buttons are waiting to be pressed, go ahead and do the
 #children of this next state, the Meanwhile
 with Meanwhile():
 #The start button that is required to be pressed before the trial
 #word is seen.
 with ButtonPress():
 Button(text="Start", bottom=exp.screen.bottom, font_size=FONTSIZE)
 #Do all of the children of a Parallel at the same time.
 with Parallel():
 #display target word
 target_lb = Label(text=trial.current['center_word'], font_size=FONTSIZE, bottom=exp.screen.bottom+100)
 #Record the movements of the mouse
 MouseRecord(name="MouseMovements")
 #Setup an invisible rectangle that is used to detect exactly
 #when the mouse starts to head toward an answer.
 rtgl = Rectangle(center=MousePos(), width=MOUSEMOVERADIUS,
 height=MOUSEMOVERADIUS, color=(0,0,0,0))
 with Serial():
 #wait until the mouse leaves the rectangle from above
 wt = Wait(until=(MouseWithin(rtgl) == False))
 #If they waited too long to start moving, tell the experiment
 #to display a warning message to the participant
 with If(wt.event_time['time'] - wt.start_time > MOUSEMOVEINTERVAL):
 exp.mouse_test = True
 with If(exp.mouse_test):
 Label(text="You are taking too long to move, Please speed up!",
 font_size=FONTSIZE, color="RED", duration=WARNINGDURATION)
 #wait for the interstimulus interval
 Wait(INTERTRIALINTERVAL)
 #WRITE THE LOGS
 Log(name="IAT_MOUSE",
 left=block.current['left_word'],
 right=block.current['right_word'],
 word=trial.current,
 correct=bp.correct,
 reaction_time=bp.press_time['time']-target_lb.appear_time['time'],
 slow_to_react=exp.mouse_test)
#This starts the experiment
exp.run()

Analysis

When coding your experiment, you don’t have to worry about losing any data
because all of it is saved out into .slog files anyway. The thing you do have
to worry about is whether or not you want that data easily available or if you
want to spend hours slogging through your data. We made it easy for you
to pick which data you want saved out during the running of your experiment with
use of the Log state.

Relevant data from the IAT MOUSE TRACKING task would be the responses from
the ButtonPress and the mouse movements that are saved in the .slog files.

If you would like to grab your data from the .slog files to analyze your data
in python, you need to use the log2dl(). This function will
read in all of the .slog files with the same base name, and convert them into
one long list of dictionaries. Below is a the few lines of code you would use to
get at all of the data from three imaginary participants, named as s000, s001,
and s002.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	from smile.log as lg
#define subject pool
subjects = ["s000/","s001/","s002/"]
dic_list = []
mouse_list = []
for sbj in subjects:
 #get at all the different subjects
 dic_list.append(lg.log2dl(log_filename="data/" + sbj + "Log_IAT_MOUSE"))
 mouse_list.append(lg.log2dl(log_filename="data/" + sbj + "record_MouseMovements"))
#print out all of the study times in the first study block for
#participant one, block one
print dic_list[0]['reaction_time']

You can also translate all of the .slog files into .csv files easily by
running the command log2csv() for each participant. An example of this is
located below.

	1
2
3
4
5
6
7

	from smile.log as lg
#define subject pool
subjects = ["s000/","s001/","s002/"]
for sbj in subjects:
 #Get at all the subjects data, naming the csv appropriately.
 lg.log2csv(log_filename="data/" + sbj + "Log_IAT_MOUSE", csv_filename=sbj + "_IAT_MOUSE")
 lg.log2csv(log_filename="data/" + sbj + "record_MouseMovements", csv_filename=sbj + "_IAT_MOUSE_MOVEMENTS")

iat_mouse.py in full

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

	from smile.common import *
from config import *
from gen_stim import *

#Start setting up the experiment
exp = Experiment()

#Show the instructions to the participant
RstDocument(text=instruct_text, base_font_size=RSTFONTSIZE, width=RSTWIDTH, height=exp.screen.height)
with UntilDone():
 #When a KeyPress is detected, the UntilDone
 #will cancel the RstDocument state
 KeyPress()
#Setup the Block loop, where *block* is a
#Reference to the variable you are looping over
with Loop(BLOCKS) as block:
 #Setup a loop over each Trial in a Block. *block.current* references the
 #current iteration of the loop, which is a dictionary that contains the list
 #words. *trial* will be our reference to the current word in our loop.
 with Loop(block.current['words']) as trial:
 #initialize our testing variable in Experiment Runtime
 #exp.something = something will create a Set state
 exp.mouse_test = False
 #The following is a ButtonPress state. This state works like KeyPress,
 #but instead waits for any of the buttons that are its children to be
 #press.
 with ButtonPress(correct_resp=trial.current['correct']) as bp:
 #block.current is a dictionary that has all of the information we
 #would need during each individual block, including the text that is
 #in these buttons, which differs from block to block
 Button(text=block.current['left_word'], name="left", left=0,
 top=exp.screen.top, width = BUTTONWIDTH, height=BUTTONHEIGHT, text_size = (170, None),
 font_size=FONTSIZE, halign='center')
 Button(text=block.current['right_word'], name="right",
 right=exp.screen.right, top=exp.screen.top,
 width = BUTTONWIDTH, height = BUTTONHEIGHT, text_size = (170, None),
 font_size=FONTSIZE, halign='center')
 #Required to see the mouse on the screen!
 MouseCursor()
 #while those buttons are waiting to be pressed, go ahead and do the
 #children of this next state, the Meanwhile
 with Meanwhile():
 #The start button that is required to be pressed before the trial
 #word is seen.
 with ButtonPress():
 Button(text="Start", bottom=exp.screen.bottom, font_size=FONTSIZE)
 #Do all of the children of a Parallel at the same time.
 with Parallel():
 #display target word
 target_lb = Label(text=trial.current['center_word'], font_size=FONTSIZE, bottom=exp.screen.bottom+100)
 #Record the movements of the mouse
 MouseRecord(name="MouseMovements")
 #Setup an invisible rectangle that is used to detect exactly
 #when the mouse starts to head toward an answer.
 rtgl = Rectangle(center=MousePos(), width=MOUSEMOVERADIUS,
 height=MOUSEMOVERADIUS, color=(0,0,0,0))
 with Serial():
 #wait until the mouse leaves the rectangle from above
 wt = Wait(until=(MouseWithin(rtgl) == False))
 #If they waited too long to start moving, tell the experiment
 #to display a warning message to the participant
 with If(wt.event_time['time'] - wt.start_time > MOUSEMOVEINTERVAL):
 exp.mouse_test = True
 with If(exp.mouse_test):
 Label(text="You are taking too long to move, Please speed up!",
 font_size=FONTSIZE, color="RED", duration=WARNINGDURATION)
 #wait the interstimulus interval
 Wait(INTERTRIALINTERVAL)
 #WRITE THE LOGS
 Log(name="IAT_MOUSE",
 left=block.current['left_word'],
 right=block.current['right_word'],
 word=trial.current,
 correct=bp.correct,
 reaction_time=bp.press_time['time']-target_lb.appear_time['time'],
 slow_to_react=exp.mouse_test)
#the line required to run your experiment after all
#of it is defined above
exp.run()

config.py in Full

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	#RST VARIABLES
RSTFONTSIZE = 50
RSTWIDTH = 600
instruct1 = open('iatmouse_instructions1.rst', 'r').read()
instruct2 = open('iatmouse_instructions2.rst', 'r').read()
instruct3 = open('iatmouse_instructions3.rst', 'r').read()
instruct4 = open('iatmouse_instructions4.rst', 'r').read()
instruct5 = open('iatmouse_instructions5.rst', 'r').read()
instruct6 = open('iatmouse_instructions6.rst', 'r').read()
instruct7 = open('iatmouse_instructions7.rst', 'r').read()

#MOUSE MOVING VARIABLES
WARNINGDURATION = 2.0
MOUSEMOVERADIUS = 100
MOUSEMOVEINTERVAL = 0.400

#BUTTON VARIABLES
BUTTONHEIGHT = 150
BUTTONWIDTH = 200

#GENERAL VARIABLES
FONTSIZE = 40
INTERTRIALINTERVAL = 0.750

gen_stim.py in Full

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

	import random as rm
from config import instruct1,instruct2,instruct3,instruct4,instruct5,instruct6,instruct7

WORDLISTS FROM Greenwald et al. 1998
filenameI = "pools/insects.txt"
filenameF = "pools/flowers.txt"
filenameP = "pools/positives.txt"
filenameN = "pools/negatives.txt"

I = open(filenameI)
F = open(filenameF)
P = open(filenameP)
N = open(filenameN)

stimListI = I.read().split('\n')
stimListF = F.read().split('\n')
stimListP = P.read().split('\n')
stimListN = N.read().split('\n')

#pop off the trailing line
stimListI.pop(len(stimListI)-1)
stimListF.pop(len(stimListF)-1)
stimListP.pop(len(stimListP)-1)
stimListN.pop(len(stimListN)-1)

def gen_blocks(type):

 sampI = rm.sample(stimListI, 10)
 sampF = rm.sample(stimListF, 10)
 sampP = rm.sample(stimListP, 10)
 sampN = rm.sample(stimListN, 10)

 #Generate the blocks
 list1 = {"left_word":"flower", "right_word":"insect", "instruct":instruct1,
 "words":([{"correct":"right", "center_word":I} for I in sampI] +
 [{"correct":"left", "center_word":F} for F in sampF])}

 list2 = {"left_word":"positive", "right_word":"negative", "instruct":instruct2,
 "words":([{"correct":"left", "center_word":P} for P in sampP] +
 [{"correct":"right", "center_word":N} for N in sampN])}

 list3 = {"left_word":"flower positive", "right_word":"insect negative", "instruct":instruct3,
 "words":([{"correct":"right", "center_word":I} for I in rm.sample(sampI[:], 5)] +
 [{"correct":"left", "center_word":F} for F in rm.sample(sampF[:], 5)] +
 [{"correct":"left", "center_word":P} for P in rm.sample(sampP[:], 5)] +
 [{"correct":"right", "center_word":N} for N in rm.sample(sampN[:], 5)])}

 list4 = {"left_word":"flower positive", "right_word":"insect negative", "instruct":instruct4,
 "words":([{"correct":"right", "center_word":I} for I in sampI] +
 [{"correct":"left", "center_word":F} for F in sampF] +
 [{"correct":"left", "center_word":P} for P in sampP] +
 [{"correct":"right", "center_word":N} for N in sampN])}

 list5 = {"left_word":"insect", "right_word":"flower", "instruct":instruct5,
 "words":[{"correct":"left", "center_word":I} for I in sampI] + [{"correct":"right", "center_word":F} for F in sampF]}

 list6 = {"left_word":"insect positive", "right_word":"flower negative", "instruct":instruct6,
 "words":([{"correct":"left", "center_word":I} for I in rm.sample(sampI[:], 5)] +
 [{"correct":"right", "center_word":F} for F in rm.sample(sampF[:], 5)] +
 [{"correct":"left", "center_word":P} for P in rm.sample(sampP[:], 5)] +
 [{"correct":"right", "center_word":N} for N in rm.sample(sampN[:], 5)])}

 list7 = {"left_word":"insect positive", "right_word":"flower negative", "instruct":instruct7,
 "words":([{"correct":"left", "center_word":I} for I in sampI] +
 [{"correct":"right", "center_word":F} for F in sampF] +
 [{"correct":"left", "center_word":P} for P in sampP] +
 [{"correct":"right", "center_word":N} for N in sampN])}
 rm.shuffle(list1['words'])
 rm.shuffle(list2['words'])
 rm.shuffle(list3['words'])
 rm.shuffle(list4['words'])
 rm.shuffle(list5['words'])
 rm.shuffle(list6['words'])
 rm.shuffle(list7['words'])

 #If type 1, then do critical compatible lists
 if type == 1:
 return [list1, list2, list3, list4, list5, list6, list7]
 #if type 2, then do critical incompatible lists
 else:
 return [list5, list2, list6, list7, list1, list3, list4]
#GenBlocks
BLOCKS = gen_blocks(1)

CITATION

Greenwald, Anthony G.; McGhee, Debbie E.; Schwartz, Jordan L.K. (1998), "Measuring Individual Differences in Implicit Cognition: The Implicit Association Test", Journal of Personality and Social Psychology 74 (6): 1464–1480

Yu, Wang, Wang (2012), "Beyond Reaction Times: Incorporating Mouse-Tracking Measures into the Implicit Association Test to Examine its Underlying Process", Social Cognition 30 (3): 289-306

 Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SMILE 0.1.0 documentation

Data accessing and Processing

Saving your Data into SLOG Files

In SMILE, each state will produce what is called a .slog file by default.
This file is a specially compressed file composed of all the important data
associated with the state. It not only logs every parameter, but also
all of the variables listed in the Logged Attributes section of the
docstrings. In most cases, every state will save out 2 rows of data to the
.slog file. The first row is the field names, and the second row will be the
data for each of those fields.

The kind of state that write multiple lines out to its associated .slog file
is the Log state. Wherever the class is inserted into the experiment, the class will log the
values of all of the keywords/argument pairs it is passed. If the Log
exists within a loop, it will write out the values of the keyword/argument
pairs during each iteration of the loop during experimental runtime. In this
case, the .slog file will have the first row be the keywords, and the
subsequent rows be all of the data for each Log during each iteration of the
loop.

Note

Every instance of the Log state in the experiment will save to a separate
file.

Below is an example of a Log state.

with Loop(10) as trial:
 lb = Label(text=trial.i, duration=2)
 Log(trial.current,
 name="looping_log",
 label_appear_time=lb.appear_time['time'])

This example will save 11 rows into a .slog file. If trial.current is the
first argument for Log, then it will save out all of the information about
the looping variable out in different columns.

A Record state will record all of the references given. It will write a line
to the .slog file every time one of the references changes. It will also log
the time at which the given reference changed.

Reading your SLOG files in python

In order to slog through data, one of two things are first needed to be completed.
The first is to pull the data into python by using the Log
method called log2dl(). This method converts the .slog file to a
list of dictionaries so that you can perform any pythonic functions on it in
order to analyze the data. log2dl has one required parameter,
log_filename, which should be a string that starts out log_ and ends with
a user chosen name parameter of the Log in the user’s experiment.

If there are multiple files with the same name, they have trailing _# in the
filename. log2dl will pull all of the files with the same base name, and
concatenate them into a single list of dictionaries.

The other way data can be access is by converting all of the .slog files
to .csv files. This can be accomplished by running the Log2csv()
method. This method will take two parameters, log_filename and csv_filename.
log_filename works the same way as in log2dl, where a string that is log_
plus the name which was provided in the name parameter of the Log is passed.
If no csv_filename is given, then it will be saved as the same name as the
log_filename plus .csv. From there, one can use their preferred method of
data analysis.

 Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SMILE 0.1.0 documentation

Advanced SMILEing

Screen Placement of Visual States

[image: _images/purple_box.png]
In SMILE, any state that displays something to the screen is known as
a VisualState. These states share the ability to set
their size, position, and relative position to each other. Every visual state
has the following basic attributes, and all of the following attributes can be
passed into the initialization of the visual states in your code:

	width

	height

	x

	y

Now, imagine a scenario where one would want to place a Label
400 pixels above a TextInput, which is 200 pixels to the left
of the bottom right hand corner of the screen. Hard calculations of those numbers by hand or
relativistic positioning attributes could be employed to yield the answer.

By utilizing the relative position attributes, the VisualStates can be initialized
to the left or right, above or below, of each other. An example of this is as follows:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	from smile.common import *

exp = Experiment()

with Parallel():
 lb1 = Label(text="I AM NEAR THE BOTTOM", right=exp.screen.right - 200,
 bottom=exp.screen.bottom, duration=5)
 lb2 = Label(text="I AM ABOVE THE OTHER LABEL", right=lb1.right,
 bottom=lb1.top + 400, duration=5)

exp.run()

In the above example, the right attribute of the visual
states is used as both initialization parameters and attributes. This can be accessed from
one state and applied to the next. We also used the attribute bottom which works
the exact same way. The following are a list of all the attributes that are in terms of
x, y, width, and height:

	bottom : y

	top : y + height

	left : x

	right : x + width

	center_x : (x + width) / 2

	center_y : (y + height) / 2

Multiple of these can be combined together to access a tuple value that contains
both pieces of information. These combined attributes are listed
below in terms of x, y, width, and height:

	center : ((x + width) / 2, (y + height) / 2)

	center_top : ((x + width) / 2, y + height)

	center_bottom : ((x + width) / 2, y)

	left_center : (x, (y + height) / 2)

	left_bottom : (x, y)

	left_top : (x, y + height)

	right_center : (x + width, (y + height) / 2)

	right_bottom : (x + width, y)

	right_top : (x + width, y + height)

Extending Smile

There may be cases where SMILE lacks functionality needed to run an experiment
properly. Several different methods can be employed to extend SMILE’s functionality.
The first method is Subroutine, which is a section of state machine code that can
be run at several different points in an experiment, similar to a function. The
second is referred to as Wrapping Widgets. Any widgets written and defined in
Kivy can be wrapped into a SMILE WidgetState.

Defining Subroutines

In SMILE, there exists special states called Subroutines.
Subroutines are special states that contain small chunks of state machine code
that the main experiment will need to run over and over again. Like a function,
a Subroutine is defined with the python def followed by the name of the
Subroutine. In SMILE, it is proper practice to name any state with the first
letter of every word a capital letter.

Note

Please note that Subroutines should only be used as self contained snipits of state-machine. Only write a subroutine if the section of state-machine you are trying to replicate would rely only on the parameters passed into it. You should never try to change the value of a parameter inside the Subroutine from outside the Subroutine. However, you have read-only access to any variable set using the self reference explained below. If you would like to have access to the height of a Label inside your subroutine outside your subroutine, you must set self variable to the Height of your Label during Experimental Build Time.

The following is an example on how to define a Subroutine that displays a Label
that will display a number that counts up from a passed in minimum number.

In the subroutine file (test_sub.py), first import all of SMILE’s common states:

from smile.common import *

Warning

Be advised, the above line does not always give every necessary state for an experiment, just the States that are available on every platform.

Next, the definition line needs to be written for the subroutine:

@Subroutine
def CountUpFrom(self, minVal):

First, notice the @Subroutine. This allows CountUpFrom to be a subclass of
Subroutine, the general subroutine state.

Note

Please note the self as the first argument passed into a subroutine. If self is not passed, SMILE will throw an error. Please remember to pass in self as the first parameter when defining a subroutine.

Now we can write state machine code for the Subroutine:

from smile.common import *
@Subroutine
def CountUpFrom(self, minVal):

 # Initialize counter, Creates a Set state
 # and sets the variable at Experimental Runtime.
 # After this line, self.counter is a reference object
 # that can be reference anywhere else in this subroutine.
 self.counter = minVal
 # Define the Loop, loop 100 times
 with Loop(100):
 # Apply the plus-equals operator to
 # self.counter to add 5
 self.counter += 5
 # Display the reference self.counter in
 # string form. Ref(str, self.counter) is required
 # to apply the str() function to self.counter during
 # Experimental Runtime instead of Buildtime
 Label(text=Ref(str,self.counter), duration=.2)

Warning

When writting a Subroutine, you can only use SMILE States. A Subroutine will only run any general pythonic code ONCE when the Subroutine is first built during Experimental Build Time. It is best practice to only use SMILE states, sets, and gets during in a Subroutine. If you need to run some kind of complex function in order to run your subroutine, use the Func state to run a function during Experimental Run Time.

Notice self.counter, it creates a Set
state that will set a new attribute to the Subroutine called counter and
will initialize it to minVal during
:ref:`Experimental Runtime <run_build_time>`_.

Anything initialized with the self. will be able to be accessed from outside
of the Subroutine. If the above Subroutine is used as an example, the
Subroutine as cup = CountUpFrom() can be initialized and cup.counter
can be called to get at the value of the counter.

The following is an example of calling this subroutine during an actual
experiment:

from smile.common import *

from countup import CountUpFrom

exp = Experiment()

Just like writing any other state declaration
cuf = CountUpFrom(10)
Print out the value of the counter in CountUpFrom
To the command line
Debug(name="Count Up Stuff", end_counter=cuf.counter)

exp.run()

Wrapping Kivy Widgets

Currently, most of the visual states in SMILE are wrapped Kivy widgets.
Rectangle, Image, and
Video are all examples of Kivy widgets that were
wrapped in the video.py code and turned into
WidgetStates.

if there is a desired function that SMILE can’t performed using pre-written
states, and the function cannot be created by writing a
Subroutine, Kivy widgets can be written to achieve this
functionality. To write a Kivy widget for SMILE, the knowledge of the SMILE
backend and Kivy is needed. This section is only for those who want to write
their own widgets!

The My First Widget<https://kivy.org/docs/tutorials/firstwidget.html> gives a
thorough examination on how to create a very basic Kivy widget and display it on
a Kivy app. This also provides sufficient start on how to create a Kivy widget.

For following example, dotbox.py will be examined. A program was written to
produce tiny dots on the screen in an area. The most efficient way
accomplish this is through the creation of a Kivy widget.

Here is the definition of our DotBox:

@WidgetState.wrap
class DotBox(Widget):
 """Display a box filled with random square dots.

 Parameters

 num_dots : integer
 Number of dots to draw
 pointsize : integer
 Radius of dot (see *Point*)
 color : tuple or string
 Color of dots
 backcolor : tuple or string
 Color of background rectangle

 """

 # Define the widget Parameters for Kivy
 color = ListProperty([1, 1, 1, 1])
 backcolor = ListProperty([0, 0, 0, 0])
 num_dots = NumericProperty(10)
 pointsize = NumericProperty(5)

In DotBox several different parameters are needed to be passed into the
__init__ method in order to create different kinds of DotBoxes.

	Color : A list of float values that represent the RGBA of the dots

	backcolor : A list of float values that represent the RGBA of the background

	num_dots : The number of random dots to generate

	pointsize : How big to draw the dots, pointsize by pointsize squares in pixels

Next, the ‘__init__’ method is declared for our ‘DotBox’ widget:

def __init__(self, **kwargs):
 super(type(self), self).__init__(**kwargs)

 # Initialize variables for Kivy
 self._color = None

 self._backcolor = None

 self._points = None

 # Bind the variables to the widget
 self.bind(color=self._update_color,
 backcolor=self._update_backcolor,
 pos=self._update,
 size=self._update,
 num_dots=self._update_locs)

 # Call update_locs() to initialize the
 # point locations
 self._update_locs()

The .bind() method will bind each different attribute of the dot box to a
method callback that might want to run if any of those attributes change.
An example of this is if, in SMILE, an UpdateWidget
state is created where it updates a DotBox attribute, e.g. num_dots attribute.
The attribute change will cause Kivy to callback the corresponding function
attached with .bind(). Now the functions can be defined:

Update self._color.rgba
def _update_color(self, *pargs):
 self._color.rgba = self.color

Update self._backcolor.rgba
def _update_backcolor(self, *pargs):
 self._backcolor.rgba = self.backcolor

Update the locations of the dots, then
Call self._update() to redraw
def _update_locs(self, *pargs):
 self._locs = [random.random()
 for i in xrange(int(self.num_dots)*2)]
 self._update()

Update the size of all of the dots
def _update_pointsize(self, *pargs):
 self._points.pointsize = self.pointsize

Draw the points onto the Kivy Canvas
def _update(self, *pargs):
 # calc new point locations
 bases = (self.x+self.pointsize, self.y+self.pointsize)
 scales = (self.width-(self.pointsize*2),
 self.height-(self.pointsize*2))
 points = [bases[i % 2]+scales[i % 2]*loc
 for i, loc in enumerate(self._locs)]

 # draw them
 self.canvas.clear()
 with self.canvas:
 # set the back color
 self._backcolor = Color(*self.backcolor)
 # draw the background
 Rectangle(size=self.size,
 pos=self.pos)
 # set the color
 self._color = Color(*self.color)
 # draw the points
 self._points = Point(points=points, pointsize=self.pointsize)

Any visual widget created in Kivy will require some kind of drawing to the
canvas. In the above example, the line with self.canvas was used to define the
area in which calls to the graphics portion of Kivy were made, kivy.graphics.
The color of what to be drawn was set, then it was drawn. For example, Color() sets
the draw color, then Rectangle() tells kivy.graphics to draw a rectangle
of that color to the screen.

Since this Widget defined in Kivy will be wrapped with a WidgetState, it
can be assumed that this widget will have access to arguments like self.pos, self.size,
and obviously arguments like self.x, self.y, self.width, self.height.

dotbox.py in Full

@WidgetState.wrap
class DotBox(Widget):
 """Display a box filled with random square dots.

 Parameters

 num_dots : integer
 Number of dots to draw
 pointsize : integer
 Radius of dot (see *Point*)
 color : tuple or string
 Color of dots
 backcolor : tuple or string
 Color of background rectangle

 """
 color = ListProperty([1, 1, 1, 1])
 backcolor = ListProperty([0, 0, 0, 0])
 num_dots = NumericProperty(10)
 pointsize = NumericProperty(5)

 def __init__(self, **kwargs):
 super(type(self), self).__init__(**kwargs)

 self._color = None
 self._backcolor = None
 self._points = None

 self.bind(color=self._update_color,
 backcolor=self._update_backcolor,
 pos=self._update,
 size=self._update,
 num_dots=self._update_locs)
 self._update_locs()

 def _update_color(self, *pargs):
 self._color.rgba = self.color

 def _update_backcolor(self, *pargs):
 self._backcolor.rgba = self.backcolor

 def _update_locs(self, *pargs):
 self._locs = [random.random()
 for i in xrange(int(self.num_dots)*2)]
 self._update()

 def _update_pointsize(self, *pargs):
 self._points.pointsize = self.pointsize

 def _update(self, *pargs):
 # calc new point locations
 bases = (self.x+self.pointsize, self.y+self.pointsize)
 scales = (self.width-(self.pointsize*2),
 self.height-(self.pointsize*2))
 points = [bases[i % 2]+scales[i % 2]*loc
 for i, loc in enumerate(self._locs)]

 # draw them
 self.canvas.clear()
 with self.canvas:
 # set the back color
 self._backcolor = Color(*self.backcolor)

 # draw the background
 Rectangle(size=self.size,
 pos=self.pos)

 # set the color
 self._color = Color(*self.color)

 # draw the points
 self._points = Point(points=points, pointsize=self.pointsize)

Setting a variable in RT

Like it is stated in Build Time VS Run Time, in order to
set a variable in SMILE during RT, the exp.variable_name syntax must be
used. In this section, the results of calling ‘exp.variable_name’ in SMILE will
be examined.

The following is a sample experiment where exp.display_me is set to a string:

from smile.common import *

exp = Experiment()

exp.display_me = "LETS DISPLAY THIS SECRET MESSAGE"
Label(text=exp.display_me)

exp.run()

This is a very simple experiment. It must be understood that
exp.display_me = “LETS DISPLAY THIS SECRET MESSAGE” creates a
Set state. A Set state takes a string
var_name that refers to a variable in an Experiment or to a newly created
variable, and a value that refers to the value that the variable is assigned
to take on. The important takeaway is that ‘value’ can be referenced to a value.
If ‘value’ is a reference, it will be evaluated during RT. Below is an
example of what the experiment would look like if the 3rd line is changed:

from smile.common import *

exp = Experiment()

Set(var_name="display_me", value="LETS DISPLAY THIS SECRET MESSAGE")
Label(text=exp.display_me)

exp.run()

Both sample experiments run the exact same way, but the only difference is how
the code looks to the end user. The Set state is untimed, so it changes the
value of the variable immediately at enter. For more information look at the
docstring for Set and the code behind the
smile.experiment.Experiment.set_var() method.

Performing Operations and Functions in RT

Until this point, new methods that run during RT have not run correctly. In
this section, examining why this happens and correcting this issue will be
discussed.

Since every SMILE experiment is separated into BT and RT, any calls to
functions or methods without using the proper SMILE syntax will run in BT
and not RT. In order to run a function or method, a
Ref or a Func is needed to be
used. As stated in The Reference Section of the state machine
document, a Ref is a delayed function call.

When it is desired to pass in the return value of a function to a SMILE state
as a parameter, it is appropriate use Ref. The first parameter for a
Ref call is always the function desired to run, and the other parameter to
that function call are the rest of the parameters to the Ref.

Below is an example of a loop that displays the counter of the loop in a label
on the center of the screen. Since the Loop counter is
an integer, the integer must first be changed to a string. This can be performed
by creating a Ref to call ‘str()’.

with Loop(100) as lp:
 #This Ref is a delayed function call to str where
 #one of the parameters is a reference. Ref also
 #takes care of evaluating references.
 Label(text=Ref(str, lp.i), duration=0.2)

To run a function during RT the Func state is needed.
Func creates a state that will not run the passed in function call
until the previous state leaves. The following is an example of using a Func
to generate the next set of stimulus for each iteration of a Loop. To access
the return value of a method or function call, the .result attribute of
the Func state must be accessed.

#Assume DisplayStim is a predefined Subroutine
#that displays a list of stimulus, and assume that
#gen_stim is a predefined function that generates
#that stimulus
with Loop(10) as lp:
 stim = Func(gen_stim, length=lp.i)
 DisplayStim(stim.result, duration=5)

Note

Remember that you can pass in keyword arguments AND regular arguments into both Func states and Ref calls.

Effective timing of KeyPress

In order to increase the effectiveness of a KeyPress state, you can set a
base_time parameter. A KeyPress will calculate the reaction time, or rt,
by subtracting the base_time from the press_time. If no base_time is
passed in as a paramter to KeyPress, SMILE will set the base_time to the
KeyPresses start_time.

When you want someone to press a button immediately after they see a
stimulus, you need to set the base_time as the appear_time[‘time’]. See an
example of this below.

press = Label(text="Press NOW!")
with UntilDone():
 Wait(min_response_time)
 kp = KeyPress(base_time=press.appear_time['time'])

When you want a participant to press a button immediately after they see a
stimulus disappear off the screen, you need to set the base_time as the
disappear_time[‘time’]. See an example of this below.

press = Label(ext="Press When I Disappear", duration=2.0)
Wait(until=press.disappear_time)
kp = KeyPress(base_time=press.disappear_time['time'])

Timing the Screen Refresh VS Timing Inputs

Before examining this section, it is important to understand how SMILE displays
each frame of your experiment. SMILE runs on a two buffer system, where when
a frame is being prepared, it is drawn to a back buffer. When everything is
drawn and/or ready, the back buffer is flipped to the front buffer, then the
back buffer is cleared to get ready for more drawing.

The following is a detailed example: an experiment wants to display
a new Label onto the screen. The first thing SMILE does
is draw the Label onto the back buffer, then calls for a Blocking Flip. A
Blocking Flip is when SMILE waits for everything to be finished writing to
the screen, then flips the next time it passes through the event loop if it is
around the flip interval. Then SMILE flips into NonBlocking Flip Mode. In
this mode, SMILE will try and flip the buffer as soon as anything changes.
SMILE switches to this mode to allow Kivy to update the screen whenever it needs
to. The other time in a Visual State’s lifespan where SMILE calls for a
Blocking Flip is when it disappears from the screen. SMILE uses
Blocking Flips for the appearance and disappearance of a VisualState to
accurately track the timing of those two events.

In SMILE, the end user can force the 2 different modes of updating the screen
using BlockingFlip and
NonBlockingFlip. They both are important, for they both
grant the ability to prioritize different aspects of an experiment, input or
output, when it comes to timing things as accurately as possible.

A NonBlockingFlip is used when the timing of visual stimulus isn’t the most
important. If SMILE is forced into this mode, timing of input can be made much
more accurate, like mouse and keyboard. SMILE can be forced into
NonBlockingFlips by putting this state in parallel with what is desired to run
in NonBlockingFlip Mode.

The following is a mini example of such a Parallel:

with Parallel() as p:
 NonBlockingFlip()
 lb = Label(text="PRESS NOW!!!")
 with UntilDone():
 Wait(until=lb.appear_time)
 kp = KeyPress(base_time = lb.appear_time['time'])

A BlockingFlip is used when the timing of screen appearance takes priority
over when the timing of inputs occur. Using this mode, the changes in exp._last_flip
can be Record.

An example of this is as follows:

with Parallel():
 BlockingFlip()
 vd = Video(source="test_vid.mp4")
 Record(name="video_record", flip=exp._last_flip)

Information for SMILE Developers

Below will be several sections that better explain all of the intricacies of
SMILE’s backend. Look at this section only if you are interested in creating
your own states, or better understanding how SMILE does what it does.

The States of a State

Every state in SMILE runs through 6 main function calls. These function calls
are automatic and never need to be called by the end user, but it is important
to understand what they do and when they do it to fully understand SMILE.
These function calls are __init__, .enter(), .start(), .end(),
.leave(), and .finalize(). Each of these calls happen at different parts of
the experiment, and have different functions depending on the subclass.

.__init__ happens during BT and is the only one to happen at BT.
This function usually sets up all of the references, processes some of the
parameters, and knows what to do if a parameter is missing or wasn’t passed in.

.enter() happens during RT and will be called after the previous state
calls .leave(). This function will evaluate all of the parameters that were
references, and set all the values of the remaining parameters. It will also
schedule a start time for this state.

.start() is a class of function calls that, during RT, the state starts
doing whatever makes it special. This function is not always called .start().
In the case of an Image state, .start() is replaced
with .appear(). The .start() functions could do anything from showing an
image to recording a keypress. After .start() this state will begin actually
performing its main function.

Note

A .start() kind of call will only exist in an Action State (see below).

.end() is a class of function calls that, during RT, ends whatever makes
the state special. In the case of an Image, .end() is replaced with
.disappear(). After .end(), .leave() is available to be called.

Note

A .end() kind of call will only exist in an Action State (see below).

.leave() happens during RT and will be called whenever the duration of
a state is over, or whenever the rules of a state says it should end. A special
case for this is the .cancel() call. If a state should need to be ended early
for whatever reason, the Experiment will call the state’s .cancel() method
and that method will setup an immediate call to both .leave() and
.finalize().

.finalize() happens during RT but not until after a state has left.
This call usually happens whenever the clock has extra time, i.e. during a Wait
state. This call will save out the logs, setup callbacks to the ParentState to
tell it that this state has finished, and set self.active to false. This call
is used to clean up the state sometime after the state has run .leave().

The SMILE timing Algorithm

Write up coming soon.

Want to Contribute to SMILE?

SMILE has a GitHub page that, if you find an issue and fix it or want to add
functionality to SMILE, you may make a pullrequest to. At GitWash [https://github.com/compmem/smile/tree/master/docs/devel/gitwash]
you can find documents to better understand how to make use Git and how to make
changes and update SMILE.

 Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SMILE 0.1.0 documentation

Seeking Help?

SMILE has a Google group where you can discuss SMILE with other people who are
trying to learn how to use it, as well as see if anyone is having the same
problems that you are. This group is located at smile-users [https://groups.google.com/forum/#!forum/smile-users].

SMILE also has a GitHub [https://github.com/compmem/smile/issues] page where
you can report any issues that you have.

 Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	SMILE 0.1.0 documentation

SMILE package

smile.audio module

smile.clock module

smile.dag module

smile.experiment module

smile.freekey module

smile.keyboard module

smile.kivy_overrides module

smile.log module

smile.mouse module

smile.pulse module

smile.ref module

smile.state module

smile.utils module

smile.video module

Module contents

 Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	SMILE 0.1.0 documentation

Index

 Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

 _static/ajax-loader.gif

_static/no_variables.png

_static/default_gaussian.png

_static/down-pressed.png

_static/file.png

_static/stroop.png
orange

_static/default_circular.png

_static/free_recall.png
TURTLE

devel/gitwash/set_up_fork.html

 Navigation

 		
 index

 		SMILE 0.1.0 documentation »

Set up your fork

First you follow the instructions for Making your own copy (fork) of Smile.

Overview

git clone git@github.com:your-user-name/smile.git
cd smile
git remote add upstream git://github.com/compmem/smile.git

In detail

Clone your fork

		Clone your fork to the local computer with git clone
git@github.com:your-user-name/smile.git

		Investigate. Change directory to your new repo: cd smile. Then
git branch -a to show you all branches. You’ll get something
like:

* master
remotes/origin/master

This tells you that you are currently on the master branch, and
that you also have a remote connection to origin/master.
What remote repository is remote/origin? Try git remote -v to
see the URLs for the remote. They will point to your github fork.

Now you want to connect to the upstream Smile github [http://github.com/compmem/smile] repository, so
you can merge in changes from trunk.

Linking your repository to the upstream repo

cd smile
git remote add upstream git://github.com/compmem/smile.git

upstream here is just the arbitrary name we’re using to refer to the
main Smile [https://github.com/compmem/smile] repository at Smile github [http://github.com/compmem/smile].

Note that we’ve used git:// for the URL rather than git@. The
git:// URL is read only. This means we that we can’t accidentally
(or deliberately) write to the upstream repo, and we are only going to
use it to merge into our own code.

Just for your own satisfaction, show yourself that you now have a new
‘remote’, with git remote -v show, giving you something like:

upstream git://github.com/compmem/smile.git (fetch)
upstream git://github.com/compmem/smile.git (push)
origin git@github.com:your-user-name/smile.git (fetch)
origin git@github.com:your-user-name/smile.git (push)

 © Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

devel/gitwash/git_intro.html

 Navigation

 		
 index

 		SMILE 0.1.0 documentation »

Introduction

These pages describe a git [http://git-scm.com/] and github [http://github.com] workflow for the Smile [https://github.com/compmem/smile]
project.

There are several different workflows here, for different ways of
working with Smile.

This is not a comprehensive git reference, it’s just a workflow for our
own project. It’s tailored to the github hosting service. You may well
find better or quicker ways of getting stuff done with git, but these
should get you started.

For general resources for learning git, see git resources.

 © Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

devel/gitwash/forking_hell.html

 Navigation

 		
 index

 		SMILE 0.1.0 documentation »

Making your own copy (fork) of Smile

You need to do this only once. The instructions here are very similar
to the instructions at http://help.github.com/forking/ — please see
that page for more detail. We’re repeating some of it here just to give the
specifics for the Smile [https://github.com/compmem/smile] project, and to suggest some default names.

Set up and configure a github account

If you don’t have a github account, go to the github page, and make one.

You then need to configure your account to allow write access — see
the Generating SSH keys help on github help [http://help.github.com].

Create your own forked copy of Smile [https://github.com/compmem/smile]

		Log into your github account.

		Go to the Smile [https://github.com/compmem/smile] github home at Smile github [http://github.com/compmem/smile].

		Click on the fork button:

[image: ../../_images/forking_button.png]
Now, after a short pause and some ‘Hardcore forking action’, you
should find yourself at the home page for your own forked copy of Smile [https://github.com/compmem/smile].

 © Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

_static/iat_mouse.png
crocus

devel/gitwash/following_latest.html

 Navigation

 		
 index

 		SMILE 0.1.0 documentation »

Following the latest source

These are the instructions if you just want to follow the latest
Smile source, but you don’t need to do any development for now.

The steps are:

		Install git

		get local copy of the Smile github [http://github.com/compmem/smile] git repository

		update local copy from time to time

Get the local copy of the code

From the command line:

git clone git://github.com/compmem/smile.git

You now have a copy of the code tree in the new smile directory.

Updating the code

From time to time you may want to pull down the latest code. Do this with:

cd smile
git pull

The tree in smile will now have the latest changes from the initial
repository.

 © Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

_static/plus.png

devel/gitwash/patching.html

 Navigation

 		
 index

 		SMILE 0.1.0 documentation »

Making a patch

You’ve discovered a bug or something else you want to change
in Smile [https://github.com/compmem/smile] .. — excellent!

You’ve worked out a way to fix it — even better!

You want to tell us about it — best of all!

The easiest way is to make a patch or set of patches. Here
we explain how. Making a patch is the simplest and quickest,
but if you’re going to be doing anything more than simple
quick things, please consider following the
Git for development model instead.

Making patches

Overview

tell git who you are
git config --global user.email you@yourdomain.example.com
git config --global user.name "Your Name Comes Here"
get the repository if you don't have it
git clone git://github.com/compmem/smile.git
make a branch for your patching
cd smile
git branch the-fix-im-thinking-of
git checkout the-fix-im-thinking-of
hack, hack, hack
Tell git about any new files you've made
git add somewhere/tests/test_my_bug.py
commit work in progress as you go
git commit -am 'BF - added tests for Funny bug'
hack hack, hack
git commit -am 'BF - added fix for Funny bug'
make the patch files
git format-patch -M -C master

Then, send the generated patch files to the Smile
mailing list [https://github.com/compmem/smile] — where we will thank you warmly.

In detail

		Tell git who you are so it can label the commits you’ve
made:

git config --global user.email you@yourdomain.example.com
git config --global user.name "Your Name Comes Here"

		If you don’t already have one, clone a copy of the
Smile [https://github.com/compmem/smile] repository:

git clone git://github.com/compmem/smile.git
cd smile

		Make a ‘feature branch’. This will be where you work on
your bug fix. It’s nice and safe and leaves you with
access to an unmodified copy of the code in the main
branch:

git branch the-fix-im-thinking-of
git checkout the-fix-im-thinking-of

		Do some edits, and commit them as you go:

hack, hack, hack
Tell git about any new files you've made
git add somewhere/tests/test_my_bug.py
commit work in progress as you go
git commit -am 'BF - added tests for Funny bug'
hack hack, hack
git commit -am 'BF - added fix for Funny bug'

Note the -am options to commit. The m flag just
signals that you’re going to type a message on the command
line. The a flag — you can just take on faith —
or see why the -a flag? [http://www.gitready.com/beginner/2009/01/18/the-staging-area.html].

		When you have finished, check you have committed all your
changes:

git status

		Finally, make your commits into patches. You want all the
commits since you branched from the master branch:

git format-patch -M -C master

You will now have several files named for the commits:

0001-BF-added-tests-for-Funny-bug.patch
0002-BF-added-fix-for-Funny-bug.patch

Send these files to the Smile mailing list [https://github.com/compmem/smile].

When you are done, to switch back to the main copy of the
code, just return to the master branch:

git checkout master

Moving from patching to development

If you find you have done some patches, and you have one or
more feature branches, you will probably want to switch to
development mode. You can do this with the repository you
have.

Fork the Smile [https://github.com/compmem/smile] repository on github — Making your own copy (fork) of Smile.
Then:

checkout and refresh master branch from main repo
git checkout master
git pull origin master
rename pointer to main repository to 'upstream'
git remote rename origin upstream
point your repo to default read / write to your fork on github
git remote add origin git@github.com:your-user-name/smile.git
push up any branches you've made and want to keep
git push origin the-fix-im-thinking-of

Then you can, if you want, follow the
Development workflow.

 © Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

devel/gitwash/git_install.html

 Navigation

 		
 index

 		SMILE 0.1.0 documentation »

Install git

Overview

		Debian / Ubuntu
		sudo apt-get install git-core

		Fedora
		sudo yum install git-core

		Windows
		Download and install msysGit [http://code.google.com/p/msysgit/downloads/list]

		OS X
		Use the git-osx-installer [http://code.google.com/p/git-osx-installer/downloads/list]

In detail

See the git page for the most recent information.

Have a look at the github install help pages available from github help [http://help.github.com]

There are good instructions here: http://book.git-scm.com/2_installing_git.html

 © Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

android.html

 Navigation

 		
 index

 		SMILE 0.1.0 documentation »

SMILE on Android Devices

Preparing your Experiment Directory

		Inside your project directory, you need to rename your experiment file to
“main.py”. This allows a program called Buildozer to find the file that is needed
to run your experiment.

		You must then have a folder in your experiment directory that contains all of the
SMILE .py files and call this folder “SMILE”

		NOTE : You must add a line to your “main.py” exactly as shown below. If you don’t
include the spaces on either side of the equal sign, Buildozer will not compile your experiment for Android:

__version__ = "1.0.0"

Note

You may put whatever numbers you want in place of the 1.0.0 but they
must be in quotations.

Installing Buildozer (Your SMILE for Android best friend)

Buildozer is a packager that allows Linux systems to create a file (.apk) that has
everything you need to run your python program packed into that file. This program
automates the entire process by downloading everything that is needed for the
program Python-For-Android, including the SDK and NDK for Android.

In the terminal, change directory to wherever you want to install Buildozer
(probably just in your documents folder) and then run the following in your terminal
window:

>>>git clone https://github.com/kivy/buildozer.git
>>>cd buildozer
>>>sudo python2.7 setup.py install

This installs Buildozer and then allows you to run Buildozer from any directory.

Customizing your build specifications

First things first, we must have Buildozer generate a “buildozer.spec” file for our
python program. Run the following line in your terminal in your project directory.

>>>buildozer init

You will see that Buildozer has created a file called “buildozer.spec”. We need to make
some changes in this file. Open the file with and we will start with editing the “title” line.

title : Whatever you name your Experiment

Easy. Next we need to edit the source line. This line tells Buildozer what files in
the experiment directory to include when packing everything up into your .apk file.

Note

We are adding file extensions to the end of this line. Use the format of
”,extension”. They must have a comma in between each new extension. The py,
kv, jpg, png, atlas are the defaults and required to be included.

source.include_exts = py,png,jpg,kv,atlas,mp3,mp4

Next, we will edit the log_level line. If we set log_level to 2 then we are able to
see all of the logs and the errors if Buildozer breaks.

log_level = 2

Finally, we need to edit the requirements line. This line tells Buildozer what
packages to download and include into its packaged version of python. Kivy is
required always for SMILE, but here you can include packages like “ffmpeg” for
playing video through SMILE.

requirements = kivy,ffmpeg

Building your project with Buildozer

This next step takes a few minutes to run. Running the next line in your terminal
will download all of the python-for-Android files and your required packages that
can be downloaded, package all of your included files that match any of your
include_exts, and download the SDK and NDK that are needed to compile your python
code. In your terminal, run the following line:

>>>buildozer android debug

Note

This process can take a long time depending on how many packages your python
program requires.

You will notice the process is complete if the terminal sends you a message saying
that the application file has been saved in the bin folder.

Changing up the blacklist to allow SMILE to Run

Once Buildozer has built your .apk, it also filled your directory with some new
folders. The important folder for this step is the .buildozer folder. We need to
edit the blacklist.txt file to tell Buildozer to include python._csv, otherwise
SMILE cannot run. First, navigate to the path below.

>>>cd .buildozer/android/platform/python-for-android/dist/myapp/

In this folder, gedit blacklist.txt. Under the unused binaries python modules
section of the file, put a # in front of the line that has _csv.so in it. What the
new line should look like is presented below.

#lib-dynload/_csv.so

Note

If you do not comment out this line with # the _csv.so will not be
included in your ”.apk” and then SMILE will break.

Setting up an Android phone as a Developer to install Homebrew apps

Most Android devices have processes that are basically the same for setting up
a phone in Developer mode.

		Navigate to Settings->About Phone and tap the Build Number button 7 times.
This sets up your phone for developer mode. This unlocks a new settings tab
called Developer Options.

		Navigate to Settings->Developer Options and Enable USB debugging. This allows
your Linux machine to send the build version of your python experiment straight to
your phone.

Finally Adding your APK to your Phone

If you hook up via USB to your Linux machine, you will be able to automatically
upload the .apk to your Android phone. With the following line sent into your
terminal, you rebuild your program with the required python libraries. This line also
sets your terminal to print out the logs from your phone. The line is as follows:

>>>buildozer android debug deploy run logcat

This will open the app on your phone, allowing you to see if it works!

Note

If your phone isn’t unlocked, the experiment will not run from the terminal.
Make sure your phone isn’t locked when you run the above line.

Note

If it looks like the app breaks before running, press Ctrl+C. If you press
this early enough, then you will be able to Ctrl+F and find python. This
will let you find the lines that Kivy has sent to the log and help you
find where and why your SMILE program broke.

 © Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		SMILE 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

_static/purple_box.png
center_x top

left right

height

center_y

X bottom
width

devel/gitwash/maintainer_workflow.html

 Navigation

 		
 index

 		SMILE 0.1.0 documentation »

Maintainer workflow

This page is for maintainers — those of us who merge our own or other
peoples’ changes into the upstream repository.

Being as how you’re a maintainer, you are completely on top of the basic stuff
in Development workflow.

The instructions in Linking your repository to the upstream repo add a remote that has read-only
access to the upstream repo. Being a maintainer, you’ve got read-write access.

It’s good to have your upstream remote have a scary name, to remind you that
it’s a read-write remote:

git remote add upstream-rw git@github.com:compmem/smile.git
git fetch upstream-rw

Integrating changes

Let’s say you have some changes that need to go into trunk
(upstream-rw/master).

The changes are in some branch that you are currently on. For example, you are
looking at someone’s changes like this:

git remote add someone git://github.com/someone/smile.git
git fetch someone
git branch cool-feature --track someone/cool-feature
git checkout cool-feature

So now you are on the branch with the changes to be incorporated upstream. The
rest of this section assumes you are on this branch.

A few commits

If there are only a few commits, consider rebasing to upstream:

Fetch upstream changes
git fetch upstream-rw
rebase
git rebase upstream-rw/master

Remember that, if you do a rebase, and push that, you’ll have to close any
github pull requests manually, because github will not be able to detect the
changes have already been merged.

A long series of commits

If there are a longer series of related commits, consider a merge instead:

git fetch upstream-rw
git merge --no-ff upstream-rw/master

The merge will be detected by github, and should close any related pull requests
automatically.

Note the --no-ff above. This forces git to make a merge commit, rather than
doing a fast-forward, so that these set of commits branch off trunk then rejoin
the main history with a merge, rather than appearing to have been made directly
on top of trunk.

Check the history

Now, in either case, you should check that the history is sensible and you have
the right commits:

git log --oneline --graph
git log -p upstream-rw/master..

The first line above just shows the history in a compact way, with a text
representation of the history graph. The second line shows the log of commits
excluding those that can be reached from trunk (upstream-rw/master), and
including those that can be reached from current HEAD (implied with the ..
at the end). So, it shows the commits unique to this branch compared to trunk.
The -p option shows the diff for these commits in patch form.

Push to trunk

git push upstream-rw my-new-feature:master

This pushes the my-new-feature branch in this repository to the master
branch in the upstream-rw repository.

 © Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

_static/stern.png

devel/gitwash/development_workflow.html

 Navigation

 		
 index

 		SMILE 0.1.0 documentation »

Development workflow

You already have your own forked copy of the Smile [https://github.com/compmem/smile] repository, by
following Making your own copy (fork) of Smile. You have Set up your fork. You have configured
git by following Configure git. Now you are ready for some real work.

Workflow summary

In what follows we’ll refer to the upstream Smile master branch, as
“trunk”.

		Don’t use your master branch for anything. Consider deleting it.

		When you are starting a new set of changes, fetch any changes from trunk,
and start a new feature branch from that.

		Make a new branch for each separable set of changes — “one task, one
branch” (ipython git workflow [http://mail.scipy.org/pipermail/ipython-dev/2010-October/006746.html]).

		Name your branch for the purpose of the changes - e.g.
bugfix-for-issue-14 or refactor-database-code.

		If you can possibly avoid it, avoid merging trunk or any other branches into
your feature branch while you are working.

		If you do find yourself merging from trunk, consider Rebasing on trunk

		Ask on the Smile mailing list [https://github.com/compmem/smile] if you get stuck.

		Ask for code review!

This way of working helps to keep work well organized, with readable history.
This in turn makes it easier for project maintainers (that might be you) to see
what you’ve done, and why you did it.

See linux git workflow [http://www.mail-archive.com/dri-devel@lists.sourceforge.net/msg39091.html] and ipython git workflow [http://mail.scipy.org/pipermail/ipython-dev/2010-October/006746.html] for some explanation.

Consider deleting your master branch

It may sound strange, but deleting your own master branch can help reduce
confusion about which branch you are on. See deleting master on github [http://matthew-brett.github.com/pydagogue/gh_delete_master.html] for
details.

Update the mirror of trunk

First make sure you have done Linking your repository to the upstream repo.

From time to time you should fetch the upstream (trunk) changes from github:

git fetch upstream

This will pull down any commits you don’t have, and set the remote branches to
point to the right commit. For example, ‘trunk’ is the branch referred to by
(remote/branchname) upstream/master - and if there have been commits since
you last checked, upstream/master will change after you do the fetch.

Make a new feature branch

When you are ready to make some changes to the code, you should start a new
branch. Branches that are for a collection of related edits are often called
‘feature branches’.

Making an new branch for each set of related changes will make it easier for
someone reviewing your branch to see what you are doing.

Choose an informative name for the branch to remind yourself and the rest of us
what the changes in the branch are for. For example add-ability-to-fly, or
buxfix-for-issue-42.

Update the mirror of trunk
git fetch upstream
Make new feature branch starting at current trunk
git branch my-new-feature upstream/master
git checkout my-new-feature

Generally, you will want to keep your feature branches on your public github [http://github.com]
fork of Smile [https://github.com/compmem/smile]. To do this, you git push [http://schacon.github.com/git/git-push.html] this new branch up to your
github repo. Generally (if you followed the instructions in these pages, and by
default), git will have a link to your github repo, called origin. You push
up to your own repo on github with:

git push origin my-new-feature

In git >= 1.7 you can ensure that the link is correctly set by using the
--set-upstream option:

git push --set-upstream origin my-new-feature

From now on git will know that my-new-feature is related to the
my-new-feature branch in the github repo.

The editing workflow

Overview

hack hack
git add my_new_file
git commit -am 'NF - some message'
git push

In more detail

		Make some changes

		See which files have changed with git status (see git status [http://schacon.github.com/git/git-status.html]).
You’ll see a listing like this one:

On branch ny-new-feature
Changed but not updated:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)
#
modified: README
#
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
INSTALL
no changes added to commit (use "git add" and/or "git commit -a")

		Check what the actual changes are with git diff (git diff [http://schacon.github.com/git/git-diff.html]).

		Add any new files to version control git add new_file_name (see
git add [http://schacon.github.com/git/git-add.html]).

		To commit all modified files into the local copy of your repo,, do
git commit -am 'A commit message'. Note the -am options to
commit. The m flag just signals that you’re going to type a
message on the command line. The a flag — you can just take on
faith — or see why the -a flag? [http://www.gitready.com/beginner/2009/01/18/the-staging-area.html] — and the helpful use-case
description in the tangled working copy problem [http://tomayko.com/writings/the-thing-about-git]. The git commit [http://schacon.github.com/git/git-commit.html] manual
page might also be useful.

		To push the changes up to your forked repo on github, do a git
push (see git push [http://schacon.github.com/git/git-push.html]).

Ask for your changes to be reviewed or merged

When you are ready to ask for someone to review your code and consider a merge:

		Go to the URL of your forked repo, say
http://github.com/your-user-name/smile.

		Use the ‘Switch Branches’ dropdown menu near the top left of the page to
select the branch with your changes:

[image: ../../_images/branch_dropdown.png]

		Click on the ‘Pull request’ button:

[image: ../../_images/pull_button.png]
Enter a title for the set of changes, and some explanation of what you’ve
done. Say if there is anything you’d like particular attention for - like a
complicated change or some code you are not happy with.

If you don’t think your request is ready to be merged, just say so in your
pull request message. This is still a good way of getting some preliminary
code review.

Some other things you might want to do

Delete a branch on github

git checkout master
delete branch locally
git branch -D my-unwanted-branch
delete branch on github
git push origin :my-unwanted-branch

(Note the colon : before test-branch. See also:
http://github.com/guides/remove-a-remote-branch

Several people sharing a single repository

If you want to work on some stuff with other people, where you are all
committing into the same repository, or even the same branch, then just
share it via github.

First fork Smile into your account, as from Making your own copy (fork) of Smile.

Then, go to your forked repository github page, say
http://github.com/your-user-name/smile

Click on the ‘Admin’ button, and add anyone else to the repo as a
collaborator:

[image: ../../_images/pull_button.png]

Now all those people can do:

git clone git@githhub.com:your-user-name/smile.git

Remember that links starting with git@ use the ssh protocol and are
read-write; links starting with git:// are read-only.

Your collaborators can then commit directly into that repo with the
usual:

git commit -am 'ENH - much better code'
git push origin master # pushes directly into your repo

Explore your repository

To see a graphical representation of the repository branches and
commits:

gitk --all

To see a linear list of commits for this branch:

git log

You can also look at the network graph visualizer [http://github.com/blog/39-say-hello-to-the-network-graph-visualizer] for your github
repo.

Finally the Fancy log output lg alias will give you a reasonable text-based
graph of the repository.

Rebasing on trunk

Let’s say you thought of some work you’d like to do. You
Update the mirror of trunk and Make a new feature branch called
cool-feature. At this stage trunk is at some commit, let’s call it E. Now
you make some new commits on your cool-feature branch, let’s call them A, B,
C. Maybe your changes take a while, or you come back to them after a while. In
the meantime, trunk has progressed from commit E to commit (say) G:

 A---B---C cool-feature
 /
D---E---F---G trunk

At this stage you consider merging trunk into your feature branch, and you
remember that this here page sternly advises you not to do that, because the
history will get messy. Most of the time you can just ask for a review, and not
worry that trunk has got a little ahead. But sometimes, the changes in trunk
might affect your changes, and you need to harmonize them. In this situation
you may prefer to do a rebase.

rebase takes your changes (A, B, C) and replays them as if they had been made to
the current state of trunk. In other words, in this case, it takes the
changes represented by A, B, C and replays them on top of G. After the rebase,
your history will look like this:

 A'--B'--C' cool-feature
 /
D---E---F---G trunk

See rebase without tears [http://matthew-brett.github.com/pydagogue/rebase_without_tears.html] for more detail.

To do a rebase on trunk:

Update the mirror of trunk
git fetch upstream
go to the feature branch
git checkout cool-feature
make a backup in case you mess up
git branch tmp cool-feature
rebase cool-feature onto trunk
git rebase --onto upstream/master upstream/master cool-feature

In this situation, where you are already on branch cool-feature, the last
command can be written more succinctly as:

git rebase upstream/master

When all looks good you can delete your backup branch:

git branch -D tmp

If it doesn’t look good you may need to have a look at
Recovering from mess-ups.

If you have made changes to files that have also changed in trunk, this may
generate merge conflicts that you need to resolve - see the git rebase [http://schacon.github.com/git/git-rebase.html] man
page for some instructions at the end of the “Description” section. There is
some related help on merging in the git user manual - see resolving a merge [http://schacon.github.com/git/user-manual.html#resolving-a-merge].

Recovering from mess-ups

Sometimes, you mess up merges or rebases. Luckily, in git it is
relatively straightforward to recover from such mistakes.

If you mess up during a rebase:

git rebase --abort

If you notice you messed up after the rebase:

reset branch back to the saved point
git reset --hard tmp

If you forgot to make a backup branch:

look at the reflog of the branch
git reflog show cool-feature

8630830 cool-feature@{0}: commit: BUG: io: close file handles immediately
278dd2a cool-feature@{1}: rebase finished: refs/heads/my-feature-branch onto 11ee694744f2552d
26aa21a cool-feature@{2}: commit: BUG: lib: make seek_gzip_factory not leak gzip obj
...

reset the branch to where it was before the botched rebase
git reset --hard cool-feature@{2}

Rewriting commit history

Note

Do this only for your own feature branches.

There’s an embarassing typo in a commit you made? Or perhaps the you
made several false starts you would like the posterity not to see.

This can be done via interactive rebasing.

Suppose that the commit history looks like this:

git log --oneline
eadc391 Fix some remaining bugs
a815645 Modify it so that it works
2dec1ac Fix a few bugs + disable
13d7934 First implementation
6ad92e5 * masked is now an instance of a new object, MaskedConstant
29001ed Add pre-nep for a copule of structured_array_extensions.
...

and 6ad92e5 is the last commit in the cool-feature branch. Suppose we
want to make the following changes:

		Rewrite the commit message for 13d7934 to something more sensible.

		Combine the commits 2dec1ac, a815645, eadc391 into a single one.

We do as follows:

make a backup of the current state
git branch tmp HEAD
interactive rebase
git rebase -i 6ad92e5

This will open an editor with the following text in it:

pick 13d7934 First implementation
pick 2dec1ac Fix a few bugs + disable
pick a815645 Modify it so that it works
pick eadc391 Fix some remaining bugs

Rebase 6ad92e5..eadc391 onto 6ad92e5
#
Commands:
p, pick = use commit
r, reword = use commit, but edit the commit message
e, edit = use commit, but stop for amending
s, squash = use commit, but meld into previous commit
f, fixup = like "squash", but discard this commit's log message
#
If you remove a line here THAT COMMIT WILL BE LOST.
However, if you remove everything, the rebase will be aborted.
#

To achieve what we want, we will make the following changes to it:

r 13d7934 First implementation
pick 2dec1ac Fix a few bugs + disable
f a815645 Modify it so that it works
f eadc391 Fix some remaining bugs

This means that (i) we want to edit the commit message for
13d7934, and (ii) collapse the last three commits into one. Now we
save and quit the editor.

Git will then immediately bring up an editor for editing the commit
message. After revising it, we get the output:

[detached HEAD 721fc64] FOO: First implementation
 2 files changed, 199 insertions(+), 66 deletions(-)
[detached HEAD 0f22701] Fix a few bugs + disable
 1 files changed, 79 insertions(+), 61 deletions(-)
Successfully rebased and updated refs/heads/my-feature-branch.

and the history looks now like this:

0f22701 Fix a few bugs + disable
721fc64 ENH: Sophisticated feature
6ad92e5 * masked is now an instance of a new object, MaskedConstant

If it went wrong, recovery is again possible as explained above.

 © Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

_static/down.png

devel/gitwash/index.html

 Navigation

 		
 index

 		SMILE 0.1.0 documentation »

Working with Smile source code

Contents:

		Introduction

		Install git
		Overview

		In detail

		Following the latest source
		Get the local copy of the code

		Updating the code

		Making a patch
		Making patches

		Moving from patching to development

		Git for development
		Making your own copy (fork) of Smile

		Set up your fork

		Configure git

		Development workflow

		Maintainer workflow

		git resources
		Tutorials and summaries

		Advanced git workflow

		Manual pages online

 © Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

_static/red_green_smaller_std_dev.png

grating.html

 Navigation

 		
 index

 		SMILE 0.1.0 documentation »

 The following example, grating.py will be examined. A program was written to
produce a Gabor filter in a window.

Here is the definition of our Grating:

@WidgetState.wrap
class Grating(Widget):
 """Creates a Gabor filter by generating a grating that is masked by either
 a Gaussian, linear, or circular mask. Due to the limitations of Kivy, this
 widget and only create square textures.

 Parameters

 color_one : list
 first rgb color(each value between zero to one) which the grating will
 oscillate between
 color_two : list
 first rgb color(each value between zero to one) which the grating will
 oscillate between
 envelope : string
 type of Grating to be generated
 - Gaussian: creates a circular, Gaussian algorithm-based mask which becomes
 more transparent the more distant from the center
 - Linear: creates a circular, linear algorithm-based mask which becomes
 more transparent the more distant from the center
 - Circular: creates a circular mask which has no blending to the background
 frequency : float
 frequency of sine wave of Grating
 phase : float
 the phase shift of the sin wave
 std_dev : integer
 the standard deviation of the Gaussian mask controlling the size of the
 mask. Larger values create a larger grating on screen due to greater
 transparency and smaller values create smaller grating on screen due to
 less transparency.
 """

 envelope = StringProperty('g')
 frequency = NumericProperty(20)
 std_dev = NumericProperty(None)
 phase = NumericProperty(0.0)
 color_one = ListProperty([1., 1., 1.])
 color_two = ListProperty([0., 0., 0.])

In Grating several different parameters are needed to be passed into the
__init__ method in order to create different kinds of Gabor filters.

		
		envelope : A string that instructs the program to create a Gaussian, linear, or

		circular filter

		frequency : An integer value that controls the frequency of the grating’s wave

		
		std_dev : An integer value that controls the size of the standard deviation of

		the Gaussian mask. (The larger the value, the more transparent the
mask will be)

		phase : a float value that controls the phase shift of the grating’s wave

		
		color_one : a list of values each ranging from zero to one which represents RGB

		coloring and designates one of the colors the grating oscillates between.

		
		color_two : a list of values each ranging from zero to one which represents RGB

		coloring and designates the other color the grating oscillates between.

Next, the ‘__init__’ method is declared for the ‘Grating’ widget:

def __init__(self, **kwargs):
 super(type(self), self).__init__(**kwargs)

 if self.std_dev is None:
 self.std_dev = (self.width/2) * 0.1

 self._texture = None
 self._mask_texture = None

 self.bind(envelope=self._update_texture,
 std_dev=self._update_texture,
 phase=self._update_texture,
 color_one=self._update_texture,
 color_two=self._update_texture,
 frequency=self._update_texture,
 pos=self._update,
 size=self._update_texture)
 self._update_texture()

The .bind() method will bind each different attribute of the Gabor filter to a
method callback that might want to run if any of those attributes change.
An example of this is if, in SMILE, an `std_dev attribute.
The attribute change will cause Kivy to callback the corresponding function
attached with .bind(). Also, take note of the cache functionality of the Grating
stimuli, to increase speed and efficiency of the code. Now the functions can be defined:

def _calc_mask(self, rx, ry):
 dx = rx - (self.width/2.) # horizontal center of Grating
 dy = ry - (self.height/2.) # vertical center of Grating
 radius = math.sqrt(dx ** 2 + dy ** 2)
 #Gaussian Gabor stimuli calculations
 if self.envelope[0].lower() == 'g':
 transparency = math.exp(-0.5 * (dy / (self.std_dev*3)) ** 2 - 0.5 *
 (dx / (self.std_dev*3)) ** 2)
 #Linear Gabor stimuli calculations
 elif self.envelope[0].lower() == 'l':
 transparency = max(0, (0.5 * self.width - radius) / (0.5 * self.width))
 #Circular Gabor stimuli calculations
 elif self.envelope[0].lower() == 'c':
 if (radius > 0.5 * self.width):
 transparency = 0.0
 else:
 transparency = 1.0
 else:
 transparency = 1.0
 transparency = 1.0 - transparency
 #Return
 return 0, 0, 0, transparency

'''Performs the calculation for the grating behind the mask
This works by creating one period of a sin wave, then using tex_coords,
a repeat function not residing in this function to fill the rectangle with
the grating'''
def _calc_color(self, x):
 #Creation of the sin wave for the grating texture
 amp = 0.5 + 0.5 * math.sin((x*math.pi/180) * self.frequency + self.phase)
 #RGB color return
 return [(self.color_one[0] * amp + self.color_two[0] * (1.0 - amp)),
 (self.color_one[1] * amp + self.color_two[1] * (1.0 - amp)),
 (self.color_one[2] * amp + self.color_two[2] * (1.0 - amp))]

'''Updates textures by calling update functions'''
def _update_texture(self, *pargs):
 self._update_grating()
 if self._mask_texture is None or \
 self.size != self._prev_size or \
 self.std_dev != self._prev_std_dev:
 self._update_mask()
 self._prev_size = self.size
 self._prev_std_dev = self.std_dev
 self._update()

'''Updates the drawling of the textures on screen
The function mirror repeats the mask 3 times in the top left, top right
and bottom left quadrant to increase efficiency. Also it repeats the sin wave,
created in the _calc_color function to fill the rectangle with the sin wave
based grating.'''
def _update(self, *pargs):
 # clear (or else we get gratings all over)
 self.canvas.clear()

 # set up the blending
 with self.canvas.before:
 Callback(self._set_blend_func)

 # Draw the two textures in rectangles
 with self.canvas:
 # draw the mask
 mask = Rectangle(size=self.size, pos=self.pos,
 texture=self._mask_texture)
 #repeats 4 times to fill the created texture rectangle
 mask.tex_coords = 0, 0, 2, 0, 2, 2, 0, 2

 # draw the grating
 grating = Rectangle(size=self.size, pos=self.pos,
 texture=self._texture)
 #repeats the grating to fill the texture rectangle
 grating.tex_coords = (0, 0, self.width/self._period,
 0, self.width/self._period,
 self.height, 0, self.height)

 # clean up the blending
 with self.canvas.after:
 Callback(self._reset_blend_func)

'''Update grating variables
The function calls the _calc_color function to create the grating texture which
is layered behind the mask.'''
def _update_grating(self, *args):
 # calculate the num needed for period
 self._period = int(round(360./self.frequency))

 # make new texture
 self._texture = Texture.create(size=(self._period, 1),
 colorfmt='rgb',
 bufferfmt='float')

 # fill the buffer for the texture
 grating_buf = list(chain.from_iterable([self._calc_color(x)
 for x in range(self._period)]))
 # make an array from the buffer
 grating_arr = array('f', grating_buf)

 # blit the array to the texture
 self._texture.blit_buffer(grating_arr, colorfmt='rgb',
 bufferfmt='float')

 # set it to repeat
 self._texture.wrap = 'repeat'
 BindTexture(texture=self._texture, index=0)

'''Update Mask variables
The function calls the mask creating function. Also, it stores masks in a cache,
for later use to increase function efficiency.'''
def _update_mask(self, *args):
 #creation of texture, half the width and height, will be reflected to
 #completely cover the grating texture
 self._mask_texture = Texture.create(size=(self.width/2, self.height/2),
 colorfmt='rgba')

 # generate a unique mask id for cache lookup
 mask_id = 'e%s_w%d_h%d'%(self.envelope, self.width, self.height)
 global _mask_cache

 try:
 # see if we've already created this mask
 mask_arr = _mask_cache[mask_id]
 except KeyError:
 # set mask (this is the slow part)
 mask_buf = list(chain.from_iterable([self._calc_mask(rx, ry)
 for rx in range(self.width/2)
 for ry in range(self.height/2)]))
 # turn into an array
 mask_arr = array('f', mask_buf)

 # add it to the cache
 _mask_cache[mask_id] = mask_arr

 # blit it
 self._mask_texture.blit_buffer(mask_arr, colorfmt='rgba',
 bufferfmt='float')
 #mask is mirrored and repeated
 self._mask_texture.wrap = 'mirrored_repeat'
 #mask is set to foremost texture
 self._mask_texture.mag_filter = 'nearest'
 BindTexture(texture=self._mask_texture, index=1)

The Grating widget works step-wise to create a Gabor filter. First, it creates
a grating based on the ‘_calc_color’ function. The function creates an oscillating
grating between two chosen colors(using color_one and color_two variables), or the default
black and white color. The frequency of oscillation and the phase of oscillation can be
controlled by the phase and frequency variables, as well.

The next step of the program is to create the overlaying mask. The purpose of the
mask is to layer over the grating texture so a fading/blending to the background
can occur. Two envelope values can be passed to have a gradient fade/blend to
background. These variables are setting the envelope to ‘gaussian’ or ‘linear’.
The other variable, ‘circular’, when set to envelope, makes a circular mask overlay
with no fading/blending to the background. The characteristics of the mask can be
changed with the std_dev variable. This numeric value, when increased, causes the
Gaussian mask becomes larger, causing more of the masked grating
to be revealed due to the increase in transparency. Conversely, when the std_dev
variable is set to smaller numeric values, the Gaussian mask
becomes smaller, causing more of the masked grating to be revealed due to the
decrease in transparency. The default value for the std_dev variable is half of
the width of the passed width value multiplied by 0.1. This value was chosen
as default because the mask is created in the bottom left fourth quadrant then mirrored
repeated three times to the top left, top right, and bottom right, creating an entire
mask. Being so, the width value is divided by 2 to give the radius. The 0.1 multiplied
value was used because it yields an complete opacity at borders of the Gabor filter
and the background, creating an ideal blending to the background.

The Grating widget also uses special openGL functionality. The last two functions
of the class control how the alpha values of the mask interact with the program.
.. code-block:: python

‘’‘Controller for the Gabor blending to the background color
glBlendFunc(starting RGBA values, desired RGBA values)’‘’
def _set_blend_func(self, instruction):

glBlendFunc(GL_ONE_MINUS_DST_ALPHA, GL_SRC_ALPHA)

‘’‘Reset of the Gabor blending properties for creation of new stimuli
glBlendFunc(starting RGBA values, desired RGBA values)’‘’
def _reset_blend_func(self, instruction):

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)

These two functions make the increasing alpha values of the grating’s mask to
blend in with the background, rather than turning black. The second function resets,
or turns off this functionality once finished with the mask.

Examples of Gabor Filters

Grating()
When passing no parameters into the Grating widget, the return is a grated box,
oscillating between black and white:

[image: _images/no_variables.png]
Grating(width=500, height=500, envelope=’gaussian’)
When passing width, height, and envelope parameters, notice the sizing of the Gabor
filter changes and how the style of the mask changes:

[image: _images/default_gaussian.png]
Grating(width=500, height=500, envelope=’linear’)
This is the same parameters as the above example except the envelop is now ‘linear’,
notice how the mask changes:

[image: _images/default_linear.png]
Grating(width=500, height=500, envelope=’Circular’)
This is the same parameters as the above example except the envelop is now ‘Circular’,
notice how the mask changes:

[image: _images/default_circular.png]
Grating(width=500, height=500, envelope=’gaussian’, phase=1.5, frequency=10)
This is the same parameters as the above example except the envelop is now ‘gaussian’.
Also, the phase and frequency have changed, which changes the look of the grating
behind the mask:

[image: _images/adjusted_phase_and_frequency.png]

		Grating(width=500, height=500, envelope=’gaussian’, phase=1.5, frequency=10,

		std_dev=10, color_one=’green’, color_two=’red’)

This is the same parameters as the above example except the colors have changed.
The colors can either be set by changing 3 list values between zero and one or
by using plain English color names as strings. Also, the std_dev has been set to a smaller
value, making the grating smaller due to the mask being smaller:

[image: _images/red_green_smaller_std_dev.png]
See grating.py for complete Gabor filter creation code.

 © Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

devel/gitwash/git_resources.html

 Navigation

 		
 index

 		SMILE 0.1.0 documentation »

git resources

Tutorials and summaries

		github help [http://help.github.com] has an excellent series of how-to guides.

		learn.github [http://learn.github.com/] has an excellent series of tutorials

		The pro git book [http://progit.org/] is a good in-depth book on git.

		A git cheat sheet [http://github.com/guides/git-cheat-sheet] is a page giving summaries of common commands.

		The git user manual [http://schacon.github.com/git/user-manual.html]

		The git tutorial [http://schacon.github.com/git/gittutorial.html]

		The git community book [http://book.git-scm.com/]

		git ready [http://www.gitready.com/] — a nice series of tutorials

		git casts [http://www.gitcasts.com/] — video snippets giving git how-tos.

		git magic [http://www-cs-students.stanford.edu/~blynn/gitmagic/index.html] — extended introduction with intermediate detail

		The git parable [http://tom.preston-werner.com/2009/05/19/the-git-parable.html] is an easy read explaining the concepts behind git.

		git foundation [http://matthew-brett.github.com/pydagogue/foundation.html] expands on the git parable [http://tom.preston-werner.com/2009/05/19/the-git-parable.html].

		Fernando Perez’ git page — Fernando’s git page [http://www.fperez.org/py4science/git.html] — many
links and tips

		A good but technical page on git concepts [http://www.eecs.harvard.edu/~cduan/technical/git/]

		git svn crash course [http://git-scm.com/course/svn.html]: git for those of us used to subversion [http://subversion.tigris.org/]

Advanced git workflow

There are many ways of working with git; here are some posts on the
rules of thumb that other projects have come up with:

		Linus Torvalds on git management [http://kerneltrap.org/Linux/Git_Management]

		Linus Torvalds on linux git workflow [http://www.mail-archive.com/dri-devel@lists.sourceforge.net/msg39091.html] . Summary; use the git tools
to make the history of your edits as clean as possible; merge from
upstream edits as little as possible in branches where you are doing
active development.

Manual pages online

You can get these on your own machine with (e.g) git help push or
(same thing) git push --help, but, for convenience, here are the
online manual pages for some common commands:

		git add [http://schacon.github.com/git/git-add.html]

		git branch [http://schacon.github.com/git/git-branch.html]

		git checkout [http://schacon.github.com/git/git-checkout.html]

		git clone [http://schacon.github.com/git/git-clone.html]

		git commit [http://schacon.github.com/git/git-commit.html]

		git config [http://schacon.github.com/git/git-config.html]

		git diff [http://schacon.github.com/git/git-diff.html]

		git log [http://schacon.github.com/git/git-log.html]

		git pull [http://schacon.github.com/git/git-pull.html]

		git push [http://schacon.github.com/git/git-push.html]

		git remote [http://schacon.github.com/git/git-remote.html]

		git status [http://schacon.github.com/git/git-status.html]

 © Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

_static/comment.png

devel/gitwash/configure_git.html

 Navigation

 		
 index

 		SMILE 0.1.0 documentation »

Configure git

Overview

Your personal git configurations are saved in the .gitconfig file in
your home directory.

Here is an example .gitconfig file:

[user]
 name = Your Name
 email = you@yourdomain.example.com

[alias]
 ci = commit -a
 co = checkout
 st = status
 stat = status
 br = branch
 wdiff = diff --color-words

[core]
 editor = vim

[merge]
 summary = true

You can edit this file directly or you can use the git config --global
command:

git config --global user.name "Your Name"
git config --global user.email you@yourdomain.example.com
git config --global alias.ci "commit -a"
git config --global alias.co checkout
git config --global alias.st "status -a"
git config --global alias.stat "status -a"
git config --global alias.br branch
git config --global alias.wdiff "diff --color-words"
git config --global core.editor vim
git config --global merge.summary true

To set up on another computer, you can copy your ~/.gitconfig file,
or run the commands above.

In detail

user.name and user.email

It is good practice to tell git [http://git-scm.com/] who you are, for labeling any changes
you make to the code. The simplest way to do this is from the command
line:

git config --global user.name "Your Name"
git config --global user.email you@yourdomain.example.com

This will write the settings into your git configuration file, which
should now contain a user section with your name and email:

[user]
 name = Your Name
 email = you@yourdomain.example.com

Of course you’ll need to replace Your Name and you@yourdomain.example.com
with your actual name and email address.

Aliases

You might well benefit from some aliases to common commands.

For example, you might well want to be able to shorten git checkout
to git co. Or you may want to alias git diff --color-words
(which gives a nicely formatted output of the diff) to git wdiff

The following git config --global commands:

git config --global alias.ci "commit -a"
git config --global alias.co checkout
git config --global alias.st "status -a"
git config --global alias.stat "status -a"
git config --global alias.br branch
git config --global alias.wdiff "diff --color-words"

will create an alias section in your .gitconfig file with contents
like this:

[alias]
 ci = commit -a
 co = checkout
 st = status -a
 stat = status -a
 br = branch
 wdiff = diff --color-words

Editor

You may also want to make sure that your editor of choice is used

git config --global core.editor vim

Merging

To enforce summaries when doing merges (~/.gitconfig file again):

[merge]
 log = true

Or from the command line:

git config --global merge.log true

Fancy log output

This is a very nice alias to get a fancy log output; it should go in the
alias section of your .gitconfig file:

lg = log --graph --pretty=format:'%Cred%h%Creset -%C(yellow)%d%Creset %s %Cgreen(%cr) %C(bold blue)[%an]%Creset' --abbrev-commit --date=relative

You use the alias with:

git lg

and it gives graph / text output something like this (but with color!):

* 6d8e1ee - (HEAD, origin/my-fancy-feature, my-fancy-feature) NF - a fancy file (45 minutes ago) [Matthew Brett]
* d304a73 - (origin/placeholder, placeholder) Merge pull request #48 from hhuuggoo/master (2 weeks ago) [Jonathan Terhorst]
|\
| * 4aff2a8 - fixed bug 35, and added a test in test_bugfixes (2 weeks ago) [Hugo]
|/
* a7ff2e5 - Added notes on discussion/proposal made during Data Array Summit. (2 weeks ago) [Corran Webster]
* 68f6752 - Initial implimentation of AxisIndexer - uses 'index_by' which needs to be changed to a call on an Axes object - this is all very sketchy right now. (2 weeks ago) [Corr
* 376adbd - Merge pull request #46 from terhorst/master (2 weeks ago) [Jonathan Terhorst]
|\
| * b605216 - updated joshu example to current api (3 weeks ago) [Jonathan Terhorst]
| * 2e991e8 - add testing for outer ufunc (3 weeks ago) [Jonathan Terhorst]
| * 7beda5a - prevent axis from throwing an exception if testing equality with non-axis object (3 weeks ago) [Jonathan Terhorst]
| * 65af65e - convert unit testing code to assertions (3 weeks ago) [Jonathan Terhorst]
| * 956fbab - Merge remote-tracking branch 'upstream/master' (3 weeks ago) [Jonathan Terhorst]
| |\
| |/

Thanks to Yury V. Zaytsev for posting it.

 © Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

_static/adjusted_phase_and_frequency.png

_images/smile_example.png
Lets SMILE together!

Light Table vAQ
jow Help

index.rst install.rst how_to_smile.rst tutorial.rst screenshot.py user.behaviors

from smile.common import *
exp = Experiment()
with Parallel():
Label(text="Lets SMILE together!", duration=5,
font_size=50, center_y=exp.screen.center_y+50)
Image(source="smile.png", duration=5,
center_y=exp.screen.center_y+200)
exp.run()

_images/default_linear.png

devel/gitwash/git_development.html

 Navigation

 		
 index

 		SMILE 0.1.0 documentation »

Git for development

Contents:

		Making your own copy (fork) of Smile
		Set up and configure a github account

		Create your own forked copy of Smile

		Set up your fork
		Overview

		In detail

		Configure git
		Overview

		In detail

		Development workflow
		Workflow summary

		Consider deleting your master branch

		Update the mirror of trunk

		Make a new feature branch

		The editing workflow

		Ask for your changes to be reviewed or merged

		Some other things you might want to do

		Maintainer workflow
		Integrating changes

 © Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

examples/iat_mouse/iat_mouse_instructions1.html

 Navigation

 		
 index

 		SMILE 0.1.0 documentation »

INSTRUCTIONS

You are going to be presented with a list of words. At the top left of your
screen, you will see a button marked flower. At the top right of your screen
you will see a button marked insect.

Each trial, you will need to click a button at the bottom of your screen marked
Start. After you click that, a word will appear on the screen. Your task is
to click on the button that corrisponds to the word presented.

If the word is an insect, please click the top right button!

If the word is a flower, please click the top left button!

It is CRUCIAL that you start moving the mouse as soon as you click the start
button. If you take to long to start moving, a warning will appear on the screen
to tell you to speed up! We want you to catagorize these words as quickly as you
possibly can.

Press any key to Continue!

 © Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

_images/pull_button.png
#Admin | © Unwatch i Pull Roquost L1 Down!

Downloads (0) ~ Wiki (1) Graphs

_images/ccbs.jpg
BEHAVIOR

!

Decision
Making

KTIONAL Mopg,

Perception

Language

snolyoned!

3)
M1050unan NN

_static/comment-bright.png

_images/default_gaussian.png

examples/iat_mouse/iat_mouse_instructions2.html

 Navigation

 		
 index

 		SMILE 0.1.0 documentation »

INSTRUCTIONS

You are going to be presented with a list of words. At the top left of your
screen, you will see a button marked positive. At the top right of your screen
you will see a button marked negative.

Each trial, you will need to click a button at the bottom of your screen marked
Start. After you click that, a word will appear on the screen. Your task is
to click on the button that corrisponds to the word presented.

If the word is an negative associated noun, please click the top right button!

If the word is a positive associated noun, please click the top left button!

It is CRUCIAL that you start moving the mouse as soon as you click the start
button. If you take to long to start moving, a warning will appear on the screen
to tell you to speed up! We want you to catagorize these words as quickly as you
possibly can.

Press any key to Continue!

 © Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

_images/no_variables.png

examples/iat_mouse/iat_mouse_instructions7.html

 Navigation

 		
 index

 		SMILE 0.1.0 documentation »

CRITICAL BLOCK INSTRUCTIONS

You are going to be presented with a list of words. At the top left of your
screen, you will see a button marked insect positive. At the top right of your screen
you will see a button marked flower negative.

Each trial, you will need to click a button at the bottom of your screen marked
Start. After you click that, a word will appear on the screen. Your task is
to click on the button that corrisponds to the word presented.

If the word is an flower or a negative assosiated noun, please click the top right button!

If the word is a insect or a positive assosiated noun, please click the top left button!

It is CRUCIAL that you start moving the mouse as soon as you click the start
button. If you take to long to start moving, a warning will appear on the screen
to tell you to speed up! We want you to catagorize these words as quickly as you
possibly can.

Press any key to Continue!

 © Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

examples/iat_mouse/iat_mouse_instructions6.html

 Navigation

 		
 index

 		SMILE 0.1.0 documentation »

TRAINING BLOCK INSTRUCTIONS

You are going to be presented with a list of words. At the top left of your
screen, you will see a button marked insect positive. At the top right of your screen
you will see a button marked flower negative.

Each trial, you will need to click a button at the bottom of your screen marked
Start. After you click that, a word will appear on the screen. Your task is
to click on the button that corrisponds to the word presented.

If the word is an flower or a negative assosiated noun, please click the top right button!

If the word is a insect or a positive assosiated noun, please click the top left button!

It is CRUCIAL that you start moving the mouse as soon as you click the start
button. If you take to long to start moving, a warning will appear on the screen
to tell you to speed up! We want you to catagorize these words as quickly as you
possibly can.

Press any key to Continue!

 © Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

_images/stroop.png
orange

examples/stern/stern_instructions.html

 Navigation

 		
 index

 		SMILE 0.1.0 documentation »

INSTRUCTIONS

You will be presented with blocks of lists of letters. During each block, you
will see a number of letters (2 or 3 or 4) one after the next. Then you will be
presented with another letter that is bold. You will need to identify whether or
not you have seen this bold letter during this block.

If youve seen this letter in the current block, Press J.

If you haven't seen this letter in the current block, Press K.

When you are ready to start the experiment, Press any key!

 © Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

_images/iat_mouse.png
crocus

_images/default_circular.png

examples/iat_mouse/iat_mouse_instructions3.html

 Navigation

 		
 index

 		SMILE 0.1.0 documentation »

TRAINING BLOCK INSTRUCTIONS

You are going to be presented with a list of words. At the top left of your
screen, you will see a button marked flower positive. At the top right of your screen
you will see a button marked insect negative.

Each trial, you will need to click a button at the bottom of your screen marked
Start. After you click that, a word will appear on the screen. Your task is
to click on the button that corrisponds to the word presented.

If the word is an insect or a negative assosiated noun, please click the top right button!

If the word is a flower or a positive assosiated noun, please click the top left button!

It is CRUCIAL that you start moving the mouse as soon as you click the start
button. If you take to long to start moving, a warning will appear on the screen
to tell you to speed up! We want you to catagorize these words as quickly as you
possibly can.

Press any key to Continue!

 © Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

_images/free_recall.png
TURTLE

_images/purple_box.png
center_x top

left right

height

center_y

X bottom
width

_images/adjusted_phase_and_frequency.png

_images/forking_button.png
© Unwatch 4 Fork (i Pull Request

Issues (0) Downloads (0) Wiki(1) Graphs

_images/stern.png

examples/iat_mouse/iat_mouse_instructions5.html

 Navigation

 		
 index

 		SMILE 0.1.0 documentation »

INSTRUCTIONS

You are going to be presented with a list of words. At the top left of your
screen, you will see a button marked insect. At the top right of your screen
you will see a button marked flower.

Each trial, you will need to click a button at the bottom of your screen marked
Start. After you click that, a word will appear on the screen. Your task is
to click on the button that corrisponds to the word presented.

If the word is an flower, please click the top right button!

If the word is a insect, please click the top left button!

It is CRUCIAL that you start moving the mouse as soon as you click the start
button. If you take to long to start moving, a warning will appear on the screen
to tell you to speed up! We want you to catagorize these words as quickly as you
possibly can.

Press any key to Continue!

 © Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

examples/iat_mouse/iat_mouse_instructions4.html

 Navigation

 		
 index

 		SMILE 0.1.0 documentation »

CRITICAL BLOCK INSTRUCTIONS

You are going to be presented with a list of words. At the top left of your
screen, you will see a button marked flower positive. At the top right of your screen
you will see a button marked insect negative.

Each trial, you will need to click a button at the bottom of your screen marked
Start. After you click that, a word will appear on the screen. Your task is
to click on the button that corrisponds to the word presented.

If the word is an insect or a negative assosiated noun, please click the top right button!

If the word is a flower or a positive assosiated noun, please click the top left button!

It is CRUCIAL that you start moving the mouse as soon as you click the start
button. If you take to long to start moving, a warning will appear on the screen
to tell you to speed up! We want you to catagorize these words as quickly as you
possibly can.

Press any key to Continue!

 © Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

_images/branch_dropdown.png
Source Commits Network Pull Requests (0)

Switch Branches (2) v| SwichTags (0) Branch List

my-fancy-feature
amed axes for data management
placehoider ¢

_images/red_green_smaller_std_dev.png

_static/minus.png

_static/comment-close.png

_static/up.png

_static/ccbs.jpg
BEHAVIOR

!

Decision
Making

KTIONAL Mopg,

Perception

Language

snolyoned!

3)
M1050unan NN

_static/smile_example.png
Lets SMILE together!

Light Table vAQ
jow Help

index.rst install.rst how_to_smile.rst tutorial.rst screenshot.py user.behaviors

from smile.common import *
exp = Experiment()
with Parallel():
Label(text="Lets SMILE together!", duration=5,
font_size=50, center_y=exp.screen.center_y+50)
Image(source="smile.png", duration=5,
center_y=exp.screen.center_y+200)
exp.run()

_static/default_linear.png

examples/stroop/stroop_instructions.html

 Navigation

 		
 index

 		SMILE 0.1.0 documentation »

How to stroop!

You are going to be presented a few lists of words that are colors. When a word
appears on the screen, you are to say the text color’s name as clearly as
possible. You want to minimize the time it takes you to respond, but not the
time it takes you to say the whole word.

EXAMPLE

If the word is "Green" but the text color is "Orange" you would say "Orange" as soon as you can.

If the word is "Green" and the text color is "Green" you would say "Green" as soon as you can.

REMINDER : Say the Color of the text out loud, not the printed word on the screen!

Press any key to continue! Good Luck!

 © Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

examples/free_recall/freekey_instructions.html

 Navigation

 		
 index

 		SMILE 0.1.0 documentation »

INSTRUCTIONS

You are about to be presented with sever blocks of words. Look at each word then
try to remember them. After being presented with a number of words, you will
wait a brief period then be asked to recall as many of those words as possible.

When the **XXXXXX** appears on the screen, type out one word and then press the **ENTER** key. Try to remember as many words from the list as possible within the time limit provided.

Once the time runs out, you will be presented with another block of words to
try to remember.

When you are ready to continue, press ENTER.

 © Copyright 2016, Per B. Sederberg.
 Created using Sphinx 1.3.5.

