

Welcome!!

This is Slycat™ - a web-based data science analysis and visualization platform,
created at Sandia National Laboratories [http://www.sandia.gov].

Slycat™ is a web-based system for analysis of large, high-dimensional
data, developed to provide a collaborative platform for remote analysis
of data ensembles. An ensemble is a collection of data sets, typically
produced through a series of related simulation runs. More generally, an
ensemble is a set of samples, each consisting of the same set of
variables, over a shared high-dimensional space describing a particular
problem domain. Ensemble analysis is a form of meta-analysis that looks
at the combined behaviors and features of a group of simulations in an
effort to understand and describe the underlying domain space. For
instance, sensitivity analysis uses ensembles to examine how simulation
input parameters and simulation results are correlated. By looking at
groups of runs as a whole, higher level patterns can be seen despite
variations in the individual runs.

The Slycat™ system integrates data management, scalable analysis, and
visualization via commodity web clients using a multi-tiered hierarchy
of computation and data storage. Analysis models are computed local or
on the Slycat™ server, and model artifacts are stored in a project
database. These artifacts are the basis for visualizations that are
delivered to users’ desktops through ordinary web browsers. Slycat™
currently provides two types of analysis: canonical correlation analysis
(CCA) to model relationships between inputs and output metrics, and time
series analysis featuring clustering and comparative visualization of
waveforms. Install Slycat to try it for yourself!

Design

Slycat™ incorporates several components:

	A Web Server that can load, transform, index, and analyze moderate amounts of data, storing the analysis results for later visualization.

	A web-based user interface that you use to pull your data into the Slycat™ Web Server, compute analyses, and view analysis results. You can use Slycat™ with any modern, standards-compliant browser, including Firefox, Safari, and Chrome. There is no software to install on your workstation.

	A collection of command-line clients that can be used to push data into Slycat™ Web Server and control it remotely, if that suits your workflow better.

The Slycat™ Web Server provides easy collaboration and a graphical user
interface for analyses that have broad appeal.

Documentation:

	User Manual
	Overview

	Canonical Correlation Analysis Model

	Parameter Space Model

	Timeseries Model

	Acknowledgements

	Design

	Tutorial
	Install Slycat

	Create a CCA Model

	Create a Timeseries Model

	Create a Parameter Image Model

	Managing Docker

	Setup Slycat Clients
	Prerequisites

	Installation

	See Also

	Setup Slycat Web Server
	Use the Docker Image

	Installing Slycat from Scratch

	Configuring Slycat Web Server

	Docker Development
	Prerequisites

	Working Inside the Running Container

	Working Outside the Running Container

	Testing
	Setting Up Tests

	Running Tests

	Running Coverage

	Modifying Tests

	Coding Guidelines

	Plugins
	Overview

	New Marking Types

	New Model Types

	Model Commands

	Password Check Plugins

	Colophon
	Writing the Documentation

	Building the Documentation

	Deploying the Documentation

	Models
	Parameter Image Model

	REST API
	Hyperchunks

	DELETE Logout

	DELETE Model

	DELETE Project

	DELETE Project Cache Object

	DELETE Remote

	DELETE Upload

	GET Bookmark

	GET Home

	GET Model Arrayset Data

	GET Model Arrayset Metadata

	GET Model Command

	GET Model File

	GET Model Parameter

	GET Model Resource

	GET Model Table Chunk

	GET Model Table Metadata

	GET Model Table Sorted Indices

	GET Model Table Unsorted Indices

	GET Model

	GET Project Cache Object

	GET Project Models

	GET Project

	GET Projects

	GET Remote File

	GET Remote Image

	GET Remote Video Status

	GET Remote Video

	GET User

	POST Model Arrayset Data

	POST Agent Function

	POST Cancel Job

	POST Check Job

	POST Events

	POST Get Job Output

	POST Login

	POST Model Command

	POST Model Finish

	POST Project Bookmark

	POST Project Models

	POST Projects

	POST Remote Browse

	POST Remote Launch

	POST Remotes

	POST Submit Batch

	POST Uploads

	POST Upload Finished

	PUT Model Arrayset Array

	PUT Model Arrayset Data

	PUT Model Arrayset

	PUT Model Command

	PUT Model Inputs

	PUT Model Parameter

	PUT Model

	PUT Project

	PUT Upload File Part

	Javascript API
	slycat-login-controls

	slycat-range-slider

	slycat-remote-controls

	slycat-remotes

	slycat-server-root

	slycat-web-client

	Python API
	slycat.cca

	slycat.darray

	slycat.hdf5

	slycat.hyperchunks

	slycat.table

	slycat.timeseries

	slycat.timeseries.segmentation

	slycat.uri

	slycat.web.client

	slycat.web.server

	slycat.web.server.authentication

	slycat.web.server.database.couchdb

	slycat.web.server.engine

	slycat.web.server.handlers

	slycat.web.server.hdf5

	slycat.web.server.plugin

	slycat.web.server.remote

	slycat.web.server.template

	Support

Indices and tables

	Index

	Module Index

	Search Page

User Manual

	Overview
	Getting Started

	Slycat™ Navbar

	Projects

	Models

	Bookmarks

	Templates

	Canonical Correlation Analysis Model
	Cars Example Data Set

	Creating a CCA Model

	CCA Model Visualization

	Parameter Space Model
	Taylor Anvil Impact Scenario (TAIS) Data Set

	Creating a Parameter Space Model

	Parameter Space Model Visualization

	Timeseries Model
	Time Series Data

	Creating a Time Series Model

	Time Series Model Visualization

	Acknowledgements

Overview

Slycat™ is a web-based system for performing data analysis and visualization of potentially large quantities of remote,
high-dimensional data. Slycat™ specializes in working with ensemble data. An ensemble is a group of related data sets, which
typically consists of a set of simulation runs exploring the same problem space. An ensemble can be thought of as a set of samples
within a multi-variate domain, where each sample is a vector whose value defines a point in high-dimensional space. To understand
and describe the underlying problem being modeled in the simulations, ensemble analysis looks for shared behaviors and common
features across the group of runs. Additionally, ensemble analysis tries to quantify differences found in any members that deviate
from the rest of the group.

The Slycat™ system integrates data management, scalable analysis, and visualization. Results are viewed remotely on a user’s
desktop via commodity web clients using a multi-tiered hierarchy of computation and data storage, as shown in Figure 1. Our goal
is to operate on data as close to the source as possible, thereby reducing time and storage costs associated with data movement.
Consequently, we are working to develop parallel analysis capabilities that operate on High Performance Computing (HPC) platforms,
to explore approaches for reducing data size, and to implement strategies for staging computation across the Slycat™ hierarchy.

[image: ../_images/SystemArch.png]
Figure 1: Slycat multi-tiered hierarchy, designed for large data analysis and exploration with minimal data movement.

Within Slycat™, data and visual analysis are organized around projects, which are shared by a project team. Project members are
explicitly added, each with a designated set of permissions. Although users sign-in to access Slycat™, individual accounts are not
maintained. Instead, authentication is used to determine project access. Within projects, Slycat™ models capture analysis results
and enable data exploration through various visual representations. Although for scientists each simulation run is a model of
real-world phenomena given certain conditions, we use the term model to refer to our modeling of the ensemble data, not the
physics. Different model types often provide complementary perspectives on data features when analyzing the same data set. Each
model visualizes data at several levels of abstraction, allowing the user to range from viewing the ensemble holistically to
accessing numeric parameter values for a single run. Bookmarks provide a mechanism for sharing results, enabling interesting model
states to be labeled and saved.

	Getting Started

	Slycat™ Navbar

	Projects
	Project Creation

	Editing Projects

	Project Info

	Deleting Projects

	Models
	Creating Models

	Editing Models

	Reset Model

	Deleting Models

	View Regions

	Download Data Table

	Color Themes

	Bookmarks

	Templates

Getting Started

Slycat™ is accessed through a web browser from your desktop computer. Slycat™ currently supports Firefox, Chrome, and Safari
browsers. We do not support Internet Explorer.

Since multiple Slycat™ servers are already in existence, you will need to obtain the URL for the Slycat™ server that you want
to use. Enter this URL into the address bar of the browser. If the authentication mechanism for your institution relies on username and password, you will be taken to the Slycat™ login page, shown in Figure 2, where you will be prompted for your
username and password. If your institution uses single sign-on, login will happen automatically and you will skip this step.
Once your identity has been established, you will find yourself on the main Projects page.

[image: ../_images/LoginPage.png]
Figure 2: Slycat login page.

Slycat™ pages exist at one of three levels: the main Projects page, an individual project page, and an individual model page.
The main Projects page displays all projects which you are authorized to access. This list of projects is unique to you.
Clicking on a project name will take you to that project page, which will contain a list of all models that have been generated
within the project. Clicking on a model name will take you to that model page, which will display a visualization of its data.
At any level, clicking on the Slycat™ logo will return you to the main Projects page.

The first time that you access the Slycat™ website, your projects list will probably be empty, unless someone else has already
created a project and added you as a project member. Since models cannot exist outside of a project, you must first create a
project (see Project Creation) before you can create a model. Project-specific information consists of the project name,
a list of project members, a set of models, and a set of saved bookmarks for models within that project.

Slycat™ Navbar

At the top of every Slycat™ page is the Navbar. Working from left to right, we see the Slycat™ logo, a breadcrumb navigation path, and a set of colored buttons providing dropdown lists categorized by function. Depending on the type of page currently being viewed, the buttons and the contents of the dropdowns will vary. As shown in Figure 3, the Navbar for the main Projects page, the only button available is the green Create button for creating new projects. Since the main Projects page lies outside and above any projects, the breadcrumb navigation path points to the current page, which is simply labeled as Slycat. Figure 4 shows that for Navbars within a project or model page, there can be up to five buttons, including: Create, Edit, Info, Bookmarks, and Delete.

[image: ../_images/Figure3.png]
Figure 3: Slycat Navbar as seen on the main Projects page. At this level, the Navbar displays the title Slycat because we have yet to move to an individual project page.

[image: ../_images/Figure4.png]
Figure 4: Navbar at the individual project page level. Here the name of the project is ‘My Project’. Note that the Bookmarks button is hidden until at least one bookmark has been created.

As you move between pages at various levels, the breadcrumb path in the Navbar will change to reflect your current location. The path has the format Project Name / Model Name. The path can be used to navigate within the hierarchy. Clicking on the Project Name will take you to that project’s page with its list of associated models. Hovering over the Project Name will display the project description, the project members, the date of creation, and who created it (Figure 5). Similarly, hovering over the Model Name will display the model description, the date of creation, and who created it.

[image: ../_images/Figure5.png]
Figure 5: Hovering over the project name will display more detailed project information.

Projects

Project-specific information consists of the project name, a list of project members, a set of models, and a set of saved
bookmarks for models within that project.

Project Creation

[image: ../_images/Figure3.png]

Projects are created by clicking the green Create button on the main Projects page and selecting New Project
from the dropdown that appears. A dialog will pop up, providing editable regions for you to enter a Name and an
optional Description. This brief text field allows you to provide more detailed comments or notes beyond the project
name. Clicking the Finish button in the lower right corner creates the project and takes you to the newly created project
page; clicking the Cancel button in the lower left corner aborts project creation.

Once the project is created, you will find yourself on the empty project page. As the project creator, you are automatically
assigned the role of Administrator for that project (although there can be multiple project members with Administrator roles).
A series of buttons appears to the right of the project name. Since you have an Administrator role, there will initially be four
buttons: Create, Edit, Info, and Delete. Only project administrators can edit or delete the project. Otherwise, there will
only be two buttons: Create and Info.

Editing Projects

[image: ../_images/Figure4.png]

Clicking on the yellow Edit button on a project page and selecting Edit Project from the dropdown list provides a means to
change the project Name, Description, or project Members. An Edit Project popup will appear with the current project
information (Figure 6). In a newly created project, the membership list consists solely of the project creator assigned the role
of Administrator. The username of the creator will be shown within a red button (buttons are color-coded according to role and
red is used for an Administrator) at the bottom.

[image: ../_images/Figure6.png]
Figure 6: Edit Project dialog allows you to change the project name, add or change a description, and add, remove, or change the roles of project members.

There are three different roles that project members can have: Reader, Writer, and Administrator, whose buttons are color-coded
blue, yellow, and red, respectively. Readers can view all data in a project, but they cannot create new models, modify existing
models, or delete models. Writers can both view and modify the contents of a project, but they are unable to add new project
members or edit the project name or description. Administrators have full access to all aspects of the project, including adding
new project members or deleting the project itself.

To add a project member, select a role from the dropdown list to the right of Members and type in the person’s username. Note
that the username is checked against a list of legitimate usernames and will be rejected if it is not found. If the username is
found, a popup will translate the username into the person’s full name and verify both the identity and the role selected.
Click OK if both the person and role are as you intended, or Cancel if they are not. Now an additional button, color-coded
by role and enclosing the newly added member’s username, will appear in the member list below. Although the new member now
appears to be in the project member list, this action has not been saved and will be discarded unless the Save Changes button
is pressed.

To remove project members, click on the trashcan icon next to the name of the member to be removed. To change the role of a
project member, add them as you would a new project member (you do not need to remove them first), but with the revised role.
Note that as an Administrator, you have the power to delete yourself or reduce the level of your role (thereby losing your
Administrator privileges), which is why we require you to first click the Save Changes button before we finalize any changes.
If you find that you have accidently made a change that you do not want to execute, pressing the X button in the upper right
corner of the Edit Project dialog cancels the edit and keeps the previous project state (Name, Description, Members, and
member roles) intact.

Project Info

To see a non-editable version of a project’s information, click on the cyan Info button on the project page and select
Project Details from the dropdown. A popup will display the Name, Description, and project Members list. Click Close
when you are finished viewing it. Note that this same information can be seen by hovering over the project name in the
breadcrumb navigation path.

Deleting Projects

To remove a project, including ALL ITS MODELS AND DATA, click the red Delete button from within the project page of the
project that you wish to delete. Select Delete Project from the dropdown. Note that only members with Administrator rights
may delete the project. Project deletion is an irreversible operation, so deletion requires confirmation through a popup that
asks if you really want to delete that project and all models within it. Press the red Delete Project button to confirm
deletion, or the X button in the upper right corner of the dialog to cancel the operation and keep the project.

Models

In Slycat™, models combine analysis and visualization. Slycat™ provides three different types of models: Canonical Correlation
Analysis (CCA), Parameter Space, and Time Series. The heart of every model is a data table. For each model type, there are
predefined sets of linked views that provide different representations of the analysis results. Generally, the visualization
for each model consists of three different representations, each showing the ensemble at a different level of abstraction. The
highest-level view seeks to display the ensemble in a holistic manner. It seeks to show what high-level behaviors or trends
can be seen across most, if not all, of the simulation runs. Slycat™ currently provides views showing correlations between
inputs and outputs, or similarities between results. The intermediate-level view presents individually distinguishable runs in
the context of the group, showing how well each member aligns with the high-level view of shared ensemble traits. The low-level
view enables you to drill down to the raw data values, both to input parameters and to the results from individual runs.

Each model has a Name, a Marking, and an optional Description. Marking choices are defined as part of the server
configuration, so they are specific to the institution that hosts the server. The intent is for Slycat™ to facilitate clear
labeling of data sensitivity through explicit choice of marking. The marking appears as part of the model description on the
Project page list, plus it is shown in both header and footer bars when visualizing the model.

Creating Models

Models are created by clicking the green Create button from within a project page and selecting one of the model types from
the dropdown list. The information needed to create a model varies depending on which model you choose, so a popup dialog
specific to the selected model will step you through entering the necessary information for that type (the details for each are
covered below). Model creation can be aborted at any stage by clicking the X button in the upper right corner of the popup.

[image: ../_images/Figure7.png]
Figure 7: Create dropdown list of model choices, as seen from a project page.

Editing Models

Clicking on the yellow Edit button on a model page and selecting Name Model from the dropdown list allows you to change the
model Name, Description, and Marking. A Name Model dialog will popup with the current model information. Click
Save Changes to modify the model description on the server, or click the X button in the upper right of the popup to abort
the operation.

[image: ../_images/Figure8.png]
Figure 8: Edit dropdown list, as seen from a model page.

Reset Model

As you interact with a model and change various aspects of the visualization, Slycat™ keeps track of the current model state.
If you leave that model and return to it later, Slycat™ will resume with the model rendered according to the most recent
configuration state. Note that this is only true if you are returning to a model on the same computer using the same browser
that you previously used to view it. However, sometimes you might want to start over with the default settings to produce the
initial visualization. Clicking on the yellow Edit button on a model page and selecting Reset Model from dropdown list will
return the model state to its initial configuration.

Deleting Models

To remove a model and ALL ITS DATA, click the red Delete button from within the model page of the model that you wish to
delete. Select Delete Model from the dropdown. Model deletion is an irreversible operation, so deletion requires
confirmation through a popup asking if you really want to delete that model. Press the red Delete Model button to confirm
deletion, or click the X button in the upper right of the popup to abort the operation and keep the model.

View Regions

The inner part of each model’s visualization is subdivided into several views or regions, each separated from adjacent regions
by a thick gray line. As you move the mouse over one of these region dividers, a double-headed arrow cursor perpendicular to
the divider replaces the normal arrow cursor, the line extent (all but a darker gray center section) highlights in yellow, and
the tooltip Resize pops up. If you click and drag the divider while this is enabled, the divider will move until you release
it, resizing the regions on either side to reflect proportional changes created by the new divider location. The divider can be
dragged to the very edge, effectively hiding the view.

Alternately, if you move the mouse over the darker center section of a divider, the center section highlights in yellow, the
icon become a hand with a pointing finger, and the tooltip Close appears. Clicking the mouse button now will collapse one of
the two adjacent regions. It collapses the region that is closer to the edge of the browser window. Clicking a second time on
that same divider (now positioned along the edge of the model visualization) will restore the previous layout.

Download Data Table [image: Download]

Since data tables are at the core of each model type, all models provide a table download operation. The download can take one
of several forms: download the entire table, download only selected items, or download only visible items. As will be described
later (see Selecting Points and Filtering), selection and filtering can be used to divide the data into sets using
two approaches, either through highlighting or through visibility. Highlighting and visibility are independently defined sets,
so selected items are not necessarily visible.

This functionality can be used to download a table or a table subset to your desktop, which can then be used to generate a new
model. For example, if you had an ensemble where some of the runs failed to terminate properly, you could filter those runs out
and download the subset of runs that finished correctly. Then you could use that subset to generate new models where the failed
runs are not biasing the analysis results. Or alternately, you could download the subset that failed and use that table to
create a Parameter Space model to explore what the failures have in common.

Color Themes

Color is used extensively in Slycat™ to encode information of various types. In the table views that appear within each model,
green columns are associated with input variables, lavender designates output variables, and unspecified variables are not
colored (they are rendered using an off-white).

[image: ../_images/Figure9.png]
Figure 9: Dropdown list of color theme choices from the Colors button.

Slycat™ provides a set of predefined color themes, which are individually assigned to each model. A color theme consists of a
bundled scatterplot background color and color palette for mapping numeric values to color-coded objects in Slycat™ views.
Below the Navbar on the model page, there is an additional row of model-specific buttons. To change the current color theme,
click the Colors button. As shown in Figure 9, there are four color themes available in the dropdown: Night, Day, Rainbow
Night, and Rainbow Day. Night is the default choice. Night has a gray background and uses a diverging palette that maps
low values to blue and high values to red, transitioning through white for values in the middle of the range 1. Day has a
white background and a similar blue to red mapping, though the palette is slightly shifted to transition through gray instead of
white to enable you to distinguish points in the middle of the range from the background. Rainbow Night has a gray background
and a conventional rainbow palette. Rainbow Day has a white background and a conventional rainbow palette. Although we
provide Rainbow themes, we discourage their use since color order in the middle of the range is not intuitive.

Footnotes

	1

	Moreland, K., Diverging Color Maps for Scientific Visualization. Advances in Visual Computing, vol. 5876, pp. 92-103. Springer, Berlin (2009).

Bookmarks

Each time you interact with a model, changes in model state are preserved in a Bookmark and the URL in your browser’s address
bar is modified to incorporate the latest bookmark id. The id links to a description of the model state that is stored on the
Slycat™ server. Although the contents of a bookmark are model dependent, all bookmarks capture the current visualization state
so that it can be reproduced (though parameters such as view region sizes are not saved, since they are device dependent).
Examples of the types of information stored in a bookmark include color-encoding, highlighted selections, filter values and
limits, pinned media selections, and hidden points.

Bookmarking enables many useful functions. Dragging and dropping the URL from the address bar into an email, you can share a
specific state of the visualization with other project members. If you save model pages as browser bookmarks, you can archive
and recall interesting model states, though you will be limited to viewing them on the machine where you created them. The
current bookmark id is stored locally in your browser’s cache. This enables you to pick up where you left off when you begin
new session with a previously viewed model.

Within Slycat™ there is the concept of a saved Bookmark. This Bookmark is a persistent link to a model state that you
explicitly save within a project. Slycat™ saves the current bookmark id along with a label that you provide. This provides a
convenient, machine-independent mechanism for saving exploratory results. Bookmarks can be used to remember visualizations
that reveal interesting patterns, to share findings with other team members, or to create a flipbook-style narrative for a
demonstration.

To create a Bookmark, click the blue Bookmarks button from within a model page and select Create New (Figure 10). A
Create Saved Bookmark popup will appear (Figure 11). Type in a Name and click the Save Bookmark button on the right to
save it, or click on the X button in the upper right corner of the dialog to abort the operation. The Bookmarks button
dropdown will display a list of all the bookmarks associated with the project. If you are on a model page, Bookmarks
associated with that model are listed at the top, while those for other models appear below, each labeled with their model type.
Clicking on a Bookmark in the list takes you to the associated model and visualizes it according to the saved state. To
modify the name of a bookmark, click on the yellow pencil icon. To delete a bookmark, click on its red trashcan.

[image: ../_images/Figure10.png]
Figure 10: Bookmarks dropdown, including one previously saved bookmark.

[image: ../_images/Figure11.png]
Figure 11: Example of a Create Saved Bookmark dialog.

Note that changes to the View Regions are not currently preserved in bookmarks. Consequently, when the layout has been
modified prior to the model being bookmarked, visualizing the Bookmark will render the model using the default View Regions
layout.

Templates

Templates are essentially Bookmarks, but they lack an associated model. Templates provide a means for applying the same
visualization state to another model of that same model type. Note that the similarity between the template’s original data and
the new data set will determine the similarity of the resulting visualization. For dissimilar data, some portions of the saved
state may not be applicable (in which case those attributes are ignored), or the results may significantly differ from your
expectations.

To create a Template, click the green Create button, then select Template from the dropdown list. A Create Template popup
will appear. Type in a Name and click the Save Template button on the right to save it, or click the X button to abort the
operation.

[image: ../_images/Figure12.png]
Figure 12: Edit dropdown for models, providing Apply Template functionality.

To apply a Template to a model, from within that model’s page click the yellow Edit button and select Apply Template from the
dropdown list (Figure 12). The Apply Template popup will appear. Select the name of the template that you wish to use from the
list and click the Apply Template button on the right to execute, or click the X button to abort the operation. Note that
bookmarks can also be used as templates, so they are included in the list of available templates (Figure 13). However, they are
not interchangeable. Templates will not appear in the Bookmarks dropdown list, since they cannot be rendered without an
associated model.

[image: ../_images/Figure13.png]
Figure 13: Apply Template dialog. Note that a bookmark appears in the template list.

Canonical Correlation Analysis Model

Canonical Correlation Analysis (CCA) was first proposed by Hotelling in 1936 1. Because CCA finds correlations between
two multivariate data sets, CCA data structures are a good fit for exploring relationships between the input and output
variables found in ensemble data sets (such as those generated for sensitivity studies, uncertainty quantification, model
tuning, or parameter studies). Slycat™ uses CCA to model the many-to-many relationships between multiple input parameters
and multiple output metrics. CCA is a linear method and a direct generalization of several standard statistical techniques,
including Principal Component Analysis (PCA), Multiple Linear Regression (MLR), and Partial Least Squares (PLS) 2 3.

CCA operates on a table of scalar data, where each column is a single input or output variable across all runs, and each row
consists of the values for each of the variables in a single simulation. Slycat™ requires the number of rows (samples) to be
greater than the minimum variable count of the inputs or the outputs. A more meaningful result will be obtained if the ratio
of runs to variables is ten or more. Additionally, columns cannot contain the same value for all runs. Slycat™ will reject
such columns from being included in the CCA analysis, since they contribute no differentiating information. CCA cannot handle
rows with missing data, Inf, -Inf, NAN, or NULL values. Slycat™ will remove rows from the analysis if any of the
values in either the input or output variable sets include such data. However, if the bad values are only in columns that
are not analysis variables, the row will be used.

For a concise description of CCA, we need the following definitions. Given n samples (n rows in the table), the input
variables (presumed to be independent) will be referred to as the set X = {x1, …, xn} and
the output (dependent) variables as the set Y = {y1, …, yn}. Each vector xi
has p1 components and each vector yj has p2 components. CCA attempts to find projections
a and b such that R2 = corr (aTX, bTY) is maximized, where corr (•,•)
denotes the standard Pearson correlation.

The vectors aTX and bTY are known as the first pair of canonical variables. Further pairs
of canonical variables are orthogonal and ordered by decreasing importance. In addition to the canonical variables, the
R2 value for each variable pair is obtained, and various statistics can be computed to determine the significance
of the correlation. A common statistic used in this context is the p-value associated with Wilks’ λ 4. Slycat™ provides
both R2 and p-values for each canonical component as part of the Correlation View (see the figure below). Note
that these statistics assume that the data is normally distributed. If your data does not follow a normal distribution, be
aware that these statistics will be suspect and adjust your interpretation of the results accordingly.

Once the canonical variables are determined, they can be used to understand how the variables in X are related to the
variables in Y, although this should be done with some caution. The components of the vectors a and b can be used
to determine the relative importance of the corresponding variables in X and Y. These components are known as canonical
coefficients. However, the canonical coefficients are considered difficult to interpret and may hide certain redundancies in
the data. For this reason, Slycat™ visualizes the canonical loadings, also known as the structure coefficients. The structure
coefficients are generally preferred over the canonical coefficients because they are more closely related to the original
variables. The structure coefficients are given by the correlations between the canonical variables and the original variables
(e.g. corr (aTX, X) and corr (aTY, Y)). These are calculated using Pearson’s correlation
between each column of X or Y and the corresponding canonical variable.

[image: ../_images/Figure23.png]
Canonical components are shown in the Correlation View in the upper left.

	Cars Example Data Set

	Creating a CCA Model
	Local Files

	Remote Files

	Select Columns

	Name Model

	CCA Model Visualization
	Correlation View

	Simulation View
	Legend

	Color-Coding Points

	Selecting Points

	Variable Table
	Sorting

	Variable Selection

	Simulation Selection

Footnotes

	1

	Hotelling, H., Relations Between Two Sets of Variates. Biometrika, 28, 321-377 (1936).

	2

	Adams, B.M., Ebeida, M.S., Eldred, M.S., Jakeman, J.D., Swiler, L.P., Bohnhoff, W.J., Dalbey,K.R., Eddy, J.P., Hu, K.T., Vigil, D.M., Bauman, L.E., and Hough, P.D., Dakota, a Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 5.3.1 User’s Manual. Tech. Rep. SAND2010-2183, Sandia National Laboratories (2013).

	3

	Ayachit, U., Bauer, A., Geveci, B., O’Leary, P., Moreland, K., Fabian, N., and Mauldin, J., ParaView Catalyst: Enabling In Situ Data Analysis and Visualization, Proceedings of the First Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization (ISAV2015), pp. 25-29, ACM, New York, NY (2015).

	4

	Krzanowski, W. J., Principles of Multivariate Analysis. A User’s Perspective. Oxford University Press, London (1988).

Cars Example Data Set

In the following sections, we will use the cars data set 1 to illustrate model creation and CCA in general. Cars is not
an ensemble of simulation data. Instead, it is a list of features for 406 automobiles built between 1970 and 1982. Selecting
attributes which describe a car’s physical system and labeling them as inputs, while grouping the performance-based variables as outputs, we can see the relationships between design choices and various performance metrics. Since CCA can only evaluate correlations between numeric variables, the analysis omits two columns, Model and Origin, which are string and categorical variables, respectively. Also note that Acceleration is a variable measuring the number of seconds required to accelerate from 0 to 60 mph, so lower values represent greater acceleration.

This data set provides an intuitive introduction to CCA because most people already have some idea of how a car’s manufacturing and
performance features are related. Increasing weight, displacement, and number of cylinders all represent larger engines, which are
in turn correlated with greater horsepower, lower miles per gallon (MPG), and faster acceleration. Due to the Arab oil embargos
during the model years in this data set, engine sizes decreased over time to facilitate increased MPG.

Footnotes

	1

	Donoho, D. and Ramos, E., PRIMDATA: Data Sets for Use With PRIM-H, http://lib.stat.cmu.edu/datasets/cars.desc and http://lib.stat.cmu.edu/datasets/cars.data (1982)

Creating a CCA Model

Slycat™ accepts two file formats for table data, either Comma Separated Value (CSV) files, or Dakota tabular files (generated by
Dakota 1, software which is frequently used to generate ensemble data sets). If your data is not currently in one of these two
formats, Excel can be used to create CSV files from most common table formats. Note that if output metrics have been created
separately in a post-processing step, they will need to be integrated with the inputs into a single file prior to model creation.
In a CSV file, we expect to see only a single row of header information consisting of the column names.

[image: ../_images/Figure14.png]
Figure 14: Popup dialog in the CCA model creation wizard.

From your project page, click on the green Create button and select New CCA Model from the dropdown list. A dialog for walking
you through the process will then pop up, as shown in Figure 14. The first page of the model creation wizard identifies whether
the table is located on the local machine or whether the data is held on a remote machine. Select Local or Remote, followed by
Continue to advance to the next page of the wizard.

	Local Files

	Remote Files

	Select Columns

	Name Model

Footnotes

	1

	Adams, B.M., Ebeida, M.S., Eldred, M.S., Jakeman, J.D., Swiler, L.P., Bohnhoff, W.J., Dalbey, K.R., Eddy, J.P., Hu, K.T., Vigil, D.M., Bauman, L.E., and Hough, P.D., Dakota, a Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 5.3.1 User’s Manual. Tech. Rep. SAND2010-2183, Sandia National Laboratories (2013).

Local Files

[image: ../_images/Figure15.png]
Figure 15: Local file upload dialog (with no file selected) in CCA model creation wizard.

As shown in Figure 15, if you selected Local, the next page will display two fields, File and Filetype. Adjacent to
File, is the button Browse. Clicking Browse brings up a local file browser, which you can use to navigate to the location
of your data table. After selecting a file, the file browser closes and the name of your selected file appears to the right of
the Browse button, as shown in Figure 16. Depending on the format of the selected file, select either CSV or
Dakota tabular from the Filetype dropdown, followed by Continue to read the file. Note, you can change your mind and read
the table from a Remote host by clicking the Back button to return to the previous page.

[image: ../_images/Figure16.png]
Figure 16: Selected file, table.csv, shown in CCA model creation dialog.

Remote Files

As shown in Figure 17, if you select Remote, the Choose Host page enables you to log into a remote machine through Slycat™.
First select a machine from the dropdown list, which is revealed by clicking the triangle to the right of Hostname. If the
machine you wish to access is not on the list, type the machine name into the field. The name will be remembered and used as
the default host for the next time. Username defaults to the username that you provided when logging into Slycat™, but this
field can be manually edited if desired. Finally, enter your Password and click the Continue button in the lower right to
connect to the remote host.

[image: ../_images/Figure17.png]
Figure 17: Remote system login for table ingestion in CCA model creation wizard.

Once you are connected, the model creation wizard will display a remote file browser. If you have previously accessed this
machine through Slycat™, the browser directory will be initialized to your last location. Otherwise, the browser default
directory will be the machine’s root directory. There are two methods for navigating the remote directory structure to find
your data: (1) if you know the full directory path, type it directly into the field at the top of the page (shown in Figure 18)
and click the Go button;

[image: ../_images/Figure18.png]
Figure 18: File path field in remote file browser.

or (2) move up and down the directory hierarchy by clicking on folders in the list. Clicking on [image: UpFolder] (the folder labeled
‘..’ in the file list), or on the Up Directory button [image: UpDirectory] (to the right of the file path) moves you up a level in
the hierarchy, while clicking on a named folder moves you down a level. Once you are in the directory that contains your table
data, click on the file to select it. Ensure that the format shown in the Filetype dropdown matches the selected file’s type,
then click Continue to read the file. Note, you can change your mind and read the table from your Local host by clicking
the Back button to return to the previous page.

Select Columns

Once the table has been read, either from a Local or a Remote source, the Select Columns page displays a list of the
table’s variable (column) names and asks you to categorize them as Input, Output, or Neither for the CCA analysis.
Variables marked as Neither are omitted from the analysis altogether. Since CCA requires numeric values, strings are
automatically excluded from consideration.

Looking at the variables in our Cars example in Figure 19, the faded variable name at the top of the list, Model, is the
name for each car model. Because its values are all strings, it has been automatically set to Neither and cannot be changed.
Although Origin is a numeric variable, the numbers are encoding categorical labels whose value order has no meaning
(US = 1, Europe = 2, Asia =3). Because the values have no ordinal interpretation, Origin should also be removed from the
analysis.

[image: ../_images/Figure19.png]
Figure 19: Initial configuration in the Select Columns dialog for the cars data set.

Since the number of inputs typically exceeds the number of outputs, we initialize all numeric variables to be inputs, leaving
you to identify just the output and excluded variables. If variables shown for this table don’t correspond to the ones you
wanted or expected, you can click the Back button to select a different table file.

Variables can be marked one at a time by clicking the radio buttons, or they can be marked in larger groups by using either
shift-click to select a contiguous group of variables, or by using control-click to pick a scattered set of rows (as
demonstrated in Figure 20). For group selections, you must click on the rows near the variable names instead of near the
radio buttons. Once you have highlighted a set of lines for joint assignment, click on the [image: AllOnIcon] icon under the desired
category to set the radio buttons for the group, as shown in Figure 21. Since CCA can be performed on any subset of variables,
you can also use it to calculate correlations between multiple inputs and a single output, or between any two individual
variables.

[image: ../_images/Figure20.png]
Figure 20: Click on the [image: AllOnIcon] icon beneath Output to label the highlighted variables as outputs.

[image: ../_images/Figure21.png]
Figure 21: Result of using shift-click and the group assignment icon to select Output variables.

Sometimes value ranges between variables differ by many orders of magnitude, which can bias the analysis. The checkbox,
Scale inputs to unit variance, permits you to normalize the values prior to running CCA. This feature is enabled by default.
If you wish to perform the analysis using the original unscaled values, click within the box to remove the checkmark.

Once you have finished defining the input/output variables for the CCA analysis and have determined whether you want the
values to be scaled, click Continue to go to the final step where you provide a name for your model.

Name Model

The final page of the CCA model creation wizard, shown in Figure 22, provides editable fields to enter a Name and an optional
Description for the model. A default name of New CCA Model is provided, but the model list on the project page will become
uninterpretable if you use this for all your models. Additionally, you should select a Marking from the dropdown list of
choices. These markings are specific to your institution and the Slycat™ server you are using. The selected marking identifies
the sensitivity of the data that is being analyzed, both for your own benefit and for other team members. This marking is used
to label the model, both on the project page and within banners at the top and bottom of the model visualization. Once this
information has been entered, click the Finish & Go To Model button in the lower right. Slycat™ will then transfer you to the
model visualization page. When the analysis has completed, the CCA model will be displayed. If processing is still ongoing,
the message “The model is being computed. Patience!” will be shown.

[image: ../_images/Figure22.png]
Figure 22: The final step in CCA model creation is to name the model and apply markings.

CCA Model Visualization

As shown below, visualization of a CCA model consists of three linked views, each providing a different level of
abstraction. The most abstract level is the Correlation View, where each column displays the structure coefficients for
one of the canonical components. The scatterplot in the Simulation View shows how well each individual run is described by
the correlations found in the ensemble overall. The least abstract view is the Variable Table, which provides the raw data
values contained in the original table file. The views are all linked, so changing the selection in one view will modify the
selection in one or more of the other views. As with most Slycat™ models, the views are arranged with the ensemble level view
in the upper left, the midrange view in the upper right, and the lowest level view at the bottom.

[image: ../_images/Figure23.png]
CCA model of cars data set with three linked views, each providing a different level of abstraction. The Correlation View is in the upper left, the Simulation View and its associated Legend are in the upper right, and the Variable Table fills the bottom half.

	Correlation View

	Simulation View
	Legend

	Color-Coding Points

	Selecting Points

	Variable Table
	Sorting

	Variable Selection

	Simulation Selection

Correlation View

The Correlation View displays the relationships found between variables when the ensemble is viewed holistically. Each column
of the Correlation View’s bar chart represents a different canonical component. These orthogonal components are ordered from
left to right in decreasing importance, as shown by the decreasing R2 and increasing p-values in the first two rows
of each component column. Variable names are shown along the left edge with rows for input variables colored in green, and rows
for output variables colored in lavender. The number of components returned by CCA is equal to the minimum of the number of
inputs versus the number of outputs. So, for the example in Figure 23, where there are four inputs and three outputs, CCA will
return three canonical components.

[image: ../_images/Figure23.png]
Figure 23: CCA model of cars data set displaying the first canonical component.

In the bar chart, only one canonical component is expanded at a time (e.g. in Figure 23, CCA1 is expanded, while in Figure 24,
CCA1 is collapsed and CCA2 is expanded). Clicking on a CCA column name changes the selected canonical component. This
collapses the bar chart from the previously selected component and expands that of the new component.

[image: ../_images/Figure24.png]
Figure 24: CCA model of Cars data set displaying the second canonical component.

The horizontal bars in the expanded bar chart visually encode the relationships between variables, both in terms of the
magnitude of the structure coefficients, and in terms of the correlation type (positive or negative). Numeric values for the
coefficients are displayed in the center of each column. Positive values are drawn as red bars extending towards the right.
Negative values are drawn in blue extending to the left. The orientation combined with the color-coding acts to visually
reinforce the relationship information. At a glance, you can see correlative relationships between variables and their
strength by comparing the color, direction, and length of the bars. Positively correlated variables will display the same color
and bar orientation, while negatively correlated variables will be opposed.

The bar chart rows can be sorted by variable strength. To the right of the CCA column name is a small triangular icon.
Clicking on this icon sorts the columns by the unsigned magnitudes of the structure coefficients in the expanded column,
though all columns will reflect the order returned by this sorting operation (i.e. the rows are sorted using this column as
the key). The initial sort is descending and the orientation of the triangle reflects this by rendering the triangle with the
wide edge at the top and the point at the bottom (e.g. CCA1 in Figure 23). The sorting order is reversed if you click the
triangle again. Ascending sorts are signified by rendering the triangle with the point at the top. Inputs and outputs are
sorted independently. For long lists of variables, the input and output variable sets are independently scrollable. Note
that in Figure 24, although CCA2 is selected, the decreasing sort order from CCA1 is still maintained. Sorting column is
independent of component selection. Hovering over any of the CCA column headers, the sorting icon for that column becomes
visible and can be clicked without needing to expand the component.

Clicking on a row in the bar chart selects that variable for color-coding the points in the Simulation View (i.e. each
simulation point is color-coded according to its value for that variable). The variable row is highlighted by darkening the
background color and changing the font color to white. The color palette, shown in the Legend alongside the value range for
the color-coding variable, corresponds to the currently selected theme (see color-themes). This same color-coding is
applied to the cell backgrounds of this column of the Variable Table, as is demonstrated by the Weight column in both
Figure 23 and Figure 24.

Simulation View

The Simulation View is a scatterplot, in which each point represents an ensemble member. The axes of the scatterplot are
the canonical variables, aTX and bTY, which are labeled as Input Metavariable and
Output Metavariable. The x and y coordinates of each point are weighted sums of that point’s input and output variable
values, respectively. Because the values of the canonical variables differ for each canonical component, changing the selected
component in the Correlation View changes the point coordinates, which are then re-rendered in the scatterplot. Comparing
the scatterplots in Figure 23 and Figure 24, you can see how the point locations shift from a loose diagonal for CCA1, to a
ball of points for CCA2. Given the low R2 and high p-value for CCA2, the scatterplot point placement visually
reveals the poor quality of the result (all points would be on the diagonal in an ideal result).

[image: ../_images/Figure23.png]
Figure 23: CCA model of cars data set displaying the first canonical component.

[image: ../_images/Figure24.png]
Figure 24: CCA model of Cars data set displaying the second canonical component.

Legend

To the right of the scatterplot is the Legend. The Legend is in its own view, which can be resized or closed altogether.
The Legend displays information about the current color-coding variable, including its name, range of values, and the mapping
between values and colors. The color palette is defined by the current theme (see Color Themes).

Color-Coding Points

The first time a model is rendered, the points are colored by their index number. There are three mechanisms for changing the
variable that is used to do the color-coding: clicking on a variable in the Correlation View, clicking on the column header
in the Variable Table, or selecting a variable from the Point Color dropdown list. Irrespective of the interface used,
changing the variable selected for color mapping will lead to changes in all three views and the legend, including:
highlighting the newly selected variable’s row in the bar chart, recoloring the scatterplot using the new variable’s values,
coloring the cell backgrounds in its table column, returning the cell backgrounds of the previously selected variable’s column
to its default color (green, lavender, or white depending on its type), and relabeling and redefining the value range in the
Legend. Note that the table may include variables that are not present in the Correlation View, columns that
are neither inputs nor outputs. These columns are drawn on the right end of the table against white backgrounds. These provide
additional color-coding options (numeric variables only), however, the bar chart will not be highlighted because it only
includes variables passed to CCA.

Selecting Points

Points in the scatterplot may be selected through several mechanisms. The simplest is to place the mouse cursor over a point
and click the left mouse button. The selected point is redrawn in the plot with a larger radius, while simultaneously in the
Variable Table, the row corresponding to the selected point is darkened and scrolled to be visible.

For groups of adjacent points that lie within a rectangular region, rubber banding can be used to draw a rectangle around the
desired point set. Position the mouse at one corner of the region. Press the left mouse button down while simultaneously
moving the mouse towards the opposite corner of the region. A yellow rectangle will be drawn between the location of the
initial button-press and the mouse’s current position. Move the mouse until the rectangle encloses all the desired points,
then release the mouse button to finish the selection.

Holding the control-key while selecting new points, either through clicking or rubber banding, will add these additional points
to the previously selected set. Alternately, scatterplot points can be selected by picking rows in the Variable Table (see
Simulation Selection).

Clicking in the background (not on any point) deselects all previously selected points.

Variable Table

The Variable Table at the bottom of Figure 23 provides access to the original numeric variable values for each simulation
run. It is essentially an interactive version of the original table data, where each column represents a single variable
and each row contains the variable values for a single ensemble member. Within the table, the cell backgrounds take on one
of four color-encodings: input variables are green, outputs are lavender, non-designated variables are white, and the elements
of the selected variable are individually colored by their value using the current color map (see Color Themes). Coloring
table elements by value highlights the selected color-coding variable, while concurrently providing color correspondence
between rows and scatterplot points. The interactive capabilities of the table include: sorting within columns, column
(variable) selection, and row (simulation) selection.

[image: ../_images/Figure23.png]
Figure 23: CCA model of cars data set displaying the first canonical component.

Rows that have not been used in the CCA analysis have white backgrounds. CCA requires that all rows have values for each of
the columns that are included in the analysis. As shown in Figure 24, the cars in rows 382 and 10 are missing values for
Horsepower and MPG, respectively. The missing data are shown with no numeric value and a hatched gray background in the
table. Since the columns with missing values were declared as outputs during model creation, rows 382 and 10 have been
entirely excluded from the analysis and are drawn in white. If CCA is later rerun, and if Horsepower and MPG are removed
from the analysis (if the columns are marked as Neither when creating the new model), then these rows will be included in the
calculation and will be color-coded.

[image: ../_images/Figure24.png]
Figure 24: CCA model of Cars data set displaying the second canonical component.

Sorting

Sorting allows rapid identification of simulations whose variable values are extrema. Additionally, sorting facilitates
comparison between simulations whose values are similar within one variable, but whose values for other variables might differ
significantly. For instance, in Figure 23 and Figure 24 the tables are sorted by weight. The highlighted row appears adjacent
to cars having similar weights, yet the selected car is notable because it gets much better gas mileage.

Although the sorting order is defined by values within a single column, the full row moves in the reordering. To sort on a
variable, left-click the small triangular icon in the column header. The initial sort is ascending and the orientation of
the triangle reflects this by rendering the triangle with the tip at the top and the wide edge at the bottom. If you click
the triangle again, the sorting order is reversed to be descending and the triangle is redrawn with the point at the bottom.
The sorting column is independent of variable selection (see Color-Coding Points). Hovering over any of the column headers,
the sorting icon for that column becomes visible and may be clicked to initiate sorting on that variable.

Variable Selection

Left-clicking the variable name in a column header selects that variable to color-code the scatterplot points in the
Simulation View, to color the cell backgrounds in its associated table column, and to highlight that variable’s row in
the Correlation View.

Simulation Selection

Left-clicking within a table row selects that simulation, which is then highlighted in both the table and the scatterplot.
Multiple row selection, as is commonly performed on lists, consists of clicking on a starting row, then using shift-click to
select the ending row (either above or below the starting row). This selects both the starting and ending rows along with
all rows in between. Individual rows may be added to an existing selection by clicking on them while pressing the control-key.
Selected rows are highlighted in the table by increasing the saturation of cell backgrounds, except for cells in the
color-coding column (see Variable Table). Selected scatterplot points are highlighted by being redrawn with an increased
radius.

Parameter Space Model

Unlike the CCA and Time Series models, the Parameter Space model does not perform an analysis step. Instead, the Parameter
Space model is an exploratory visual interface that combines a filterable scatterplot representation with remote access to
images, videos, and other media-based ensemble data.

	Taylor Anvil Impact Scenario (TAIS) Data Set

	Creating a Parameter Space Model

	Parameter Space Model Visualization
	Scatterplot View
	Filtering

	Axis Controls

	Point Color

	Media Set

	Automatic Scaling

	Selection Action

	Show All

	Close All Pins

	Video Synchronization

	Adding Text

	Variable Table

Taylor Anvil Impact Scenario (TAIS) Data Set

TAIS was generated using Sierra/SolidMechanics 1 (a Lagrangian, three-dimensional code for problems with large deformations
and nonlinear material behaviors) in combination with ParaView/Catalyst 2. The images were generated in situ (at the same
time as the physics simulation) using Catalyst. The simulation is of an Oxygen Free High Conductivity (OFHC) copper cylinder,
2.54 cm long with a diameter of .762 cm and an initial velocity of 190 m/sec, impacting a rigid wall. The ensemble is a
sensitivity study that evaluates the effects of changing four parameters of the Johnson-Cook inelastic constitutive law: ajo,
bjo, njo, and beta. The height and radius of the cylinder after the impact are compared to experimental photographic
results. Two output metrics are calculated for each run, ndrf_last and ndhf_last. These variables are the normalized
differences between the radius/height of the final cylinder state from the last timestep of the simulation
and the final radius/height of the cylinder in the experiment, respectively. Since the differences would decrease in those cases
where the simulation more closely matched the experimental results, the optimal case would be a simulation where the values of
these two metrics were zero (i.e. there is no difference between the simulation and the experiment).

Footnotes

	1

	Sierra Solid Mechanics Team. Sierra/SolidMechanics 4.22 User’s Guide. Technical Report SAND2011-7597, Sandia National Laboratories (2011).

	2

	Ayachit, U., Bauer, A., Geveci, B., O’Leary, P., Moreland, K., Fabian, N., and Mauldin, J., ParaView Catalyst: Enabling In Situ Data Analysis and Visualization, Proceedings of the First Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization (ISAV2015), pp. 25-29, ACM, New York, NY (2015).

Creating a Parameter Space Model

Like the CCA model, the core of the Parameter Space model is table data. Up until the stage where inputs and outputs for the
model are selected, the model creation steps are identical to CCA (see Creating a CCA Model). Instead of initializing all
variables as Input, the variables default to being assigned as Neither. As with CCA, group selection operations using
shift-click and/or control-click allow rapid assignment of variable types (see Select Columns). However, a central difference
in the Parameter Space model is that variables can also be designated as being Categorical and/or Editable.

[image: ../_images/Figure25.png]
Figure 25: Parameter Space model creation wizard dialog for designating variable attributes, including Categorical and Editable.

Categorical variables are those with a limited number of discrete values. During scatterplot filtering, it is often
advantageous to be able to turn on or off points that are associated with specific values or combinations of values.
Categorical variables are filtered using labeled buttons, which can individually be set on or off. Continuous variables
are filtered using a slider, which is limited to defining a single range of values to be included or excluded. By declaring
Year and Cylinders as Categorical variables during model creation, the example in Figure 26 shows how we can filter the
scatterplot display to be only those cars having 3, 5, or 8 cylinders that were manufactured in even-numbered years. This
fine-grained filtering of the data would be impossible using a range slider.

[image: ../_images/Figure26.png]
Figure 26: Filters for Categorical variables enumerate each discrete value as a labeled button, enabling filtering operations that would not be possible using range sliders. The values selected here (shown in dark blue) limit the scatterplot to display just those cars with 3, 5, or 8 cylinders that were manufactured in even-numbered years.

An Editable variable is one that can be modified by the user. The type of values originally in the variable define the type
of values that can be substituted (i.e. numeric variables cannot be changed into text strings). A variable can only be defined
as Editable during model creation. The mechanism for changing variable values is through selection (see Selecting Points).
Note that value modification actions in the Selection Action dropdown list are only enabled when an Editable variable has been
declared.

Parameter Space Model Visualization

As shown below, the Parameter Space model page consists of linked scatterplot and data table views, combined with interactive
filtering, data manipulation, and remote viewing of images and other media. The Scatterplot View provides an abstract
representation of the ensemble members and their value distributions within the variables selected for the axes. The
Variable Table provides the raw data values contained in the original table file. Changes made to the plot or the table will
cause corresponding changes in the other.

[image: ../_images/Figure27B.PNG]
Parameter Space Model of cars data set with Scatterplot and Variable Table views, each providing a different level of abstraction.

As with the CCA Model Visualization example, we will be using the Cars data set in the following sections to illustrate some of
the Parameter Space Model features. We will also be using the Taylor Anvil Impact Scenario (TAIS) ensemble, which includes image
data, to demonstrate some of the media-based functionality.

	Scatterplot View
	Filtering
	Categorical Filters

	Continuous Filters

	Missing Values

	Axis Controls

	Point Color

	Media Set
	Video Source Files

	Automatic Scaling

	Selection Action

	Show All

	Close All Pins

	Video Synchronization

	Adding Text

	Variable Table

Scatterplot View

The Scatterplot View represents each ensemble member as a point in a two-dimensional plot, where the variables that are used
for the x-axis, y-axis, and point color-coding are interactively selected. As with the CCA Model, when individual points or
groups of points are selected within the plot (see Selecting Points), corresponding rows in the Variable Table are
simultaneously selected, and vice versa.

[image: ../_images/Figure27B.PNG]
Figure 27: Parameter Space Model visualization of the Cars data set.

However, the Parameter Space Model’s Scatterplot View possesses additional capabilities that the CCA Model’s Simulation View
lacks. If the Variable Table contains media columns (URIs for images, videos, time series tables, or STLs), hovering over a
point with the mouse can be used to retrieve media items from remote HPC systems. The media variable to be retrieved is selected
through a Media Set dropdown list, which only appears in the controls (as shown in Figure 28) when media columns are present in
the table.

[image: ../_images/Figure28.png]
Figure 28: Full set of Parameter Space model-specific controls.

Another key feature in the Scatterplot View is the ability to reduce the number of visible points through filtering or point
hiding. This is important for interacting with large ensembles, since point overlap and occlusion increase with ensemble size.
Additionally, the Scatterplot View enables the inclusion of points with missing data. Although a point still requires values
to exist in both axis variables to define its coordinates, none of the other variables need to have a value for the point to be
displayed. The points colored dark gray in Figure 27 are examples of rows with missing values for Horsepower. One of these
is row 133, which is highlighted in both the scatterplot (enlarged point) and the table (darkened row).

	Filtering
	Categorical Filters

	Continuous Filters

	Missing Values

	Axis Controls

	Point Color

	Media Set
	Video Source Files

	Automatic Scaling

	Selection Action

	Show All

	Close All Pins

	Video Synchronization

	Adding Text

Filtering

There are two mutually exclusive mechanisms in the Parameter Space scatterplot for removing points from the view, filtering and
hiding selected points. Once a filter is present, point hiding operations in the Selection Action dropdown are disabled. If
points had previously been hidden using point hiding, they immediately become visible again as soon as any filter is selected.
This ensures that during filtering, visible points only reflect the filtering choices. We did this because we wanted
screenshots of the model that included filters to be self-documenting as to which values were retained and which had been
removed. This is useful for interpreting slides or figures outside of the Slycat™ interface.

However, sometimes manually removing points through selection is the only way to define a set of points matching criteria that
are not achievable through filtering. Since multiple selections may be required to construct this set, we want to avoid
discarding it unintentionally. Consequently, the last visibility state is saved when filters are enabled. Once all filters
have been removed, the scatterplot returns to its previous state of visibility (i.e. any points that were previously hidden
through the selection mechanism will return to being hidden). To explicitly return to a state of total point visibility, click
the Show All button.

Similarly, filter states are saved, so if you remove a filter and then reinstate it, the filter will resume with its previous
settings (button states or slider range). This way, if you accidentally remove a filter and don’t remember the settings, you
can instantly restore your state.

[image: ../_images/Figure29.png]
Figure 29: Filter dropdown variable list for cars data.

To add a filter, click on the Filter button to drop down a list of variables, such as those for the cars data shown in
Figure 29. Selecting a variable from the list displays a filter consisting of either a set of buttons for categorical variables
(see Creating a Parameter Space Model for how to define a categorical variable), or a slider for continuous variables (Figure 30
shows examples of each). To remove a filter, click the [image: DeleteIcon] icon in the upper left corner of the filter. In both types
of filters, blue coloration of the buttons or the slider range indicates values that are visible, whereas gray is used for
values that are not visible. As filters are changed to remove values, corresponding points are removed from the scatterplot and
their rows in the table are grayed out. Conversely, as filters add values back into the visible set, corresponding points will
reappear in the plot and their table rows will be re-colored.

[image: ../_images/Figure30.png]
Figure 30: Examples of both a categorical and a continuous filter.

	Categorical Filters

	Continuous Filters

	Missing Values

Categorical Filters

Initially, all filter buttons are on (visible values are colored blue), as shown below. So all values are visible the first
time that a filter is instantiated. Clicking a blue button sets its state to off, colors the button gray (hidden values are
colored gray), hides points with that value in the scatterplot, and grays/fades the corresponding rows in the table. Buttons
are toggles, so clicking the button again restores that value’s point visibility in the plot and re-colors those rows in the
table.

[image: ../_images/Figure30.png]
All filter values are initially visible the first time a filter is instantiated.

In addition to individual buttons, group operations are also available through the three icons [image: FilterIcons] at the bottom of
the filter. Use [image: AllOnIcon] to turn all buttons on, [image: AllOffIcon] to turn all buttons off, and [image: InvertIcon] to flip the states
of all buttons. As an example of using group operations, imagine that you wanted to see only cars with 5-cylinder engines.
You could turn all buttons off with [image: AllOffIcon] , then click button 5 to show just those points. This would be faster than
individually turning off the 3, 4, 6, and 8-cylinder buttons.

For categorical filters, sometimes the width of the button label exceeds the width of the button. To expand the filter width,
click the [image: ExpandIcon] icon in the upper right corner of the filter. This will widen the filter and replace the [image: ExpandIcon]
icon with the [image: CollapseIcon] icon. To collapse the filter back to its original width, click the [image: CollapseIcon] icon.

Continuous Filters

[image: ../_images/Figure30.png]
Figure 30: Entire variable range initially visible in slider.

The first time a filter is used, the entire range of the variable is visible (drawn in blue), as in Figure 30. The maximum
and minimum variable values are at the top and the bottom of the filter, while the max/min values for the visible range are
shown next to the slider endpoints. These max/min values interactively track the slider endpoints, changing both the value
and position. The excluded portions of the range appear in gray, as demonstrated in Figure 31, where the maximum value has
been dragged down to 268 and the minimum value has been pulled up to 166. In addition to grabbing and dragging the endpoints,
you can drag the visible range as a unit, creating a sliding window of fixed length. The scatterplot and table are only
redrawn when you stop moving the mouse or release the button.

[image: ../_images/Figure31.png]
Figure 31: Slider after dragging adjusting Displacement max/min values.

Sometimes the resolution of slider increments can be a problem. The values associated with the set of unique slider positions
may not include the value that you want to use as your threshold. So, the minimum and maximum threshold values are editable.
To edit the threshold extrema, hover over the value (which will then turn orange as in Figure 32), type in the new value, and
hit enter.

[image: ../_images/Figure32.png]
Figure 32: Editing a slider maximum threshold value.

On startup, the slider defines a single region of values that are visible. The [image: MidRangeIcon] icon beneath the slider
indicates that this is the current mode of operation. Clicking on that icon inverts the mode, so values in the middle
region become hidden and values at the ends are visible. The icon changes to [image: EndRangesIcon], the gray end regions become
blue, and the central blue region is drawn in gray. Figure 33 shows the result of inverting the Displacement slider
selection shown in Figure 31.

[image: ../_images/Figure33.png]
Figure 33: Invert slider selection to display only values outside the selected range.

Another type of problem arises when the slider range itself is skewed by anomalous values that are far outside of the normal
range for a variable (say points with values of 10,000, when the normal values are between 0 and 1). This forces most of the
slider’s value range to be empty, with all the points on the extreme ends. To eliminate this value bias, you can reset the
overall slider range by editing the maximum and/or minimum range values at the top or bottom of the slider. Values outside
of the revised range are hidden in the scatterplot and grayed out in the table. To edit the range extrema, hover over the
value (which will then turn orange), type in the new value, and hit enter. In Figure 34, we have reset the filter maximum
from 455 to 155. The maximum retains an orange background as a reminder that it has been modified. To reset the value back
to the original max/min, click the [image: ResetIcon] icon.

[image: ../_images/Figure34.png]
Figure 34: Resetting slider maximum to increase resolution within slider range.

Missing Values

[image: ../_images/Figure35.png]
Figure 35: Filtering normally excludes points with missing values.

When filtering is performed on a variable where there are missing or non-defined data values (e.g. NULLs, NANs, Inf, -Inf),
such as the Horsepower variable in Figure 35, those points corresponding to missing data are eliminated, as they are undefined
and therefore not part of the range. This presents a problem if you want to compare points with missing data to points from a
subset of that variable’s value range. The [image: NULLIcon] icon at the bottom of each filter enables the inclusion of points with
missing data relative to that variable into the scatterplot. When a filter is first instantiated, the missing values are
filtered out and the [image: NULLIconOff] icon is gray. Click [image: NULLIconOff] to make those points visible, as shown in Figure 36. The
icon acts as a toggle, so clicking [image: NULLIcon] will hide those points again.

[image: ../_images/Figure36.png]
Figure 36: Filtered values plus missing-valued points.

Axis Controls

There are two mechanisms for selecting variables for the X and Y axes. They can be selected using the X Axis and Y Axis
dropdown lists. Or, they can be selected by clicking on the X or Y icons in the Variable Table column headers.
The icons are found in each column to the right of the variable name. The two mechanisms are linked, so regardless of which
one is used to make the choice, the selection is shown in both. For example, in Figure 37, Weight is highlighted in the
dropdown list and the X icon is darkened in the Weight column of the table. Once the selection is changed, the
corresponding axis is immediately redrawn displaying the name and value range for the new variable. Points are also
re-rendered as each point’s coordinates are changed to reflect the values of the new variable.

[image: ../_images/Figure37.png]
Figure 37: Selecting the X Axis variable using the dropdown list. Horsepower is used to color-code the points.

Point Color

Similarly, there are two mechanisms for selecting the variable for color-coding individual points. Either select the variable
in the Point Color dropdown list, or click on the variable name in the Variable Table column header. The two mechanisms
are linked, so regardless of which one is used to make the choice, the selection is shown in both. The variable name is
highlighted in the dropdown, and the backgrounds of that column’s elements in the table are color-coded to match the
corresponding point’s color in the scatterplot. Once the selection is changed, the points are re-rendered using the new
encoding and the legend is changed to reflect the name and value range for the new variable. In the image below, the points
are color-coded by each car’s Horsepower value. Although the variable name is not fully visible in the table (we initially
display each column at a uniform width, which tends to truncate many of the names), you can immediately tell which column has
been selected for color-coding because the background coloring of the cells in that column makes it stand out.

[image: ../_images/Figure37.png]
Points color-coded by Horsepower values.

Media Set

If media variables are present in any of the columns of the input data table, a Media Set button will appear to the right
of the Point Color button. Media files are broadly defined. We currently support viewing various image formats, videos,
and STLs (geometry files for a 3D printer). Each media variable in the input data table consists of a column with a shared
file type, though blank entries are permitted within a column (i.e. not all ensemble members are required to have an image
or video for media viewing to be used). Typically, the files in a column share a common theme, such as images showing the
final state of a simulation, or an event-triggered animation, or the geometry of a specific part at a specific time. In all
cases, a media file is described by a URI that provides a full path to a source file. Each URI must have the format:
file://machine_name/absolute_directory_path/filename.ext.

[image: ../_images/Figure38.png]
Figure 38: Media Set Selection of Image1.

Initially, media retrieval is disabled because the Media Set selection is set to None. Once a media variable has been
selected, hovering over a scatterplot point will retrieve that point’s remote media file as defined by the URI. For the
first remote access, authentication will be required. Hovering provides a convenient means for rapidly examining and comparing
outputs generated by in situ visualization codes, such as Catalyst and SpyPlot. Viewers can be repositioned within the
scatterplot by dragging. Each viewer is connected to its associated point in the scatterplot by a line, one end of which
always tracks the viewer position (see Figure 38). For videos and STLs, the viewers include interaction controls (e.g. play
buttons, or rotation axis selectors).

As with Point Color, there are two mechanisms for selecting which Media Set variable to display. Either select a variable
in the Media Set dropdown list, or click on the small square to the right of the variable name in the Variable Table column
header. The two mechanisms are linked, so regardless of which one is used, the selection is shown in both. As seen in Figure 38,
the selected variable name (Image1) is highlighted in the dropdown, and the square to the right of the variable name is
darkened in the column header. Once the selection is changed, hover will reference the new column’s URIs when retrieving remote
files, but currently visible images will not be affected. This allows you to compare different media variables from one or more
simulations. Selecting None (the first choice in the dropdown list) disables the hover response.

[image: ../_images/Figure39.png]
Figure 39: Image viewer with close, download, index row, pinning, and resizing icons.

The viewer in Figure 39 shows the set of standard viewer icons in the strip across the bottom of the image. From left to
right, each viewer has a close icon [image: DeleteIcon2], a download icon [image: DownloadIcon2], an index row icon [image: GotoRowIcon], a
pinning icon [image: PinIcon], and a resize icon [image: ResizeIcon]. Viewers remain visible while the mouse remains within the viewer
boundaries. Either clicking on the [image: PinIcon] icon, resizing, playing a movie, or moving the viewer acts to pin the viewer
in the scatterplot. A pinned viewer remains visible until your explicitly close it, either by clicking its [image: DeleteIcon2]
icon, or by simultaneously closing all pinned views using the Close All Pins button. To simultaneously retrieve and pin
media for a group of points, first select the points, then select pin in the Selection Action dropdown list. Using the
[image: PinIcon] icon within a viewer both pins and shrinks it to a standard thumbnail size. For arbitrary viewer sizing, press
and hold the left mouse button on the [image: ResizeIcon] icon while dragging the corner. To download a copy of the media object
to your local machine, click the [image: DownloadIcon2] icon.

Note that Slycat™ video functionality is not available for all movie formats. In fact, due to technical issues related to
our web-based delivery, videos must be created in a very specific way to be viewable in Slycat™.

Video Source Files

There is no standardized support for videos between browsers. We have found that the h264 codec in combination with an mp4
container format is compatible with Firefox, Chrome, and Safari on both Windows and Mac platforms. In our testing, we have
found that initial key frames are frequently lost, rendering the following compressed frames useless. This requires explicit
key frame forcing during movie creation. We use the ffmpeg utility to convert images into videos. Make sure that your
version of ffmpeg was built with the h264 library, since some versions of ffmpeg don’t include this codec by default.

If you are within Sandia, we provide this custom version of the library on the cluster machines. You can generate Slycat™
compatible movies as follows:

> module load slycat

If your images are PNGs, they must be first converted to JPG format (ffmpeg won’t complain about the input images being PNG,
but the movie that it generates won’t play). If you already have JPG images, skip this step:

> mogrify -format jpg myImageName.0*

This last step generates the mp4. Don’t forget to enclose the image path in single quotes:

> ffmpeg -pattern_type glob -i '/someDisk/someUser/someDirectoryPath/myImageName.0*.jpg' -force_key_frames 0.0,0.04,0.08 myMovieName.mp4

Automatic Scaling

The auto-scale button [image: AutoScaleIcon] (to the right of Media Set) enables/disables automatic scaling of the scatterplot
axes when points are hidden or filtered out (these two mechanisms are mutually exclusive, see Selection Action and
Filtering). As points are removed, the locations of the remaining points shift to span the available space and the axes
are redrawn to reflect the reduced value range. The mapping between point colors and the values shown in the legend is also
modified to reflect the reduced value range (i.e. the new maximum value is now mapped to the brightest red and the new
minimum value maps to the deepest blue, maximizing the color distinctions between the remaining points). Compare the
scatterplots in Figure 40 and Figure 41 to see the effects of using auto-scaling.

[image: ../_images/Figure40.png]
Figure 40: Filtered scatterplot with auto-scaling off. Note that most of the scatterplot is empty.

[image: ../_images/Figure41.png]
Figure 41: The same filtered scatterplot with auto-scaling enabled. The color range is scaled as well.

This feature is especially useful if a variable’s value range is skewed by a few anomalous points. For example, imagine a
data set where most points have x-coordinates in the range from 0 to 1, but a few points have extreme values of 10,000.
Including the extreme points means that most of the plot consists of empty space, while the majority of points are drawn
on top of one another near the origin. By filtering and rescaling, you can remove the extreme points and have the remaining
points fill the plot. Note that automatic scaling is enabled as the default, indicated by the darkened state of the button
(Figure 41).

Selection Action

Selected points (see Selecting Points) create a set that is used as the designated input for any of the group operations
listed in the Selection Action dropdown, as shown in Figure 42. Since filtering and hide/show selections are mutually
exclusive within the Slycat™ interface, if there are any filters enabled (visible), all of these actions, except Pin,
will be disabled.

[image: ../_images/Figure42.png]
Figure 42: Selection Action dropdown list of operations on selected groups of points.

Hide removes the selected points from the scatterplot and yellows out the associated rows from the table. The points are
still selected, but they are no longer visible, which is why their rows are colored yellow instead of white. If automatic
scaling is enabled (see Automatic Scaling), the remaining visible points in the scatterplot will be shifted and recolored
to reflect any changes in the value range.

Hide Unselected performs the same operation on the set of points that are not selected, thereby reducing the visible points
to just the selected set.

Show restores the last hidden selection to visibility, both in the scatterplot and in the table. If the selection has been
lost by clicking elsewhere within the scatterplot, Show will not be able to restore the previously hidden set, since the
selected set is now empty. For the same reason, there is not a function to restore points hidden using Hide Unselected.
However, the Show All button (to the right of the Selection Action dropdown) can be used to make all hidden points visible
again.

Using the currently selected media variable, Pin retrieves and pins items for each of the points in the selection set (only
if visible), performing the equivalent of a group hover and pin operation. This is much more efficient than doing individual
retrieval when there are large numbers of runs to compare. Note that the images may be stacked on top of one another if the
associated points are coincident, as is the case in Figure 43. However, you can separate the images by dragging them apart,
as shown in Figure 44.

[image: ../_images/Figure43.png]
Figure 43: Four selected runs are coincident in the scatterplot, so the associated pinned images are stacked.

[image: ../_images/Figure44.png]
Figure 44: Separating pinned images by dragging. Note that the legend can also be repositioned by dragging.

Show All

The Show All button restores all points that were hidden using Selection Action to visibility. Show All is disabled
whenever a filter is present, so it cannot be used to make filtered points visible again.

Close All Pins

The Close All Pins button closes all pinned media in the view. It provides a quick method to clear a Parameter Space model
of all viewers.

Video Synchronization [image: VideoSynch]

Beyond the video functionality described earlier (see the Media Set section), Slycat™ provides additional fine-grained and
group-based video controls. Once the first video is pinned, the interface shown in Figure 45 will appear in the model-specific
controls to right of the Download Data Table [image: DownloadIcon] icon. These video controls will remain visible until all videos
are closed. For a single video, these global controls provide single step accuracy in advancing or rewinding the animation,
which is not possible using the limited controls of an individual viewer. However, the larger goal of this interface is to
enable synchronized playback of multiple videos from a single set of controls.

[image: ../_images/Figure45.png]
Figure 45: Video controls: enable video synch, current video location (seconds from start), go to first frame, step back a frame, play, step forward a frame, and go to last frame, respectively.

From left to right the controls are as follows: the video synchronization button [image: VideoSynch], a numeric field providing the
current video location in seconds from the video start, a button to go to the start of the video [image: FirstFrame], a button to
step backward by one frame [image: BackFrame] , play [image: Play]/pause [image: Pause] buttons (the icon changes to pause once play is pressed), a button to step forward by one frame [image: ForwardFrame], and a button to go to the end of the video [image: LastFrame].

The video synch button is a toggle that enables/disables shared control of multiple videos. The background color of the icon
shows the state of the synchronization. The background is gray when it is enabled [image: VideoSynchOn], and white when it is
disabled [image: VideoSynch]. When video is synched, the playback buttons operate on all pinned videos. When synch is disabled,
the playback operates only on the current video. The current video is highlighted by drawing a shadow behind it, making it
appear to float above the other videos, such as the middle video in Figure 46. At all times, the video location field shows
the current value of the video’s elapsed playback time (note that this is not the same as the simulation time stamp for a
particular frame). You can directly edit this field to align all videos to the frame that is closest to a specific time of
interest in the playback.

[image: ../_images/Figure46.png]
Figure 46: Three synched videos, where the middle video is the current video.

Adding Text [image: NoteIcon]

To add text, click the note icon [image: NoteIcon] on the right end of the controls. A text window will popup. The intent was to
provide two types of annotation: notes and titles. The icon in the upper left toggles between [image: BigText] and [image: LittleText] to
switch between text sizes, as shown in Figures 47A and 47B. The [image: BigText] icon increases the text size to generate a title.
The [image: LittleText] icon decreases the text size back to a font more suitable for notes. The text window can be closed and
resized using the [image: Close] and [image: Resize] icons, respectively. The icons are only visible when the mouse is in the window.
Figure 48 provides an example showing both types of annotation. Notes in combination with bookmarks can be used to draw
the attention of project members to discoveries or generate explanatory visualizations that can be self-contained.

[image: ../_images/Figure47A.png]
Figure 47A: Text window for adding notes.

[image: ../_images/Figure47B.png]
Figure 47B: Text window for adding titles.

[image: ../_images/Figure48.png]
Figure 48: Example of adding text as both a title and a note.

Variable Table

The Variable Table is the same as the table in the CCA model (see Variable Table) with one small difference. ‘X’
and ‘Y’ icons to the right of variable names in the column headers provide an alternate method to the dropdown lists
for selecting the scatterplot axes.

Timeseries Model

The Time Series model was originally developed to evaluate similarities between waveforms generated by electrical circuit
simulations. However, this model can be used more generally to compare any set of time series data, so long as the starting
and ending times for each sequence of values are the same. Although the time series inputs do not need to be sampled
identically, our initial step is to resample since the analysis ultimately requires corresponding samples for comparison.
Points in each sequence are binned, with the bin size calculated by dividing the time range into equal intervals. The
values of the points within each bin are then averaged. The underlying assumption is that there are enough samples in
the sequence to have at least one sample per bin. The number of bins is a user-supplied parameter to the analysis.

Slycat™ calculates a table of the distances between each pair of resampled time series by summing the differences between
corresponding points. The distance table is used to create an agglomerative, hierarchical model of similarities between
the sequences. The resulting model is a tree, in which the set of time series contained within each subtree are more and
more similar as successive subtrees get closer to the leaves. Because our distance metric was developed for electrical
simulation data, both amplitude (y value) and timing (x value) must match for a pair of sequences to be regarded as similar
(i.e. identical shapes that are shifted in time are not seen as similar).

	Time Series Data
	Xyce Format File Structure

	CSV Format File Structure

	Time Series Files

	HDF5 Intermediary Format

	Creating a Time Series Model
	Find Data Dialog

	Time Series Parameters Dialog

	High Performance Computing Parameters Dialog

	Time Series Model Visualization
	Dendrogram View
	Dendrogram Expansion/Contraction

	Dendrogram Visibility Filtering

	Sparklines

	Time Series Simulation View
	Color-Coding Lines

	Legend

	Time Series Variable Table

Time Series Data

Slycat™ accepts two different time series data formats, which we will call Xyce and CSV. Each input format consists of
two parts, a table file describing the entire ensemble, and a time series data file for each simulation in the ensemble. Like
the CCA and Parameter Space models, the table is at the heart of the model. For each simulation (for each row in the data
table), there must be a file with time series data. Within each of these time series files are sequences of values, sampling
one or more output variables over the course of the simulation. It is not necessary that each simulation write the same
number of samples into their time series files, but it is required that each simulation have a corresponding data file with
matching output variables that cover the same time range.

Xyce Format File Structure

The Xyce format consists of Xyce-generated time series files stored within a fixed directory hierarchy. The hierarchy is
rooted within a single high-level directory where there must be a dakota_tabular.dat file (providing the data table). It is
not that the file must be named dakota_tabular.dat, but rather the file format must correspond to the dakota_tabular.dat
files generated by Dakota. Additionally, a set of subdirectories (one per run) must be located in the same directory as the
dakota_tabular file. These subdirectories should all be named using a template like workdir.n, where n is the simulation
number. Within each subdirectory, there must be a time series file generated by Xyce that is formatted as a .prn file. The
time series files must all be named identically (the subdirectory defines which simulation generated them), and each file must
contain a shared set of time series variables (columns with matching headers within each of the .prn files).

CSV Format File Structure

The CSV format (such as heartbeat.dat files produced by Sierra, or .csv outputs from Catalyst), is less structured than
the Xyce format. The individual time series files need not be stored in the same directory hierarchy as the data table, nor
does the directory structure need to follow any structure or naming conventions. Instead, the data table is a CSV file,
which contains a column of URIs providing full paths to each of the time series files, which must also be CSV files (no
.prn files). Each URI must have the format: file://machine/absolute_directory_path/timeseries_filename.csv.

Time Series Files

Whether we are using .prn files or CSV files, both formats are essentially tables in which each column is a separate
variable and each row is a set of concurrent samples for each of the variable columns. The first line of a time series file
contains headers, which provide the names of the time series output variables. Note that in a CSV file, we expect to see
only a single row of header information consisting of the column names (some physics codes output two rows of header
information, with the variable names in the first row and the units in the second row – this is not a legal CSV format).
At least one column must be a time value (typically the first column).

If your data is not currently in one of these two formats, Excel can be used to create CSV files from most common table
formats. Note that if output metrics have been created separately in a post-processing step, they will need to be
integrated with the inputs to form a single file prior to model creation.

HDF5 Intermediary Format

In the time series creation wizard, both formats are rewritten as HDF5 files in a temporary Slycat™ directory (we have
found that this significantly speeds up our processing compared to working with the originally-formatted files). If you
opt to keep these HDF5 files, they constitute a third data format that the wizard will accept, though be aware that
HDF5 files created through other means are not interchangeable since their internal structures will be different.

Creating a Time Series Model

Creating a Time Series model is more complicated than the models that we have described in previous sections. This is due to
the size and structure of the data, combined with the computationally intensive nature of the analysis. The data is stored in
multiple files, typically in multiple directories. This data complexity and scale compels the use of parallel processing to
reduce the model creation time. Unfortunately, our cluster’s batch environment increases complexity through the need for
additional High Performance Computing (HPC) parameter choices, uncertain wait times in the job queue, and potentially long
processing times. All these factors are at odds with an interactive interface. Consequently, our time series wizard is
designed to collect all the necessary information, then autonomously launch the analysis and finish the model creation. You
are free to do other things while it completes, although we do provide a means to remotely check on the status of your job
through the Slycat™ interface.

To access the wizard, go to your project page, click on the green Create button and select New Timeseries Model from the
dropdown list. A dialog for walking you through the process will then pop up, as shown below. The first page
identifies the format of the time series data (see Time Series Data above) and the location of the ensemble’s table file.
The assumption is that time series data is large and difficult to move, so it will be located on the same remote HPC machine
where it was generated. Consequently, we do not provide a Local option, as we do for other model types.

[image: ../_images/Figure49.png]
Initial dialog screen in Timeseries model creation wizard.

	Find Data Dialog

	Time Series Parameters Dialog

	High Performance Computing Parameters Dialog

Find Data Dialog

Using the radio buttons, select the data input type. Next, select a remote host from the Hostname dropdown. Unlike CCA or
Parameter Space, only hosts included in the dropdown list may be used. This is because time series analysis requires parallel
job launching functionality found in the Slycat™ agent, which must be running on the remote machine. Although the Slycat™
agent assists you in remotely submitting the analysis job to the cluster queue, you will be running the job under your own
user credentials. Consequently, the host must be a machine on which you already have a user account. Enter your username
and password into the associated fields. Hitting the Enter button after typing in your password will both log you into the
remote machine and take you to the next screen in the wizard. If you have recently accessed the selected host through Slycat™,
the Username and Password fields will not be shown. This is because Slycat™ maintains remote sessions for a fixed period of
time after your initial login to reduce the number of login requests. In this case, click the Continue button to advance the
wizard.

[image: ../_images/Figure49.png]
Figure 49: Initial dialog to identify data set type and where it is located.

Time Series Parameters Dialog

The next screen of the wizard will depend on which data format you selected. If you selected Xyce or CSV, the next screen
will be a file browser on the remote host. Navigate to the location of the ensemble data table (a dakota_tabular file within
the directory hierarchy described above for Xyce inputs, or a CSV file containing full paths to each time series file for
CSV inputs). Navigation is identical to that described in the earlier section on Remote Files. Click on the data table file
in the remote file browser to select it, then click Continue. If you selected HDF5, the wizard skips this step since there
is no need to select a table file.

[image: ../_images/Figure50.png]
Figure 50: Timeseries Parameters for Xyce data sets.

For all three input types, the next step is setting the parameters to be used for binning and clustering the time series.
Xyce, CSV, and HDF5 have slightly different interfaces for this step, which are shown in Figure 50, Figure 51, and
Figure 52, respectively.

[image: ../_images/Figure51.png]
Figure 51: Timeseries Parameters for CSV data sets.

[image: ../_images/Figure52.png]
Figure 52: Timeseries Parameters for HDF5 data sets.

The CSV screen includes two additional fields that are not needed by the other formats, Table File Delimiter and
Timeseries Column Name. Table File Delimiter allows you to use other delimiters besides commas in the data table, such
as tabs or spaces. Tabs are difficult to specify because the web interface uses tabs to move between fields, but if
you cut-and-paste a tab into the field, enclosing it with single quotes, Slycat™ will accept a tab-delimited table. To
designate a space as a delimiter, enclose it with single quotes, since otherwise the field is interpreted as being empty.
Commas do not require quotes.

Since CSV data tables can have multiple columns of time series data (e.g. if you sampled a set of variables over time at
various locations within the simulation), the Timeseries Column Name identifies which time series data set to analyze.
Type in the column name, taking care to exactly match the header as it appears in the table.

The remaining parameters are shared by all three input types. Timeseries Bin Count controls how finely the time series
is sampled. The resulting binned sequences are used for calculating similarities and the reduced representations are drawn
in the model visualization. Generally, bin counts between 500 and 1000 produce a reasonable tradeoff between speed and
accuracy. Although increasing the number of bins increases both the analysis and rendering times, a greater bin count also
helps preserve spikes or other localized features that could be lost when using a smaller number.

The Resampling Algorithm dropdown has two options. Both algorithms use a uniform set of bins, with the choice between
using uniform piecewise linear approximation or uniform piecewise aggregate approximation as the resampling method.
Uniform piecewise aggregate approximation is the default.

The Cluster Linkage Measure dropdown selects the metric used when evaluating distance between groups of elements. There
are four choices:

	single: Nearest Point Algorithm

	complete: Farthest Point Algorithm

	average: Unweighted Pair Group Method with Arithmetic Mean (UPGMA) Algorithm

	weighted: Weighted Pair Group Method with Arithmetic Mean (WPGMA) Algorithm

Single evaluates the distance using the closest elements/minimum linkage; complete uses the farthest elements/maximum
linkage; average uses the distance between the group averages; and weighted uses the values from the distance matrix.
Average is the default. We are using SciPy to perform the clustering, so a more complete description of the linkage
choices can be found at https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html.

The Cluster Metric currently only has a single choice, Euclidean, so it cannot be changed (hence the field is grayed
out). This field is provided to inform you that we are using Euclidean distances in our algorithms.

Once you are satisfied with these parameter choices, click Continue to go to the next screen.

High Performance Computing Parameters Dialog

The HPC Parameters screen is specific to your institution. Figure 53 shows the parameters for Sandia’s cluster systems.
Other than differences in the list of steps shown along the top, the same screen is used for all three data formats (Xyce,
CSV, and HDF5).

[image: ../_images/Figure53.png]
Figure 53: HPC Parameters for Sandia clusters.

WCID stands for Workload Characterization ID, which is required for job submission on the clusters. Because Slycat™ uses
parallel processing to speed up Time Series model creation, users are required to have obtained a WCID prior to creating a
Time Series model. Your WCID is associated with an Strategic Management Unit/Program Management Unit (SMU/PMU), which is
used to specify the Partition or queue-name. At Sandia, the choices are nw, ec, dsa, ihns, ldrd, cee, viz, or
viz batch).

Time Series Model Visualization

Our examples in this section come from an ensemble of 250 electrical circuit simulations, where our time series outputs are
current and voltage variables sampled over time. A Time Series model of this ensemble is shown in Figure 54. The model
provides three linked views, each providing a different level of abstraction. The Dendrogram View in the upper left provides
a high-level view that groups waveforms by similarity. In the upper right, the Simulation View displays a line plot for each
ensemble member. The plots are superimposed in a shared coordinate space to facilitate comparisons. The lowest level view is
the Variable Table, which provides the raw data values from the original table file. It is drawn across the bottom of the
display and may be scrolled both vertically and horizontally if the number of rows or columns exceeds the available space.
Although the Variable Table may contain columns with scalar output metrics, or columns of file URIs that would be categorized
as being neither input nor output, the ingestion wizard assumes all table columns are inputs and colors them green.

[image: ../_images/Figure54.png]
Figure 54: Time Series model with Dendrogram View in upper left, Simulation View in upper right, and Variable Table below.

The Dendrogram View controls visibility of ensemble members in both the Simulation View and the Variable Table.
Selections can be made in any one of the views, after which they are propagated to the other two. Color-encoding is shared
by all views.

The model specific controls for a Time Series model are shown in Figure 55. Within each time series file, multiple output
variables may be present. Each variable is input as a column of values, and each row provides the values for all variables
at a single instant in time. Each time series variable generates a distinctly different dendrogram and has a set of unique
plots. The Outputs dropdown provides a list of the time series variables so you can select which one is currently being
displayed in the Dendrogram View and the Simulation View.

[image: ../_images/Figure55.png]
Figure 55: Time Series model specific controls. The Outputs dropdown switches the views between different time series variables. Line Color selects from the scalar input variables for color-coding the lines. The Download Table icon enables download of the entire Variable Table or subsets thereof. Colors selects the color theme. The latter two functions are shared by all model types.

To facilitate discovering relationships between input parameters and groups of output plots, it is often useful to color-code
the lines by input variable values. Select a color-coding variable either through the Line Color dropdown or by clicking on
a table column header (see Color-Coding Lines below).

	Dendrogram View
	Dendrogram Expansion/Contraction

	Dendrogram Visibility Filtering

	Sparklines

	Time Series Simulation View
	Color-Coding Lines

	Legend

	Time Series Variable Table

Dendrogram View

The Dendrogram View displays a tree that clusters line plots from a single temporal variable by similarity. The analysis
begins by calculating distances between each pair of time series vectors, an O(n2) calculation. Then the distance
matrix is used to build the dendrogram using agglomerative clustering. Each time series output variable generates a different
tree.

[image: ../_images/Figure56.png]
Figure 56: Dendrogram tree level compression.

The dendrogram is drawn with the root on the left and the leaves on the right. To reduce visual clutter, the tree is not drawn
at full resolution at every level down to the leaves. Instead, only the first four levels of the tree are initially rendered
(as shown in Figure 56), with the last level on the right consisting of collapsed subtrees for the remaining sections of the
tree down to the leaves. The subtrees are represented by purple triangular icons, each labeled with the number of nodes in
its subtree. Non-collapsed nodes in the tree are drawn as purple dots.

	Dendrogram Expansion/Contraction

	Dendrogram Visibility Filtering

	Sparklines

Dendrogram Expansion/Contraction

The expansion or contraction of each node is individually controlled through the ‘+’ or ‘-‘ icons that appear to the left of
each node, respectively above or below the line connecting the node to its parent. In Figure 57, the subtree with 58 nodes
in Figure 56 has been expanded by clicking the ‘+’. Each expansion adds two levels of the tree to the dendrogram. Note that
leaf-level nodes are drawn as dots.

[image: ../_images/Figure57.png]
Figure 57: Expansion of second subtree from the top (previously shown as the subtree with 58 nodes in Figure 56). Each expansion adds two additional levels.

To expand a subtree all the way down to the leaves in a single action, click on the subtree triangle itself. In Figure 58,
the subtree with 9 nodes at the top of the dendrogram in Figure 56 has been expanded to the leaf level with this one-click
operation. Caution should be exercised when doing a full subtree expansion for subtrees over 20 or so nodes, since the
dendrogram can become cluttered and largely unintelligible. Figure 59 demonstrates the results of clicking on the subtree
with 110 nodes at the bottom of the dendrogram in Figure 56.

[image: ../_images/Figure58.png]
Figure 58: Subtree with 9 nodes expanded to leaf level by clicking triangular subtree icon.

[image: ../_images/Figure59.png]
Figure 59: One-click expansion of subtree with 110 nodes.

The operation of collapsing nodes reduces all of the nodes below the designated node (the node whose ‘-‘ icon is clicked)
into a single subtree, regardless of the number of levels that are currently visible. In Figure 60, the bottom half of
the dendrogram in Figure 57 has been collapsed into a single subtree with 166 nodes. This ability to expand and contract
sections of the dendrogram controls the level of detail, maximizing the rendered portion of the tree around areas of
interest.

[image: ../_images/Figure60.png]
Figure 60: Collapsed subtree that combines the 4 subtrees from the lower half of the dendrogram in Figure 57.

Dendrogram Visibility Filtering

The dendrogram also acts as a visibility filter to select which lines are shown in the Simulation View and which rows appear
in the Variable Table. Click on the purple dot representing any node (or the dot at the tip of a subtree triangle) to
restrict visibility to the leaf nodes associated with that subset of the tree. Non-visible nodes are grayed out. Figure 61
and Figure 62 show the results of limiting visibility to the subtrees of the upper and lower halves of the dendrogram,
respectively. These examples clearly demonstrate that the upper and lower subtrees are grouping the results generated by
input differences in the variable x23 into two categories. Inputs of -1 (color-coded blue) start higher on the y-axis and
escalate slowly over a longer time period before peaking, while 0 and 1 (white and red, respectively) start lower on the
y-axis and peak more rapidly. These two groups have distinctly different characteristics, which the analysis has captured.

[image: ../_images/Figure61.png]
Figure 61: Visibility is limited to nodes in top half of dendrogram by clicking the upper second-level node. Table order is sorted by the values of variable x23 (not in dendrogram leaf order, shown by lavender graph icon in dendrogram lower left).

[image: ../_images/Figure62.png]
Figure 62: Visibility is limited to nodes in bottom half of dendrogram by clicking the lower second-level node. Table order is in default dendrogram leaf order (shown by purple graph icon in lower left of dendrogram).

[image: ../_images/Figure63.png]
Figure 63: Complex visibility selection made through a combination of dendrogram expansion and using control-click to add nodes to the visible set. Paths from the root to the visible nodes are darkened, while the other paths are grayed out.

As shown in Figure 63, more complex visibility selections can be constructed through a combination of dendrogram expansion
operations and using control-click to add individual nodes to the visible set. Control-click functions as a toggle, so it
flips the visibility state for any node with each click. The paths from the root to all visible nodes are darkly drawn, while
the remaining paths, though still visible, are grayed out.

Sparklines

To the right of the subtree icons and leaf nodes are small graphs, called sparklines 1, providing a high-level
representation of the general shape characteristics of the associated node/subtree. For a node, its sparkline is its time
series plot rendered into a thumbnail image. For a subtree, its sparkline is the sparkline of the node closest to the
centroid of the group in the subtree.

Sparklines for subtrees are drawn in black. Sparklines for leaf nodes are color-coded to match the line color of the
corresponding run in the Simulation View, and the cell color of the corresponding simulation in the Variable Table. Beyond
color-coding being linked between all three views, selection is also linked. Selection of a line (or lines) in the
Simulation View or Variable View will highlight (darken) the sparklines of the associated subtrees and/or nodes to reveal
their location within the hierarchy, as shown in Figure 64. Alternatively, clicking on a sparkline performs a group operation
that selects the associated node set, highlighting the corresponding lines in the Simulation View, and the corresponding rows
in the Variable Table. Figure 65 shows how clicking the sparkline for the 8 node subtree results in highlighting the eight
associated lines and rows in the other two views.

[image: ../_images/Figure64.png]
Figure 64: Sparkline highlights corresponding subtree for selected line in Simulation View,

[image: ../_images/Figure65.png]
Figure 65: Clicking the sparkline for the 8-node subtree highlights the corresponding set of lines and table rows.

Highlighting and visibility are independent functions that may be combined. For example, in Figure 66, the set of runs that failed to peak are selected in the dendrogram. Highlighting is used to distinguish the runs in the subtree with 8 nodes from the subtree with 9 nodes. The 8 node subtree consists of runs that took longer to rise and had lower overall values than the 9 node group. Note that these differences are visible even in the sparklines for each subtree.

[image: ../_images/Figure66.png]
Figure 66: Select visibility combined with highlighting to explore differences in the set of runs that did not peak.

	1

	Tufte, E., Beautiful Evidence, pp. 46-63, Graphics Press, Cheshire, Connecticut (2006).

Time Series Simulation View

The Simulation View is a line plot, where each line represents an ensemble member. The X axis is the shared range of temporal
values between simulations, and the Y axis is the time series variable value. The lines are color-coded by using the value of a
selected scalar variable (see Color-Coding Lines) to potentially reveal correlations between inputs and groups of similar output
plots, as demonstrated by the examples of the previous section.

Line visibility in the Simulation View is controlled by selecting nodes and subtrees within the dendrogram (see Dendrogram
View). Moving the mouse over the line plots, Slycat™ interactively provides feedback showing which line is being pointed at
through a combination of highlighting the focus line and dimming all the other lines. Left-clicking on the line selects the
simulation in all views, highlighting the sparkline next to the associated subtree in the dendrogram, highlighting the line
in the line plot, and highlighting the associated row in the table. Multiple lines can be selected using control-click to
toggle the selection state of lines (i.e. holding the control key while clicking adds unselected lines to the selection set,
or removes previously selected lines from the set). Control-click selection is available in all three views, operating on
sparklines, line plots, or table rows. To clear the current set of selections, click in the background of the
Simulation View in any area away from the lines.

[image: ../_images/Figure54.png]
Time Series model with Simulation View in middle upper right, and Legend on the far right.

Color-Coding Lines

The first time a model is rendered, the lines are colored by their index number. There are two mechanisms for changing the
variable selected for the color-coding: clicking on the column header in the Variable Table or selecting a variable from the
Line Color dropdown list. Irrespective of the interface used, changing the color-mapping variable will lead to changes in all
three views and the legend, including: recoloring the line plot using the new variable’s values, coloring the cell backgrounds
in that variable’s table column, returning the cell backgrounds of the previously selected variable’s column to the default
color (green, lavender, or white depending on whether the variable is an input, output, or neither), recoloring any
sparklines that are leaf nodes in the dendrogram, and relabeling and redefining the value range in the Legend (see below).

Legend

To the right of the line plot is the Legend. The Legend is in its own view, which can be resized or closed altogether.
The Legend displays information about the current color-coding variable, including its name, range of values, and the mapping
between values and colors. The color palette is defined by the current theme (see Color Themes).

Time Series Variable Table

The Variable Table is much the same as the table in the CCA model (see Variable Table). However, there is one additional
option for row ordering in the table, which we refer to as dendrogram ordering (i.e. if the dendrogram were expanded out to
the leaf level, the simulations associated with the rows in the table would correspond to those of the dendrogram’s leaves).
This is the default table order when the model is first visualized. The row ordering choice is explicitly shown by the color
of the graph icon in the lower left corner of the Dendrogram View. When the graph icon is purple, as in the first figure
below, the table is in dendrogram order. When the graph icon is lavender, as in the second figure below, the table is in
sorted order. Clicking on the graph icon restores the table to dendrogram order, and returns the icon to purple. Sorting
any of the table columns replaces this ordering with the sorted order, and changes the icon to lavender.

[image: ../_images/Figure66.png]
Variable Table is in dendrogram order.

[image: ../_images/Figure61.png]
Variable Table is in sorted order.

Acknowledgements

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of
Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-NA0003525. This user manual was approved for release as SAND2018-0620 R.

Design

Because Slycat™ is a system for analysis of data ensembles, and ensembles
typically include orders of magnitude more data than individual simulation
runs, managing data movement is an integral part of the Slycat™ design.
Ideally, we want to perform one-time computation on the host where data lives
so that only an analytical model – typically orders of magnitude smaller than
the original data – is moved across the network to the Slycat™ host. This
leads to the following Slycat™ architectural design:

[image: _images/remote-computation.png]
In the above case, large data on an HPC platform is analyzed in-place to
produce greatly reduced model artifacts that are stored by the Slycat™ web
server. Later, these artifacts are delivered – incrementally and on-demand –
to interactive clients.

However, it isn’t always possible to reduce the analytical workflow to an
ideal, reduced-size model. For example, users may wish to interactively browse
through the raw outputs of an ensemble of simulations. For this case, Slycat™
provides a remote “agent” process that can access data on an HPC platform,
packaging and compressing it on-demand for live delivery to interactive
clients:

[image: _images/remote-retrieval.png]
As an example, this mode of interaction is ideal for browsing through output
image series on a remote server - in addition to delivering individual images,
the agent can compress images on-the-fly into video streams for live playback.

Tutorial

	Install Slycat
	Install Docker

	Download the Image and Create a Container

	Connect to Slycat with a Web Browser

	Next Steps

	Create a CCA Model
	Create a Project

	Generate a CCA Model

	Wait for Model Completion

	View a CCA Model

	Interact with a CCA Model

	Next Steps

	Create a Timeseries Model
	Generate Timeseries Data

	Compute a Timeseries Model

	View a Timeseries Model

	Interact with a Timeseries Model

	Next Steps

	Create a Parameter Image Model
	Generate Image Data

	Create a Project

	Ingest a Parameter Image Model

	View a Parameter Image Model

	Interact with a Parameter Image Model

	Next Steps

	Managing Docker
	Stopping Slycat

	Starting Slycat

Install Slycat

As a convenience, we provide a Docker [http://www.docker.com] image that has
Slycat and all its dependencies preinstalled. Using the Slycat image, you can
quickly begin exploring Slycat, try some tutorials, and run small analyses on
your own data. Eventually you might want to Setup Slycat Web Server on
your own hardware to perform large-scale analyses.

Install Docker

Installation

Because Docker uses Linux-specific kernel features, you will need to run Docker
in a virtual machine (VM) on your Mac or Windows environment. Fortunately, Docker makes this relatively easy:

	Download the latest docker for your specific environment from https://www.docker.com/

	follow the instruction for installing docker on your machine

With docker installed and running and the DOCKER_* environment variables set, the rest of the
install instructions are platform-independent.

Note

If you’re using Docker [http://www.docker.com] behind a proxy, you’ll need additional configuration
so it can access the network to download the Slycat image:

	To configure proxy information, ssh into the Boot2Docker VM:

$ docker-machine ssh default

	Create / modify the /var/lib/boot2docker/profile file to set proxy info:

$ sudo vi /var/lib/boot2docker/profile

	Add the proxy info using protocol://host:port, for example:

export HTTP_PROXY=http://your.proxy.name:80
export HTTPS_PROXY=http://your.proxy.name:80

	If your site uses SSL interception, you will need to get a copy of the
interception certificate, and append it to /etc/ssl/cacerts.pem:

$ sudo vi /etc/ssl/cacert.pem

	Restart the Docker service and exit the Boot2Docker VM:

$ sudo /etc/init.d/docker restart
$ exit

Warning

	If your site uses SSL interception, you must append the certificate to
/etc/ssl/cacerts.pem and restart the Docker service before downloading
images.

Download the Image and Create a Container

Now that you have the Docker daemon running and DOCKER_HOST set to connect to it,
you’re ready to download the Slycat image and create a container:

$ docker run -d -p 2222:22 -p 80:80 -p 443:443 --name slycat sandialabs/slycat-developer

Docker will begin downloading the sandialabs/slycat image, and will create a
container with the name slycat (you will use this name as a convenient way to
reference the container in subsequent commands). The Slycat server will begin
running as soon as the download is complete. Leave the container running for
the remainder of these tutorials.

Warning

A new image is currently being created so the image has to currently be built from scratch via
build.py in the slycat github repi /open-source-docker/docker/open-source-build/build.py

Connect to Slycat with a Web Browser

Open a web browser and point it to the Slycat server at https://<docker host ip>

	If you’re running the Slycat container on a Linux host, this will be https://localhost.

	If you’re running the Slycat container using boot2docker on another platform, this will be the IP address returned by:

$ docker-machine ip

The VM's Host only interface IP address is: 192.168.99.100

	The browser will complain that the server certificate is untrusted. This is because we use a self-signed certificate for the Docker container. Follow your browser’s procedures to temporarily trust the connection.

	When prompted for a username and password, enter slycat for both.

	The Slycat Projects page opens in the browser.

Next Steps

	That’s it! Now that you’re up-and-running, it’s time to Create a CCA Model.

Create a CCA Model

In Slycat, we perform an analysis by ingesting data and creating a
model. One type of Slycat model is Canonical Correlation Analysis
(CCA), used to model relationships between a set of input and output
metrics. Before creating a CCA model however, we must create a
project, which is used to organize and control access to models.

Create a Project

	With your web browser still pointed to the Slycat Projects page from the
previous section, click the Create dropdown menu on the Slycat navbar,
choose New Project, enter “MyProject” as the project name in the wizard
that appears, and click Finish.

	The browser switches to a separate page for the new project.

Generate a CCA Model

	In the new model page, click the Create dropdown menu again, and choose
New Remote CCA Model. Remote CCA is an analysis performed on a file
retrieved from a host other than (remote to) the Slycat web server.

	In the wizard that appears, enter “MyCCA” as the model name
and click Next.

	We are going to load a file that happens to be located on the same host
as the Slycat server (“localhost”), but could be located on any host that’s
reachable from the Slycat server over ssh. In the wizard,
choose localhost in the Hostname dropdown and enter username slycat and
password slycat, and click Next.

	The remote file browser appears, displaying the filesystem of the host you
chose in the previous step.
Navigate to the /home/slycat/src/slycat/data directory, then double-click
cars.csv.
This file contains data
describing 406 different types of automobile in CSV format.

	A list of the variables (columns) from the uploaded file appears,
along with two columns of checkboxes, allowing you to designate each
variable as in input, an output, or neither. Use the checkboxes to
select “Cylinders”, “Displacement”, “Weight”, and “Year” as inputs,
and “MPG”, “Horsepower”, and “Acceleration” as outputs. Uncheck
“Origin”.

	Leave the “Scale inputs to unit variance.” checkbox checked, and
click Finish.

Wait for Model Completion

The time to compute models can vary from seconds to hours, depending
on the complexity of the model and the data. For this reason, Slycat
computes models in the background, allowing you to:

	Continue interacting with existing projects and models.

	Create more than one model at a time.

This example is very small, so it should complete in a few seconds.
You can jump to the new model by clicking the “You can check on it here”
link in the final page of the wizard. Or, you can close the wizard, and
you will see the new MyCCA model listed on the project page, where you can
click on it to open it.

View a CCA Model

	The bottom half of the model page features a table containing the raw
data used to compute the model. Input variables are color-coded
green, output variables are color-coded purple, and unused variables
are color-coded white.

	The upper-left corner of the page contains the CCA table, a
high-level overview of the CCA results including statistical
significance measures and bar-plots for each input and output
variable over three CCA components.

	The upper-right corner of the page contains a scatterplot detailing
how well each individual observation in the raw data fits the
currently selected CCA component.

Interact with a CCA Model

	Click a component name (“CCA1”, “CCA2”, or “CCA3”) in the CCA table
to select that component, displaying its bar plot and updating the
scatterplot.

	Click variable names in the CCA table or the raw data table to color
code observations with that variable.

	Hover over columns in the CCA table and the raw data table to reveal
sorting widgets.

	Click observations in the scatterplot to highlight the corresponding
entry in the raw data table.

	Click and drag in the scatterplot to rubber-band-select multiple
observations.

	Click rows or shift-click ranges of rows in the raw data table to
highlight corresponding observations in the scatterplot.

Next Steps

Now that you’ve created your first CCA model it’s time to Create a Timeseries Model.

Create a Timeseries Model

The Slycat Timeseries Model provides time series analysis based on
clustering and comparative visualization of waveforms. However, unlike
Creating a CCA Model, you can’t upload
data for a Timeseries model using your web browser. Instead, you’ll use
one Python script to synthesize some time series data in a format
suitable for use with Slycat, and a second script to compute the model
and push it to the Slycat Web Server. This will demonstrate how Slycat’s
REST API can be used to control Slycat programmatically, so you
can transform and upload your data using any language that supports HTTP
networking.

Generate Timeseries Data

	For this example we’ll ssh into the Slycat Docker container, where the scripts
to be run are already installed. Normally, you would run these scripts on the
system where your data was located:

$ ssh slycat@<docker host ip> -p2222

In this case, substitute your docker host IP address. If you’re running
docker on a Linux host, this will be localhost. On systems using
Boot2Docker, it will be the IP address returned by:

$ boot2docker ip

When prompted, enter password slycat.

	Switch to the Slycat source code directory containing the sample client
scripts:

$ cd src/slycat/web-client

	The script for synthesizing data is designed to run in parallel, so
start some parallel worker processes in the background:

$ ipcluster start --daemonize

	Synthesize some time series data, organized for use with Slycat:

$ python slycat-create-sample-timeseries-hdf5.py

	The script creates a sample-timeseries directory and populates it with a set
of random input variables and ten output time series, each containing
two variables (additional command line parameters are available to
synthesize data of arbitrary size).

Compute a Timeseries Model

	Now that you have some sample data, run:

$ python slycat-create-timeseries-model-from-hdf5.py --no-verify sample-timeseries

and enter the password slycat
when prompted (this script also runs in parallel, using the workers
you started previously):

slycat password:
INFO - Storing clustering parameters.
INFO - Storing input table attribute 0
INFO - Storing input table attribute 1
INFO - Storing input table attribute 2
...
INFO - Your new model is located at https://localhost:8092/models/...

View a Timeseries Model

	Point your web browser to the Slycat home page at
https://<docker host ip>, if it isn’t already.

	In the Slycat navbar at the top of
the page, you should see a gray status dropdown containing two numbers
separated by a slash. Those numbers are the number of models being
computed, and the number of recently completed models, respectively.

	Click on the status dropdown to see a menu containing an entry for
all in-progress and recently completed models.

	Wait for the sample-timeseries model to be a completed (a green
check appears to its left), if it hasn’t already.

	Click the sample-timeseries entry in the status dropdown,
and the browser opens the new model page.

	At the top of the page there is a list of output variables.

	At page left is a hierarchical clustering of the output variable
timeseries, displayed as a dendrogram.

	At page right the raw output timeseries are plotted.

	At the bottom of the page is a table containing raw input data.

Interact with a Timeseries Model

	Click on an output variable name at the top of the page to select
that output, updating the rest of the interface.

	Click variable names in the raw input table to color timeseries using
that variable.

	Click individual raw input table rows or shift-click ranges of rows
to highlight the corresponding timeseries.

	Click nodes in the dendrogram to display only those waveforms.

	Double-click nodes in the dendrogram to expand / collapse their
children.

Next Steps

Next, let’s move on to Create a Parameter Image Model.

Create a Parameter Image Model

The Slycat Parameter Image Model associates images with feature vectors, and
would typically be used to explore the input parameters for an ensemble of
image-generating simulations. For this type of model, you’ll use one Python
script to synthesize image and parameter data in a format suitable for use with
Slycat, then import the data using a web browser user interface.

Generate Image Data

	If you haven’t already ssh into the Slycat server:

$ ssh slycat@<docker ip address> -p2222

	Switch to the Slycat source code directory containing sample client
scripts:

$ cd src/slycat/web-client

	Synthesize some parameter image data, organized for use with Slycat:

$ python slycat-create-sample-parameter-image-csv.py

	The script creates a sample-parameter-images directory containing a set of randomly-generated images,
and a sample-parameter-images.csv file that contains links to the images, plus
randomly-generated numeric, string, and categorical parameters (the script
includes optional command line parameters to control how much data is
generated). Now that you have some sample data, you’re ready to pull it
into Slycat.

Create a Project

	Point a web browser to the Slycat
web server at https://<docker ip address>

	Use Create > New Project on the Slycat navbar, enter “My PI Project” as the project name in the wizard, and
click Finish.

	The browser switches to a separate page for the new project.

Ingest a Parameter Image Model

	In the project page, choose Create > New Remote Parameter Image Model. This wizard is used
to ingest a file from a machine other than the host running the web
browser.

	In the wizard that opens, enter “MyPI” as the model name
and click Next.

	In the login screen that follows, choose hostname “localhost”, enter username
“slycat” and password “slycat” and choose Next. Note that these
credentials will be used to SSH to another machine to load the parameter
image data (in this case, the “other” machine happens to be localhost, but
the Slycat server can be configured to connect to any other host that’s
accessible via SSH).

	In the remote file browser that opens, navigate to the
/home/slycat/src/slycat/web-client directory, and double-click the
sample-parameter-images.csv file that you generated in a previous step.

	A list of the variables (columns) from the file appears, along with five
columns of checkboxes, allowing you to designate each variable as in input,
output, rating, categorical, or image variable. Slycat trys to guess the
types of the individual variables, but you will need to make some manual
changes. Use the checkboxes to designate “category0” and “category1” as
Category variables, and “rating0” and “rating1” as Rating variables. Change
“output0”, “output1”, and “output2” to Output variables, and uncheck
“unused0”, “unused1”, “unused2”.

	Note that the “image0”, “image1”, and “image2” columns are already correctly
identified as Image variables, so leave them alone, and click Finish.

	As before, you can navigate to the newly created model using the link in the
last page of the wizard, the link on the underlying project page, or the link
in the status dropdown in the navbar.

View a Parameter Image Model

	The bottom third of the model page features a table containing the raw data
used to compute the model. Input variables are color-coded green, output
variables are color-coded purple, and the remaining variables are
color-coded white.

	The rest of the page contains a scatterplot with a point for each
observation (row) in the data table.

Interact with a Parameter Image Model

	If you hover over any of the scatterplot points, you will be prompted for
a username and password to retrieve the corresponding image - when this
happens use slycat and slycat as you’ve done before.

	Use the “X Axis” and “Y Axis” dropdown menus at the top of the display to
use any two numeric variables for the scatterplot axes.

	Click variable names in the raw data table or use the “Point Color” dropdown
menu to color the scatterplot points using any numeric variable.

	Hover over columns in the raw data table to reveal sorting widgets.

	Click observations in the scatterplot to highlight the corresponding entry
in the raw data table.

	Click and drag in the scatterplot to rubber-band-select multiple
observations.

	Click rows or shift-click ranges of rows in the raw data table to highlight
corresponding observations in the scatterplot.

	Choose an image variable using the “Image Set” dropdown at the top of the
display, then hover the mouse over observations in the scatterplot to see
the corresponding images.

	Click the “pin” icon in the upper-left-corner of an image to display it permanently.

	Click the “close” icon in the upper-left-corner of a pinned image to close it.

	Drag the “resize” icon in the lower-right-corner of a pinned image to resize it.

	Click-and-drag anywhere else within a pinned image to reposition it on the page.

	Click-and-drag the colorbar to reposition it on the page.

Next Steps

That’s it for the tutorial … now on to Managing Docker.

Managing Docker

Here are some tips on managing your Slycat Docker container:

Stopping Slycat

The processes in the Slycat container that you created with docker run …
will continue running until you stop it:

$ docker stop slycat

If you are using Boot2Docker to run your Slycat container in a VM on a
non-Linux platform, you may want to shut the VM down too:

$ boot2docker stop

Starting Slycat

If you’re using Boot2Docker to run your Slycat container on a non-Linux platform, you need to start the VM:

$ boot2docker start # If you aren't running on a Linux host.

To start the Slycat container:

$ docker start slycat

… and you’re ready to use Slycat again!

Setup Slycat Clients

Note: If you’re new to Slycat and are here give it a try, please see
Install Slycat instead. The following outlines how to setup a host
to use the client scripts included with Slycat to upload data to an
existing Slycat web server. If you don’t already have a web server, you
probably want to start with Setup Slycat Web Server.

Slycat includes a Python package to simplify writing custom clients.
Custom clients are often required to handle data ingestion, performing
extraction and transformation of your specific data formats into a form
usable by Slycat.

Prerequisites

You’ll need to install the following with your system package manager:

	git

	python 2.7

Further, you’ll need the following Python modules, installed using
either your system package manager or pip:

	h5py

	ipython

	numpy

	pyzmq

	requests

	scipy

Installation

To use the functionality provided by the Slycat client scripts, you’ll
need to obtain a copy of the source code - typically by cloning the
slycat repository from git:

$ cd
$ git clone git@github.com:sandialabs/slycat.git

Once you’ve cloned the repository, you need to tell Python where to find
the Slycat package. The easiest way to do this is to add the
slycat/packages directory to your PYTHONPATH environment variable:

$ export PYTHONPATH=-/slycat/packages:$PYTHONPATH

Now, you can run scripts that use the Slycat package.

See Also

	REST API - Details the underlying Slycat HTTP API, which can
be used with any programming language.

Setup Slycat Web Server

Note: If you’re new to Slycat and are here give it a try, please see
Install Slycat instead. The following is a guide for
users who are ready to setup their own Slycat Web Server for production.

Use the Docker Image

Many administrators should be able to use the Slycat Docker image in production directly,
and we strongly urge you to try this approach first - after
following the instructions at Install Slycat, you can simply ssh into the running Docker container:

$ ssh slycat@<docker ip address> -p2222

make a few configuration changes (assign real passwords to the root and slycat users, replace
our self-signed server certificate with one of your own, configure a real password-check plugin, etc.)
then continue using the image in production. Because the Slycat Docker image is a container
rather than a VM, there is absolutely no performance penalty for using it in this configuration.
You can even use Docker to automate this process, building your own site-specific Slycat image
with our Slycat image as the base!

Installing Slycat from Scratch

If you insist on creating your own Slycat instance from scratch,
we still prefer to point you to our Dockerfiles for
information on installing Slycat and its dependencies, because these files are the actual scripts
that we use to build the Slycat Docker image - thus they’re an
always-up-to-date and unambiguous specification of how to build a Slycat
server. Even if you don’t use Docker, the Dockerfiles
are easy to understand and adapt to your own workflow and platform.

You will find our Dockerfiles in a set of directories located in the docker
directory within the Slycat repo:

https://github.com/sandialabs/slycat/tree/master/docker

There, you will find four subdirectories - supervisord, sshd, slycat, and slycat-dev
- which are used to build four Docker images. Each image builds on the
previous, adding new functionality:

	supervisord - Starts with a Fedora Core base system, and adds an instance of supervisord that
will be used to startup the other processes.

	sshd - Installs an SSH server on top of the supervisord image, and configures supervisord
to automatically start it when the container is run.

	slycat - Installs the Slycat servers and their dependencies atop the sshd image, and configures
supervisord to automatically start them when the container is run.

	slycat-dev - Adds development tools to the base Slycat image, and configures the supervisorctl
command so developers can easily start and stop servers themselves.

The main differences between platforms will be in how you install the various
dependencies. One platform - such as Fedora Core in our Dockerfile - installs
the Python h5py module and its compiled hdf5 library dependency using a single
yum package, while another platform - such as Centos 6 - provides a yum package
for hdf5, but no package for the Python h5py module, so you have to use pip to
install it. Unfortunately, we can’t enumerate all the possibilities here, so
you’ll have to begin with the packages listed in our Dockerfiles, and
generalize to your platform.

Configuring Slycat Web Server

Whether you’re setting-up an unmodified Slycat Web Server or developing new
capabilities to suit your needs, you will need to know how to modify its
configuration. When you start Slycat Web Server:

$ cd slycat/web-server
$ python slycat-web-server.py

… it automatically loads a file config.ini from the same directory as slycat-web-server.py.
The sample config.ini that we provide with the source code is designed
to start Slycat in a state that’s useful for developers, so you’ll likely want
to copy it to some other filesystem location, modify it, and point Slycat to
the modified config.ini instead. Once you’ve done that, you can specify the config file location
at startup using the command-line:

$ python slycat-web-server.py --config=/etc/slycat/config.ini

The config.ini file is an INI file divided into sections using square braces.
The [slycat] section is reserved for configuration specific to the
functionality of the Slycat server, while the [global] section and any
sections starting with a slash (for example: [/style]) are used to configure
the CherryPy [http://www.cherrypy.org] web server that Slycat is based upon.

The values for each setting in config.ini must be valid Python expressions.
You should note that in the sample config.ini we provide, some values are
simple scalars, such as [global] server.socket_port, while some values are
nested data structures, such as [slycat] remote-hosts. This provides great
flexibility to customize Slycat for your network. Here are some common
settings you may wish to modify:

[global] Section

	engine.autoreload.on - Controls whether Slycat will automatically restart when the source code is modified. This is typically disabled in production.

	require.show_tracebacks - Controls whether exceptions during request handling will return debugging information to the client. This is typically disabled in production.

	server.socket_host - IP address of the interface to listen on for requests. Use “0.0.0.0” to listen on all interfaces. Use “127.0.0.1” to only accept requests from the local machine.

	server.socket_port - TCP port number to listen on for requests. Defaults to “8092” for development. Typically set to “443” in production with SSL enabled, or “80” with SSL disabled.

	server.ssl_certificate - Path to a certificate used for SSL encryption. Leave blank to disable SSL. Relative paths are relative to the slycat-web-server.py executable.

	server.ssl_private_key - Path to a private key used for SSL encryption. Leave blank to disable SSL. Relative paths are relative to the slycat-web-server.py executable.

[slycat] Section

	allowed-markings - List of marking types that may be assigned to models.

	plugins - List of filesystem plugin locations. You may specify individual .py files to be loaded, or directories. If you specify a directory, every .py file in the directory will be loaded, but directories are not searched recursively. Relative paths are relative to the slycat-web-server.py executable.

	remote-hosts - List containing an entry for each group of hosts that share a specific configuration. Each entry is a dict containing the following:

	hostnames - Required list of hostnames that share a configuration.

	agent - Optional dict configuring remote agent access to the entry hostnames. Some models require the Slycat Agent when accessing a remote host, and agents must be explicitly configured on a host to be used. The agent dict must contain the following:

	command - Required string with the full remote command-line used to run the Slycat agent on the given host. Typically /full/path/to/python /full/path/to/slycat-agent.py. Since an agent session can be initiated by any user able to login to the remote host via ssh, you should specify required environment variables as part of this command, too (for example, with env).

	server-admins - List of users allowed to administer the Slycat server. Server administrators have full read/write access to all projects, regardless of project ACLs.

Docker Development

One of the easiest ways to begin making changes or additions to Slycat is using
our Docker image to quickly setup a development environment. Here are some
guidelines to get you started:

Prerequisites

	We assume that you’ve already Installed Slycat and
are familiar with how to manage the Slycat docker image.

	We provide a special developer’s image that modifies the Slycat Docker image
that you’ve been working with for easier development, so download and run it now:

$ docker run -p 2222:22 -p 80:80 -p 443:443 -p 5984:5984 -p 9001:9001 -d --name slycat-dev sandialabs/slycat-dev

	You will need to note the IP address of the Docker host:

	If you are running Docker on a Linux host, then the Docker host IP is “localhost” or “127.0.0.1”

	If you are running Boot2Docker on a non-Linux host, then the Docker host IP is the address reported by the boot2docker ip command.

	We will refer to the host address as <docker host ip> throughout the rest of this document.

Working Inside the Running Container

	The Slycat container includes an ssh server, so you can login to the container as user slycat with password slycat:

$ ssh slycat@<docker host ip> -p2222

	Once you’re logged-in, you can pull the latest version of the source code (note that when we build the Docker container, we checkout a specific, known-good commit, so you have to switch to a branch before you pull):

$ cd src/slycat
$ git checkout master
$ git pull

	And you can edit the source code in-place:

$ vi packages/slycat/...

	The Slycat software stack includes four running servers: the couchdb database, the Slycat web server, the
Slycat feed server, and an haproxy reverse proxy server. All four servers are automatically started
by supervisord when you start the slycat-dev container. To check on their status, use the supervisorctl
command:

$ supervisorctl status
couchdb RUNNING pid 10, uptime 0:02:14
feed-server RUNNING pid 11, uptime 0:02:14
proxy-server RUNNING pid 13, uptime 0:02:14
sshd RUNNING pid 9, uptime 0:02:14
web-server RUNNING pid 12, uptime 0:02:14

However, development is often much easier when you run one or more of the
servers yourself - you can configure the server to restart automatically in
response to code or configuration changes, see the server output in the
console, and know immediately if a typo or syntax error causes the server to
fail.

You cannot simply kill a server process started by supervisord, because it
will be automatically restarted. Use supervisorctl to stop it, then start
your own copy for development:

Running Your Own Web Server:

$ supervisorctl stop web-server
web-server: stopped
$ cd src/slycat/web-server
$ python slycat-web-server.py

Running Your Own Feed Server:

$ supervisorctl stop feed-server
feed-server: stopped
$ cd src/slycat/feed-server
$ python slycat-feed-server.py

Running Your Own Reverse Proxy:

$ supervisorctl stop proxy-server
proxy-server: stopped
$ cd src/slycat/proxy-server
$ sudo haproxy -f configuration.conf -d

Typically, you would then use a separate ssh login for making code changes.

	To commit changes while logged-in to the container, you’ll need to add your
personal information to ~/.gitconfig:

[user]
 name = Fred P. Smith
 email = fred@nowhere.com

	By default, the git repository in the container is configured to access
the public Slycat repository using https://github.com/sandialabs/slycat repository.
If you want to push your commits to the public repository, there are three alternatives:

	Leave the repository URL unchanged, and push. You will be prompted for your github
username and password.

	Add your username to the repository URL. Then, you will only be prompted for your
github password when you push:

$ git remote set-url origin https://username@github.com/sandialabs/slycat

	Copy an existing github public key into the container, or generate a new github
public key, and switch to communication over ssh:

$ git remote set-url origin git@github.com:sandialabs/slycat

Note

If you’re working behind a proxy and using https:// for communication with github, you’ll need to let git know about it:

$ export https_proxy=http://your.proxy.name:80

	If you need to install additional tools for development, use the yum and
pip commands provided by the container to install them.

Note

If you’re working behind a proxy, you’ll also want to add it to /etc/yum.conf to yum can download packages:

proxy=http://your.proxy.name:80

And you’ll need to specify the proxy when running pip:

pip install --proxy=http://your.proxy.name:80 mypackage

Working Outside the Running Container

Instead of working on the Slycat sources inside the running container, you may
wish to edit them from the outside. One advantage of this approach is that you
can edit the sources using more sophisticated graphical tools installed
on your host system, instead of the minimalist command-line tools provided within
the container. Another benefit is that the setup you perform (configuring your git
credentials, setting-up proxy information) is part of your host system and will be
retained even if you upgrade or replace the Slycat container.

One way to do this is to use sshfs to mount the source code inside the
container to a directory on the host:

$ mkdir ~/src/slycat-container
$ sshfs -p 2222 slycat@<docker host ip>:/home/slycat/src/slycat ~/src/slycat-container -oauto_cache,reconnect,defer_permissions,negative_vncache,volname=slycat-container

The main disadvantage to working this way is the increased latency caused by the sshfs
filesystem … some operations (such as building the documentation) will be noticably
slower when run on an sshfs mount

Note that you’ll still need to ssh into the container to run the Slycat server, but the server
will still restart automatically whenever you save changes to the sshfs mount.

Testing

The following are required to run the Slycat test suite / view test coverage:

	behave - behavior-driven development (BDD) framework - http://pythonhosted.org/behave/

	coverage - code coverage module - http://nedbatchelder.com/code/coverage/

Setting Up Tests

The following set of instructions for the test setup assumes a new Ubuntu environment (desktop or server) with user slycat.
It also assumes that Slycat’s repository is cloned in the user’s home directory.
The next commands install the base packages needed for the test suite to run correctly:

$ cd
$ sudo apt-get update -qq
$ sudo apt-get install -y make build-essential python-software-properties ssh python-dev libldap2-dev libsasl2-dev libssl-dev

Slycat uses CouchDB as its database. Use the default installation settings for the database setup. See http://wiki.apache.org/couchdb/Installing_on_Ubuntu for troubleshooting:

$ sudo apt-get install -y couchdb

To install haproxy-1.5. Note that the Ubuntu 12.04’s version is out-of-date:

$ sudo add-apt-repository -y ppa:vbernat/haproxy-1.5
$ sudo apt-get update -qq
$ sudo apt-get install haproxy

To install the virtual X server and Firefox:

$ sudo apt-get install xvfb firefox

To install FFmpeg for the agent testing:

$ wget http://johnvansickle.com/ffmpeg/releases/ffmpeg-release-64bit-static.tar.xz
$ mkdir ffmpeg
$ tar xf ffmpeg-release-64bit-static.tar.xz --strip-components 1 -C ffmpeg
$ export PATH=$HOME/ffmpeg:$PATH

To point Python to the Slycat packages:

$ export PYTHONPATH=$HOME/slycat/packages

To generate a private certificate authority:

$ openssl genrsa -out root-ca.key 2048
$ openssl req -x509 -new -nodes -key root-ca.key -days 365 -out root-ca.cert -subj "/C=US/ST=New Mexico/L=Albuquerque/O=The Slycat Project/OU=QA/CN=Slycat"

To generate a self-signed certificate:

$ openssl genrsa -out web-server.key 2048
$ openssl req -new -key web-server.key -out web-server.csr -subj "/C=US/ST=New Mexico/L=Albuquerque/O=The Slycat Project/OU=QA/CN=localhost"
$ openssl x509 -req -in web-server.csr -CA root-ca.cert -CAkey root-ca.key -CAcreateserial -out web-server.cert -days 365

To point HAProxy to the server key and certificate:

$ cat web-server.key web-server.cert > ssl.pem

To create a directory to store HDF5 files:

$ mkdir slycat/data-store

To install and use Conda for the Python interpreter and dependencies:

$ wget http://repo.continuum.io/miniconda/Miniconda-latest-Linux-x86_64.sh -O miniconda.sh
$ chmod +x miniconda.sh
$./miniconda.sh -b
$ export PATH=$HOME/miniconda/bin:$PATH
$ conda update --yes conda
$ conda create --yes -n slycat coverage h5py mock nose paramiko Pillow pip pyparsing requests scipy
$ source activate slycat
$ pip install --no-use-wheel behave "cherrypy==3.2.6" couchdb coveralls python-ldap pystache routes tornado-couchdb selenium pyvirtualdisplay

Running Tests

Create a file proxy-server-config.conf in the /home/slycat directory with the following content:

global
 daemon
 maxconn 256
 user slycat
 group slycat
 tune.ssl.default-dh-param 2048

defaults
 mode http
 option forwardfor
 timeout connect 5000ms
 timeout client 50000ms
 timeout server 50000ms
 timeout tunnel 1d

frontend http-in
 bind *:80
 redirect scheme https if !{ ssl_fc }

frontend https-in
 bind *:443 ssl crt /home/slycat/ssl.pem
 reqadd X-Forwarded-Proto:\ https
 redirect location /projects if { path / }
 use_backend slycat-feed-server if { path_beg /changes-feed }
 default_backend slycat-web-server

backend slycat-web-server
 server server1 127.0.0.1:8092

backend slycat-feed-server
 server server1 127.0.0.1:8093

To run the test suite, enter the following commands:

$ python slycat/web-server/slycat-couchdb-setup.py
$ sudo haproxy -f proxy-server-config.conf -db &
$ python slycat/feed-server/slycat-feed-server.py --config ../travis-ci/config.ini &
$ python slycat/web-server/slycat-web-server.py --config ../travis-ci/config.ini &
$ cd slycat
$ REQUESTS_CA_BUNDLE=/home/slycat/root-ca.cert coverage run --source agent,packages/slycat --omit="packages/slycat/web/server/*" -m behave -i "(agent|hyperchunks|rest-api|slycat-web-server|slycat-project)"

Running Coverage

To run the coverage report:

$ coverage report

Modifying Tests

Behave feature and step definition files are located in the slycat/features and slycat/features/steps directories, respectively.

Coding Guidelines

	All new Python code in Slycat should follow the guidelines outlined in PEP 8 [http://legacy.python.org/dev/peps/pep-0008] with one exception: we use two spaces for indentation instead of four. We have lots of code that predates those guidelines, but are actively updating it as we go along.

Plugins

The Slycat server includes a plugin system that streamlines the process of
customizing it to suit your environment and adding new Slycat features.

Overview

A Slycat plugin is a Python module (.py file) that is loaded into the Slycat Web
Server at startup. By default, Slycat ships with a set of plugins in the
web-server/plugins directory. The set of plugins to be loaded is specified
in the server’s config.ini file. The plugins entry in config.ini is a
Python list containing zero-or-more plugin locations, which may be individual
.py files to be loaded, or directories. Every .py file in a directory will be
loaded as a plugin, but directories are not searched recursively. Relative
paths are relative to the slycat-web-server.py executable. Plugin developers
can append their own paths to the list to deploy their plugins, by editing the
config.ini file included with the Slycat source code, or by using a different
config file altogether.

Once all plugin modules have been loaded, the server will call the
register_slycat_plugin function in each module, if it exists. The function
will be called with a context object as its sole argument. The plugin code
uses the API provided by the context object to register new functionality
with the server. This explicit registration process allows a single plugin
module to register as many new capabilities as it wishes, and the registration
API continues to expand as we add new categories of plugin functionality to the
server.

Note

You are free to register as many plugins or as many types of plugins as you
like within a plugin module - you are not obliged to split your code into one
plugin per module, unless you want to. For example, if your organization
created a new type of model and had three in-house marking types, you could
put all four plugins in a single, organization-specific plugin module.

Warning

Plugin module names must be globally unique - that is, the filename of all
plugin .py files loaded by the server must be unique, not just the filepaths.
Thus, you should not use generic filenames like plugin.py for plugin
modules. Instead, incorporate functionality- or organziation-specific strings
into the filenames such as bayesian-q-stat-model.py or
acme-dynamite-division-authentication.py. The prefix slycat- is reserved
for plugin modules shipped with Slycat.

New Marking Types

Examples: plugins/slycat-no-marking.py, plugins/slycat-airmail-marking.py, plugins/slycat-faculty-only-marking.py

A plugin can register new marking types with the Slycat server. Markings are
used to apply user-specific administrative or organizational labels to models such as “Draft”
or “Human Resources Only”.

A marking consists of the following:

	A unique string identifier called the marking type.

	A human-readable label that will become part of the user interface when prompting end-users to choose the marking for a model.

	A block of HTML markup that provides a “badge” representation of the marking used in lists.

	Optional block of HTML markup that will be inserted into the user interface before marked content.

	Optional block of HTML markup that will be inserted into the user interface after marked content.

If the plugin doesn’t provide 5), 4) will be displayed at the top and bottom of
marked content. If 4) and 5) are omitted, 3) will be displayed at the top and
bottom of marked content.

In practice, most marking plugins should include inline style information in
their HTML markup to control the appearance of the marking. Note that models
can currently have a single marking applied.

New Model Types

Examples: plugins/slycat-hello-world, plugins/slycat-linear-regression-demo, plugins/slycat-bookmark-demo

A plugin can add a new type of model to the Slycat server. In this context,
a plugin model consists of the following:

	A unique string identifier called the model type.

	Code that will be executed on the server when a model is finished (i.e.
one-time computation to perform after the model’s input artifacts have been stored).

	A block of HTML code that will be used as the model’s interactive user interface. This
block of HTML will be inserted into a larger HTML frame that provides common functionality
for manipulating models, and delivered to the end-user’s client.

Here is a bare-minimum example of a do-nothing model plugin:

def register_slycat_plugin(context):

 def finish(database, model):
 import datetime
 import slycat.web.server.model
 slycat.web.server.model.update(database, model, state="finished", result="succeeded", finished=datetime.datetime.utcnow().isoformat(), progress=1.0, message="")

 def html(database, model):
 return "<h1>Hello, World!</h1>"

 context.register_model("my-model", finish, html)

Note that finish() simply marks the model as “finished” so clients will know
that the model is ready to view, and the html() function returns a familiar
message.

When the Slycat server starts, the plugin will be loaded into the server and
register a new my-model model type. Of course, you’ll need some way to
actually create an instance of a my-model model. The easiest way is to
use a script to create my-model model instances:

import slycat.web.client

parser = slycat.web.client.option_parser()
parser.add_argument("--marking", default="", help="Marking type. Default: %(default)s")
parser.add_argument("--model-name", default="Hello World Model", help="New model name. Default: %(default)s")
parser.add_argument("--project-name", default="Hello World Project", help="New project name. Default: %(default)s")
arguments = parser.parse_args()

connection = slycat.web.client.connect(arguments)

pid = connection.find_or_create_project(arguments.project_name)

mid = connection.post_project_models(pid, "my-model", arguments.model_name, arguments.marking)

connection.post_model_finish(mid)
connection.join_model(mid)

slycat.web.client.log.info("Your new model is located at %s/models/%s" % (arguments.host, mid))

In this case the script provides a simple command line interface for specifying the name and marking
for the model, along with the name of a new or existing project to contain the new model. Once the
connection to the Slycat server has been made and a project identified or created, the new model
is created and immediately finished (causing the finish() function to be called). When you view the
new model in a web browser, it will display the content returned by the plugin’s
html() function.

Model Commands

Examples: plugins/slycat-matrix-demo-model

Typically, we assume that a Slycat model is created, artifacts are ingested,
one-time server-side computation is performed (using a model plugin’s
finish() function), then a web browser provides interactive visualization of
the results (using the output of a model plugin’s html() function).

However, in some circumstances this may be insufficient - a model may need to
provide additional server-side computation to be executed by the client. In
this case, a model command plugin is used to register additional server-side
commands that can be invoked by the client.

Password Check Plugins

Examples: plugins/slycat-identity-password-check.py, plugins/slycat-ldap-password-check.py

Password check plugins are callbacks that are executed whenever the server needs to
verify a user’s credentials. The password check plugin registers a callback that will
be called with an authentication realm, username, and password, and returns a tuple
containing True if the username and password can be authenticated, and a (possibly empty)
list of groups of which the user is a member:

def register_slycat_plugin(context):
 def check_password(realm, username, password):
 """Allow any user, so long as their username and password are the same.
 Obviously, this is suitable only for testing."""
 groups = []
 return username and password and username == password, groups

 context.register_password_check("slycat-identity-password-check", check_password)

To use a password check plugin, you would have to add it to your server’s
config.ini:

[slycat]
password-check: {"plugin": "slycat-identity-password-check"}

In a more realistic authentication scenario,
you might use the LDAP password check plugin that ships with Slycat to connect
to an LDAP server. The following configuration enables the LDAP plugin and
configures it to connect to a public test server:

[slycat]
password-check: {"plugin": "slycat-ldap-password-check", "kwargs":{"server":"ldaps://ldap.forumsys.com:389", "user_dn":"uid={},dc=example,dc=com"}}

Colophon

The following are needed to generate this documentation:

	Sphinx - documentation builder - http://sphinx-doc.org

	Sphinx readthedocs theme - https://github.com/snide/sphinx_rtd_theme

	napoleon - http://sphinxcontrib-napoleon.readthedocs.org/en/latest/

	httpdomain - http://pythonhosted.org/sphinxcontrib-httpdomain/

Writing the Documentation

The primary sources for this documentation are the docstrings
embedded in the Slycat source code itself. When writing docstrings,
strictly follow the guidelines at https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt

The remainder of the documentation is contained in *.rst files in
the slycat/docs directory.

Building the Documentation

To build the documentation, run:

$ cd slycat/docs
$ python setup.py

Once the documentation is built, you can view it by opening
slycat/docs/_build/html/index.html in a web browser.

Deploying the Documentation

The slycat documentation is hosted at http://slycat.readthedocs.org and is
automatically built and deployed whenever changes are pushed to the Slycat
repository at github.com.

Models

From an end-user perspective, the main functions of the Slycat Web Server are
creation and storage of models - where a model is a typed collection of
artifacts and metadata. Slycat defines several specific model types, plus an
interactive visual user interface for each type. The following documents each
model type in detail:

	Parameter Image Model

Parameter Image Model

Overview

A Parameter Image model relates a set of images to a set of feature vectors,
where we assume that each feature vector is a set of simulation inputs and
outputs, and we assume that each image is a simulation output.

Currently, the preferred method to create a new Parameter Image model is to
import a remote delimited text file (typically a CSV file) using a web browser.
For low-level details on how the input file must be formatted, see
slycat.table.parse(). In addition to the requirements documented
there, the input delimited text file should contain the following:

	Zero to many “input” columns that contain simulation inputs, e.g: the parameters in a parameter study.

	Zero to many “output” columns that contain simulation outputs, e.g: features extracted from the simulations.

	Zero to many “rating” columns that end users will edit to designate regions in the parameter
space that should be ignored / explored further in future studies.

	Zero to many “category” columns that contain categorical variables, such as the results
of machine learning classification. Category variables may be numeric or string-based,
and also may be edited by end users.

	Zero to many “image” columns that contain file URIs pointing to images on a remote host.
Each file URI must be of the form file://hostname/path/to/file and files must
be either PNG or JPEG images. Slycat uses the file URIs to retrieve images
via SSH on-demand when end users hover over an observation in the
scatterplot, so it is important that the files remain in-place and have
appropriate file permissions.

	At least two numeric columns, regardless of type, so the visualization can generate a scatterplot.

Note that there are no constraints on variable names - end users will explicitly identify which columns
are “input”, “output”, “rating”, “category”, “image”, or “none of the above” when the data is imported.

Stored Artifacts

On the server side, a parameter image model includes the following artifacts that are accessible via the REST API:

	data-table - darray containing the input table data (a 1D darray with one attribute per table column).

	category-columns - JSON array containing a zero-based index for every column in data-table that contains categorical data.

	image-columns - JSON array containing a zero-based index for every column in data-table that contains images.

	input-columns - JSON array containing a zero-based index for every column in data-table that should be considered an input.

	output-columns - JSON array containing a zero-based index for every column in data-table that should be considered an output.

	rating-columns - JSON array containing a zero-based index for every column in data-table that contains ratings.

REST API

The Slycat server exposes a REST [http://en.wikipedia.org/wiki/Representational_state_transfer] HTTP API that can be used with
any programming language or library that supports HTTP requests.

	Hyperchunks

	DELETE Logout

	DELETE Model

	DELETE Project

	DELETE Project Cache Object

	DELETE Remote

	DELETE Upload

	GET Bookmark

	GET Home

	GET Model Arrayset Data

	GET Model Arrayset Metadata

	GET Model Command

	GET Model File

	GET Model Parameter

	GET Model Resource

	GET Model Table Chunk

	GET Model Table Metadata

	GET Model Table Sorted Indices

	GET Model Table Unsorted Indices

	GET Model

	GET Project Cache Object

	GET Project Models

	GET Project

	GET Projects

	GET Remote File

	GET Remote Image

	GET Remote Video Status

	GET Remote Video

	GET User

	POST Model Arrayset Data

	POST Agent Function

	POST Cancel Job

	POST Check Job

	POST Events

	POST Get Job Output

	POST Login

	POST Model Command

	POST Model Finish

	POST Project Bookmark

	POST Project Models

	POST Projects

	POST Remote Browse

	POST Remote Launch

	POST Remotes

	POST Submit Batch

	POST Uploads

	POST Upload Finished

	PUT Model Arrayset Array

	PUT Model Arrayset Data

	PUT Model Arrayset

	PUT Model Command

	PUT Model Inputs

	PUT Model Parameter

	PUT Model

	PUT Project

	PUT Upload File Part

Hyperchunks

To meet a wide variety of needs for incremental and interactive data ingestion
and retrieval, Slycat has evolved a complex data storage hierarchy. At the top
of the hierarchy are projects, which provide administrative and access
controls, grouping together related analytical results. Models are owned by
projects, and represent instances of specific analysis types. Models contain
data artifacts, whose layout and structure are dictated by the model type.
Each artifact in a model is identified by name, which can be an arbitrary
string. There are three types of artifacts: parameters are JSON objects of
arbitrary complexity, intended for storage of small quantities of metadata.
Files are opaque binary objects that can store large quantities of data,
along with an explicitly stored MIME type. The final and most widely used type
of artifact is an arrayset, which is a one-dimensional array of darrays. A
darray is a dense, multi-dimensional multi-attribute array, and an arrayset
stores \(n\) darrays that can be accessed by integer indices in the range
\([0, n)\). In-turn, each attribute in a darray can be accessed by its
integer index, and the elements in each attribute can be identified using a
hyperslice, which includes a slice of element indices for each dimension of
the darray.

The bulk of the data in a Slycat model is stored in arraysets, and each time a
client reads or writes data to an arrayset, it must specify all of the
parameters mentioned above. To make this process simpler, while allowing for a
wide variety of data access patterns, we group this information into
hyperchunks, and have developed the Hyperchunk Query Language or HQL to
serve as a compact specification for a set of hyperchunks. Using HQL, a client
can read and write data that spans the arrays and attributes in an arrayset,
including computed attributes and arbitrary expressions.

Basic HQL

To begin, the most basic building-block in HQL is a slice expression, which
follows the same syntactic rules as slicing in the Python language: At its
most general a slice takes the form “start:stop:skip”, which specifies every
\(skip\)-th element in the half-open range \([start, stop)\). If start
is omitted, it defaults to zero. If stop is omitted, it defaults to the length
of the available range. If skip is omitted it defaults to one. If start or
stop are negative, they represent indices counted backwards from the end of the
available range. Start, stop, and skip may be omitted or used in any
combination desired:

	“10:20:2” - every other index in the range \([10, 20)\).

	“10:20” - every index in the range \([10, 20)\).

	“10:” - every index from 10 through the end of the available range.

	“:20” - every index in the range \([0, 20)\).

	“…” - every index in the available range.

	“:” - every index in the available range.

	“::” - every index in the available range.

	“::2” - every other index in the available range, starting with zero: \(0, 2, 4, ...\).

	“1::2” - every other index in the available range, starting with one: \(1, 3, 5, ...\).

	“10” - index 10.

	“-1” - last index in the available range.

	“-10:” - last ten indices in the available range.

Recall that a slice is a range of indices along a single dimension, while
darrays are multi-dimensional. Thus, to retrieve data from a darray with more
than one dimension, we need to specify hyperslice expressions. To do this,
HQL uses slice expressions separated by commas. For example:

	“1” - index 1 of a vector.

	“1,2” - row 1, column 2 of a matrix.

	“3,…” - row 3 of a matrix.

	“…,4” - column 4 of a matrix.

	“50:60,7” - rows \([50, 60)\) from column 7 in a matrix.

	“50:60,7:10” - rows \([50, 60)\) from columns \([7, 10)\) in a matrix.

Additionally, HQL allows us to combine multiple hyperslice expressions,
separated by vertical bars. This means we can specify irregular sets of data
that can’t be specified with the normal slice syntax alone:

	“1|3|4” - indices 1, 3, and 4 of a vector.

	“10:20|77” - indices \([10, 20)\) and 77 from a vector.

	“1,2|33,4” - cells 1,2 and 33,4 from a matrix.

With all this in mind, we can begin putting the pieces together into
hyperchunks. A typical HQL expression includes three pieces of
information, separated with forward slashes:

array expression / attribute expression / hyperslice expression

Since an arrayset is a one-dimensional set of darrays, an HQL array expression
is a set of one-or-more one-dimensional hyperslice expressions. Similarly,
array attributes are accessed by their one-dimensional attribute indices, so
basic HQL attribute attribute expressions are also one-dimensional hyperslices.
Finally, the subset of each attribute to retrieve is specified using
one-or-more multi-dimensional hyperslices, which must match the dimensionality
of the underlying array. Here are some simple examples:

	“1/2/10” - array 1, attribute 2, element 10

	“1/2/10:20” - array 1, attribute 2, elements \([10, 20)\).

	“1/2/…” - the entire contents of array 1, attribute 2

	“1/2:4/…” - the entire contents of array 1, attributes 2 and 3

	“…/2/…” - the entire contents of attribute 2 for every array in the arrayset.

	“…/…/…” - everything in the entire arrayset.

The preceding examples assume one-dimensional darrays. Here are some examples
of working with matrices:

	“1/2/10:20,30:40” - a ten-by-ten subset of the matrix stored in array 1, attribute 2.

	“1/2/:,3” - column 3 of the matrix stored in array 1, attribute 2.

	“1/2/3,…” - row 3 of the matrix stored in array 1, attribute 2.

And here are examples using multiple hyperslices:

	“1|3|4/…/…” - the entire contents of arrays 1, 3, and 4.

	“1/3|7|8/…” - the entire contents of array 1, attributes 3, 7, and 8.

	“1/2/:,0|:,3|:10” - columns 0, 3, and 10 from the matrix stored in array 1, attribute 2.

Note that when you use HQL to specify the locations for reading and writing
data, the data will contain the cartesian product of the specified arrays,
attributes, and hyperslices, in array-attribute-hyperslice order. For example,
retrieving the hyperchunk “0:2/4:6/10:20|30:40” will return, in-order:

	Array 0, attribute 4, elements 10:20

	Array 0, attribute 4, elements 30:40

	Array 0, attribute 5, elements 10:20

	Array 0, attribute 5, elements 30:40

	Array 1, attribute 4, elements 10:20

	Array 1, attribute 4, elements 30:40

	Array 1, attribute 5, elements 10:20

	Array 1, attribute 5, elements 30:40

All of the APIs that work with hyperchunks take a set of hyperchunks,
rather than a single hyperchunk, as their parameter. You can combine multiple
hyperchunks by separating them with semicolons:

	“1/2/…;3/4/…” - the entire contents of array 1 attribute 2 and array 3 attribute 4.

Advanced HQL

In addition to slices specifying attribute indices, HQL attribute expressions can include
computed expressions that generate attribute data “on the fly”. Attribute expressions
currently include function execution and a full set of boolean expressions, including set
operations:

	“0/1|index(0)/…” - The entire contents of array 0, attribute 1, plus coordinate indices along dimension 0.

	“0/1|rank(a1,”asc”)/…” - The entire contents of array 0, attribute 1, plus the rank of each attribute 1 element in ascending order.

	“0/1|a1 > 5/…” - Return the entire contents of array 0, attribute 1, and whether each attribute 1 element is greater than five.

	“0/1|a1 > 5 and a1 < 13/…” - Return the entire contents of array 0, attribute 1, and whether each attribute 1 element is between five and thirteen.

	“0/1|a1 in [“red”, “cinnamon”]/…” - Return the entire contents of array 0, attribute 1, and whether each attribute 1 element matches “red” or “cinnamon”.

HQL provides a full set of boolean operators: <, >, <=, >=, ==, and
!=, along with in and not in for testing set membership, plus and and
or for logical comparisons. You may use parentheses to control the
precedence of complex expressions. Of course, you can specify as many computed
attribute expressions as you like, using vertical pipes as a separator.

HQL also allows an optional fourth type of expression, an “order” expression,
used to sort the data to be returned. The order expression should return an
integer rank for each element in the data to be returned and appears between
the attribute expression and the hyperslices expression:

	0/1/order:rank(a1,”asc”)/… - The entire contents of array 0, attribute 1, sorted in ascending order.

	0/1/order:rank(a2, “desc”)/… - The entire contents of array 0, attribute 1, sorted in descending order of attribute 2

	0/1/order:rank(a1,”asc”)/0:10 - Array 0, attribute 1, first ten elements in ascending order.

Note that the hyperslice in the final example retrieves the first ten elements
of the sorted data, rather than the first ten elements of the attribute.

HQL Context

Depending on the context, not all APIs allow every HQL feature. For example,
APIs that write data don’t allow computed attribute expressions; some APIs only
allow array expressions; others allow only array and attribute expressions.
For those situations, you may omit the other parts of the HQL. For example:

	“10:20;35” - arrays \([10, 20)\) plus array 35.

	“3/4;5/7” - array 3 attribute 4, plus array 5 attribute 7.

DELETE Logout

	
DELETE /logout

	Deletes a session and its browser cookie.

Sample Request

DELETE /logout HTTP/1.1
Host: localhost:8093
Content-Length: 0
Authorization: Basic c2x5Y2F0OnNseWNhdA==
Accept-Encoding: gzip, deflate, compress
Accept: */*
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64
Cookie: slycatauth=dee8324c69d2424385246edc8d92e996; slycattimeout=timeout

Sample Response

HTTP/1.1 204 Model deleted.
Cache-Control: no-cache, no-store, must-revalidate
Content-Length: 0
Content-Type: text/html;charset=utf-8
Date: Wed, 16 Mar 2016 16:31:53 GMT
Expires: 0
Pragma: no-cache
Server: CherryPy/4.0.0
Set-Cookie: slycatauth=dee8324c69d2424385246edc8d92e996; expires=Wed, 16 Mar 2016 16:31:53 GMT
slycattimeout=timeout; expires=Wed, 16 Mar 2016 16:31:53 GMT

See Also

	POST /login

DELETE Model

	
DELETE /models/(mid)

	Deletes a model and all its artifacts.

	Parameters

	
	mid (string) – Unique model identifier.

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – The model and its artifacts have been deleted.

Sample Request

DELETE /models/8b8122539570439cb3703c0f8806158e HTTP/1.1
Host: localhost:8093
Content-Length: 0
Authorization: Basic c2x5Y2F0OnNseWNhdA==
Accept-Encoding: gzip, deflate, compress
Accept: */*
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64

Sample Response

HTTP/1.1 204 Model deleted.
Date: Mon, 25 Nov 2013 20:36:04 GMT
Content-Type: text/html;charset=utf-8
Server: CherryPy/3.2.2

See Also

	POST /projects/(pid)/models

	GET /models/(mid)

	PUT /models/(mid)

DELETE Project

	
DELETE /projects/(pid)

	Deletes a project and all its models.

	Parameters

	
	pid – Unique project identifier.

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – The project, its models, and artifacts have been deleted.

Sample Request

DELETE /projects/dbaf026f919620acbf2e961ad732433d HTTP/1.1
Host: localhost:8093
Content-Length: 0
Authorization: Basic c2x5Y2F0OnNseWNhdA==
Accept-Encoding: gzip, deflate, compress
Accept: */*
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64

Sample Response

HTTP/1.1 204 Project deleted.
Date: Mon, 25 Nov 2013 20:35:59 GMT
Content-Type: text/html;charset=utf-8
Server: CherryPy/3.2.2

See Also

	GET /projects/(pid)

	PUT /projects/(pid)

DELETE Project Cache Object

	
DELETE /projects/(pid)/cache/(key)

	Deletes an object from the project cache.

	Parameters

	
	pid (string) – Unique project identifier.

	key (string) – Cache object identifier.

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – The cached object has been deleted.

Sample Request

DELETE /projects/dbaf026f919620acbf2e961ad732433d/cache/file://example.com/foo/bar/baz.jpg HTTP/1.1
Host: localhost:8093
Content-Length: 0
Authorization: Basic c2x5Y2F0OnNseWNhdA==
Accept-Encoding: gzip, deflate, compress
Accept: */*
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64

Sample Response

HTTP/1.1 204 Object deleted.
Date: Mon, 25 Nov 2013 20:35:59 GMT
Content-Type: text/html;charset=utf-8
Server: CherryPy/3.2.2

See Also

	GET /projects/(pid)/cache/(key)

DELETE Remote

	
DELETE /remotes/(sid)

	Deletes a remote session created with POST /remotes.

	Parameters

	
	sid – Unique session identifier.

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – The remote session has been deleted.

Sample Request

DELETE /remotes/dbaf026f919620acbf2e961ad732433d HTTP/1.1
Host: localhost:8093
Content-Length: 0
Authorization: Basic c2x5Y2F0OnNseWNhdA==
Accept-Encoding: gzip, deflate, compress
Accept: */*
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64

Sample Response

HTTP/1.1 204 Session deleted.
Date: Mon, 25 Nov 2013 20:35:59 GMT
Content-Type: text/html;charset=utf-8
Server: CherryPy/3.2.2

See Also

	POST /remotes

DELETE Upload

	
DELETE /uploads/(uid)

	Delete an upload session used to upload files for storage as model artifacts.
This function must be called once the client no longer needs the session, whether
the upload(s) have been completed successfully or the client is cancelling an
incomplete session.

	Parameters

	
	uid (string) – Unique upload session identifier.

	Status Codes

	
	204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – The upload session and any temporary storage have been deleted.

	409 Conflict [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10] – The upload session cannot be deleted, because parsing is in progress. Try again later.

See Also

	POST /uploads/(uid)/finished

GET Bookmark

	
GET /bookmarks/(bid)

	Retrieves a bookmark - an arbitrary collection of client state.

	Parameters

	
	bid (string) – Unique bookmark identifier.

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

Sample Request

GET /bookmarks/da47466b64216fbb5f782bc2487ceed0 HTTP/1.1
Host: localhost:8092
Authorization: Basic c2x5Y2F0OnNseWNhdA==
Accept-Encoding: gzip, deflate, compress
Accept: */*
User-Agent: python-requests/1.2.0 CPython/2.7.3 Linux/2.6.32-358.6.1.el6.x86_64

Sample Response

HTTP/1.1 200 OK
Date: Thu, 25 Apr 2013 21:33:51 GMT
Content-Length: 40
Content-Type: application/json
Server: CherryPy/3.2.2

{"selected-column":34,"selected-row":13}

See Also

	POST /projects/(pid)/bookmarks

GET Home

	
GET /

	Returns a redirect to /projects.

	Status Codes

	
	303 See Other [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.4] – Redirect to GET /projects.

See Also

	GET /projects

GET Model Arrayset Data

	
GET /models/(mid)/arraysets/(aid)/data

	Retrieve data stored in arrayset darray attributes. The caller may request
data stored using any combination of arrays, attributes, and hyperslices.

	Parameters

	
	mid (string) – Unique model identifier.

	aid (string) – Arrayset artifact id.

	Query Parameters

	
	hyperchunks – The request must contain a parameter hyperchunks that
specifies the arrays, attributes, and hyperslices to be returned, in Hyperchunks format.

	byteorder – The request may optionally contain a parameter byteorder that specifies
that the response should be binary data with the given endianness. The
byteorder parameter must be either “little” or “big”. Note that the
byteorder parameter can only be used if every attribute in every hyperchunk
is of numeric type. If the byteorder parameter is used, the request must
accept application/octet-stream as the result content-type, and the
response data will contain contiguous raw data bytes in the given
byteorder, in the same order as the requested hyperchunks / hyperslices.
For multi-dimension arrays, hyperslice array elements will be in “C” order
(the last coordinate varies the fastest).

If the byteorder parameter isn’t specified, the response data will be a
JSON-encoded array with length equal to the total number of hyperslices.
Each element in this top level array will be an array containing the data
for the corresponding hyperslice, in the same order as the requested
hyperchunks / hyperslices. For multi-dimension arrays, data for the
corresponding hyperslice will be nested further, in “C” order (the last
coordinate varies the fastest).

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/octet-stream or application/json

The following request will return all of the data for array 0, attribute 1 from
an arrayset artifact with id “foo”:

Sample Request

GET /models/6706e78890884845b6c709572a140681/arraysets/foo/data?hyperchunks=0/1/...&byteorder=little HTTP/1.1
Host: localhost:8093
Authorization: Basic c2x5Y2F0OnNseWNhdA==
Accept-Encoding: gzip, deflate, compress
accept: application/octet-stream
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64

Sample Response

HTTP/1.1 200 OK
Date: Tue, 26 Nov 2013 16:40:04 GMT
Content-Length: 80
Content-Type: application/octet-stream
Server: CherryPy/3.2.2

..

See Also

	Hyperchunks

	GET /models/(mid)/arraysets/(aid)/metadata

	PUT /models/(mid)/arraysets/(aid)/data

GET Model Arrayset Metadata

	
GET /models/(mid)/arraysets/(aid)/metadata

	Used to retrieve metadata and statistics for an arrayset artifact - a
collection of dense, multidimensional darray objects. A darray is a dense,
multi-dimensional, multi-attribute array, suitable for storage of arbitrarily-large
data.

The metadata for a single darray includes the name, type, half-open range of
coordinate values, and shape for each dimension in the array, plus the name
and type of each attribute.

Statistics can be retrieved for individual darray attributes, and include
minimum and maximum values, plus a count of unique values for an attribute.
Although statistics are cached, retrieving them may be an extremely expensive
operation, since they involve full scans through their respective attributes.
Because of this, callers are encouraged to retrieve statistics only when
needed.

GET Model Arrayset Metadata can be called in two ways: without any query
string, it will return an array containing metadata for every array in the
arrayset, without any statistics. Using the arrays argument, the caller
can request metadata for an explicit list of arrays. The statistics
argument is used to request statistics for an explicit list of array
attributes. The unique argument is used to request unique values for an
explicit list of array attributes. The three arguments can be combined to
retrieve arbitrary combinations of array metadata and attribute statistics in
a single request.

	Parameters

	
	mid (string) – Unique model identifier.

	aid (string) – Arrayset artifact id.

	Query Parameters

	
	arrays – Optional, retrieve array metadata for a set of arrays specified in Hyperchunks format. Note that only the array part of the hyperchunk is used in this case - attributes and hyperslices, if provided, are ignored.

	statistics – Optional, retrive statistics for a set of array attributes specified in Hyperchunks format. Note that only the array and attribute parts of the hyperchunk is used in this case - hyperslices, if provided, are ignored.

	unique – Optional, retrieve unique values for a set of array attributes specified in Hyperchunks format. Note that you must provide a full hyperchunk with array, attribute, and hyperslice(s), and that the hyperslice(s) refer to ranges of unique values, not ranges of attribute values. So a hyperchunk 0/1/:100 means “return the first 100 unique values in array 0, attribute 1”.

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

Simple Request

GET /models/e97077e27af141d6a06f17c9eed6c17a/arraysets/canonical-variables/metadata HTTP/1.1
Host: localhost:8092
Authorization: Basic c2x5Y2F0OnNseWNhdA==
Accept-Encoding: gzip, deflate, compress
Accept: application/json
User-Agent: python-requests/1.2.0 CPython/2.7.3 Linux/2.6.32-358.6.2.el6.x86_64

Simple Response

HTTP/1.1 200 OK
Date: Tue, 11 Jun 2013 19:00:50 GMT
Content-Length: 195
Content-Type: application/json
Server: CherryPy/3.2.2

[
 {
 "index": 0,
 "attributes":
 [
 {"type": "float64", "name": "correlation"}
],
 "dimensions":
 [
 {"end": 3, "begin": 0, "type": "int64", "name": "component"},
 {"end": 5, "begin": 0, "type": "int64", "name": "input"}
],
 "shape":
 [
 3, 5
],
 }
]

Complex Request

GET /models/e97077e27af141d6a06f17c9eed6c17a/arraysets/foo/metadata?arrays=0%3b1&statistics=0/0%3b0/1 HTTP/1.1
Host: localhost:8092
Authorization: Basic c2x5Y2F0OnNseWNhdA==
Accept-Encoding: gzip, deflate, compress
Accept: application/json
User-Agent: python-requests/1.2.0 CPython/2.7.3 Linux/2.6.32-358.6.2.el6.x86_64

Complex Response

HTTP/1.1 200 OK
Date: Tue, 11 Jun 2013 19:00:50 GMT
Content-Length: 195
Content-Type: application/json
Server: CherryPy/3.2.2

{
 "arrays":
 [
 {
 "index": 0,
 "attributes":
 [
 {"type": "float64", "name": "weight"}
 {"type": "string", "name": "animal"}
],
 "dimensions":
 [
 {"end": 10, "begin": 0, "type": "int64", "name": "i"},
],
 "shape":
 [
 10,
],
 },
 {
 "index": 1,
 "attributes":
 [
 {"type": "float64", "name": "c"}
 {"type": "float64", "name": "d"}
],
 "dimensions":
 [
 {"end": 10, "begin": 0, "type": "int64", "name": "i"},
],
 "shape":
 [
 10,
],
 }
],
 "statistics":
 [
 {
 "array": 0,
 "attribute": 0,
 "min": 0.1,
 "max": 1237.3,
 "unique": 3704,
 },
 {
 "array": 0,
 "attribute": 1,
 "min": "aardvark",
 "max": "zebra",
 "unique": 4,
 }
]
}

See Also

	Hyperchunks

	GET /models/(mid)/arraysets/(aid)/data

	PUT /models/(mid)/arraysets/(aid)/data

GET Model Command

	
GET /models/(mid)/commands/(type)/(command)

	Execute a custom model command.

Plugins may register custom commands to be executed on the server, using an
existing model as context. Custom commands are used to perform computation
on the server instead of the client, and would typically use model artifacts
as inputs.

	Parameters

	
	mid (string) – Unique model identifier.

	type (string) – Unique command category.

	command (string) – Custom command name.

Additional command-specific arguments may be passed using query strings.

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – */*

Sample Request

GET /models/e32ef475e084432481655fe41348726b/commands/math-plugin/add HTTP/1.1
Host: localhost:8093
Authorization: Basic c2x5Y2F0OnNseWNhdA==
Accept-Encoding: gzip, deflate, compress
accept: application/json
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64

Sample Response

HTTP/1.1 200 OK
Date: Mon, 25 Nov 2013 20:36:01 GMT
Content-Length: 542
Content-Type: application/json
Server: CherryPy/3.2.2

{
 "result" : 5
}

See Also

	POST /models/(mid)/commands/(type)/(command)

	PUT /models/(mid)/commands/(type)/(command)

GET Model File

	
GET /models/(mid)/files/(aid)

	Retrieves a file artifact from a model. File artifacts are effectively
binary blobs that may contain arbitrary data with an explicit content
type.

	Parameters

	
	mid (string) – Unique model identifier.

	aid (string) – File artifact id.

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – The content type of the file artifact, which could be anything.

GET Model Parameter

	
GET /models/(mid)/parameters/(aid)

	Retrieves a model parameter (name / value pair) artifact. The result is a
JSON expression and may be arbitrarily complex.

	Parameters

	
	mid (string) – Unique model identifier.

	aid (string) – Parameter artifact id.

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

Sample Request

GET /models/1385a75dd2eb4faba884cefdd0b94a56/parameters/baz HTTP/1.1
Host: localhost:8093
Content-Length: 0
Accept-Encoding: gzip, deflate, compress
Accept: */*
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64
Authorization: Basic c2x5Y2F0OnNseWNhdA==

Sample Response

HTTP/1.1 200 OK
Date: Mon, 25 Nov 2013 20:36:04 GMT
Content-Length: 20
Content-Type: application/json
Server: CherryPy/3.2.2

{
 value : [1, 2, 3],
 input : true
}

See Also

	PUT /models/(mid)/parameters/(aid)

GET Model Resource

	
GET /resources/models/(mtype)/(resource)

	Returns a custom model resource (stylesheet, font, javascript, etc).

Model plugins may register custom resources for use by the model’s user
interface. This API is used when the client needs to retrieve those resources.

	Parameters

	
	mtype (string) – Unique model type code.

	resource (string) – Custom resource name.

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – */*

Sample Request

GET /resources/models/calculator/ui.css HTTP/1.1
Host: localhost:8093
Authorization: Basic c2x5Y2F0OnNseWNhdA==
Accept-Encoding: gzip, deflate, compress
accept: application/json
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64

Sample Response

HTTP/1.1 200 OK
Date: Mon, 25 Nov 2013 20:36:01 GMT
Content-Length: 542
Content-Type: text/css
Server: CherryPy/3.2.2

...

See Also

	GET /models/(mid)

	GET /models/(mid)/commands/(type)/(command)

GET Model Table Chunk

	
GET /models/(mid)/tables/(aid)/arrays/(array)/chunk

	
Warning

This request is deprecated. Use GET /models/(mid)/arraysets/(aid)/data instead.

Used to retrieve a chunk (subset of rows and columns) from a 1D arrayset
array artifact. Data is returned as a JSON array-of-arrays containing
column-oriented data, one array for each column specified in the
request. Both rows and columns may be specified using arbitrary
combinations of half-open ranges and individual indices. The ordering of
results (both rows and columns) always matches the order of rows and
columns in the request. Out-of-range rows or columns are ignored, in
which case the results will still contain in-range data. If the caller
specifies a name using the optional “index” query parameter in the
request, the response will be adjusted to include an additional index
column with the given name and zero-based row indices. The optional
“sort” query parameter can be used to return the results in sorted
order.

	Parameters

	
	mid (string) – Unique model identifier.

	aid (string) – Arrayset artifact name.

	array (int) – Array index.

	Query Parameters

	
	rows – Chunk rows to retrieve.

	columns – Chunk columns to retrieve.

	index – Optional index column to append to the results.

	sort – Response sort order.

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

Sample Request

GET /models/6b3c85df433e499e9680a135cabe3ab2/tables/test-array-set/arrays/0/chunk?rows=0,1,2,3,4,5,6,7,8,9&columns=0 HTTP/1.1
Host: localhost:8093
Authorization: Basic c2x5Y2F0OnNseWNhdA==
Accept-Encoding: gzip, deflate, compress
accept: application/json
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64

Sample Response

HTTP/1.1 200 OK
Date: Tue, 26 Nov 2013 16:40:16 GMT
Content-Length: 138
Content-Type: application/json
Server: CherryPy/3.2.2

{
 "sort": null,
 "column-names": ["int8"],
 "rows": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
 "data": [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]],
 "columns": [0]
}

Complex Request

The following request retrieves rows [0, 10), 15, 16, and 17 and columns
[2, 5) and 8:

GET /models/(mid)/tables/(aid)/arrays/(array)chunk?rows=0-10,15,16,17&columns=2-5,8

See Also

	GET /models/(mid)/tables/(aid)/arrays/(array)/metadata

	GET /models/(mid)/tables/(aid)/arrays/(array)/sorted-indices

	GET /models/(mid)/tables/(aid)/arrays/(array)/unsorted-indices

GET Model Table Metadata

	
GET /models/(mid)/tables/(aid)/arrays/(array)/metadata

	
Warning

This request is deprecated. Use GET /models/(mid)/arraysets/(aid)/metadata instead.

Used to retrieve metadata from a 1D arrayset array artifact, optimized
for use as a table. The metadata for the table describes the number of
rows and columns in the table, the name and datatype of each column, and
the minimum and maximum values in each column. If the caller specifies a
name using the optional “index” query parameter in the request, the
response will be adjusted to include an additional index column with the
given name and zero-based row indices.

	Parameters

	
	mid (string) – Unique model identifier.

	aid (string) – Arrayset artifact id.

	array (int) – Array index.

	Query Parameters

	
	index – Optional index column metadata to be appended to the results.

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

Sample Request

GET /models/6b3c85df433e499e9680a135cabe3ab2/tables/test-array-set/arrays/0/metadata HTTP/1.1
Host: localhost:8093
Authorization: Basic c2x5Y2F0OnNseWNhdA==
Accept-Encoding: gzip, deflate, compress
accept: application/json
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64

Sample Response

HTTP/1.1 200 OK
Date: Tue, 26 Nov 2013 16:40:16 GMT
Content-Length: 395
Content-Type: application/json
Server: CherryPy/3.2.2

{
 "column-types": ["int8", "int16", "int32", "int64", "uint8", "uint16", "uint32", "uint64", "float32", "float64", "string"],
 "column-min": [0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.0, "0"],
 "column-names": ["int8", "int16", "int32", "int64", "uint8", "uint16", "uint32", "uint64", "float32", "float64", "string"],
 "row-count": 10,
 "column-count": 11,
 "column-max": [9, 9, 9, 9, 9, 9, 9, 9, 9.0, 9.0, "9"]
}

See Also

	GET /models/(mid)/tables/(aid)/arrays/(array)/chunk

	GET /models/(mid)/tables/(aid)/arrays/(array)/sorted-indices

	GET /models/(mid)/tables/(aid)/arrays/(array)/unsorted-indices

GET Model Table Sorted Indices

	
GET /models/(mid)/tables/(aid)/arrays/(array)/sorted-indices

	
Warning

This request is deprecated. Use GET /models/(mid)/arraysets/(aid)/data instead.

Given a collection of row indices and a specific sort order, return the
corresponding sorted row indices.

	Parameters

	
	mid (string) – Unique model identifier.

	aid (string) – Arrayset artifact id.

	array (int) – Array index.

	Query Parameters

	
	rows – Row indices to be sorted.

	index – Optional index column that can be used for sorting.

	sort – Sort order.

	byteorder – Optionally return the results as binary data.

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json, application/octet-stream

See Also

	GET /models/(mid)/tables/(aid)/arrays/(array)/chunk

	GET /models/(mid)/tables/(aid)/arrays/(array)/metadata

	GET /models/(mid)/tables/(aid)/arrays/(array)/unsorted-indices

GET Model Table Unsorted Indices

	
GET /models/(mid)/tables/(aid)/arrays/(array)/unsorted-indices

	
Warning

This request is deprecated. Use GET /models/(mid)/arraysets/(aid)/data instead.

Given a collection of sorted row indices and a specific sort order,
return the corresponding unsorted row indices.

	Parameters

	
	mid (string) – Unique model identifier.

	aid (string) – Arrayset artifact id.

	array (int) – Array index.

	Query Parameters

	
	rows – Row indices to be sorted.

	index – Optional index column that can be used for sorting.

	sort – Sort order.

	byteorder – Optionally return the results as binary data.

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json, application/octet-stream

See Also

	GET /models/(mid)/tables/(aid)/arrays/(array)/chunk

	GET /models/(mid)/tables/(aid)/arrays/(array)/metadata

	GET /models/(mid)/tables/(aid)/arrays/(array)/sorted-indices

GET Model

	
GET /models/(mid)

	Returns a model.

	Parameters

	
	mid (string) – Unique model identifier.

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – text/html, application/json

Sample Request

GET /models/e32ef475e084432481655fe41348726b HTTP/1.1
Host: localhost:8093
Authorization: Basic c2x5Y2F0OnNseWNhdA==
Accept-Encoding: gzip, deflate, compress
accept: application/json
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64

Sample Response

HTTP/1.1 200 OK
Date: Mon, 25 Nov 2013 20:36:01 GMT
Content-Length: 542
Content-Type: application/json
Server: CherryPy/3.2.2

{
 "description": "",
 "creator": "slycat",
 "artifact-types": {},
 "_rev": "2-80a35c0e45a33d6654fd13a90f17624a",
 "model-type": "generic",
 "finished": null,
 "result": null,
 "message": null,
 "marking": "",
 "name": "test-model",
 "created": "2013-11-25T20:36:01.064901",
 "input-artifacts": [],
 "uri": "http://localhost:8093/models/e32ef475e084432481655fe41348726b",
 "project": "dbaf026f919620acbf2e961ad7325359",
 "started": "2013-11-25T20:36:01.218447",
 "state": "running",
 "progress": 0.0,
 "_id": "e32ef475e084432481655fe41348726b",
 "type": "model"
}

See Also

	POST /projects/(pid)/models

	PUT /models/(mid)

	DELETE /models/(mid)

GET Project Cache Object

	
GET /projects/(pid)/cache/(key)

	Retrieves an object from a project’s cache. Cache objects are opaque binary
blobs that may contain arbitrary data, plus an explicit content type.

	Parameters

	
	pid – Unique project identifier.

	key (string) – Cache object identifier.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – The requested file is returned in the body of the response.

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – The requested object isn’t in the cache.

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – The content type of the cached object, which could be any valid MIME type.

See Also

	DELETE /projects/(pid)/cache/(key)

	GET /remotes/(sid)/file(path)

	GET /remotes/(sid)/image(path)

	GET /remotes/(sid)/videos/(vsid)

GET Project Models

	
GET /projects/(pid)/models

	Returns a list of project models.

	Parameters

	
	pid (string) – Unique project identifier.

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

GET Project

	
GET /projects/(pid)

	Returns a project.

	Parameters

	
	pid (string) – Unique project identifier.

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – text/html, application/json

Sample Request

GET /projects/dbaf026f919620acbf2e961ad73243c5 HTTP/1.1
Host: localhost:8093
Authorization: Basic c2x5Y2F0OnNseWNhdA==
Accept-Encoding: gzip, deflate, compress
accept: application/json
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64

Sample Response

HTTP/1.1 200 OK
Date: Mon, 25 Nov 2013 20:35:59 GMT
Content-Length: 308
Content-Type: application/json
Server: CherryPy/3.2.2

{
 "description": "My test project.",
 "created": "2013-11-25T20:35:59.555004",
 "_rev": "1-5af189cbba8ad4e0e200b2593f2594a2",
 "creator": "slycat",
 "acl": {"administrators": [{"user": "slycat"}], "writers": [], "readers": []},
 "_id": "dbaf026f919620acbf2e961ad73243c5",
 "type": "project",
 "name": "test-project"
}

See Also

	PUT /projects/(pid)

	DELETE /projects/(pid)

GET Projects

	
GET /projects

	Returns the list of available projects. The HTML representation provides
the main Slycat user interface.

	Request Headers

	
	Accept [https://tools.ietf.org/html/rfc7231#section-5.3.2] – text/html or application/json

Sample Request

GET /projects HTTP/1.1
Host: localhost:8093
Authorization: Basic c2x5Y2F0OnNseWNhdA==
Accept-Encoding: gzip, deflate, compress
accept: application/json
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64

Sample Response

HTTP/1.1 200 OK
Date: Mon, 25 Nov 2013 20:35:59 GMT
Content-Length: 570
Content-Type: application/json
Server: CherryPy/3.2.2

[
 {
 "description": "",
 "created": "2013-11-25T20:35:58.955499",
 "_rev": "1-a4332c471d456db74398dd8ac20f8a61",
 "creator": "slycat",
 "acl": {"administrators": [{"user": "slycat"}], "writers": [], "readers": []},
 "_id": "dbaf026f919620acbf2e961ad732433d",
 "type": "project",
 "name": "bar"
 },
 {
 "description": "",
 "created": "2013-11-25T20:35:58.886682",
 "_rev": "1-99142f0b92a93266b9930914808fb286",
 "creator": "slycat",
 "acl": {"administrators": [{"user": "slycat"}], "writers": [], "readers": []},
 "_id": "dbaf026f919620acbf2e961ad7324011",
 "type": "project",
 "name": "foo"
 }
]

See Also

	POST /projects

GET Remote File

	
GET /remotes/(sid)/file(path)

	Uses an existing remote session to retrieve a remote file. The remote
session must have been created using POST /remotes. Use
POST /remotes/(sid)/browse(path) to lookup remote file paths.
The returned file may be optionally cached on the server and retrieved
using GET /projects/(pid)/cache/(key).

	Parameters

	
	sid (string) – Unique session identifier returned from POST /remotes.

	path (string) – Remote filesystem path (must be absolute).

	Query Parameters

	
	cache – Optional cache identifier. Set to project to store the retrieved file in a project cache.

	project – Project identifier. Required when cache is set to project.

	key – Cached object key. Must be specified when cache is set to project.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – The requested file is returned in the body of the response.

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – The session doesn’t exist or has timed-out.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – “Can’t read directory” The remote path is a directory instead of a file.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – “File not found” The remote path doesn’t exist.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – “Access denied” The session user doesn’t have permissions to access the file.

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – The MIME type of the response is automatically determined using the requested filename.

	X-Slycat-Message – For errors, contains a human-readable description of the problem.

	X-Slycat-Hint – For errors, contains an optional description of how to fix the problem.

Sample Request

GET /remotes/505d0e463d5ed4a32bb6b0fe9a000d36/file/home/fred/checklist.txt

See Also

	GET /remotes/(sid)/image(path)

	GET /remotes/(sid)/videos/(vsid)

GET Remote Image

	
GET /remotes/(sid)/image(path)

	Uses an existing remote session to retrieve a remote image. The remote
session must have been created using POST /remotes, and the session
must have a running agent. Use POST /remotes/(sid)/browse(path) to
lookup remote file paths.
The returned file may be optionally cached on the server and retrieved
using GET /projects/(pid)/cache/(key).

The caller may optionally choose to resize the image and / or convert it to
another file type. Note that this can reduce performance significantly as
the remote must then decompress, resample, and recompress the image before
sending it to the client. Testing should be performed to verify that the
bandwidth reduction of a smaller image is worth the increased latency.

	Parameters

	
	sid (string) – Unique session identifier returned from POST /remotes.

	path (string) – Remote filesystem absolute path to be retrieved.

	Query Parameters

	
	content-type (string) – Optional image content type to return. Currently limited to image/jpeg or image/png. If the requested content type doesn’t match the content type of the remote image, it will be converted.

	max-size (int) – Optional maximum image size in pixels along either dimension. Images larger than this size will be resized to fit while maintaining their aspect ratio.

	max-width (int) – Optional maximum image width. Wider images will be resized to fit while maintaining their aspect ratio.

	max-height (int) – Optional maximum image height. Taller images will be resized to fit while maintaining their aspect ratio.

	cache – Optional cache identifier. Set to project to store the retrieved image in a project cache.

	project – Project identifier. Required when cache is set to project.

	key – Cached object key. Must be specified when cache is set to project.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – The requested file is returned in the body of the response.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – “Access denied” The session user doesn’t have permissions to access the file.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – “Agent required” This call requires a remote agent, but the current session isn’t running an agent.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – “Can’t read directory” The remote path is a directory instead of a file.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – “File not found” The remote path doesn’t exist.

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – The session doesn’t exist or has timed-out.

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – image/jpeg or image/png, depending on the type of the remote file and optional conversion.

	X-Slycat-Message – For errors, contains a human-readable description of the problem.

	X-Slycat-Hint – For errors, contains an optional description of how to fix the problem.

Sample Request

GET /remotes/505d0e463d5ed4a32bb6b0fe9a000d36/image/home/fred/avatar.png?content-type=image/jpeg&max-width=64

See Also

	GET /remotes/(sid)/file(path)

	GET /remotes/(sid)/videos/(vsid)

GET Remote Video Status

	
GET /remotes/(sid)/videos/(vsid)/status

	Uses an existing remote video session to retrieve the status of a
video creation command. The remote session must have been created successfully using
POST /remotes and video creation must have been started using POST /remotes/(sid)/videos.

	Parameters

	
	sid (string) – Unique remote session identifier.

	vsid (string) – Unique video creation session identifier.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – The status is contained in the response body.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – “Agent required” This call requires a remote agent, but the current session isn’t running an agent.

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – If the session doesn’t exist or has timed out.

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	X-Slycat-Message – For errors, contains a human-readable description of the problem.

	X-Slycat-Hint – For errors, contains an optional description of how to fix the problem.

	Response JSON Object

	
	ok (boolean) – Set to true if the video creation process is working, false if it has failed.

	ready (boolean) – Optional. Set to true if the video creation process has completed successfully and the video file is ready for retrieval.

	message (string) – Human-readable message describing the current video creation state or error.

	returncode (number) – Optional exit code from the video creation process. Note: this is for debugging only, could be removed in the future, and should not be displayed to end-users.

	stderr (string) – Optional capture of stderr from the video creation process. Note: this is for debugging only, could be removed in the future, and should not be displayed to end-users.

Sample Request

GET /remotes/505d0e463d5ed4a32bb6b0fe9a000d36/videos/431d0e463d5ed4a32bb6b0fe9a000a37/status

See Also

	POST /remotes/(sid)/videos

	GET /remotes/(sid)/videos/(vsid)

GET Remote Video

	
GET /remotes/(sid)/videos/(vsid)

	Uses an existing remote session to retrieve a remote video. The session must
have been created successfully using POST /remotes and video creation must have been
started using POST /remotes/(sid)/videos. The caller should not attempt retrieving
a video until a call to GET /remotes/(sid)/videos/(vsid)/status indicates that video
creation is complete.
The returned file may be optionally cached on the server and retrieved
using GET /projects/(pid)/cache/(key).

	Parameters

	
	sid (string) – Unique remote session identifier.

	vsid (string) – Unique video creation session identifier.

	Query Parameters

	
	cache – Optional cache identifier. Set to project to store the retrieved video in a project cache.

	project – Project identifier. Required when cache is set to project.

	key – Cached object key. Must be specified when cache is set to project.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – The video has been returned in the response body.

	206 Partial Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.7] – A portion of the video has been returned in the response body.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – “Agent required” This call requires a remote agent, but the current session isn’t running an agent.

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – The session doesn’t exist or has timed-out.

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – video/mp4 or video/webm, depending on the original POST /remotes/(sid)/videos request.

	X-Slycat-Message – For errors, contains a human-readable description of the problem.

	X-Slycat-Hint – For errors, contains an optional description of how to fix the problem.

Sample Request

GET /remotes/505d0e463d5ed4a32bb6b0fe9a000d36/videos/431d0e463d5ed4a32bb6b0fe9a000a37

See Also

	GET /remotes/(sid)/file(path)

	GET /remotes/(sid)/image(path)

GET User

	
GET /users/(uid)

	Retrieve directory information for a given user.

	Parameters

	
	uid (string) – User id to retrieve.
As a special case, callers may pass - as the uid to request information
about the currently-logged-in user.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – User metadata retrieved.

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – Unknown user.

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	Response JSON Object

	
	uid (string) – User id of the requested user.

	email (string) – Email address of the requested user.

	name (string) – Full name of the requested user.

Sample Response

{
 "uid": "frfreder",
 "email": "fred@example.com",
 "name": "Fred R. Frederickson",
}

POST Model Arrayset Data

	
GET /models/(mid)/arraysets/(aid)/data

	Retrieve data stored in arrayset darray attributes. The caller may request
data stored using any combination of arrays, attributes, and hyperslices.

	Parameters

	
	mid (string) – Unique model identifier.

	aid (string) – Arrayset artifact id.

	Request Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	Request JSON Object

	
	hyperchunks (string) – The request must contain a parameter hyperchunks that
specifies the arrays, attributes, and hyperslices to be returned, in Hyperchunks format.

	byteorder (string) – The request may optionally contain a parameter byteorder that specifies
that the response should be binary data with the given endianness. The
byteorder parameter must be either “little” or “big”. Note that the
byteorder parameter can only be used if every attribute in every hyperchunk
is of numeric type. If the byteorder parameter is used, the request must
accept application/octet-stream as the result content-type, and the
response data will contain contiguous raw data bytes in the given
byteorder, in the same order as the requested hyperchunks / hyperslices.
For multi-dimension arrays, hyperslice array elements will be in “C” order
(the last coordinate varies the fastest).

If the byteorder parameter isn’t specified, the response data will be a
JSON-encoded array with length equal to the total number of hyperslices.
Each element in this top level array will be an array containing the data
for the corresponding hyperslice, in the same order as the requested
hyperchunks / hyperslices. For multi-dimension arrays, data for the
corresponding hyperslice will be nested further, in “C” order (the last

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

The following request will return all of the data for array 0, attribute 1 from
an arrayset artifact with id “foo”:

Sample Request

POST /models/6706e78890884845b6c709572a140681/arraysets/foo/dataH TTP/1.1
Host: localhost:8093
Authorization: Basic c2x5Y2F0OnNseWNhdA==
Accept-Encoding: gzip, deflate, compress
accept: application/octet-stream
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64

{
 hyperchunks: "0/1/...,"
 byteorder: "little"
}

Sample Response

HTTP/1.1 200 OK
Date: Tue, 26 Nov 2013 16:40:04 GMT
Content-Length: 80
Content-Type: application/octet-stream
Server: CherryPy/3.2.2

..

See Also

	Hyperchunks

	GET /models/(mid)/arraysets/(aid)/metadata

	PUT /models/(mid)/arraysets/(aid)/data

POST Agent Function

	
POST /remotes/run-agent-function

	Uses an existing remote sessions to submit a predefined Slycat function to a cluster running SLURM as a job.
The session must have been created successfully using POST /remotes

	Request JSON Object

	
	sid (string) – Unique remote session identifier.

	wckey (string) – Workload characterization key.

	nnodes (int) – Number of nodes requested for the job.

	partition (string) – Name of the partition where the job will be run.

	ntasks_per_node (int) – Number of tasks to run on a node.

	ntasks (int) – Number of tasks allocated for the job.

	ncpu_per_task (int) – Number of CPUs per task requested for the job.

	time_hours (int) – Number of hours requested for the job.

	time_minutes (int) – Number of minutes requested for the job.

	time_seconds (int) – Number of seconds requested for the job.

	fn (string) – Name of the Slycat predefined function.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – The response contains the command, its output and possible errors.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – The request failed due to invalid parameters or a Slycat agent issue.

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – The request failed due to no Slycat agent present and configured on the remote system.

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	X-Slycat-Message – For errors, contains a human-readable description of the problem.

	Response JSON Object

	
	jid (int) – Job ID.

	errors (string) – Error information, if any.

Sample Request

POST /remotes/run-agent-function

{
 sid: "505d0e463d5ed4a32bb6b0fe9a000d36",
 wckey: "user_00001",
 nnodes: 1,
 partition: "partition_name",
 ntasks_per_node: 1,
 ntasks: 1,
 ncpu_per_task: 4,
 time_hours: 0,
 time_minutes: 5,
 time_seconds: 0,
 fn: "slycat_predefined_function"
}

Sample Response

{
 "jid": 123456,
 "errors": ""
}

See Also

	POST /remotes/cancel-job

	POST /remotes/checkjob

	POST /remotes/get-job-output

	POST /remotes/launch

	POST /remotes/submit-batch

POST Cancel Job

	
POST /remotes/cancel-job

	Uses an existing remote session to cancel a job submitted via the SLURM interface on a remote cluster.
The session must have been created successfully using POST /remotes.

	Request JSON Object

	
	sid (string) – Unique remote session identifier.

	jid (string) – Job ID.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – The response contains the command, its output and possible errors.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – The request failed due to invalid parameters or a Slycat agent issue.

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – The request failed due to no Slycat agent present and configured on the remote system.

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	X-Slycat-Message – For errors, contains a human-readable description of the problem.

	Response JSON Object

	
	jid (int) – Job ID.

	output (string) – Output information, if any.

	errors (string) – Error information, if any.

Sample Request

POST /remotes/checkjob

{
 sid: "505d0e463d5ed4a32bb6b0fe9a000d36",
 jid: 123456
}

Sample Response

{
 "jid": 123456,
 "output": "",
 "errors": ""
}

See Also

	POST /remotes/checkjob

	POST /remotes/get-job-output

	POST /remotes/launch

	POST /remotes/run-agent-function

	POST /remotes/submit-batch

POST Check Job

	
POST /remotes/checkjob

	Uses an existing remote session to query the status of submitted SLURM job on a cluster.
The session must have been created successfully using POST /remotes.

	Request JSON Object

	
	sid (string) – Unique remote session identifier.

	jid (string) – Job ID.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – The response contains the command, its output and possible errors.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – The request failed due to invalid parameters or a Slycat agent issue.

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – The request failed due to no Slycat agent present and configured on the remote system.

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	X-Slycat-Message – For errors, contains a human-readable description of the problem.

	Response JSON Object

	
	jid (int) – Job ID.

	status (string) – Status for the queried job.

	errors (string) – Error information, if any.

The following status are reported: PENDING, RUNNING, COMPLETING, COMPLETED and CANCELLED.

Sample Request

POST /remotes/checkjob

{
 sid: "505d0e463d5ed4a32bb6b0fe9a000d36",
 jid: 123456
}

Sample Response

{
 "jid": 123456,
 "status": "PENDING",
 "errors": ""
}

See Also

	POST /remotes/cancel-job

	POST /remotes/get-job-output

	POST /remotes/launch

	POST /remotes/run-agent-function

	POST /remotes/submit-batch

POST Events

	
POST /events/(event)

	Insert a client-side event into the server log. Clients should use this
API to record any user interaction events that may be of later interest
for subsequent analytics. The structure of the request URI following the
initial “/events/” is left to the client. Note that the request body is
ignored.

	Parameters

	
	event (string) – Path-like user interaction to be logged.

Sample Requests

The following is a hypothetical stream of events logged as a user interacts
with a model. The structure and meaning of the events are completely
client-driven.

POST /events/models/0bfb94cba9654faf904b6fe8b2aab603/select/component/3
POST /events/models/0bfb94cba9654faf904b6fe8b2aab603/select/variable/1
POST /events/models/0bfb94cba9654faf904b6fe8b2aab603/sort/variable/2
POST /events/models/0bfb94cba9654faf904b6fe8b2aab603/pan?dx=34&dy=2
POST /events/models/0bfb94cba9654faf904b6fe8b2aab603/zoom?factor=2.3

POST Get Job Output

	
POST /remotes/get-job-output

	Uses an existing remote sessions to fetch the content of a SLURM output file on a cluster.
The session must have been created successfully using POST /remotes

	Request JSON Object

	
	sid (string) – Unique remote session identifier.

	jid (string) – Job ID.

	path (string) – Path of the SLURM output file, if different from the login node.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – The response contains the command, its output and possible errors.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – The request failed due to invalid parameters or a Slycat agent issue.

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – The request failed due to no Slycat agent present and configured on the remote system.

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	X-Slycat-Message – For errors, contains a human-readable description of the problem.

	Response JSON Object

	
	jid (int) – Job ID.

	output (string) – Content of the SLURM output file.

	errors (string) – Error information, if any.

Note that the path parameter is optional and the request will look for the output file within the home directory of a login node.
Also, the content of the output file could potentially contain many lines of text.

Sample Request

POST /remotes/get-job-output

{
 sid: "505d0e463d5ed4a32bb6b0fe9a000d36",
 jid: 123456
}

Sample Response

{
 "jid": 123456,
 "output": "test",
 "errors": ""
}

See Also

	POST /remotes/cancel-job

	POST /remotes/checkjob

	POST /remotes/launch

	POST /remotes/run-agent-function

	POST /remotes/submit-batch

POST Login

	
POST /login

	Creates a session and then returns the session cookie

	Request Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	Request JSON Object

	
	bit encoded string name (64) – username

	bit encoded string password (64) – password

	url (object) – origin url from which you came

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	Response JSON Object

	
	success (boolean) – boolean representing successful login

	target (string) – original url user tried to access (for a redirect after login)

Sample Request

POST /login HTTP/1.1
Host: localhost:8092
Content-Length: 45
Accept-Encoding: gzip, deflate, compress
Accept: */*
User-Agent: python-requests/1.2.0 CPython/2.7.3 Linux/2.6.32-358.2.1.el6.x86_64
content-type: application/json

{
"user_name":"64 bit encoded slycat(c2x5Y2F0)",
"password":"64 bit encoded slycat(c2x5Y2F0)",
"location":{
 "href":"https://192.168.99.100/login/slycat-login.html",
 "origin":"https://192.168.99.100",
 "protocol":"https:",
 "host":"192.168.99.100",
 "hostname":"192.168.99.100",
 "port":"",
 "pathname":"/login/slycat-login.html",
 "search":"",
 "hash":""
 }
}

Sample Response

HTTP/1.1 201 Project created.
Date: Thu, 11 Apr 2013 21:30:16 GMT
Content-Length: 42
Content-Type: application/json
Set-Cookie:"slycatauth=xyz;httponly;Max-Age=60000;Path=/;secure;slycattimeout=timeout;Max-Age=60000;Path=/"
Location: http://localhost:8092/projects/505d0e463d5ed4a32bb6b0fe9a000d36
Server: CherryPy/3.2.2

{"target": "https://192.168.99.100/projects","success":true}

See Also

	DELETE /logout

POST Model Command

	
POST /models/(mid)/commands/(type)/(command)

	Execute a custom model command.

Plugins may register custom commands to be executed on the server, using an
existing model as context. Custom commands are used to perform computation
on the server instead of the client, and would typically use model artifacts
as inputs.

	Parameters

	
	mid (string) – Unique model identifier.

	type (string) – Unique command category.

	command (string) – Custom command name.

Additional command-specific arguments may be passed using query strings.

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – */*

Sample Request

POST /models/e32ef475e084432481655fe41348726b/commands/math-plugin/add HTTP/1.1
Host: localhost:8093
Authorization: Basic c2x5Y2F0OnNseWNhdA==
Accept-Encoding: gzip, deflate, compress
accept: application/json
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64

Sample Response

HTTP/1.1 200 OK
Date: Mon, 25 Nov 2013 20:36:01 GMT
Content-Length: 542
Content-Type: application/json
Server: CherryPy/3.2.2

{
 "result" : 5
}

See Also

	GET /models/(mid)/commands/(type)/(command)

	PUT /models/(mid)/commands/(type)/(command)

POST Model Finish

	
POST /models/(mid)/finish

	Finish (internally compute) a waiting model. The model must be in the waiting state.

	Parameters

	
	mid – Unique model identifier.

See Also

	GET /models/(mid)

	PUT /models/(mid)

	DELETE /models/(mid)

POST Project Bookmark

	
POST /projects/(pid)/bookmarks

	Stores a bookmark - an arbitrary JSON object that captures client-side
state - returning a unique identifier that can be used to retrieve that
state.

Note that the bookmark contents are canonicalized and hashed to produce
the returned identifier, so all bookmarks containing the same state
automatically share the same id.

Typically, a client would store a bookmark anytime the client state
changes as a user is interacting with a model, e.g. making selections,
sorting, choosing color maps, etc. The client can then use the returned
bookmark id to restore that state when the user returns to a given
model. We strongly recommend that web browsers incorporate the returned
bookmark id into the browser’s URL, so the resulting visualization can
be saved as a browser bookmark, emailed to a colleague, etc.

	Parameters

	
	pid (string) – Unique project identifier.

	Request Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	Response JSON Object

	
	id (string) – Unique bookmark identifier.

Sample Request

POST /projects/957cb70e7a31529d266fb0c110000f27/bookmarks HTTP/1.1
Host: localhost:8092
Content-Length: 43
Accept-Encoding: gzip, deflate, compress
Accept: */*
User-Agent: python-requests/1.2.0 CPython/2.7.3 Linux/2.6.32-358.6.1.el6.x86_64
content-type: application/json
Authorization: Basic c2x5Y2F0OnNseWNhdA==

{"selected-row": 13, "selected-column": 34}

Sample Response

HTTP/1.1 201 Bookmark stored.
Date: Thu, 25 Apr 2013 21:33:44 GMT
Content-Length: 42
Content-Type: application/json
Location: http://localhost:8092/bookmarks/da47466b64216fbb5f782bc2487ceed0
Server: CherryPy/3.2.2

{"id": "da47466b64216fbb5f782bc2487ceed0"}

See Also

	GET /bookmarks/(bid)

POST Project Models

	
POST /projects/(pid)/models

	Adds a new, empty model to a project.

	Parameters

	
	pid (string) – Unique project identifier.

	Request Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	Request JSON Object

	
	model-type (string) – Model type identifier.

	name (string) – Model name.

	description (string) – Model description.

	marking (string) – Model marking identifier.

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	Response JSON Object

	
	id (string) – Unique model identifier.

Sample Request

POST /projects/505d0e463d5ed4a32bb6b0fe9a000d36/models HTTP/1.1
Host: localhost:8092
Content-Length: 73
Accept-Encoding: gzip, deflate, compress
Accept: */*
User-Agent: python-requests/1.2.0 CPython/2.7.3 Linux/2.6.32-358.2.1.el6.x86_64
content-type: application/json
Authorization: Basic c2x5Y2F0OnNseWNhdA==

{"model-type": "generic", "description": "", "name": "Model", "marking": ""}

Sample Response

HTTP/1.1 202 Model scheduled for creation.
Date: Thu, 11 Apr 2013 21:30:16 GMT
Content-Length: 85
Content-Type: application/json
Server: CherryPy/3.2.2

{"id": "7f4b92c00af7465eb594a2ca77d0df91"}

See Also

	GET /models/(mid)

	PUT /models/(mid)

	DELETE /models/(mid)

POST Projects

	
POST /projects

	Creates a new project. The caller must supply a human-readable project
name. The caller may supply a human readable project description
and/or access control list (ACL). The results will return the ID of the
newly-created project.

If an ACL is not specified, the project will have a default ACL with the
project administrator set to the user creating the project, and no
project readers or writers.

	Request Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	Request JSON Object

	
	name (string) – New project name.

	description (string) – New project description.

	acl (object) – New project access control list.

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	Response JSON Object

	
	id (string) – Unique project identifier.

Sample Request

POST /projects HTTP/1.1
Host: localhost:8092
Content-Length: 45
Accept-Encoding: gzip, deflate, compress
Accept: */*
User-Agent: python-requests/1.2.0 CPython/2.7.3 Linux/2.6.32-358.2.1.el6.x86_64
content-type: application/json
Authorization: Basic c2x5Y2F0OnNseWNhdA==

{"name": "CCA Model Test", "description": ""}

Sample Response

HTTP/1.1 201 Project created.
Date: Thu, 11 Apr 2013 21:30:16 GMT
Content-Length: 42
Content-Type: application/json
Location: http://localhost:8092/projects/505d0e463d5ed4a32bb6b0fe9a000d36
Server: CherryPy/3.2.2

{"id": "505d0e463d5ed4a32bb6b0fe9a000d36"}

See Also

	GET /projects

POST Remote Browse

	
POST /remotes/(sid)/browse(path)

	Uses an existing remote session to retrieve remote filesystem information.
The session must have been created successfully using POST /remotes.
The caller may supply additional parameters to filter directories and files
in the results, based on regular expressions.

	Parameters

	
	sid (string) – Unique remote session identifier.

	path (string) – Remote filesystem path (must be absolute).

	Request Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	Request JSON Object

	
	directory-reject (string) – Optional regular expression for filtering directories.

	directory-allow (string) – Optional regular expression for retaining directories.

	file-reject (string) – Optional regular expression for filtering files.

	file-allow (string) – Optional regular expression for allowing files.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – The response contains the requested browsing information.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – The browse request failed due to invalid parameters (e.g: the path doesn’t exist).

	404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – The remote session ID was invalid or expired.

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	X-Slycat-Message – For errors, contains a human-readable description of the problem.

	X-Slycat-Hint – For errors, contains an optional description of how to fix the problem.

	Response JSON Object

	
	path (string) – Remote filesystem path.

	names (array) – Array of string filenames contained within the remote filesystem path.

	sizes (array) – Array of integer file sizes.

	types (array) – Array of string file types, “f” for regular files, “d” for directories.

	mtimes (array) – Array of string file modification times, in ISO-8601 format.

	mime-types (array) – Array of string MIME types.

The regular expression parameters are matched against full file / directory
paths. If a file / directory matches a reject expression, it will not be
included in the results, unless it also matches an allow expression. So, to
remove JPEG files from the results:

file-reject: "[.]jpg$|[.]jpeg$"

but to only return CSV files:

file-reject: ".*",
file-allow: "[.]csv$"

Sample Request

POST /remotes/505d0e463d5ed4a32bb6b0fe9a000d36/browse/home/fred

{
 file-reject: "[.]jpg$"
}

Sample Response

{
 "path" : "/home/fred",
 "names" : ["a.txt", "b.png", "c.csv", "subdir"],
 "sizes" : [1264, 456730, 78005, 4096],
 "types' : ["f", "f", "f", "d"],
 "mtimes" : ["2015-03-03T16:52:34.599466", "2015-03-02T21:03:50", "2015-03-02T21:03:50", "2015-03-02T21:03:50"],
 "mime-types" : ["text/plain", "image/png", "text/csv", null],
}

See Also

	POST /remotes

	GET /remotes/(sid)/file(path)

	GET /remotes/(sid)/image(path)

	POST /remotes/(sid)/videos

POST Remote Launch

	
POST /remotes/launch

	Uses an existing remote session to submit a command.
The session must have been created successfully using POST /remotes.

	Request JSON Object

	
	sid (string) – Unique remote session identifier.

	command (string) – command to be ran on the remote system.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – The response contains the command, its output and possible errors.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – The request failed due to invalid parameters or a Slycat agent issue.

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – The request failed due to a SSH exception.

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	X-Slycat-Message – For errors, contains a human-readable description of the problem.

	Response JSON Object

	
	command (string) – Command issued to the remote system.

	output (string) – Output of the command.

	errors (string) – Error information, if any.

Sample Request

POST /remotes/launch

{
 sid: "505d0e463d5ed4a32bb6b0fe9a000d36",
 command: "echo test"
}

Sample Response

{
 "command": "echo test",
 "output": "test",
 "errors": ""
}

See Also

	POST /remotes/cancel-job

	POST /remotes/checkjob

	POST /remotes/get-job-output

	POST /remotes/run-agent-function

	POST /remotes/submit-batch

POST Remotes

	
POST /remotes

	Creates a new remote connection from the Slycat server to another host.
The caller must supply a remote hostname, username, and password.

If the connection is created successfully, a unique session ID is returned. The
client must use the session ID in subsequent requests.

	Request Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	Request JSON Object

	
	hostname (string) – Remote hostname.

	username (string) – Remote host username.

	password (string) – Remote host password.

	agent (boolean) – (optional) Create an agent when the connection is established. By default, agents are created automatically if the hostname has an agent configuration. Use this parameter to explicitly require / prevent agent creation.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – The connection was created successfully.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – “Missing agent configuration” The server isn’t configured to start an agent on the given hostname.

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – “Remote authentication failed” Authentication of the provided username and password failed.

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – “Missing agent configuration” The server isn’t properly configured to start an agent on the given hostname.

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – “Agent startup failed” The server couldn’t start an agent on the given hostname.

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – “Remote connection failed” Unknown failure making the remote connection.

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	Response JSON Object

	
	sid (string) – Unique remote session identifier.

Sample Request

POST /remotes HTTP/1.1
Host: localhost:8092
Content-Length: 45
Accept-Encoding: gzip, deflate, compress
Accept: */*
User-Remote: python-requests/1.2.0 CPython/2.7.3 Linux/2.6.32-358.2.1.el6.x86_64
content-type: application/json
Authorization: Basic c2x5Y2F0OnNseWNhdA==

{"hostname":"example.com", "username":"fred", "password":"foobar"}

Sample Response

HTTP/1.1 200 OK.
Date: Thu, 11 Apr 2013 21:30:16 GMT
Content-Length: 42
Content-Type: application/json
Location: http://localhost:8092/projects/505d0e463d5ed4a32bb6b0fe9a000d36
Server: CherryPy/3.2.2

{"sid": "505d0e463d5ed4a32bb6b0fe9a000d36"}

See Also

	DELETE /remotes/(sid)

	POST /remotes/(sid)/browse(path)

POST Submit Batch

	
POST /remotes/submit-batch

	Uses an existing remote sessions to submit a batch file to start a job on a cluster running SLURM.
The session must have been created successfully using POST /remotes.

	Request JSON Object

	
	sid (string) – Unique remote session identifier.

	filename (string) – Name for the batch file.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – The response contains the command, its output and possible errors.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – The request failed due to invalid parameters or a Slycat agent issue.

	500 Internal Server Error [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – The request failed due to no Slycat agent present and configured on the remote system.

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	X-Slycat-Message – For errors, contains a human-readable description of the problem.

	Response JSON Object

	
	filename (string) – Name of the file submitted in the request.

	jid (int) – Job ID.

	errors (string) – Error information, if any.

Sample Request

POST /remotes/submit-batch

{
 sid: "505d0e463d5ed4a32bb6b0fe9a000d36",
 filename: "/home/jdoe/batch.test.bash"
}

Sample Response

{
 "filename": "/home/jdoe/batch.test.bash",
 "jid": 123456,
 "errors": ""
}

See Also

	POST /remotes/cancel-job

	POST /remotes/checkjob

	POST /remotes/get-job-output

	POST /remotes/launch

	POST /remotes/run-agent-function

POST Uploads

	
POST /uploads

	Create an upload session used to upload files for storage as model
artifacts. Once an upload session has been created, use
PUT /uploads/(uid)/files/(fid)/parts/(pid) to upload files directly from the client to the
server or from a remote host to the server using a remote session.

In either case this call must include the id of the model to receive new
artifacts, a boolean “input” parameter to specify whether the created
artifacts are input artifacts, the name of a parsing plugin in “parser”,
and one or more artifact ids using “aids”. Any additional parameters will
be passed unchanged to the parsing plugin for use as plugin-specific
parsing parameters.

The set of parsing plugins will vary based on server configuration, and
parsing plugins have wide latitude in how they map parsed file data to
model artifacts. For example, the slycat-blob-parser plugin will store \(N\)
files as unparsed model file artifacts, and thus requires \(N\) corresponding
artifact ids to use for storage. Similarly, the slycat-csv-parser plugin
stores \(N\) parsed files as arrayset artifacts, and also requires \(N\) artifact
ids. However, more sophisticated parsing plugins could split one file into
multiple artifacts, combine multiple files into one artifact, or store any
other combination of \(M\) files into \(N\) artifacts.

	Request Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	Request JSON Object

	
	mid (string) – Unique model identifier.

	input (string) – Set to “true” to store results as input artifacts.

	parser (string) – Parsing plugin name.

	aids (array) – Artifact ids for storage.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – The new upload session was created, and the response contains the new session id.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – An upload session couldn’t be created due to invalid parameters (e.g: unknown model, unknown parser, invalid parser parameters).

	403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Client doesn’t have write access to the given model

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	Response JSON Object

	
	id (string) – New upload session id.

See Also

	PUT /uploads/(uid)/files/(fid)/parts/(pid)

POST Upload Finished

	
POST /uploads/(uid)/finished

	Notify the server that all files have been uploaded for the given upload
session, and processing can begin. The request must include the uploaded
parameter, which specifies the number of files that were uploaded, and the
number of parts in each file. The server uses this information to validate
that it received every part of every file that the client sent.

	Parameters

	
	uid (string) – Unique upload session identifier.

	Request Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	Request JSON Object

	
	uploaded (array) – array containing the number of parts \(M\) for every uploaded file \(N\).

	Status Codes

	
	202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – The server has validated all of the uploaded data, and will begin the parsing process.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – “Upload incomplete” The server did not receive all of the file parts specified in the uploaded parameter. Parsing will not begin until the missing parts have been uploaded and POST /uploads/(uid)/finished is called again.

	400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – “Client confused” The server received more file parts than those specified in the uploaded parameter. Parsing will not begin unless POST /uploads/(uid)/finished is called again with the correct part counts in uploaded.

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	Response JSON Object

	
	missing (array) – array containing a [fid, pid] tuple for every file part that wasn’t uploaded successfully.

See Also

	PUT /uploads/(uid)/files/(fid)/parts/(pid)

	DELETE /uploads/(uid)

PUT Model Arrayset Array

	
PUT /models/(mid)/arraysets/(aid)/arrays/(array)

	Adds an array to an arrayset, ready to upload data. The arrayset must
already have been initialized with PUT /models/(mid)/arraysets/(aid).

	Parameters

	
	mid (string) – Unique model identifier.

	aid (string) – Unique artifact id.

	array (int) – Unique array index.

	Request Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	Request JSON Object

	
	attributes (object) – New array attributes.

	dimensions (object) – New array dimensions.

Sample Request

PUT /models/6f48db3de2b6416091d31e93814a22ae/arraysets/test-array-set/arrays/0 HTTP/1.1
Host: localhost:8093
Content-Length: 203
Accept-Encoding: gzip, deflate, compress
Accept: */*
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64
content-type: application/json
Authorization: Basic c2x5Y2F0OnNseWNhdA==

{
 "attributes": [
 {"type": "int64", "name": "integer"},
 {"type": "float64", "name": "float"},
 {"type": "string", "name": "string"}],
 "dimensions": [
 {"end": 10, "begin": 0, "type": "int64", "name": "row"}]
}

Sample Response

HTTP/1.1 200 OK
Date: Mon, 25 Nov 2013 20:36:07 GMT
Content-Length: 4
Content-Type: application/json
Server: CherryPy/3.2.2

null

See Also

	PUT /models/(mid)/arraysets/(aid)

	PUT /models/(mid)/arraysets/(aid)/data

PUT Model Arrayset Data

	
PUT /models/(mid)/arraysets/(aid)/data

	Upload data to be stored in arrayset array attributes. The request may
contain data to be stored in any combinations of arrays, attributes, and
hyperslices. The destination array(s) must have already been initialized
with PUT /models/(mid)/arraysets/(aid)/arrays/(array).

	Parameters

	
	mid (string) – Unique model identifier.

	aid (string) – Unique artifact id.

	Request Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – multipart/form-data

	Form Parameters

	
	hyperchunks – (Required) The arrays, attributes, and hyperslices to be overwritten, in Hyperchunks format.

	byteorder – (Optional) Specifies that the request contains binary data with the given endianness.

The byteorder parameter must be either “little” or “big”. Note that the
byteorder parameter can only be used if every attribute in every hyperchunk
is of numeric type.

	data – (Required) The data to be stored.

If the byteorder is specified, the request data must contain contiguous raw
data bytes in the given byteorder, in the same order as the hyperchunks /
hyperslices. For multi-dimension arrays, hyperslice array elements must be
in “C” order.

If the byteorder parameter isn’t specified, the request data must contain a
JSON-encoded array with length equal to the total number of hyperslices. Each
element in this top level array must be an array containing the data for the
corresponding hyperslice, in the same order as the hyperchunks / hyperslices.
For multi-dimension arrays, data for the corresponding hyperslice will be
nested further.

Sample Request

The following request would write data in binary format to the following locations:

	Element number 5 in vector array 0, attribute 1

	A half-open range of elements [10-20) in vector array 2, attribute 3

	A 4x4 subset of elements in matrix array 4, attribute 5

	Elements [0-10) and [20-30) in vector array 6, attribute 7

PUT /models/25f1cdb62c34465286cecbaeccc1460d/arraysets/test-array-set/data HTTP/1.1
Host: localhost:8093
Content-Length: 470
Accept-Encoding: gzip, deflate, compress
Accept: */*
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64
Content-Type: multipart/form-data; boundary=573af150d64b4d70b35689f41c136ed3
Authorization: Basic c2x5Y2F0OnNseWNhdA==

--573af150d64b4d70b35689f41c136ed3
Content-Disposition: form-data; name="byteorder"

little
--573af150d64b4d70b35689f41c136ed3
Content-Disposition: form-data; name="hyperchunks"

0/1/5;2/3/10:20;4/5/0:4,0:4;6/7/0:10|20:30
--573af150d64b4d70b35689f41c136ed3
Content-Disposition: form-data; name="data"; filename="data"
Content-Type: application/octet-stream

..
--573af150d64b4d70b35689f41c136ed3--

Sample Response

HTTP/1.1 200 OK
Date: Tue, 26 Nov 2013 16:40:05 GMT
Content-Length: 4
Content-Type: application/json
Server: CherryPy/3.2.2

null

See Also

	Hyperchunks

	PUT /models/(mid)/arraysets/(aid)

	PUT /models/(mid)/arraysets/(aid)/arrays/(array)

PUT Model Arrayset

	
PUT /models/(mid)/arraysets/(aid)

	Initialize an arrayset, a collection of zero-to-many arrays.

	Parameters

	
	mid (string) – Unique model identifier.

	aid (string) – Unique artifact id.

	Request Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	Request JSON Object

	
	input (bool) – Set to true if this arrayset is a model input.

Sample Request

PUT /models/6f48db3de2b6416091d31e93814a22ae/arraysets/test-array-set HTTP/1.1
Host: localhost:8093
Content-Length: 2
Accept-Encoding: gzip, deflate, compress
Accept: */*
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64
content-type: application/json
Authorization: Basic c2x5Y2F0OnNseWNhdA==

{ input : true }

Sample Response

HTTP/1.1 200 OK
Date: Mon, 25 Nov 2013 20:36:07 GMT
Content-Length: 0
Content-Type: text/html;charset=utf-8
Server: CherryPy/3.2.2

See Also

	PUT /models/(mid)/arraysets/(aid)/arrays/(array)

	PUT /models/(mid)/arraysets/(aid)/data

PUT Model Command

	
PUT /models/(mid)/commands/(type)/(command)

	Execute a custom model command.

Plugins may register custom commands to be executed on the server, using an
existing model as context. Custom commands are used to perform computation
on the server instead of the client, and would typically use model artifacts
as inputs.

	Parameters

	
	mid (string) – Unique model identifier.

	type (string) – Unique command category.

	command (string) – Custom command name.

Additional command-specific arguments may be passed using query strings.

	Response Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – */*

Sample Request

PUT /models/e32ef475e084432481655fe41348726b/commands/math-plugin/add HTTP/1.1
Host: localhost:8093
Authorization: Basic c2x5Y2F0OnNseWNhdA==
Accept-Encoding: gzip, deflate, compress
accept: application/json
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64

Sample Response

HTTP/1.1 200 OK
Date: Mon, 25 Nov 2013 20:36:01 GMT
Content-Length: 542
Content-Type: application/json
Server: CherryPy/3.2.2

{
 "result" : 5
}

See Also

	GET /models/(mid)/commands/(type)/(command)

	POST /models/(mid)/commands/(type)/(command)

PUT Model Inputs

	
PUT /models/(mid)/inputs

	Copies the input artifacts from one model to another.
Both models must be part of the same project. By default,
array artifacts are copied by reference instead of value
for efficiency.

	Parameters

	
	mid (string) – Unique model identifier.

	Request Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	Request JSON Object

	
	sid (string) – Unique identifier of the source model.

	deep-copy (bool) – Optional, make deep copies of input data if “true”.

PUT Model Parameter

	
PUT /models/(mid)/parameters/(aid)

	Stores a model parameter (name / value pair) artifact. The value is a
JSON expression and may be arbitrarily complex.

	Parameters

	
	mid (string) – Unique model identifier.

	aid (string) – Unique artifact id (parameter name).

	Request Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	Request JSON Object

	
	value (object) – New parameter value.

	input (bool) – Set to true if the parameter is a model input.

Sample Request

PUT /models/1385a75dd2eb4faba884cefdd0b94a56/parameters/baz HTTP/1.1
Host: localhost:8093
Content-Length: 20
Accept-Encoding: gzip, deflate, compress
Accept: */*
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64
content-type: application/json
Authorization: Basic c2x5Y2F0OnNseWNhdA==

{
 value : [1, 2, 3],
 input : true
}

Sample Response

HTTP/1.1 200 OK
Date: Mon, 25 Nov 2013 20:36:04 GMT
Content-Length: 0
Content-Type: text/html;charset=utf-8
Server: CherryPy/3.2.2

See Also

	GET /models/(mid)/parameters/(aid)

PUT Model

	
PUT /models/(mid)

	Modifies a model. Callers may change the model name, description, state,
result status, progress, and message.

	Parameters

	
	mid (string) – Unique model identifier.

	Request Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – application/json

	Request JSON Object

	
	name (string) – optional, New model name.

	description (string) – optional, New model description.

	state (string) – optional, New model state.

	progress (float) – optional, New model progress percent.

	message (string) – optional, New model status message.

See Also

	GET /models/(mid)

	POST /models/(mid)/finish

	DELETE /models/(mid)

PUT Project

	
PUT /projects/(pid)

	Modifies a project. Callers may use PUT to specify a new name,
description, or access control list (ACL) for the project.

	Parameters

	
	pid (string) – Unique project identifier.

	Request JSON Object

	
	name (string) – optional, New project name.

	description (string) – optional, New project description.

	acl (object) – optional, New project access control list.

Sample Request

PUT /projects/dbaf026f919620acbf2e961ad73243c5 HTTP/1.1
Host: localhost:8093
Content-Length: 176
Accept-Encoding: gzip, deflate, compress
Accept: */*
User-Agent: python-requests/1.2.3 CPython/2.7.5 Linux/2.6.32-358.23.2.el6.x86_64
content-type: application/json
Authorization: Basic c2x5Y2F0OnNseWNhdA==

{
 "acl": {"administrators": [{"user": "slycat"}], "writers": [{"user": "foo"}], "readers": [{"user": "bar"}]},
 "name": "modified-project",
 "description": "My modified project."
}

Sample Response

HTTP/1.1 200 OK
Date: Mon, 25 Nov 2013 20:35:59 GMT
Content-Length: 4
Content-Type: application/json
Server: CherryPy/3.2.2

null

See Also

	GET /projects/(pid)

	DELETE /projects/(pid)

PUT Upload File Part

	
PUT /uploads/(uid)/files/(fid)/parts/(pid)

	Upload a file (or part of a file) as part of an upload session created with
POST /uploads.

Use the “pid” and “fid” parameters to specify that the data being uploaded
is for part \(M\) of file \(N\). To upload a file from the client,
specify the “file” parameter. To upload a remote file, specify the “sid”
and “path” parameters with a session id and remote filepath for the file to
upload.

	Parameters

	
	uid (string) – Unique upload session identifier.

	fid (integer) – Zero-based file index of the data to be uploaded.

	pid (integer) – Zero-based part index of the data to be uploaded.

	Request Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – form/multipart

	Form Parameters

	
	file – Local file for upload.

	path – Remote host absolute filesystem path.

	sid – Remote session id.

	Status Codes

	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – The data was uploaded successfully.

See Also

	POST /uploads

	POST /uploads/(uid)/finished

Javascript API

For the convenience of Javascript clients and Slycat plugin code, we provide a
set of custom AMD [http://en.wikipedia.org/wiki/Asynchronous_module_definition] modules containing useful components, along with wrappers
around the REST API.

	slycat-login-controls
	See Also

	slycat-range-slider

	slycat-remote-controls
	See Also

	slycat-remotes
	See Also

	slycat-server-root

	slycat-web-client

slycat-login-controls

The slycat-login-controls AMD module registers a Knockout [http://knockoutjs.com]
component of the same name. The slycat-login-controls component provides a
standard GUI widget for selecting a username and password to complete a login.

Note: you don’t need to import the slycat-login-controls module using
require() or define() - it registers the knockout component
automatically at startup.

To use slycat-login-controls, create ko.observable() objects for each of the login
parameters, including the username and password, and bind them to the page DOM:

var page =
{
 username: ko.observable("fred"),
 password: ko.observable(""),
};

ko.applyBindings(page);

Then, embed the slycat-login-controls component in your markup and bind your observables
to the component parameters:

<p>Login to orbiting brain lasers:</p>
<slycat-login-controls params="
 username: username,
 password: password,
 ">
</slycat-login-controls>

Now, changes to any of the input parameters automatically update the login controls, and user interaction
with the login controls will update the username and password observables.

The full set of parameters supported by slycat-login-controls are as follows:

	username, ko.observable(): String username to be entered by the user. If this parameter is null or empty, it will default to the last-used username.

	password, ko.observable(): String password to be entered by the user.

	status, ko.observable(): Optional string status message to be displayed under the controls.

	status_type, ko.observable(): Optional string status type that controls the appearance of the status message. Must be one of “success”, “info”, “warning”, or “danger”.

	enable, ko.observable(): Optional boolean value to enable / disable the controls.

	focus, ko.observable(): Optional, used to focus the controls. Set to “username” to focus the username control, “password” to focus the password control, or true to automatically choose which control to focus. Because the caller may wish to focus the same control more than once in a row (for example: to refocus the password control after a failed login attempt), it is useful to configure the focus observable to always notify subscribers, even if its value doesn’t change, using focus.extend({notify: “always”}).

	activate, function: Optional callback function that will be invoked if the user presses the “enter” key while using the login controls.

See Also

	slycat-remote-controls - if you also need to prompt users for a hostname.

	slycat-remotes - for a higher-level API that provides a modal login dialog, and can manage a pool of remote connections.

slycat-range-slider

The slycat-range-slider AMD module registers a Knockout [http://knockoutjs.com]
component of the same name. The slycat-range-slider component provides a
standard GUI widget for selecting a closed range of values from a continuous
domain.

Note: you don’t need to import the slycat-range-slider module using
require() or define() - it registers the slider component
automatically at startup.

To use slycat-range-slider, create ko.observable() objects for each of the range
slider parameters, including the output range values, and bind them to the page DOM:

var page =
{
 slider_length: 500,
 minimum_price: ko.observable(150),
 low_price: ko.observable(1000),
 high_price: ko.observable(5000),
 maximum_price: ko.observable(20000),
};

ko.applyBindings(page);

Then, embed the slycat-range-slider component in your markup and bind your observables
to the component parameters:

<p>Filter results by price:</p>
<slycat-range-slider params="
 length: slider_length,
 min: minimum_price,
 low: low_price,
 high: high_price,
 domain: maximum_price,
 ">
</slycat-range-slider>

Now, changes to any of the input parameters automatically update the slider, and user interaction
with the slider will update the low and high observables.

The full set of parameters supported by slycat-range-slider are as follows:

	axis, string: “vertical” or “horizontal” to create a slider with the given orientation. Default: “vertical”.

	reverse, bool: If true, the orientation of the slider is reversed so that high and low values are swapped. Default: false.

	length, ko.observable(): Length of the slider in pixels. Default: 500 pixels.

	thumb_length, ko.observable(): Length of the slider thumb buttons in pixels. Default: 12 pixels.

	dragging, ko.observable(): Set to true while the user is dragging a thumb button.

	min, ko.observable(): Minimum allowed value. Default: 0.

	low, ko.observable(): Currently-selected range low value. Default: 0.33.

	high, ko.observable(): Currently-selected range high value. Default: 0.66.

	max, ko.observable(): Maximum allowed value. Default: 1.

slycat-remote-controls

The slycat-remote-controls AMD module registers a Knockout [http://knockoutjs.com]
component of the same name. The slycat-remote-controls component provides a
standard GUI widget for selecting a hostname, username, and password to complete a login.

Note: you don’t need to import the slycat-remote-controls module using
require() or define() - it registers the knockout component
automatically at startup.

To use slycat-remote-controls, create ko.observable() objects for each of the login
parameters, including the hostname, username and password, and bind them to the page DOM:

var page =
{
 hostname: ko.observable("localhost"),
 username: ko.observable("fred"),
 password: ko.observable(""),
};

ko.applyBindings(page);

Then, embed the slycat-remote-controls component in your markup and bind your observables
to the component parameters:

<p>Login to mutant cybergoat server:</p>
<slycat-remote-controls params="
 hostname: hostname,
 username: username,
 password: password,
 ">
</slycat-remote-controls>

Now, changes to any of the input parameters automatically update the login controls, and user interaction
with the login controls will update the username and password observables.

The full set of parameters supported by slycat-remote-controls are as follows:

	hostname, ko.observable(): String hostname to be entered by the user. If this parameter is null or empty, it will default to the last-used hostname.

	username, ko.observable(): String username to be entered by the user. If this parameter is null or empty, it will default to the last-used username.

	password, ko.observable(): String password to be entered by the user.

	status, ko.observable(): Optional string status message to be displayed under the controls.

	status_type, ko.observable(): Optional string status type that controls the appearance of the status message. Must be one of “success”, “info”, “warning”, or “danger”.

	enable, ko.observable(): Optional boolean value to enable / disable the controls.

	focus, ko.observable(): Optional, used to focus the controls. Set to “hostname” to focus the hostname control, “username” to focus the username control, “password” to focus the password control, or true to automatically choose which control to focus. Because the caller may wish to focus the same control more than once in a row (for example: to refocus the password control after a failed login attempt), it is useful to configure the focus observable to always notify subscribers, even if its value doesn’t change, using focus.extend({notify: “always”}).

	activate, function: Optional callback function that will be invoked if the user presses the “enter” key while using the login controls.

See Also

	slycat-login-controls - if you don’t need to prompt users for a hostname.

	slycat-remotes - for a higher-level API that provides a modal login dialog, and can manage a pool of remote connections.

slycat-remotes

The slycat-remotes AMD module provides a high-level API for making a remote
connection to another host, when the hostname is known in advance, and maintaining
a pool of remote connections.

For example, once the module has been imported into the current namespace:

require(["slycat-remotes"], function(remotes)
{
 // Use the module here
});

A remote session can be created as follows (the user will be prompted for their username and password with a modal dialog):

remotes.login(
{
 hostname: "localhost",
 success: function(sid)
 {
 // Do something with the remote session id
 },
});

	
slycat-remotes.login(params)

	Prompt the user for a username and password, and create a remote session:

	Arguments

	
	params (object) – a set of key/value login parameters:

	hostname (string) - Required, remote hostname.

	title (string) - Optional title for the login dialog.

	message (string) - Optional message for the login dialog.

	success (function) - Optional, called with the remote session ID when the remote connection is made.

	cancel (function) - Optional, called if the user cancels making a connection.

The user will be prompted for their login information until they are successful, or cancel the operation.

	
slycat-remotes.create_pool()

	Create and return an object that manages a collection of remote sessions.

	Returns

	an instance of slycat-remote.pool that manages a collection of remote sessions, organized by hostname.

	
slycat-remotes.pool.get_remote(params)

	Retrieve an existing remote session ID for a given host, or prompt the user to create
a new session.

	Arguments

	
	params (object) – a set of key/value parameters:

	hostname (string) - Required remote hostname.

	title (string) - Optional title for the login dialog, if the remote session doesn’t already exist.

	message (string) - Optional message for the login dialog, if the remote session doesn’t already exist.

	success (function) - Optional, called with the remote session ID if it already exists, or the user successfully creates a new session.

	cancel (function) - Optional, called if the host connection doesn’t already exist, and the user cancels session creation.

	
slycat-remotes.pool.delete_remote(hostname)

	Shut-down and remove the remote session (if any) for the given host.

	Arguments

	
	hostname (string) – the host whose session should be closed. Calls with unknown hostnames will be quietly ignored.

Note that this method could cause a harmless failed AJAX request, if the given session has already expired.

See Also

	slycat-login-controls - for a lower-level set of login controls.

	slycat-remote-controls - for a lower-level set of hostname + login controls.

slycat-server-root

Like any web service, the Slycat server could be deployed behind a reverse
proxy, altering the URLs used by a client to access the REST API. For
example, if an organization deployed an instance of Slycat at
http://example.com/services/slycat, clients would retrieve the list of
available projects at /services/slycat/projects instead of the usual
/projects.

To facilitate this, the slycat-server-root AMD module returns a single constant
string - the server root - which must be prepended to all URLs used by
clients. For example, clients should never use hard-coded URLs:

jquery.ajax("/projects"); // NEVER DO THIS

Instead, the server root must be imported into the current namespace:

require(["slycat-server-root"], function(server_root)
{
 // Use the server_root string here
});

And used to construct URLs dynamically at runtime:

jquery.ajax(server_root + "projects");

Note that clients should rarely need to construct URLs in the first place -
instead, they should use the slycat-web-client module, which provides
simplified access to the REST API and uses the server root for you.

slycat-web-client

The slycat-web-client AMD module provides convenient Javascript bindings
for the REST API, in a style similar to jquery.ajax().

For example, once the module has been imported into the current namespace:

require(["slycat-web-client"], function(client)
{
 // Use the module here
});

A model can be retrieved using:

client.get_model(
{
 mid: model_id, // Unique model identifier
 success: function(model)
 {
 // Do something with the model
 },
});

	
slycat-web-client.delete_model(params)

	Delete an existing model.

	Arguments

	
	params (object) – a set of key/value pairs that configure the request:

	mid (string) - required, unique model identifier.

	success (function) - optional, called when the request completes successfully.

	error (function) - optional, called if the request fails.

	param request

	

	param status

	

	param reason_phrase

	

	
slycat-web-client.delete_project(params)

	Delete an existing project.

	Arguments

	
	params (object) – a set of key/value pairs that configure the request:

	pid (string) - required, unique project identifier.

	success (function) - optional, called when the request completes successfully.

	error (function) - optional, called if the request fails.

Python API

The Slycat server and plugins used to enhance it are implemented in Python. In
addition, we provide wrappers around the REST API for writing Python
clients, typically used for custom data ingestion.

	slycat.cca

	slycat.darray

	slycat.hdf5

	slycat.hyperchunks

	slycat.table

	slycat.timeseries

	slycat.timeseries.segmentation

	slycat.uri

	slycat.web.client

	slycat.web.server

	slycat.web.server.authentication

	slycat.web.server.database.couchdb

	slycat.web.server.engine

	slycat.web.server.handlers

	slycat.web.server.hdf5

	slycat.web.server.plugin

	slycat.web.server.remote

	slycat.web.server.template

slycat.cca

	
slycat.cca.cca(X, Y, scale_inputs=True, force_positive=None, significant_digits=None)

	Compute Canonical Correlation Analysis (CCA).

	Parameters

	
	X (numpy.ndarray) – \(M \times I\) matrix containing \(M\) observations and \(I\) input features.

	Y (numpy.ndarray) – \(M \times O\) matrix containing \(M\) observations and \(O\) output features.

	scale_inputs (bool, optional) – Scale input and output features to unit variance.

	force_positive (integer, optional) – If specified, flip signs in the x, y, x_loadings, and y_loadings output values so
that the values in row \(n\) of y_loadings are all positive.

	significant_digits (integer, optional) – Optionally specify the number of significant digits used to compute the X and Y ranks.

	Returns

	
	x (numpy.ndarray) – \(M \times C\) matrix containing input metavariable values for \(M\) observations and \(C\) CCA components.

	y (numpy.ndarray) – \(M \times C\) matrix containing output metavariable values for \(M\) observations and \(C\) CCA components.

	x_loadings (numpy.ndarray) – \(I \times C\) matrix containing weights for \(I\) input variables and \(C\) CCA components.

	y_loadings (numpy.ndarray) – \(O \times C\) matrix containing weights for \(O\) output variables and \(C\) CCA components.

	r2 (numpy.ndarray) – length-\(C\) vector containing \(r^2\) values for \(C\) CCA components.

	wilks (numpy.ndarray) – length-\(C\) vector containing the likelihood-ratio for \(C\) CCA components.

slycat.darray

Slycat makes extensive use of darray objects - dense, multi-dimension,
multi-attribute arrays - as its fundamental unit of storage and organization.
In the abstract, a darray can be modeled as follows:

	A set of dimensions. Each dimension has a name, index type, and a half-open range of valid index values. Currently, the only supported index type is “int64”, and indices are all zero-based (i.e. the range always begins at zero), but these may change in the future. Collectively, the dimensions define the size and shape of the array.

	A set of attributes, each with a name and type. Allowed attribute types include a full complement of signed and unsigned fixed-width integer types, plus floating-point and string types. Collectively, attributes define what will be stored in the array.

	The array data. Because darrays are dense, the data will include one value per attribute, for every location in the array.

This definition allows darrays to be flexible and efficient - for example, a
“table” data structure with heterogenous column types can be stored as a 1D
darray with multiple attributes, while a “matrix” would be stored as a 2D darray
with a single floating-point attribute.

Note that darrays are an abstract concept with multiple concrete
representations. This module defines an abstract interface for manipulating
Python darrays, and a concrete implementation with in-memory storage. The
slycat.hdf5 module defines functionality for manipulating darrays
stored in HDF5 files on disk, and the REST API defines functionality
for working with darrays using HTTP.

Note that it is rare to manipulate entire darrays in memory at once, due to
their size - most applications will work with slices of a darray to keep
memory use manageable.

	
class slycat.darray.MemArray(dimensions, attributes, data)

	Bases: slycat.darray.Stub

darray implementation that holds the full array contents in memory.

	
get_data(attribute=0)

	Return a data slice from one attribute.

	
get_statistics(attribute=0)

	Return statistics describing one attribute.

	
set_data(attribute, slice, data)

	Write a data slice to one attribute.

	
class slycat.darray.Prototype

	Bases: object

Abstract interface for all darray implementations.

	
attributes

	Return a description of the array attributes.

	
dimensions

	Return a description of the array dimensions.

	
get_data(attribute=0)

	Return data from one attribute.

	
get_statistics(attribute=0)

	Return statistics describing one attribute.

	
ndim

	Return the number of dimensions in the array.

	
set_data(attribute, slice, data)

	Write data to one attribute.

	
shape

	Return the shape (size along each dimension) of the array.

	
size

	Return the size (total number of elements) of the array.

	
class slycat.darray.Stub(dimensions, attributes)

	Bases: slycat.darray.Prototype

darray implementation that only stores array metadata (dimensions and attributes).

	
attributes

	Return a description of the array attributes.

	
dimensions

	Return a description of the array dimensions.

	
ndim

	Return the number of dimensions in the array.

	
shape

	Return the shape (size along each dimension) of the array.

	
size

	Return the size (total number of elements) of the array.

slycat.hdf5

	
class slycat.hdf5.ArraySet(file)

	Bases: object

Wraps an instance of h5py.File to implement a Slycat arrayset.

	
array_count()

	Note: this assumes that array indices are contiguous, which we don’t explicitly enforce.

	
keys()

	

	
start_array(array_index, dimensions, attributes)

	Add an uninitialized darray to the arrayset.

An existing array with the same index will be overwritten.

	Parameters

	
	array_index (integer, required.) – Zero-based index of the array to create.

	dimensions (list of dicts, required.) – Description of the new array dimensions.

	attributes (list of dicts, required.) – Description of the new array attributes.

	Returns

	array

	Return type

	slycat.hdf5.DArray

	
store_array(array_index, array)

	Store a slycat.darray.Prototype in the arrayset.

An existing array with the same index will be overwritten.

	Parameters

	
	array_index (integer, required.) – The index of the array to be created / overwritten.

	array (slycat.darray.Prototype, required.) – Existing darray to be stored.

	Returns

	array

	Return type

	slycat.hdf5.DArray

	
class slycat.hdf5.DArray(storage)

	Bases: slycat.darray.Prototype

Slycat darray implementation that stores data in an HDF5 file.

	
attributes

	Return metadata describing the darray attributes.

	Returns

	attributes

	Return type

	list of dicts

	
dimensions

	Return metadata describing the darray dimensions.

	Returns

	dimensions

	Return type

	list of dicts

	
get_data(attribute)

	Return a reference to the data storage for a darray attribute.

	Parameters

	attribute (integer, optional) – The integer index of the attribute data to retrieve.

	Returns

	data – An object implementing a subset of the numpy.ndarray interface
that contains the attribute data. Note that the returned object only
references the underlying data - data is not retrieved from the file
until you access it using the [] operator.

	Return type

	reference to a numpy-array-like object.

	
get_statistics(attribute)

	Return statistics describing one attribute.

	
get_unique(attribute, hyperslice)

	

	
ndim

	Return the number of dimensions in the darray.

	Returns

	ndim – The number of dimensions in the darray.

	Return type

	integer

	
set_data(attribute, hyperslice, data)

	Overwrite the contents of a darray attribute.

	Parameters

	
	attribute (integer) – The zero-based integer index of the attribute to be overwritten.

	hyperslice (integer, slice, Ellipsis, or tuple containing one or more integer, slice, and Ellipsis instances.) – Defines the attribute region to be overwritten.

	data (numpy.ndarray) – Data to be written to the attribute.

	
shape

	Return the darray shape (its size along each dimension).

	Returns

	shape – The size of the darray along each dimension.

	Return type

	tuple of integers

	
size

	Return the darray size (total number of elements stored in the darray).

	Returns

	size – The total number of elements stored in the darray.

	Return type

	integer

	
slycat.hdf5.dtype(type)

	Convert a string attribute type into a dtype suitable for use with h5py.

	
slycat.hdf5.path(array, directory)

	

	
slycat.hdf5.start_arrayset(file)

	Create a new array set using an open hdf5 file.

	Parameters

	file (h5py.File, required.) – An hdf5 file open for writing.

	Returns

	arrayset

	Return type

	slycat.hdf5.ArraySet

slycat.hyperchunks

Functionality for working with hyperchunk specifications (collections of array/attribute/slice information).

	
slycat.hyperchunks.arrays(hyperchunks, array_count)

	Iterate over the arrays in a set of hyperchunks.

	
slycat.hyperchunks.parse(string)

	Parse a string hyperchunks representation.

	Parameters

	string (string representation of a hyperchunk.) –

	Returns

	hyperchunks

	Return type

	parsed representation of a hyperchunk.

	
slycat.hyperchunks.tostring(value)

	Convert hyperchunks to their string representation.

slycat.table

slycat.timeseries

slycat.timeseries.segmentation

slycat.uri

Provides server-side functionality for creating, parsing, and editing Uniform
Resource Identifiers (URIs) using an API that is based on the excellent
URI.js [http://medialize.github.io/URI.js/] library (which is available for
Slycat clients).

	
class slycat.uri.URI(value='')

	Bases: object

Encapsulates URI creation and editing with a URI.js compatible interface.

	
hostname(value=None)

	Return / assign the URI hostname.

	
href(value=None)

	Return / assign the string representation of a URI.

	
password(value=None)

	Return / assign the URI password.

	
port(value=None)

	Return / assign the URI port.

	
protocol(value=None)

	Return / assign the URI protocol.

	
removeQuery(keys, value=None)

	Alias for URI.removeSearch().

	
removeSearch(keys, value=None)

	Remove values from the URI search section.

	
scheme()

	Alias for URI.protocol()

	
toString()

	Return the string representation of the URI.

	
username(value=None)

	Return / assign the URI username.

	
valueOf()

	Return the string representation of the URI.

slycat.web.client

	
class slycat.web.client.ArgumentParser(*arguments, **keywords)

	Bases: argparse.ArgumentParser

Return an instance of argparse.ArgumentParser, pre-configured with arguments to connect to a Slycat server.

	
parse_args()

	

	
class slycat.web.client.Connection(host='http://localhost:8092', **keywords)

	Bases: object

Encapsulates a set of requests to the given host. Additional keyword
arguments must be compatible with the Python Requests library,
http://docs.python-requests.org/en/latest

	
delete_model(mid)

	Delete an existing model.

	Parameters

	mid (string, required) – The unique model identifier.

See also

DELETE /models/(mid)

	
delete_project(pid)

	Delete an existing project.

	Parameters

	pid (string, required) – The unique project identifier.

See also

DELETE /projects/(pid)

	
delete_project_cache_object(pid, key)

	Delete an existing project cache object.

	Parameters

	
	pid (string, required) – The unique project identifier.

	key (string, required) – Unique cache object key.

See also

DELETE /projects/(pid)/cache/(key)

	
delete_reference(rid)

	Delete an existing reference.

	Parameters

	rid (string, required) – The unique reference identifier.

See also

DELETE /references/(rid)

	
delete_remote(sid)

	Delete an existing remote session.

	Parameters

	sid (string, required) – The unique remote session identifier.

See also

DELETE /remotes/(sid)

	
find_or_create_project(name, description='')

	Return a project identified by name, or newly created.

	Parameters

	
	name (string, required) – The name of the project to return (or create).

	description (string, optional) – Description to use for the new project (if a new project is created).

	Returns

	pid – Unique identifier of the matching (or newly created) project.

	Return type

	string

	Raises

	Exception – If more than one project matches the given name.

See also

post_projects()

	
find_project(name)

	Return a project identified by name.

	Parameters

	name (string, required) – The name of the project to return.

	Returns

	project

	Return type

	The matching project, which is an arbitrary collection of JSON-compatible data.

	Raises

	Exception – If a project with a matching name can’t be found, or more than one project matches the name.

See also

find_or_create_project(), get_projects()

	
get_bookmark(bid)

	Retrieve an existing bookmark.

	Parameters

	bid (string, required) – The unique bookmark identifier.

	Returns

	bookmark – The bookmark object, which is an arbitrary collection of
JSON-compatible data.

	Return type

	object

See also

GET /bookmarks/(bid)

	
get_configuration_markings()

	Retrieve marking information from the server.

	Returns

	markings

	Return type

	server marking information.

See also

GET /configuration/markings

	
get_configuration_parsers()

	Retrieve parser plugin information from the server.

	Returns

	parsers

	Return type

	server parser plugin information.

See also

GET /configuration/parsers

	
get_configuration_remote_hosts()

	Retrieve remote host information from the server.

	Returns

	parsers

	Return type

	server remote host information.

See also

GET /configuration/remote-hosts

	
get_configuration_support_email()

	Retrieve support email information from the server.

	Returns

	parsers

	Return type

	server support email information.

See also

GET /configuration/support-email

	
get_configuration_version()

	Retrieve version information from the server.

	Returns

	version

	Return type

	server version information.

See also

GET /configuration/version

	
get_configuration_wizards()

	Retrieve wizard plugin information from the server.

	Returns

	version

	Return type

	server wizard plugin information.

See also

GET /configuration/wizards

	
get_global_resource(resource)

	

	
get_model(mid)

	Retrieve an existing model.

	Parameters

	mid (string, required) – The unique model identifier

	Returns

	model – The model object, which is an arbitrary collection of
JSON-compatible data.

	Return type

	object

See also

GET /models/(mid)

	
get_model_arrayset_metadata(mid, aid, arrays=None, statistics=None, unique=None)

	Retrieve metadata describing an existing model arrayset artifact.

	Parameters

	
	mid (string, required) – The unique model identifier.

	aid (string, required) – The unique artifact identifier.

	arrays (string, optional) – A set of arrays, specified using HQL.

	statistics (string, optional) – A set of attributes, specified using HQL.

	unique (string, optional) – A set of attributes, specified using HQL.

	Returns

	metadata – The arrayset metadata, which is an arbitrary collection of
JSON-compatible data.

	Return type

	object

See also

GET /models/(mid)/arraysets/(aid)/metadata

	
get_model_file(mid, aid)

	

	
get_model_parameter(mid, aid)

	Retrieve a model parameter artifact.

Model parameters are JSON objects of arbitrary complexity. They are stored directly within the model
as part of its database record, so they should be limited in size (larger data should be stored using
arraysets or files).

	Parameters

	
	mid (string, required) – Unique model identifier.

	aid (string, required) – Unique (within the model) artifact id.

	Returns

	parameter

	Return type

	JSON-compatible object

See also

PUT /models/(mid)/parameters/(aid)

	
get_model_resource(mtype, resource)

	

	
get_project(pid)

	Retrieve an existing project.

	Parameters

	pid (string, required) – Unique project identifier.

	Returns

	project

	Return type

	Arbitrary collection of JSON-compatible data.

See also

GET /projects/(pid)

	
get_project_cache_object(pid, key)

	Retrieve an object from a project cache.

	Parameters

	
	pid (string, required) – Unique project identifier.

	key (string, required) – Cache object identifier.

	Returns

	content

	Return type

	Cached object content.

See also

GET /projects/(pid)/cache/(key)

	
get_project_models(pid)

	Returns every model in a project.

	
get_project_references(pid)

	Returns every reference in a project.

	
get_projects()

	Retrieve all projects.

	Returns

	projects

	Return type

	List of projects. Each project is an arbitrary collection of JSON-compatible data.

See also

GET /projects

	
get_remote_file(sid, path, cache=None, project=None, key=None)

	Retrieve a file using a remote session.

	Parameters

	
	sid (string, required) – Unique remote session identifier.

	path (string, required) – Remote filesystem path (must be absolute).

	cache (string, optional) – Optional server-side cache for the retrieved file. Must be None or “project”.

	project (string, optional) – If cache is set to “project”, this must specify a unique project identifier.

	key (string, optional) – if cache is set to “project”, this must specify a unique key for the cached object.

	Returns

	file

	Return type

	Remote file contents.

See also

GET /remotes/(sid)/file(path)

	
get_remote_image(sid, path, cache=None, project=None, key=None)

	Retrieve an image using a remote session.

	Parameters

	
	sid (string, required) – Unique remote session identifier.

	path (string, required) – Remote filesystem path (must be absolute).

	cache (string, optional) – Optional server-side cache for the retrieved image. Must be None or “project”.

	project (string, optional) – If cache is set to “project”, this must specify a unique project identifier.

	key (string, optional) – if cache is set to “project”, this must specify a unique key for the cached object.

	Returns

	image

	Return type

	Remote image contents.

See also

GET /remotes/(sid)/image(path)

	
get_user(uid=None)

	Retrieve directory information about an existing user.

	Parameters

	uid (string, optional) – Unique user identifier. If unspecified, returns information about the user making the call.

	Returns

	user

	Return type

	Arbitrary collection of JSON-compatible data.

See also

GET /users/(uid)

	
get_wizard_resource(wtype, resource)

	

	
join_model(mid)

	Wait for a model to complete before returning.

A Slycat model goes through several distinct phases over its lifetime:

	The model is created.

	Input artifacts are pushed into the model.

	The model is marked “finished”.

	Optional one-time computation is performed on the server, storing output artifacts.

	The model is complete and ready to be viewed.

Use this function in scripts that have performed steps 1, 2, and 3 and need to wait until
step 4 completes.

	Parameters

	mid (string, required) – Unique model identifier.

Notes

A model that hasn’t been finished will never complete - you should
ensure that post_model_finish() is called successfully before calling
join_model().

See also

post_model_finish()

	
post_events(path, parameters={})

	

	
post_model_files(mid, aids, files, parser, input=True, parameters={})

	Stores a model file artifacts.

	
post_model_finish(mid)

	Notify the server that a model is fully initialized.

When called, the server will perform one-time computation
for the given model type.

	Parameters

	mid (string, required) – Unique model identifier.

See also

POST /models/(mid)/finish

	
post_project_bookmarks(pid, bookmark)

	Store a bookmark.

	Parameters

	
	pid (string, required) – Unique project identifier.

	bookmark (object) – Arbitrary collection of JSON-compatible data.

	Returns

	bid – Unique bookmark identifier.

	Return type

	string

See also

POST /projects/(pid)/bookmarks

	
post_project_models(pid, mtype, name, marking='', description='')

	Creates a new model, returning the model ID.

	
post_project_references(pid, name, mtype=None, mid=None, bid=None)

	Store a project reference.

	Parameters

	
	pid (string, required) – Unique project identifier.

	name (string, required) – Reference name.

	mtype (string, optional) – Optional model type.

	mid (string, optional) – Optional model identifier.

	bid (string, optional) – Optional bookmark identifier.

	Returns

	rid – Unique reference identifier.

	Return type

	string

See also

POST /projects/(pid)/references

	
post_projects(name, description='')

	Creates a new project, returning the project ID.

	
post_remote_browse(sid, path, file_reject=None, file_allow=None, directory_allow=None, directory_reject=None)

	

	
post_remotes(hostname, username, password, agent=None)

	

	
put_model(mid, model)

	

	
put_model_arrayset(mid, aid, input=True)

	Starts a new model array set artifact, ready to receive data.

	
put_model_arrayset_array(mid, aid, array, dimensions, attributes)

	Starts a new array set array, ready to receive data.

	
put_model_arrayset_data(mid, aid, hyperchunks, data, force_json=False)

	Write data to an arrayset artifact on the server.

	Parameters

	
	mid (string, required) – Unique model identifier.

	aid (string, required) – Unique (to the model) arrayset artifact id.

	hyperchunks (string, required) – Specifies where the data will be stored, in Hyperchunks format.

	data (iterable, required)) – A collection of numpy.ndarray data chunks to be uploaded. The number of
data chunks must match the number implied by the hyperchunks parameter.

	force_json (bool, optional)) – Force the client to upload data using JSON instead of the binary format.

See also

PUT /models/(mid)/arraysets/(aid)/data

	
put_model_inputs(source, target)

	

	
put_model_parameter(mid, aid, value, input=True)

	Store a model parameter artifact.

Model parameters are JSON objects of arbitrary complexity. They are stored directly within the model
as part of its database record, so they should be limited in size (larger data should be stored using
arraysets or files).

To get the value of a parameter artifact, use get_model() and read the value
directly from the model record. An artifact id foo will be accessible in the
record as model[“artifact:foo”].

	Parameters

	
	mid (string, required) – Unique model identifier.

	aid (string, required) – Unique (within the model) artifact id.

	value (object, required) – An arbitrary collection of JSON-compatible data.

	input (boolean, optional) – Marks whether this artifact is a model input.

See also

PUT /models/(mid)/parameters/(aid)

	
put_project(pid, project)

	Modifies a project.

	
request(method, path, **keywords)

	Makes a request with the given HTTP method and path, returning the body of
the response. Additional keyword arguments must be compatible with the
Python Requests library, http://docs.python-requests.org/en/latest

	
update_model(mid, **kwargs)

	Update model state.

This function provides a more convenient alternative to put_model().

See also

put_model()

	
slycat.web.client.connect(arguments, **keywords)

	Factory function for client connections that takes an option parser as input.

slycat.web.server

	
slycat.web.server.check_https_get_remote_ip()

	checks that the connection is https and then returns the users remote ip
:return: remote ip

	
slycat.web.server.check_rules(groups)

	

	
slycat.web.server.check_user(session_user, apache_user, couchdb, sid, session)

	check to see if the session user is equal to the apache user raise 403 and delete the
session if they are not equal
:param session_user: user_name in the couchdb use session
:param apache_user: user sent in the apache header “authuser”
:param couchdb: hook to couch
:param sid: session id
:param session: session object from couch
:return:

	
slycat.web.server.checkjob(sid, jid)

	Submits a command to the slycat-agent to check the status of a submitted job to a cluster running SLURM.

	Parameters

	
	sid (int) – Session identifier

	jid (int) – Job identifier

	Returns

	response – A dictionary with the following keys: jid, status, errors

	Return type

	dict

	
slycat.web.server.clean_up_old_session()

	try and delete any outdated sessions
for the user if they have the cookie for it
:return:no-op

	
slycat.web.server.create_session(hostname, username, password)

	Create a cached remote session for the given host.

	Parameters

	
	hostname (string) – Name of the remote host to connect via SSH.

	username (string) – Username for SSH authentication.

	password (string) – Password for SSH authentication

	Returns

	sid – A unique session identifier.

	Return type

	string

	
slycat.web.server.create_single_sign_on_session(remote_ip, auth_user)

	WSGI/RevProxy no-login session creations.
Successful authentication and access verification,
create a session and return.
:return: not used

	
slycat.web.server.decode_username_and_password()

	decode the url from the json that was passed to us
:return: decoded url and password as a tuple

	
slycat.web.server.delete_model_parameter(database, model, aid)

	Delete a model parameter in the couch database
:param database:
:param model: model from the couchdb
:param aid: artifact id
:return: not used

	
slycat.web.server.evaluate(hdf5_array, expression, expression_type, expression_level=0)

	Evaluate a hyperchunk expression.

	
slycat.web.server.get_model_file(database, model, aid)

	

	
slycat.web.server.get_model_lock(model_id)

	

	
slycat.web.server.get_model_parameter(database, model, aid)

	

	
slycat.web.server.get_password_function()

	

	
slycat.web.server.get_remote_file(sid, path)

	Returns the content of a file from a remote system.

	Parameters

	
	sid (int) – Session identifier

	path (string) – Path for the requested file

	Returns

	content – Content of the requested file

	Return type

	string

	
slycat.web.server.get_remote_file_server(client, sid, path)

	Returns the content of a file from a remote system.

	Parameters

	
	sid (int) – Session identifier

	path (string) – Path for the requested file

	Returns

	content – Content of the requested file

	Return type

	string

	
slycat.web.server.mix(a, b, amount)

	Linear interpolation between two numbers. Useful for computing model progress.

	
slycat.web.server.post_model_file(mid, input=None, sid=None, path=None, aid=None, parser=None, client=None, **kwargs)

	

	
slycat.web.server.put_model_array(database, model, aid, array_index, attributes, dimensions)

	store array for model

	Parameters

	
	database – database of model

	model – model as an object

	aid – artifact id (eg data-table)

	array_index – index of the array

	attributes – name and type in column

	dimensions – number of data rows

	Returns

	

	
slycat.web.server.put_model_arrayset(database, model, aid, input=False)

	Start a new model array set artifact.
:param database: the database with our model
:param model: the model
:param aid: artifact id
:param input:
:return:

	
slycat.web.server.put_model_arrayset_data(database, model, aid, hyperchunks, data)

	Write data to an arrayset artifact.

	Parameters

	
	database (database object, required) –

	model (model object, required) –

	aid (string, required) – Unique (to the model) arrayset artifact id.

	hyperchunks (string or hyperchunks parse tree, required) – Specifies where the data will be stored, in Hyperchunks format.

	data (iterable, required)) – A collection of numpy.ndarray data chunks to be stored. The number of
data chunks must match the number implied by the hyperchunks parameter.

See also

PUT /models/(mid)/arraysets/(aid)/data

	
slycat.web.server.put_model_file(database, model, aid, value, content_type, input=False)

	

	
slycat.web.server.put_model_inputs(database, model, source, deep_copy=False)

	

	
slycat.web.server.put_model_parameter(database, model, aid, value, input=False)

	

	
slycat.web.server.response_url()

	get the resonse_url and clean it to make sure
that we are not being spoofed
:return: url to route to once signed in

	
slycat.web.server.ssh_connect(hostname=None, username=None, password=None)

	

	
slycat.web.server.update_model(database, model, **kwargs)

	Update the model, and signal any waiting threads that it’s changed.
will only update model base on “state”, “result”, “started”, “finished”, “progress”, “message”

slycat.web.server.authentication

	
slycat.web.server.authentication.is_project_administrator(project)

	Return True if the current request is from a project administrator.

	
slycat.web.server.authentication.is_project_reader(project)

	Return True if the current request is from a project reader.

	
slycat.web.server.authentication.is_project_writer(project)

	Return True if the current request is from a project writer.

	
slycat.web.server.authentication.is_server_administrator()

	Return True if the current request is from a server administrator.

	
slycat.web.server.authentication.project_acl(project)

	Extract ACL information from a project.

	
slycat.web.server.authentication.require_project_administrator(project)

	Raise an exception if the current request doesn’t have project administrator privileges.

	
slycat.web.server.authentication.require_project_reader(project)

	Raise an exception if the current request doesn’t have project read privileges.

	
slycat.web.server.authentication.require_project_writer(project)

	Raise an exception if the current request doesn’t have project write privileges.

	
slycat.web.server.authentication.require_server_administrator()

	Raise an exception if the current request doesn’t have server administrator privileges.

	
slycat.web.server.authentication.test_project_administrator(project)

	Return True if the current request has project administrator privileges.

	
slycat.web.server.authentication.test_project_reader(project)

	Return True if the current request has project read privileges.

	
slycat.web.server.authentication.test_project_writer(project)

	Return True if the current request has project write privileges.

	
slycat.web.server.authentication.test_server_administrator()

	Return True if the current request has server administrator privileges.

slycat.web.server.database.couchdb

Slycat uses CouchDB [http://couchdb.apache.org] as its primary storage
for projects, models, bookmarks, metadata, and small model artifacts. For
large model artifacts such as darrays, the CouchDB
database stores links to HDF5 files stored on disk.

	
class slycat.web.server.database.couchdb.Database(database)

	Wraps a couchdb.client.Database to convert CouchDB exceptions into CherryPy exceptions.

	
changes(*arguments, **keywords)

	

	
delete(*arguments, **keywords)

	

	
get(type, id)

	

	
get_attachment(*arguments, **keywords)

	

	
put_attachment(*arguments, **keywords)

	

	
save(*arguments, **keywords)

	

	
scan(path, **keywords)

	

	
view(*arguments, **keywords)

	

	
write_file(document, content, content_type)

	

	
slycat.web.server.database.couchdb.connect()

	Connect to a CouchDB database.

	Returns

	database

	Return type

	slycat.web.server.database.couchdb.Database

slycat.web.server.engine

	
class slycat.web.server.engine.SessionIdFilter

	Bases: logging.Filter

Python log filter to keep session ids out of logfiles.

	
filter(record)

	Determine if the specified record is to be logged.

Is the specified record to be logged? Returns 0 for no, nonzero for
yes. If deemed appropriate, the record may be modified in-place.

	
slycat.web.server.engine.start(root_path, config_file)

	

slycat.web.server.handlers

	
slycat.web.server.handlers.css_bundle()

	

	
slycat.web.server.handlers.delete_job(hostname, jid)

	

	
slycat.web.server.handlers.delete_model(mid)

	

	
slycat.web.server.handlers.delete_model_parameter(mid, aid)

	delete a model artifact
:param mid: model Id
:param aid: artifact id
:return:

	
slycat.web.server.handlers.delete_project(pid)

	

	
slycat.web.server.handlers.delete_project_cache(pid)

	clears all the cached images and videos for a project
given a project ID
:param pid: Project ID
:return: status

	
slycat.web.server.handlers.delete_project_cache_object(pid, key)

	

	
slycat.web.server.handlers.delete_reference(rid)

	

	
slycat.web.server.handlers.delete_remote(sid)

	

	
slycat.web.server.handlers.delete_upload(uid)

	cleans up an upload session throws 409
if the session is busy
:param uid:
:return: not used

	
slycat.web.server.handlers.get_bookmark(bid)

	

	
slycat.web.server.handlers.get_checkjob(hostname, jid)

	

	
slycat.web.server.handlers.get_configuration_ga_tracking_id()

	

	
slycat.web.server.handlers.get_configuration_injected_code()

	

	
slycat.web.server.handlers.get_configuration_markings()

	

	
slycat.web.server.handlers.get_configuration_parsers()

	

	
slycat.web.server.handlers.get_configuration_remote_hosts()

	

	
slycat.web.server.handlers.get_configuration_support_email()

	

	
slycat.web.server.handlers.get_configuration_version()

	

	
slycat.web.server.handlers.get_configuration_wizards()

	

	
slycat.web.server.handlers.get_global_resource(resource)

	

	
slycat.web.server.handlers.get_job_output(hostname, jid, path)

	

	
slycat.web.server.handlers.get_model(mid, **kwargs)

	

	
slycat.web.server.handlers.get_model_array_attribute_chunk(mid, aid, array, attribute, **arguments)

	

	
slycat.web.server.handlers.get_model_arrayset_data(mid, aid, hyperchunks, byteorder=None)

	

	
slycat.web.server.handlers.get_model_arrayset_metadata(mid, aid, **kwargs)

	

	
slycat.web.server.handlers.get_model_file(mid, aid)

	

	
slycat.web.server.handlers.get_model_parameter(mid, aid)

	

	
slycat.web.server.handlers.get_model_statistics(mid)

	returns statistics on the model
:param mid: model ID
:return json: {

“mid”:mid,
“hdf5_file_size”:hdf5_file_size,
“total_server_data_size”: total_server_data_size,
“hdf5_store_size”:total_hdf5_server_size,
“model”:model,
“delta_creation_time”:delta_creation_time,
“couchdb_doc_size”: sys.getsizeof(model)

}

	
slycat.web.server.handlers.get_model_table_chunk(mid, aid, array, rows=None, columns=None, index=None, sort=None)

	

	
slycat.web.server.handlers.get_model_table_metadata(mid, aid, array, index=None)

	

	
slycat.web.server.handlers.get_model_table_sorted_indices(mid, aid, array, rows=None, index=None, sort=None, byteorder=None)

	

	
slycat.web.server.handlers.get_model_table_unsorted_indices(mid, aid, array, rows=None, index=None, sort=None, byteorder=None)

	

	
slycat.web.server.handlers.get_page(ptype)

	

	
slycat.web.server.handlers.get_page_resource(ptype, resource)

	

	
slycat.web.server.handlers.get_project(pid)

	returns a project based on “content-type” header
:param pid: project ID
:return: Either html landing page of given project or the json
representation of the project

	
slycat.web.server.handlers.get_project_cache_object(pid, key)

	

	
slycat.web.server.handlers.get_project_models(pid)

	

	
slycat.web.server.handlers.get_project_references(pid)

	

	
slycat.web.server.handlers.get_projects(_=None)

	returns either and array of projects or html for displaying the projects
:param _:
:return:

	
slycat.web.server.handlers.get_projects_list(_=None)

	returns either and array of projects or html for displaying the projects
:param _:
:return:

	
slycat.web.server.handlers.get_remote_file(hostname, path, **kwargs)

	Given a hostname and file path returns the file given
by the path
:param hostname: connection host name
:param path: path to file
:param kwargs:
:return: file

	
slycat.web.server.handlers.get_remote_host_dict()

	

	
slycat.web.server.handlers.get_remote_image(hostname, path, **kwargs)

	Given a hostname and image path returns the image given
by the path
:param hostname: connection host name
:param path: path to image
:param kwargs:
:return: image

	
slycat.web.server.handlers.get_remote_job_status(hostname, jid)

	

	
slycat.web.server.handlers.get_remote_show_user_password()

	checks to see if the application needs to show password
:return: json {show:bool, msg:msg}

	
slycat.web.server.handlers.get_remote_video(hostname, vsid)

	Given a hostname and vsid returns the video given
by the vsid
:param hostname: connection host name
:param vsid: video uuid
:return: video

	
slycat.web.server.handlers.get_remote_video_status(hostname, vsid)

	Given a hostname and vsid returns the video status given
by the vsid
:param hostname: connection host name
:param vsid: video uuid
:return: json

	
slycat.web.server.handlers.get_remotes(hostname)

	Returns {status: True} if the hostname was found in the user’s
session
:param hostname: connection host name
:return: {“status”:status, “msg”:msg}

	
slycat.web.server.handlers.get_root()

	Redirect all requests to “/” to “/projects”
Not sure why we used to do that, but after conversion to webpack this is no longer needed,
so I changed the projects-redirect config parameter in web-server-config.ini to just “/”

	
slycat.web.server.handlers.get_session_status(hostname)

	

	
slycat.web.server.handlers.get_sid(hostname)

	Takes a hostname address and returns the established sid value
base on what is found in the users session
raises 400 and 404
:param hostname: name of the host we are trying to connect to
:return: sid : uuid for the session name

	
slycat.web.server.handlers.get_table_metadata(file, array_index, index)

	Return table-oriented metadata for a 1D array, plus an optional index column.

	
slycat.web.server.handlers.get_table_sort_index(file, metadata, array_index, sort, index)

	

	
slycat.web.server.handlers.get_time_series_names(hostname, path, **kwargs)

	Parse a time series csv for all column names
:param hostname: connection host name
:param path: path to csv file
:param kwargs:
:return: json object of column names

	
slycat.web.server.handlers.get_user(uid)

	

	
slycat.web.server.handlers.get_user_config(hostname)

	

	
slycat.web.server.handlers.get_wizard_resource(wtype, resource)

	

	
slycat.web.server.handlers.job_time(nodes, tasks, size)

	gives the time in seconds recommended given job meta data
:param nodes: number of hpc nodes for job
:param tasks: number of tasks per node for job
:param size: size of data file used in the job
:return: json time in seconds as an integer {‘time-seconds’: 1800}

	
slycat.web.server.handlers.js_bundle()

	

	
slycat.web.server.handlers.login()

	Takes the post object under cherrypy.request.json with the users name and password
and determins with the user can be authenticated with slycat
:return: authentication status

	
slycat.web.server.handlers.logout()

	See if the client has a valid session.
If so delete it
:return: the status of the request

	
slycat.web.server.handlers.model_command(mid, type, command, **kwargs)

	

	
slycat.web.server.handlers.model_sensitive_command(mid, type, command)

	

	
slycat.web.server.handlers.open_id_authenticate(**params)

	takes the openid parameter sent
to this function and logs in a user
:param params: openid params as a dictionary
:return: not used

	
slycat.web.server.handlers.post_events(event)

	

	
slycat.web.server.handlers.post_log()

	send post json {“message”:”message”} to log client errors onto the
client server
:return:

	
slycat.web.server.handlers.post_model_arrayset_data(mid, aid)

	get the arrayset data based on aid, mid, byteorder, and hyperchunks

requires hyperchunks to be included in the json payload

	Parameters

	
	mid – model id

	aid – artifact id

	Returns

	stream of data

	
slycat.web.server.handlers.post_model_files(mid, input=None, files=None, sids=None, paths=None, aids=None, parser=None, **kwargs)

	

	
slycat.web.server.handlers.post_model_finish(mid)

	

	
slycat.web.server.handlers.post_project_bookmarks(pid)

	

	
slycat.web.server.handlers.post_project_models(pid)

	When a pid along with json “model-type”, “marking”, “name” is sent with POST
creates a model and saves it to the database
:param pid: project ID for created model
:return: json {“id” : mid}

	
slycat.web.server.handlers.post_project_references(pid)

	

	
slycat.web.server.handlers.post_projects()

	

	
slycat.web.server.handlers.post_remote_browse(hostname, path)

	

	
slycat.web.server.handlers.post_remote_command(hostname)

	run a remote command from the list of pre-registered commands
that are located on a remote agent.
:param hostname: name of the hpc host
:return: {

“message”: a message that is supplied by the agent,
“command”: an echo of the command
that was sent to the server and the agent,
“error”: boolean describing if there was an agent error,
“available_scripts”: [{

“name”: script_name,
“description”: script_description,
“parameters”: [{

“name”: parameter_name as string,
“description”: description of the param string,
“example”:example usage string,
“type”: field type eg string, int…

}]

}]list of available scripts from the agent

}

	
slycat.web.server.handlers.post_remote_launch(hostname)

	

	
slycat.web.server.handlers.post_remotes()

	Given username, hostname, password as a json payload
establishes a session with the remote host and attaches
it to the users session
:return: {“sid”:sid, “status”:boolean, msg:”“}

	
slycat.web.server.handlers.post_submit_batch(hostname)

	

	
slycat.web.server.handlers.post_upload_finished(uid)

	ask the server to finish the upload
:param uid: upload session ID
:return: status of upload

	
slycat.web.server.handlers.post_uploads()

	creates a session for uploading a file to
:return: Upload ID

	
slycat.web.server.handlers.put_model(mid)

	

	
slycat.web.server.handlers.put_model_arrayset(mid, aid)

	

	
slycat.web.server.handlers.put_model_arrayset_array(mid, aid, array)

	

	
slycat.web.server.handlers.put_model_arrayset_data(mid, aid, hyperchunks, data, byteorder=None)

	

	
slycat.web.server.handlers.put_model_inputs(mid)

	

	
slycat.web.server.handlers.put_model_parameter(mid, aid)

	

	
slycat.web.server.handlers.put_project(pid)

	

	
slycat.web.server.handlers.put_reference(rid)

	

	
slycat.web.server.handlers.put_upload_file_part(uid, fid, pid, file=None, hostname=None, path=None)

	

	
slycat.web.server.handlers.require_array_json_parameter(name)

	

	
slycat.web.server.handlers.require_boolean_json_parameter(name)

	

	
slycat.web.server.handlers.require_integer_array_json_parameter(name)

	

	
slycat.web.server.handlers.require_integer_parameter(value, name)

	

	
slycat.web.server.handlers.require_json_parameter(name)

	checks to see if the parameter is in the cherrypy.request.json
and errors gracefully if it is not there
:param name: name of json param
:return: value of the json param

	
slycat.web.server.handlers.run_agent_function(hostname)

	

	
slycat.web.server.handlers.set_user_config(hostname)

	

	
slycat.web.server.handlers.tests_request(*arguments, **keywords)

	

	
slycat.web.server.handlers.validate_table_byteorder(byteorder)

	

	
slycat.web.server.handlers.validate_table_columns(columns)

	

	
slycat.web.server.handlers.validate_table_rows(rows)

	

	
slycat.web.server.handlers.validate_table_sort(sort)

	

slycat.web.server.hdf5

	
slycat.web.server.hdf5.create(array)

	Create a new array in the data store, ready for writing.

	
slycat.web.server.hdf5.delete(array)

	Remove an array from the data store.

	
class slycat.web.server.hdf5.null_lock

	Bases: object

Do-nothing replacement for a thread lock, useful for debugging threading problems with h5py.

	
slycat.web.server.hdf5.open(array, mode='r')

	Open an array from the data store for reading.

	
slycat.web.server.hdf5.path(array)

	Convert an array identifier to a data store filesystem path.

slycat.web.server.plugin

	
class slycat.web.server.plugin.Manager

	Bases: object

Manages server plugin modules.

	
load(plugin_path)

	Load plugin modules from a filesystem.

If the the given path is a directory, loads all .py files in the directory
(non-recursive). Otherwise, assumes the path is a module and loads it.

	
register_directory(type, init, user)

	Register a new directory type.

	Parameters

	
	type (string, required) – A unique identifier for the new directory type.

	init (callable, required) – Called with parameters specified by an adminstrator in the server
config.ini to initialize the directory.

	user (callable, required) – Called with a username to retrieve information about a user. Must return
a dictionary containing user metadata.

	
register_marking(type, label, badge, page_before=None, page_after=None)

	Register a new marking type.

	Parameters

	
	type (string, required) – A unique identifier for the new marking type.

	label (string, required) – Human-readable string used to represent the marking in the user interface.

	badge (string, required) – HTML representation used to display the marking as a “badge”. The HTML
must contain everything needed to properly format the marking, including
inline CSS styles.

	page_before (string, optional) – HTML representation used to display the marking at the top of an HTML page.
If left unspecified, the badge representation will be used instead.

	page_after (string, optional) – HTML representation used to display the marking at the bottom of an HTML page.
If left unspecified, the badge representation will be used instead.

	that the page_before and page_after markup need not be self-contained, i.e. they (Note) –

	be used together to define a "container" that encloses the page markup. (may) –

	
register_model(type, finish, ptype=None)

	Register a new model type.

	Parameters

	
	type (string, required) – A unique identifier for the new model type.

	finish (callable, required) – Called to finish (perform computation on) a new instance of the model.

	ptype (string, optional) – A unique page type identifier to be used as the default interface when
viewing the model. Defaults to the same string as the model type.

	
register_model_command(verb, type, command, handler)

	Register a custom request handler.

	Parameters

	
	verb (string, required) – The HTTP verb for the command, “GET”, “POST”, or “PUT”.

	type (string, required) – Unique category for the command. Typically, this would be a model, parser, or wizard type.

	command (string, required) – Unique command name.

	handler (callable, required) – Called with the database, model, verb, type, command, and optional keyword parameters to handle a matching client request.

	
register_page(type, html)

	Register a new page type.

	Parameters

	
	type (string, required) – A unique identifier for the new page type.

	html (callable, required) – Called to generate an HTML representation of the page.

	
register_page_bundle(type, content_type, paths)

	

	
register_page_resource(type, resource, path)

	Register a custom resource associated with a page type.

	Parameters

	
	type (string, required) – Unique identifier of an already-registered page type.

	resource (string, required) – Server endpoint to retrieve the resource.

	path (string, required) – Absolute filesystem path of the resource to be retrieved.
The resource may be a single file, or a directory.

	
register_parser(type, label, categories, parse)

	Register a new parser type.

	Parameters

	
	type (string, required) – A unique identifier for the new parser type.

	label (string, required) – Human readable label describing the parser.

	categories (list, required) – List of string categories describing the type of data this parser produces, for example “table”.

	parse (callable, required) – Called with a database, model, input flag, list of file objects, list of
artifact names, and optional keyword arguments. Must parse the file and
insert its data into the model as artifacts, returning True if
successful, otherwise False.

	
register_password_check(type, check)

	Register a new password check function.

	Parameters

	
	type (string, required) – A unique identifier for the new check type.

	check (callable, required) – Called with a realm, username, and password plus optional keyword
arguments. Must return a (success, groups) tuple, where success is True
if authentication succeeded, and groups is a (possibly empty) list of
groups to which the user belongs.

	
register_plugins()

	Called to register plugins after all plugin modules have been loaded.

	
register_tool(name, hook_point, callable)

	Register a new cherrypy tool.

	Parameters

	
	name (string, required) – A unique identifier for the new tool.

	hook_point (string, required) – CherryPy hook point where the tool will be installed.

	callable (callable object, required) – Called for every client request.

	
register_wizard(type, label, require)

	Register a wizard for creating new entities.

	Parameters

	
	type (string, required) – A unique identifier for the wizard.

	label (string, required) – Human-readable name for the wizard, displayed in the UI.

	require (dict, required) – Requirements in order to use the wizard. Supported requirements
include:

	”action”: “create” - the wizard will be used to create new objects.

	”action”: “edit” - the wizard will be used to edit existing objects.

	”action”: “delete” - the wizard will be used to delete existing objects.

	”context”: “global” - the wizard does not require any resources to run.

	”context”: “project” - the wizard requires a project to run.

	”context”: “model” - the wizard requires a model to run.

	”model-type”:[list of model types] - a model matching one of the given types is required to run the wizard.

	
register_wizard_resource(type, resource, path)

	Register a custom resource associated with a wizard.

	Parameters

	
	type (string, required) – Unique identifier of an already-registered wizard.

	resource (string, required) – Server endpoint to retrieve the resource.

	path (string, required) – Absolute filesystem path of the resource to be retrieved.

slycat.web.server.remote

Functions for managing cached remote ssh sessions.

Slycat makes extensive use of ssh and the Slycat Agent to access remote
resources located on the high performance computing platforms used to generate
ensembles. This module provides functionality to create cached remote ssh /
agent sessions that can be used to retrieve data from remote hosts. This
functionality is used in a variety of ways:

	Web clients can browse the filesystem of a remote host.

	Web clients can create a Slycat model using data stored on a remote host.

	Web clients can retrieve images on a remote host (an essential part of the Parameter Image Model).

	Web clients can retrieve video compressed from still images on a remote host.

When a remote session is created, a connection to the remote host over ssh is
created, an agent is started (only if the required configuration is present),
and a unique session identifier is returned. Callers use the session id to
retrieve the cached session and communicate with the remote host / agent. A
“last access” time for each session is maintained and updated whenever the
cached session is accessed. If a session times-out (a threshold amount of time
has elapsed since the last access) it is automatically deleted, and subsequent
use of the expired session id will fail.

Each session is bound to the IP address of the client that created it - only
the same client IP address is allowed to access the session.

	
class slycat.web.server.remote.Session(client, username, hostname, ssh, sftp, agent=None)

	Bases: object

Encapsulates an open session connected to a remote host.

Examples

Calling threads must serialize access to the Session object. To facilitate this,
a Session is a context manager - callers should always use a with statement when
accessing a session:

>>> with slycat.web.server.remote.get_session(sid) as session:
... print session.username

	
accessed

	Return the time the session was last accessed.

	
browse(path, file_reject, file_allow, directory_reject, directory_allow)

	

	
cancel_job(jid)

	Submits a command to the slycat-agent to cancel a running job on a cluster running SLURM.

	Parameters

	jid (int) – Job ID

	Returns

	response – A dictionary with the following keys: jid, output, errors

	Return type

	dict

	
checkjob(jid)

	Submits a command to the slycat-agent to check the status of a submitted job to a cluster running SLURM.

	Parameters

	jid (int) – Job ID

	Returns

	response – A dictionary with the following keys: jid, status, errors

	Return type

	dict

	
client

	Return the IP address of the client that created the session.

	
close()

	

	
get_file(path, **kwargs)

	

	
get_image(path, **kwargs)

	

	
get_job_output(jid, path)

	Submits a command to the slycat-agent to fetch the content of the a job’s output file from a cluster running SLURM.

Note that the expected format for the output file is slurm-[jid].out.

	Parameters

	jid (int) – Job ID

	Returns

	response – A dictionary with the following keys: jid, output, errors

	Return type

	dict

	
get_remote_job_status(jid)

	check of the status of a job running on an agent with a hostanemd session
:param jid: job id
:return:

	
get_user_config()

	Submits a command to the slycat-agent to fetch the content of a user’s .slycatrc file in their home directory.

	Returns

	response – A dictionary with the configuration values

	Return type

	dict

	
get_video(vsid)

	

	
get_video_status(vsid)

	

	
hostname

	Return the remote hostname accessed by the session.

	
launch(command)

	Submits a single command to a remote location via the slycat-agent or SSH.

	Parameters

	command (string) – Command

	Returns

	response – A dictionary with the following keys: command, output, errors

	Return type

	dict

	
run_agent_function(wckey, nnodes, partition, ntasks_per_node, time_hours, time_minutes, time_seconds, fn, fn_params, uid)

	Submits a command to the slycat-agent to run a predefined function on a cluster running SLURM.

	Parameters

	
	wckey (string) – Workload characterization key

	nnodes (int) – Number of nodes requested for the job

	partition (string) – Name of the partition where the job will be run

	ntasks_per_node (int) – Number of tasks to run on a node

	ntasks (int) – Number of tasks allocated for the job

	ncpu_per_task (int) – Number of CPUs per task requested for the job

	time_hours (int) – Number of hours requested for the job

	time_minutes (int) – Number of minutes requested for the job

	time_seconds (int) – Number of seconds requested for the job

	fn (string) – Name for the Slycat agent function

	fn_params (dict) – Additional params for the agent function

	Returns

	response – A dictionary with the following keys: jid, errors

	Return type

	dict

	
run_remote_command(command)

	run a remote command from an HPC source running a slycat
agent. the command could be things such as starting an hpc
script or batch job or something as simple as moving files.
the only requirement is that the script is in our list of
trusted scripts.

this_func()->calls agent_command_func()->which runs_shell_command()
-> which launches_script()-> sends_response_to_agent()->sends_response_to_server()
->sends_status_response_to_client()

	Parameters

	
	self –

	command – json form of a command to be run

	{

	“scripts”: //pre defined scripts that are registerd with the server
[{

“script_name”:”script_name”, // key for the script lookup
“parameters”: [{key:value},…] // params that are fed to the script

},…]
“hpc”: // these are the hpc commands that may be add for thing such as slurm
{

“is_hpc_job”:bol, // determins if this should be run as an hpc job
“parameters”:[{key:value},…] // things such as number of nodes

}

}
:return: {“msg”:”message from the agent”, “error”: boolean}

	
set_user_config(config)

	Submits a command to the slycat-agent to set the content of a user’s .slycatrc file in their home directory.

	Returns

	response

	Return type

	dict

	
sftp

	

	
submit_batch(filename)

	Submits a command to the slycat-agent to start an input batch file on a cluster running SLURM.

	Parameters

	filename (string) – Name of the batch file

	Returns

	response – A dictionary with the following keys: filename, jid, errors

	Return type

	dict

	
username

	Return the username used to create the session.

	
slycat.web.server.remote.cache_object(pid, key, content_type, content)

	

	
slycat.web.server.remote.check_session(sid)

	Return a true if session is active

If the session has timed-out or doesn’t exist, returns false

	Parameters

	sid (string) – Unique session identifier returned by slycat.web.server.remote.create_session().

	Returns

	

	Return type

	boolean

	
slycat.web.server.remote.create_session(hostname, username, password, agent)

	Create a cached remote session for the given host.

	Parameters

	
	hostname (string) – Name of the remote host to connect via ssh.

	username (string) – Username for ssh authentication.

	password (string) – Password for ssh authentication.

	agent (bool) – Used to require / prevent agent startup.

	Returns

	sid – A unique session identifier.

	Return type

	string

	
slycat.web.server.remote.delete_session(sid)

	Delete a cached remote session.

	Parameters

	sid (string, required) – Unique session identifier returned by slycat.web.server.remote.create_session().

	
slycat.web.server.remote.get_session(sid)

	Return a cached remote session.

If the session has timed-out or doesn’t exist, raises a 404 exception.

	Parameters

	sid (string) – Unique session identifier returned by slycat.web.server.remote.create_session().

	Returns

	session – Session object that encapsulates the connection to a remote host.

	Return type

	slycat.web.server.remote.Session

	
slycat.web.server.remote.get_session_server(client, sid)

	Return a cached remote session.

If the session has timed-out or doesn’t exist, raises a 404 exception.

	Parameters

	sid (string) – Unique session identifier returned by slycat.web.server.remote.create_session().

	Returns

	session – Session object that encapsulates the connection to a remote host.
:param client:

	Return type

	slycat.web.server.remote.Session

slycat.web.server.template

	
slycat.web.server.template.render(path, context)

	Render an HTML template using Mustache [http://mustache.github.io] syntax.

Support

For Slycat questions, comments, or suggestions, get in touch with the team at:

	https://gitter.im/sandialabs/slycat

Visit our GitHub repository for access to source code, issue tracker, and the wiki:

	http://github.com/sandialabs/slycat

 HTTP Routing Table

 / |
 /bookmarks |
 /events |
 /login |
 /logout |
 /models |
 /projects |
 /remotes |
 /resources |
 /uploads |
 /users

 		 	

 		
 /	

 	
 	
 GET /	

 		 	

 		
 /bookmarks	

 	
 	
 GET /bookmarks/(bid)	

 		 	

 		
 /events	

 	
 	
 POST /events/(event)	

 		 	

 		
 /login	

 	
 	
 POST /login	

 		 	

 		
 /logout	

 	
 	
 DELETE /logout	

 		 	

 		
 /models	

 	
 	
 GET /models/(mid)	

 	
 	
 GET /models/(mid)/arraysets/(aid)/data	

 	
 	
 GET /models/(mid)/arraysets/(aid)/metadata	

 	
 	
 GET /models/(mid)/commands/(type)/(command)	

 	
 	
 GET /models/(mid)/files/(aid)	

 	
 	
 GET /models/(mid)/parameters/(aid)	

 	
 	
 GET /models/(mid)/tables/(aid)/arrays/(array)/chunk	

 	
 	
 GET /models/(mid)/tables/(aid)/arrays/(array)/metadata	

 	
 	
 GET /models/(mid)/tables/(aid)/arrays/(array)/sorted-indices	

 	
 	
 GET /models/(mid)/tables/(aid)/arrays/(array)/unsorted-indices	

 	
 	
 POST /models/(mid)/commands/(type)/(command)	

 	
 	
 POST /models/(mid)/files	

 	
 	
 POST /models/(mid)/finish	

 	
 	
 PUT /models/(mid)	

 	
 	
 PUT /models/(mid)/arraysets/(aid)	

 	
 	
 PUT /models/(mid)/arraysets/(aid)/arrays/(array)	

 	
 	
 PUT /models/(mid)/arraysets/(aid)/data	

 	
 	
 PUT /models/(mid)/commands/(type)/(command)	

 	
 	
 PUT /models/(mid)/inputs	

 	
 	
 PUT /models/(mid)/parameters/(aid)	

 	
 	
 DELETE /models/(mid)	

 		 	

 		
 /projects	

 	
 	
 GET /projects	

 	
 	
 GET /projects/(pid)	

 	
 	
 GET /projects/(pid)/cache/(key)	

 	
 	
 GET /projects/(pid)/models	

 	
 	
 POST /projects	

 	
 	
 POST /projects/(pid)/bookmarks	

 	
 	
 POST /projects/(pid)/models	

 	
 	
 PUT /projects/(pid)	

 	
 	
 DELETE /projects/(pid)	

 	
 	
 DELETE /projects/(pid)/cache/(key)	

 		 	

 		
 /remotes	

 	
 	
 GET /remotes/(sid)/file(path)	

 	
 	
 GET /remotes/(sid)/image(path)	

 	
 	
 GET /remotes/(sid)/videos/(vsid)	

 	
 	
 GET /remotes/(sid)/videos/(vsid)/status	

 	
 	
 POST /remotes	

 	
 	
 POST /remotes/(sid)/browse(path)	

 	
 	
 POST /remotes/cancel-job	

 	
 	
 POST /remotes/checkjob	

 	
 	
 POST /remotes/get-job-output	

 	
 	
 POST /remotes/launch	

 	
 	
 POST /remotes/run-agent-function	

 	
 	
 POST /remotes/submit-batch	

 	
 	
 DELETE /remotes/(sid)	

 		 	

 		
 /resources	

 	
 	
 GET /resources/models/(mtype)/(resource)	

 		 	

 		
 /uploads	

 	
 	
 POST /uploads	

 	
 	
 POST /uploads/(uid)/finished	

 	
 	
 PUT /uploads/(uid)/files/(fid)/parts/(pid)	

 	
 	
 DELETE /uploads/(uid)	

 		 	

 		
 /users	

 	
 	
 GET /users/(uid)	

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 slycat	

 	
 	
 slycat.cca	

 	
 	
 slycat.darray	

 	
 	
 slycat.hdf5	

 	
 	
 slycat.hyperchunks	

 	
 	
 slycat.uri	

 	
 	
 slycat.web.client	

 	
 	
 slycat.web.server	

 	
 	
 slycat.web.server.authentication	

 	
 	
 slycat.web.server.database.couchdb	

 	
 	
 slycat.web.server.engine	

 	
 	
 slycat.web.server.handlers	

 	
 	
 slycat.web.server.hdf5	

 	
 	
 slycat.web.server.plugin	

 	
 	
 slycat.web.server.remote	

 	
 	
 slycat.web.server.template	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	accessed (slycat.web.server.remote.Session attribute)

 	ArgumentParser (class in slycat.web.client)

 	array_count() (slycat.hdf5.ArraySet method)

 	arrays() (in module slycat.hyperchunks)

 	
 	ArraySet (class in slycat.hdf5)

 	attributes (slycat.darray.Prototype attribute)

 	(slycat.darray.Stub attribute)

 	(slycat.hdf5.DArray attribute)

B

 	
 	browse() (slycat.web.server.remote.Session method)

C

 	
 	cache_object() (in module slycat.web.server.remote)

 	cancel_job() (slycat.web.server.remote.Session method)

 	cca() (in module slycat.cca)

 	changes() (slycat.web.server.database.couchdb.Database method)

 	check_https_get_remote_ip() (in module slycat.web.server)

 	check_rules() (in module slycat.web.server)

 	check_session() (in module slycat.web.server.remote)

 	check_user() (in module slycat.web.server)

 	checkjob() (in module slycat.web.server)

 	(slycat.web.server.remote.Session method)

 	
 	clean_up_old_session() (in module slycat.web.server)

 	client (slycat.web.server.remote.Session attribute)

 	close() (slycat.web.server.remote.Session method)

 	connect() (in module slycat.web.client)

 	(in module slycat.web.server.database.couchdb)

 	Connection (class in slycat.web.client)

 	create() (in module slycat.web.server.hdf5)

 	create_session() (in module slycat.web.server)

 	(in module slycat.web.server.remote)

 	create_single_sign_on_session() (in module slycat.web.server)

 	css_bundle() (in module slycat.web.server.handlers)

D

 	
 	DArray (class in slycat.hdf5)

 	Database (class in slycat.web.server.database.couchdb)

 	decode_username_and_password() (in module slycat.web.server)

 	delete() (in module slycat.web.server.hdf5)

 	(slycat.web.server.database.couchdb.Database method)

 	delete_job() (in module slycat.web.server.handlers)

 	delete_model() (in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	delete_model_parameter() (in module slycat.web.server)

 	(in module slycat.web.server.handlers)

 	delete_project() (in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	
 	delete_project_cache() (in module slycat.web.server.handlers)

 	delete_project_cache_object() (in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	delete_reference() (in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	delete_remote() (in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	delete_session() (in module slycat.web.server.remote)

 	delete_upload() (in module slycat.web.server.handlers)

 	dimensions (slycat.darray.Prototype attribute)

 	(slycat.darray.Stub attribute)

 	(slycat.hdf5.DArray attribute)

 	dtype() (in module slycat.hdf5)

E

 	
 	evaluate() (in module slycat.web.server)

F

 	
 	filter() (slycat.web.server.engine.SessionIdFilter method)

 	
 	find_or_create_project() (slycat.web.client.Connection method)

 	find_project() (slycat.web.client.Connection method)

G

 	
 	get() (slycat.web.server.database.couchdb.Database method)

 	get_attachment() (slycat.web.server.database.couchdb.Database method)

 	get_bookmark() (in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	get_checkjob() (in module slycat.web.server.handlers)

 	get_configuration_ga_tracking_id() (in module slycat.web.server.handlers)

 	get_configuration_injected_code() (in module slycat.web.server.handlers)

 	get_configuration_markings() (in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	get_configuration_parsers() (in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	get_configuration_remote_hosts() (in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	get_configuration_support_email() (in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	get_configuration_version() (in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	get_configuration_wizards() (in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	get_data() (slycat.darray.MemArray method)

 	(slycat.darray.Prototype method)

 	(slycat.hdf5.DArray method)

 	get_file() (slycat.web.server.remote.Session method)

 	get_global_resource() (in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	get_image() (slycat.web.server.remote.Session method)

 	get_job_output() (in module slycat.web.server.handlers)

 	(slycat.web.server.remote.Session method)

 	get_model() (in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	get_model_array_attribute_chunk() (in module slycat.web.server.handlers)

 	get_model_arrayset_data() (in module slycat.web.server.handlers)

 	get_model_arrayset_metadata() (in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	get_model_file() (in module slycat.web.server)

 	(in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	get_model_lock() (in module slycat.web.server)

 	get_model_parameter() (in module slycat.web.server)

 	(in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	get_model_resource() (slycat.web.client.Connection method)

 	get_model_statistics() (in module slycat.web.server.handlers)

 	get_model_table_chunk() (in module slycat.web.server.handlers)

 	get_model_table_metadata() (in module slycat.web.server.handlers)

 	get_model_table_sorted_indices() (in module slycat.web.server.handlers)

 	get_model_table_unsorted_indices() (in module slycat.web.server.handlers)

 	
 	get_page() (in module slycat.web.server.handlers)

 	get_page_resource() (in module slycat.web.server.handlers)

 	get_password_function() (in module slycat.web.server)

 	get_project() (in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	get_project_cache_object() (in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	get_project_models() (in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	get_project_references() (in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	get_projects() (in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	get_projects_list() (in module slycat.web.server.handlers)

 	get_remote_file() (in module slycat.web.server)

 	(in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	get_remote_file_server() (in module slycat.web.server)

 	get_remote_host_dict() (in module slycat.web.server.handlers)

 	get_remote_image() (in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	get_remote_job_status() (in module slycat.web.server.handlers)

 	(slycat.web.server.remote.Session method)

 	get_remote_show_user_password() (in module slycat.web.server.handlers)

 	get_remote_video() (in module slycat.web.server.handlers)

 	get_remote_video_status() (in module slycat.web.server.handlers)

 	get_remotes() (in module slycat.web.server.handlers)

 	get_root() (in module slycat.web.server.handlers)

 	get_session() (in module slycat.web.server.remote)

 	get_session_server() (in module slycat.web.server.remote)

 	get_session_status() (in module slycat.web.server.handlers)

 	get_sid() (in module slycat.web.server.handlers)

 	get_statistics() (slycat.darray.MemArray method)

 	(slycat.darray.Prototype method)

 	(slycat.hdf5.DArray method)

 	get_table_metadata() (in module slycat.web.server.handlers)

 	get_table_sort_index() (in module slycat.web.server.handlers)

 	get_time_series_names() (in module slycat.web.server.handlers)

 	get_unique() (slycat.hdf5.DArray method)

 	get_user() (in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	get_user_config() (in module slycat.web.server.handlers)

 	(slycat.web.server.remote.Session method)

 	get_video() (slycat.web.server.remote.Session method)

 	get_video_status() (slycat.web.server.remote.Session method)

 	get_wizard_resource() (in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

H

 	
 	hostname (slycat.web.server.remote.Session attribute)

 	
 	hostname() (slycat.uri.URI method)

 	href() (slycat.uri.URI method)

I

 	
 	is_project_administrator() (in module slycat.web.server.authentication)

 	is_project_reader() (in module slycat.web.server.authentication)

 	
 	is_project_writer() (in module slycat.web.server.authentication)

 	is_server_administrator() (in module slycat.web.server.authentication)

J

 	
 	job_time() (in module slycat.web.server.handlers)

 	
 	join_model() (slycat.web.client.Connection method)

 	js_bundle() (in module slycat.web.server.handlers)

K

 	
 	keys() (slycat.hdf5.ArraySet method)

L

 	
 	launch() (slycat.web.server.remote.Session method)

 	load() (slycat.web.server.plugin.Manager method)

 	
 	login() (in module slycat.web.server.handlers)

 	logout() (in module slycat.web.server.handlers)

M

 	
 	Manager (class in slycat.web.server.plugin)

 	MemArray (class in slycat.darray)

 	
 	mix() (in module slycat.web.server)

 	model_command() (in module slycat.web.server.handlers)

 	model_sensitive_command() (in module slycat.web.server.handlers)

N

 	
 	ndim (slycat.darray.Prototype attribute)

 	(slycat.darray.Stub attribute)

 	(slycat.hdf5.DArray attribute)

 	
 	null_lock (class in slycat.web.server.hdf5)

O

 	
 	open() (in module slycat.web.server.hdf5)

 	
 	open_id_authenticate() (in module slycat.web.server.handlers)

P

 	
 	parse() (in module slycat.hyperchunks)

 	parse_args() (slycat.web.client.ArgumentParser method)

 	password() (slycat.uri.URI method)

 	path() (in module slycat.hdf5)

 	(in module slycat.web.server.hdf5)

 	port() (slycat.uri.URI method)

 	post_events() (in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	post_log() (in module slycat.web.server.handlers)

 	post_model_arrayset_data() (in module slycat.web.server.handlers)

 	post_model_file() (in module slycat.web.server)

 	post_model_files() (in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	post_model_finish() (in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	post_project_bookmarks() (in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	post_project_models() (in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	post_project_references() (in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	post_projects() (in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	post_remote_browse() (in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	post_remote_command() (in module slycat.web.server.handlers)

 	post_remote_launch() (in module slycat.web.server.handlers)

 	post_remotes() (in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	
 	post_submit_batch() (in module slycat.web.server.handlers)

 	post_upload_finished() (in module slycat.web.server.handlers)

 	post_uploads() (in module slycat.web.server.handlers)

 	project_acl() (in module slycat.web.server.authentication)

 	protocol() (slycat.uri.URI method)

 	Prototype (class in slycat.darray)

 	put_attachment() (slycat.web.server.database.couchdb.Database method)

 	put_model() (in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	put_model_array() (in module slycat.web.server)

 	put_model_arrayset() (in module slycat.web.server)

 	(in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	put_model_arrayset_array() (in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	put_model_arrayset_data() (in module slycat.web.server)

 	(in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	put_model_file() (in module slycat.web.server)

 	put_model_inputs() (in module slycat.web.server)

 	(in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	put_model_parameter() (in module slycat.web.server)

 	(in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	put_project() (in module slycat.web.server.handlers)

 	(slycat.web.client.Connection method)

 	put_reference() (in module slycat.web.server.handlers)

 	put_upload_file_part() (in module slycat.web.server.handlers)

R

 	
 	register_directory() (slycat.web.server.plugin.Manager method)

 	register_marking() (slycat.web.server.plugin.Manager method)

 	register_model() (slycat.web.server.plugin.Manager method)

 	register_model_command() (slycat.web.server.plugin.Manager method)

 	register_page() (slycat.web.server.plugin.Manager method)

 	register_page_bundle() (slycat.web.server.plugin.Manager method)

 	register_page_resource() (slycat.web.server.plugin.Manager method)

 	register_parser() (slycat.web.server.plugin.Manager method)

 	register_password_check() (slycat.web.server.plugin.Manager method)

 	register_plugins() (slycat.web.server.plugin.Manager method)

 	register_tool() (slycat.web.server.plugin.Manager method)

 	register_wizard() (slycat.web.server.plugin.Manager method)

 	register_wizard_resource() (slycat.web.server.plugin.Manager method)

 	removeQuery() (slycat.uri.URI method)

 	removeSearch() (slycat.uri.URI method)

 	
 	render() (in module slycat.web.server.template)

 	request() (slycat.web.client.Connection method)

 	require_array_json_parameter() (in module slycat.web.server.handlers)

 	require_boolean_json_parameter() (in module slycat.web.server.handlers)

 	require_integer_array_json_parameter() (in module slycat.web.server.handlers)

 	require_integer_parameter() (in module slycat.web.server.handlers)

 	require_json_parameter() (in module slycat.web.server.handlers)

 	require_project_administrator() (in module slycat.web.server.authentication)

 	require_project_reader() (in module slycat.web.server.authentication)

 	require_project_writer() (in module slycat.web.server.authentication)

 	require_server_administrator() (in module slycat.web.server.authentication)

 	response_url() (in module slycat.web.server)

 	run_agent_function() (in module slycat.web.server.handlers)

 	(slycat.web.server.remote.Session method)

 	run_remote_command() (slycat.web.server.remote.Session method)

S

 	
 	save() (slycat.web.server.database.couchdb.Database method)

 	scan() (slycat.web.server.database.couchdb.Database method)

 	scheme() (slycat.uri.URI method)

 	Session (class in slycat.web.server.remote)

 	SessionIdFilter (class in slycat.web.server.engine)

 	set_data() (slycat.darray.MemArray method)

 	(slycat.darray.Prototype method)

 	(slycat.hdf5.DArray method)

 	set_user_config() (in module slycat.web.server.handlers)

 	(slycat.web.server.remote.Session method)

 	sftp (slycat.web.server.remote.Session attribute)

 	shape (slycat.darray.Prototype attribute)

 	(slycat.darray.Stub attribute)

 	(slycat.hdf5.DArray attribute)

 	size (slycat.darray.Prototype attribute)

 	(slycat.darray.Stub attribute)

 	(slycat.hdf5.DArray attribute)

 	slycat-remotes.create_pool() (slycat-remotes method)

 	slycat-remotes.login() (slycat-remotes method)

 	slycat-remotes.pool.delete_remote() (slycat-remotes.pool method)

 	slycat-remotes.pool.get_remote() (slycat-remotes.pool method)

 	slycat-web-client.delete_model() (slycat-web-client method)

 	
 	slycat-web-client.delete_project() (slycat-web-client method)

 	slycat.cca (module)

 	slycat.darray (module)

 	slycat.hdf5 (module)

 	slycat.hyperchunks (module)

 	slycat.uri (module)

 	slycat.web.client (module)

 	slycat.web.server (module)

 	slycat.web.server.authentication (module)

 	slycat.web.server.database.couchdb (module)

 	slycat.web.server.engine (module)

 	slycat.web.server.handlers (module)

 	slycat.web.server.hdf5 (module)

 	slycat.web.server.plugin (module)

 	slycat.web.server.remote (module)

 	slycat.web.server.template (module)

 	ssh_connect() (in module slycat.web.server)

 	start() (in module slycat.web.server.engine)

 	start_array() (slycat.hdf5.ArraySet method)

 	start_arrayset() (in module slycat.hdf5)

 	store_array() (slycat.hdf5.ArraySet method)

 	Stub (class in slycat.darray)

 	submit_batch() (slycat.web.server.remote.Session method)

T

 	
 	test_project_administrator() (in module slycat.web.server.authentication)

 	test_project_reader() (in module slycat.web.server.authentication)

 	test_project_writer() (in module slycat.web.server.authentication)

 	
 	test_server_administrator() (in module slycat.web.server.authentication)

 	tests_request() (in module slycat.web.server.handlers)

 	tostring() (in module slycat.hyperchunks)

 	toString() (slycat.uri.URI method)

U

 	
 	update_model() (in module slycat.web.server)

 	(slycat.web.client.Connection method)

 	
 	URI (class in slycat.uri)

 	username (slycat.web.server.remote.Session attribute)

 	username() (slycat.uri.URI method)

V

 	
 	validate_table_byteorder() (in module slycat.web.server.handlers)

 	validate_table_columns() (in module slycat.web.server.handlers)

 	validate_table_rows() (in module slycat.web.server.handlers)

 	
 	validate_table_sort() (in module slycat.web.server.handlers)

 	valueOf() (slycat.uri.URI method)

 	view() (slycat.web.server.database.couchdb.Database method)

W

 	
 	write_file() (slycat.web.server.database.couchdb.Database method)

POST Model Files

	
POST /models/(mid)/files

	Upload files for addition to a model, either from the client to the server or
a remote host to the server using a remote session. To upload files from the
client, specify the “files” parameter with one or more files. To upload
remote files, specify the “sids” and “paths” parameters with a session id and
remote filepath for each file to upload. In either case specify the
boolean “input” parameter, the name of a parsing plugin in “parser”, and one
or more artifact ids using “aids”. Any additional parameters will be passed
to the parsing plugin.

The set of parsing plugins will vary based on server configuration, and
parsing plugins have wide latitude in how they map parsed file data to model
artifacts. For example, the slycat-blob-parser plugin will store \(N\)
files as unparsed model file artifacts, and thus requires \(N\)
corresponding artifact ids to use for storage. Similarly, the
slycat-csv-parser plugin stores \(N\) parsed files as arrayset
artifacts, and also requires \(N\) artifact ids. However, more
sophisticated parsing plugins could split one file into multiple artifacts,
combine multiple files into one artifact, or store any other combination of
\(M\) files into \(N\) artifacts.

	Parameters

	
	mid (string) – Unique model identifier.

	Request Headers

	
	Content-Type [https://tools.ietf.org/html/rfc7231#section-3.1.1.5] – form/multipart

	Form Parameters

	
	aids – Artifact ids for storage.

	files – Local files for upload.

	input – Set to “true” to store results as input artifacts.

	parser – Parsing plugin name.

	paths – Remote host absolute filesystem paths.

	sids – Remote session ids.

See Also

	POST /remotes/(sid)/browse(path)

 _images/Figure41.png
AlPins | &

0.011

z

_images/Figure43.png
Fiter v || X Axis ~ | Y Ais v | Point Color~ Media Set~ [Selection Action + | Show All| Close AllFins | & || Colors ~ | ©

Image1 Image2 Image3 Imaged
0019853 filec/ynx/
7100000
926900000 0.003524
986700000
0013853

_images/Figure42.png
Selection Action ~ Show All

Scatterplot Points
Hide
Hide Unselected

Show

Pin

_images/Figure45.png
0

IR

_images/Figure44.png
simulD
241
242
243

Filter ~

ajo
807300000
867100000
926900000
986700000
807300000

XA~ | YAds~ PointColor~ | Hedia Se

bjo
2626830000
2626830000
2626830000
2626830000
2821410000

njo
03131
03131
03131
03131
03131

beta
0.9785
0.9785
0.9785
0.9785
0.9785

ndrf_last x

0.019853

0.009524
0.004588
0.019853

Close All Pins | & || Colors v || ©

ndhf_| Imagel ©

0114824
0122164
0129367

le/lynx/gpt

Image2

fle:/lynx/gpt

>

_images/Figure47A.png
T!

Jrite a note

_images/Figure46.png
MAX-ETOT

] setecton Acton

22,000

24000 26,000

28,000
MAX-VIB

MAX-VIB

24,000
22,000

20,000

_images/Figure48.png
Filter v || X Axis v | Y Avis » | Point Color ~ |[(£] Selection Action | Show Al | Close AllPins | & || Colors » | [©

Cars 1970-1982

Horsepower 1+ ~ | Accele. Model
buick estate wagon (sw)
pontiac catalina

impala

 brough.

_images/Figure47B.png
Write a
note...

_images/Figure40.png
0.011

b

_images/Figure4.png
® P wyProject e e @D - o-

_images/Figure33.png
Filter~ | XAs~ YA tion Action + Close AllPins | & || Colors v || ©

H
H

Horsepower * * v | Acceleration Model

renault lecar deluxe

ford mustang cobra

pontiac grand prix
buick

_images/Figure32.png
© 1680

_images/Figure35.png
Filler~ | XAds~ | Y Axis+ PointC

H
i
2

Cylinders Displacement Weight x Horsepower * * v | Acceleration ¥

EEE ¢ Do grand

buick electra 225 custom

_images/Figure34.png
Filler~ | XAds~ | Y Axis+ PointC

Cylinders Displacement Horsepower » v | Acceleration * v ~ | Model

85 173 renault lecar deluxe

143 ford mustang cobra

_images/Figure37.png
Filter v || X Avis + Y Axis ~ | Point Color v [| i1 Pins | & || Colors ~

Model
VPG
Cylinders
Displacement
Horsepower

Acceleration
Year
origin

Weight v~ | Model
chevrolet che

3693 buick skylark

3436 plymouth sat

3433 am rebel

3449 ford torino

434 d galaxie 500

_images/Figure36.png
Filter ~ | XAis ~ | Y Axis ~ Point Color~ || (| Selection Action + Al Close AllPins | & || Colors + | [©

H
i
2

Displacement Horsepower Acceleration

17.3
143 ford mustang

ford maverick

95 pontiac grand prix
1 buick

_images/Figure39.png
Time: 8.001e-05

_images/Figure38.png
Fiter~ || XAds~ | Y Ads ~ | Point Color ~ wAl | Close Al Pins | & | Colors ~ || ©

Image2
Image

Imaged
Images
Images
Image7

Image!

Time: 8.001e-05
x &

Time: 8.001e-05
x &

Index simulD ajo bjo njo beta ndrf_last X ~ | ndhf ... ¥ ~|Imaget o |Image2
807300000 2626830000 0.3069 09215 |GG o 02095
867100000 2626830000 0.3069 09215 0.012785 0.117359
926900000 2626830000 0.007652 0.124668
986700000 2626830000 0.13184

807300000 2821410000 [00t808a S 0109595

867100000 2621410000 0.012785 0.117359

Imaged Image5 Image

i
i
i
i
i
i

_images/Figure30.png
Filler~ | XAds~ | Y Axis+ PointC

£ §
& H
i

sox®
<
Index Cylinders Displacement Weight x ¢ ~ | Year Horsepower Acceleration Y ~ | Model Origin

85 1835 80 renault lecar delu
2905 80 ford mustang cobra

200 2875 2 2 ford maverick

4278 73 16 95 pontiac grand prix
4351 73 12 n buick

_images/Figure3.png
© @ siyeat @- - o-

_images/Figure31.png
XAxs v | YAds v PointC

Cylinders Displacement Weight x 1 ~ | Year Horsepower » v | Acceleration * v ~ | Model

_images/Figure59.png
PHTITITT Mhathodidnbd 19}

9/9/19 ...ﬁ 09191 9 9o |][9,[s)0leo /108, Sl 10,

diduhi H WiAAt

HH H +9+;,

_images/Figure60.png
I
I S
I
+
S
I Y
+,
+,
°

_images/Figure6.png
Edit Project

Name. My Project

Description This is an example project for the User Manual |

E‘ Usemame

Readers can view all data in a project

Delete Proj Save Changes

_images/Figure62.png
-0
-0
——————0
e
x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 X
54512926 130.31411... 3253.774. 4654459, 9.186481. 16.00244. 1 -1 1 -1 0 1 1 1 1 0 0 ~
54.4634374 128.8109. 3258.560. 472.01152... 9.417836. 17.7352839 1 -1 0 1 0 -1 1 -1 -1 0
54.53067. 131.0323. 3227.030. 469.0221 9.181576. 16.63729. 1 0 0 0 1 -1 1 1 1 0
545165906 130.6208. 32359643 465.3050. 9.601856. 16.46174. -1 -1 -1 0 1 0 -1 0 1 0
54.49761. 128.989511 3222.561. 468.81107... 9.235703. 17.32475. -1 1 -1 1 0 0 -1 -1 1 1
54.56614. 130.1083. 3272.205. 466.1509. 1.008345. 16.48960. 0 -1 -1 0 1 1 -1 -1 -1 -1
54.62846. 130.7203. 3246.396. 467.7524. 9.465600. 18.42732. 0 -1 0 0 1 -1 0 0 1 0
54.64976. 128.8977. 3237.429. 472.7793. 1.045024. 17.31943. 0 -1 0 -1 0 -1 0 1 0 0
54.68017. 131.2394. 3233.820. 473.4758. 1.046397. 18.2203129 1 1 1 1 1 0 0 1 0 1

< >

_images/Figure61.png
— ‘o
- +
L ‘s
+
— ‘o
- +
L ‘s
+
ot
+
o3
o
+
o2
o
+
oo
<
x8 x13 x14 x15 x16 17 x18 x19 x20 <21 x2 X3~ x4 E
5543448 1311507.. 3216930.. 4707983 1044376 1858429 - Bl Bl 1 Bl 1 Bl Bl Bl 0
5542288. 128.8874.. 3268398.. 4725309.. 9.635910.. 1576290.. 1 Bl 0 Bl 0 1 0 0 1 0
554087773 130.9942.. 3227.045.. 470.1421.. Q.040474.. 17.98799.. 1 Bl Bl Bl Bl 0 1 0
5492484 1295342 3252627.. 467.976613 1071251.. 18.96834.. 0 Bl Bl Bl Bl 1 1 1 1 0
55.02405.. 129.0687.. 3236479.. 4654545 9510339 18.14525. 1 1 0 0 0 0 1 1 Bl
5461111086 129.554161 3245103.. 4664386.. 9853225 18.0935. 1 Bl 0 0 1 0 1 0 0 0
5484660.. 1306540.. 3244227 467.4471.. 9.163936.. 18.66870.. 1 1 1 Bl 1 1 Bl 1 0
55.30089.. 129.1968.. 3218685.. 4704039.. 9291855 15.37277.. 0 Bl Bl 0 Bl Bl 1 Bl 0 0
546681377 1300522 3214315 469.3074.. 9667612 18.78279.. 1 0 Bl 1 Bl 1 - 1 0 1

_images/Figure64.png
x8
54.45897

544716231

5452832
5450970
5450475
5457932
5454463
5455081

54512926

<

x9
128.8674.
130.3738.
130.2791

130.01261

130.8529.
130.5950.
130.2880.

x10
3209.687
3244.919

X x12
471.909... 1.012412
465.9427... 9.836947.

326014009 466.385713 9.380054.

3230418
3256.748
3222.0%6
3250.036

4724548 9.017033
467.1566... 9.225346.
469.669443 1.0884301
474.4573... 1.030549.

129.738868 324345151 4725025 1.083452

130.31411

3253774

4654459 9186481

x13
16.5693239
16.40554.
17.59739.
15.44852
17.24222
15.43372
16.04425
15.40894.
16.00244.

x22 x23 x24 x3
; —
1 1

0 -1

0 0

-1 0

-1 1

0 1

1

1 0 0

_images/Figure63.png
x8 x9 x10 x x12 x13 x14 x15 x16 a7 x18 x19 x20 x21 x22 x23 x24 X

565.05080.. 129.7966.. 326811149 470.0200.. 9.927410.. 15.26303.. 1 E 0 E 0 E 0 1 0 E A
5494336 131.2485.. 3264.187.. 472.9454.. 9.49407.. 1547683.. -1 Eil 0 1 Eil 0 Eil 0 Eil 1 ‘
5478205 129.3826.. 3212.987... 470.57%.. 1.043750.. 18.99820.. -1 1 Eil 0 0 1 Eil 0 0 Eil ‘
54.84660... 130.6540.. 3244.227.. 467.4471.. 9.163936.. 18.66870.. 1 1 1 Eil 1 1 Eil Eil 1 0
54.85083.. 130.3785.. 3271122.. 470.3725.. 1.029929.. 16.72950.. 0 Eil 0 1 1 Eil 1 0 Eil 0
5477803 129.11752.. 3268.86275 471.1920.. 1.072209.. 15.60676... 1 1 0 1 0 Eil 0 Eil E
548697531 128.933048 3249.452... 465.39821.. 1.002265.. 15.35407.. -1 1 0 Eil 1 Eil 0 0 Eil 1
5483100 129.13112.. 32116805 467.9350.. 9.245615.. 16.24109.. 0 1 1 Eil Eil 0 0 Eil 1 0
5479425 1296205.. 3260.883.. 467.3043.. 1.034527.. 16.08143.. -1 0 0 1 1 0 Eil 0 1 1

< >

_images/Figure66.png
130.11690. 471.8541 36... 18.82668.
54.45807... 128.8674.. 3209.687... 471.9095.. 1.012412.. 16.5693239
544716231 130.3738.. 3244.919.. 465.9427.. 9.836%47.. 16.40554.
5452832 130.2791.. 3260.14009 466385713 9.380054.. 17.59739.
5450070... 130.01261.. 3230.418... 4724548.. 9.017033.. 15.44852
5450475... 130.8629.. 3256.748... 467.1566.. 9.226346.. 17.24222
5457932 130.5950.. 3222.026... 469.669443 1.0884301.. 15.43372
5454463 130.2880.. 3250.036... 474.4573.. 1.030549.. 16.04425
5455081 129738868 324345151 4725025.. 1.083452.. 15.40894.

_images/Figure65.png
54.45807... 128.8674.. 3209.687... 471.9095.. 1.012412.. 16.5693239
544716231 130.3738.. 3244.919.. 465.9427.. 9.836%47.. 16.40554.
5452832 130.2791.. 3260.14009 466385713 9.380054.. 17.59739.
5450070... 130.01261.. 3230.418... 4724548.. 9.017033.. 15.44852
5450475... 130.8629.. 3256.748... 467.1566.. 9.226346.. 17.24222
5457932 130.5950.. 3222.026... 469.669443 1.0884301.. 15.43372
5454463 130.2880.. 3250.036... 474.4573.. 1.030549.. 16.04425
5455081 129738868 324345151 4725025.. 1.083452.. 15.40894.
465.4459.

_images/Figure7.png
Edit~ Info~

New CCA Model

New Parameter Image Model
New Parameter Space Model

_images/Figure50.png
New Timeseries Model

FindData Select Table File Timeseries Parameters Select Timeseries File

Timeseries Bin Count

Resampling Algorithm

Cluster Linkage Measure.

Cluster Metric

Back

500

uniform piecewise aggregate approximation

HPC Parameters

Name Model

B

‘average: Unweighted Pair Group Method with Arithmetic Mean (UPGMA) Algorithm B

euclidean

_images/Figure5.png
D @ wyProect

Project: My Project
1 pescription: Example project for User
Manual
Members: picross
Created: 2017-03-09T212828 181251 by
piross

_images/Figure52.png
New Timeseries Model

Find Data Timeseries Parameters

Timeseries Bin Count
Resampling Algorithm
Cluster Linkage Measure.

Cluster Metric

Back

Select HDF5 Directory

500

HPC Parameters Name Model

uniform piecewise aggregate approximation B

‘average: Unweighted Pair Group Method with Arithmetic Mean (UPGMA) Algorithm B

euclidean

_images/Figure51.png
New Timeseries Model

FindData Select Table File Timeseries Parameters HPC Parameters Name Model

Table File Delimiter .

Timeseries Column Name Temporal URIS| ‘
Timeseries Bin Count | 500 +
Resampling Algorithm uniform piecewise aggregate approximation B

Cluster Linkage Measure ‘average: Unweighted Pair Group Metnod with Arithmetic Mean (UPGMA) Algorithm B

Cluster Metric euclidean

o

_images/Figure54.png
Outputs ~ | Waveform Color v | & | Colors ~

x1 x12 x13 x14 x15 x16 17 x18 x19 x20 X1 x22 x23 x24 x25
470.02902... 9939 15.263038... 1 E 0 E 0 E 0 1 0 E 4.
472.94547... 9499 15.476833.. 1 Eil 0 1 Eil 0 Eil 0 Eil 1

47057965... 1.04e8 18.998204... -1 1 Eil 0 0 1 Eil 0 0 Eil

467.44713.. 9169 18.668706... 1 1 1 Eil 1 1 Eil Eil 1 Eil
47037252 1038 16.729507... 0 Eil 0 1 1 Eil 1 Eil

471.19202... 1.07e8 15.606761... 1 1 0 1 Eil 0 Eil Eil Eil

465.30821... 1e8 15.354076... -1 1 0 Eil 1 Eil Eil 1 Eil
467.93596... 92509 16.241098... 0 1 1 Eil Eil Eil 1 0 Eil
46730435 1.03e8 16.081431... 1 0 0 1 1 Eil 0 Eil 1 Eil

« N

_images/Figure53.png
New Timeseries Model

FindData Select Table File Timeseries Parameters Select Timeseries File ~ HPC Parameters Name Model

weip enter workload characterization key
Partition
Number of nodes. 4 z
Cores 1 z
Maximum Time 0 3 22 3 30 3

Estimate run time

Working Directory Jdiskdirectory_pathisiycat_jvorking_dir ‘

[] Retain HDF files

Back

_images/Figure56.png

_images/Figure55.png
Outputs ~ | Line Color+ & || Colors ~

_images/Figure58.png

_images/Figure57.png

_images/Figure49.png
New Timeseries Model

FindData Select Table File Timeseries Parameters Select Timeseries File HPC Parameters Name Model

What type of data will you be using?

Where is your data located?

Hostname -

Username

Password

_images/Close.png

_images/DeleteIcon.png

_images/CollapseIcon.png

_images/DownloadIcon.png

_images/DeleteIcon2.png

_images/AllOffIcon.png

_images/AutoScaleIcon.png

_images/AllOnIcon.png

_images/BigText.png

_images/BackFrame.png

_static/up.png

_static/file.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_images/Figure22.png
New CCA Model

Locate Data Choose Host Select Table Select Columns Name Model

Name. New CCA Model
Description Description
Marking Markings Not Applied B

Back

_images/Figure24.png
Point Color v | & | Colors v

ceatl v ccaz ccas
R2 0.951 0.462 0.350
P 0.067 0690 0.877
BT oo
Displacement 0.952 0297
Ccylinders | 0.906 0217
Year 0536 0.338
Horsepower 0.939 0341
MPG 0933 0263
Acceleration | -0.505 0680
Index Cylinders | Displacement | Weight 4 | Year MPG Horsepower | Acceleration | Model
181 6] 2084 13 18 o7 145 ford pinto -
288 79 198 8 182 mercury zephyr 6
2 80 243 % 201 ame concord
200 76 2 8 176 ford maverick
395 38 85 17 oldsmobile cutlass ciera (diesel)
107 6 18 £ 165 ford maverick
382 4 82 l | K8 ame concord di
il 3 75 2 110 15 buick skyhawk
373 6 8 202] 174 ford granada gl B
266 6 8 208 8 167 mercury zephyr
201 6 76 25 % 176 ame homet
19 8 0 14 25 10 buick estate wagon (sw)
10 4 133 3000 70 %////////% 115 175 citroen ds-21 pallas
132 6 198 3102 74 20 95 165 plymouth duster -

_images/Figure23.png
Point Color + | & [Colors +

ceatl v ccAz ccas
R2 0.951 0.462 0.350
P 0.067 0.690 0.877
e oses
Displacement. 0952 0297
cylinders 0.906 0217 0.008
Year 0536 0338 0748
Horsepower 0.939 0341 0033
MPG 0933 0263 0246
Acceleration 0505 0680 0532
Index Cylinders | Displacement | Weight 4 | Year MPG Horsepower | Acceleration | Model
181 6] 2084 13 18 o7 145 ford pinto -
288 79 198 8 182 mercury zephyr 6
2 80 243 % 201 ame concord
200 76 2 8 176 ford maverick
395 38 85 17 oldsmobile cutlass ciera (diesel)
107 6 18 £ 165 ford maverick
382 4 82 2 205 ame concord di
il 3 75 2 110 15 buick skyhawk
373 6 8 202] 174 ford granada gl B
266 6 8 208 8 167 mercury zephyr
201 6 76 25 % 176 ame homet
19 8 0 14 25 10 buick estate wagon (sw)
1 4 133 309 70 15 175 citroen ds-21 pallas
132 6 198 3102 74 20 95 165 plymouth duster -

_images/Figure26.png
siopullfy

©oxo

xo

_images/Figure25.png
New Parameter Space Model

Locate Data Choose Host Select Table Select Columns Name Model

Input oOutput Neither Categorical Editable
© © © ©
Model © 0 @
©
Lommears e e =
Displacement ©) 5]
Horsepower © © ©
Weight ®© ® ©
Acceleration © © ©
O S S S S S
origin

o [

_images/Figure29.png
[Fiter~ | X

Cylinders

Displacement

Weight

Year

MPG

Horsepower
eleration

origin

Horsepower » v | Acceleration * v ~ | Model

1.3 renaultlecar deluxe
143 ford mustang cobra
N - = -ic

95 niiac grand prix
1 buick

_images/Figure28.png
Filter + || X Ais + | Y Axis ~ | Point Color v | Media Set v | [&Z] Selection Action « | Show All | Close All Pins | & || Colors v || ©

_images/Figure19.png
New CCA Model

Locate Data Choose Host

wPG
Cylinders
Displacement
Horsepower
Weight
Acceleration
Year

origin

Back

Select Table

Select Columns

Input

Name Model

Output

Scale to unit variance

Neither

_images/Figure18.png
Jdiskfull_path/data_table csv|

_images/Figure21.png
New CCA Model

Locate Data Choose Host Select Table Select Columns Name Model

Input Neither
©
Model @
e,
cylinders © © 5]
Displacement © © o
[roreponer R,
Weight ®© © ©
[rccererion R,
Year ®© © ©
Origin Cl © ©

[¥] Scale to unit variance

‘Back‘

_images/Figure20.png
New CCA Model h

Locate Data Choose Host Select Table Select Columns Name Model

Input Neither
©
Model € @
e,
cylinders © © 5]
Displacement © © o
[roreponer I, g T
Weight ®© © ©
[rccererion R, S
Year ®© © ©
Origin Cl © ©

[¥] Scale to unit variance

| ok | [coniee |

_images/Figure13.png
Apply Template

Apply an existing visualization template to the current model.

Name Cars CCA1 Sorted and Colored by Weight v

Apply Template:

_images/Figure12.png
Apply Template:
Name Model |

Reset Model

_images/Figure15.png
New CCA Model

Locate Data ~ Upload Table Select Columns

File No file selected

Filetype Comma separated values (CSV)

Back

Name Model

_images/Figure14.png
New CCA Model

LocateData Upload Table Select Columns Name Model

_images/Figure17.png
New CCA Model

Locate Data ~ Choose Host Select Table

Hostname -
Username

Password

Back

Select Columns

Name Model

_images/Figure16.png
New CCA Model

Locate Data ~ Upload Table Select Columns

File table.csv

Filetype Comma separated values (CSV)

Back

Name Model

_images/EndRangesIcon.png

_images/DownloadIcon2.png

_images/Figure10.png
~ Editv Infov

+ Create New

Cars CCA1 Sorted and Colored by Weight Created 2017-03-12T17:27:40.643374 by pjcross
)

_images/ExpandIcon.png

_images/Figure11.png
Create Saved Bookmark

A saved bookmark stores the current model and visualization
as part of the project so you can open them again later.

Name Name

‘Save Bookmark

nav.xhtml

 Table of Contents

 		
 Welcome!!

 		
 User Manual

 		
 Overview

 		
 Getting Started

 		
 Slycat™ Navbar

 		
 Projects

 		
 Models

 		
 Bookmarks

 		
 Templates

 		
 Canonical Correlation Analysis Model

 		
 Cars Example Data Set

 		
 Creating a CCA Model

 		
 CCA Model Visualization

 		
 Parameter Space Model

 		
 Taylor Anvil Impact Scenario (TAIS) Data Set

 		
 Creating a Parameter Space Model

 		
 Parameter Space Model Visualization

 		
 Timeseries Model

 		
 Time Series Data

 		
 Creating a Time Series Model

 		
 Time Series Model Visualization

 		
 Acknowledgements

 		
 Design

 		
 Tutorial

 		
 Install Slycat

 		
 Install Docker

 		
 Download the Image and Create a Container

 		
 Connect to Slycat with a Web Browser

 		
 Next Steps

 		
 Create a CCA Model

 		
 Create a Project

 		
 Generate a CCA Model

 		
 Wait for Model Completion

 		
 View a CCA Model

 		
 Interact with a CCA Model

 		
 Next Steps

 		
 Create a Timeseries Model

 		
 Generate Timeseries Data

 		
 Compute a Timeseries Model

 		
 View a Timeseries Model

 		
 Interact with a Timeseries Model

 		
 Next Steps

 		
 Create a Parameter Image Model

 		
 Generate Image Data

 		
 Create a Project

 		
 Ingest a Parameter Image Model

 		
 View a Parameter Image Model

 		
 Interact with a Parameter Image Model

 		
 Next Steps

 		
 Managing Docker

 		
 Stopping Slycat

 		
 Starting Slycat

 		
 Setup Slycat Clients

 		
 Prerequisites

 		
 Installation

 		
 See Also

 		
 Setup Slycat Web Server

 		
 Use the Docker Image

 		
 Installing Slycat from Scratch

 		
 Configuring Slycat Web Server

 		
 [global] Section

 		
 [slycat] Section

 		
 Docker Development

 		
 Prerequisites

 		
 Working Inside the Running Container

 		
 Working Outside the Running Container

 		
 Testing

 		
 Setting Up Tests

 		
 Running Tests

 		
 Running Coverage

 		
 Modifying Tests

 		
 Coding Guidelines

 		
 Plugins

 		
 Overview

 		
 New Marking Types

 		
 New Model Types

 		
 Model Commands

 		
 Password Check Plugins

 		
 Colophon

 		
 Writing the Documentation

 		
 Building the Documentation

 		
 Deploying the Documentation

 		
 Models

 		
 Parameter Image Model

 		
 Overview

 		
 Stored Artifacts

 		
 REST API

 		
 Hyperchunks

 		
 Basic HQL

 		
 Advanced HQL

 		
 HQL Context

 		
 DELETE Logout

 		
 See Also

 		
 DELETE Model

 		
 See Also

 		
 DELETE Project

 		
 See Also

 		
 DELETE Project Cache Object

 		
 See Also

 		
 DELETE Remote

 		
 See Also

 		
 DELETE Upload

 		
 See Also

 		
 GET Bookmark

 		
 See Also

 		
 GET Home

 		
 See Also

 		
 GET Model Arrayset Data

 		
 See Also

 		
 GET Model Arrayset Metadata

 		
 See Also

 		
 GET Model Command

 		
 See Also

 		
 GET Model File

 		
 GET Model Parameter

 		
 See Also

 		
 GET Model Resource

 		
 See Also

 		
 GET Model Table Chunk

 		
 See Also

 		
 GET Model Table Metadata

 		
 See Also

 		
 GET Model Table Sorted Indices

 		
 See Also

 		
 GET Model Table Unsorted Indices

 		
 See Also

 		
 GET Model

 		
 See Also

 		
 GET Project Cache Object

 		
 See Also

 		
 GET Project Models

 		
 GET Project

 		
 See Also

 		
 GET Projects

 		
 See Also

 		
 GET Remote File

 		
 See Also

 		
 GET Remote Image

 		
 See Also

 		
 GET Remote Video Status

 		
 See Also

 		
 GET Remote Video

 		
 See Also

 		
 GET User

 		
 POST Model Arrayset Data

 		
 See Also

 		
 POST Agent Function

 		
 See Also

 		
 POST Cancel Job

 		
 See Also

 		
 POST Check Job

 		
 See Also

 		
 POST Events

 		
 POST Get Job Output

 		
 See Also

 		
 POST Login

 		
 See Also

 		
 POST Model Command

 		
 See Also

 		
 POST Model Finish

 		
 See Also

 		
 POST Project Bookmark

 		
 See Also

 		
 POST Project Models

 		
 See Also

 		
 POST Projects

 		
 See Also

 		
 POST Remote Browse

 		
 See Also

 		
 POST Remote Launch

 		
 See Also

 		
 POST Remotes

 		
 See Also

 		
 POST Submit Batch

 		
 See Also

 		
 POST Uploads

 		
 See Also

 		
 POST Upload Finished

 		
 See Also

 		
 PUT Model Arrayset Array

 		
 See Also

 		
 PUT Model Arrayset Data

 		
 See Also

 		
 PUT Model Arrayset

 		
 See Also

 		
 PUT Model Command

 		
 See Also

 		
 PUT Model Inputs

 		
 PUT Model Parameter

 		
 See Also

 		
 PUT Model

 		
 See Also

 		
 PUT Project

 		
 See Also

 		
 PUT Upload File Part

 		
 See Also

 		
 Javascript API

 		
 slycat-login-controls

 		
 See Also

 		
 slycat-range-slider

 		
 slycat-remote-controls

 		
 See Also

 		
 slycat-remotes

 		
 See Also

 		
 slycat-server-root

 		
 slycat-web-client

 		
 Python API

 		
 slycat.cca

 		
 slycat.darray

 		
 slycat.hdf5

 		
 slycat.hyperchunks

 		
 slycat.table

 		
 slycat.timeseries

 		
 slycat.timeseries.segmentation

 		
 slycat.uri

 		
 slycat.web.client

 		
 slycat.web.server

 		
 slycat.web.server.authentication

 		
 slycat.web.server.database.couchdb

 		
 slycat.web.server.engine

 		
 slycat.web.server.handlers

 		
 slycat.web.server.hdf5

 		
 slycat.web.server.plugin

 		
 slycat.web.server.remote

 		
 slycat.web.server.template

 		
 Support

_static/comment.png

_static/comment-close.png

_static/down.png

_static/down-pressed.png

_images/VideoSynchOn.png

_images/VideoSynch.png

_images/remote-retrieval.png
HPC Platform

N
—

Simulation Storage

N
|

Y ,

Slycat Remote | _ -
Agent

Slycat Host

-»

Slycat Web Server

Model
Storage

Web Browsers

Custom Clients

_images/remote-computation.png
HPC Platform

N
—

Simulation Storage

Slycat Model /

Computation

Slycat Host

/ Slycat Web Server ___—

Storage

Web Browsers

Custom Clients

_static/ajax-loader.gif

_static/comment-bright.png

_images/SystemArch.png
High Performance
Computer (HPC)

Ensemble
Storage

Slycat Agent

Slycat Host

Web Browsers

Custom Clients

_images/UpFolder.png

_images/UpDirectory.png

_images/MidRangeIcon.png

_images/NULLIconOff.png

_images/NULLIcon.png

_images/Pause.png

_images/NoteIcon.png

_images/Play.png

_images/PinIcon.png

_images/Resize.png

_images/ResetIcon.png

_images/ResizeIcon.png

_images/Figure9.png
Colors ~ || ©

Day

Rainbow Night -

Rainbow Day

_images/Figure8.png
Apply Template:
Name Model
Reset Model

_images/FirstFrame.png

_images/FilterIcons.png

_images/GotoRowIcon.png

_images/ForwardFrame.png

_images/LastFrame.png

_images/InvertIcon.png

_images/LoginPage.png

_images/LittleText.png

