

Slist

THIS IS A WORK IN PROGRESS!

Contents:

	Slist Design

	Interface
	empty

	Default Constructor

	singleton

	slist from initializer list

	slist_from_container

	slist_from_iterators

	size

	uniq

	cons

	head

	tail

	join

	rev

	copy

	make_unique

	map

	filter

	fold_left

	zip

	unzip

	begin

	end

	begin_input

	end_input

	get_back_inserter

	push_front

	push_back

Indices and tables

	Index

	Module Index

	Search Page

Slist Design

An slist is a purely functional, abstractly immutable, singly linked list.
A smart pointer is used to maintain the abstraction over a list
of reference counted list nodes.

[image: _images/slist.jpg]
Dynamic uniqueness detection is used
to optimise list operations by internally modifying lists
when a function has exclusive ownership.

Slist has a strong property that a read iterator cannot be invalidated
and always refers to the sequence of elements in the list at the time
of the iterators construction.

Interface

empty

empty(x)
x.empty()

Returns true if the list x is empty, false otherwise.

Default Constructor

slist<T>()

Is an empty list to which can be added elements of type T.

singleton

slist(v)

Returns a unique list of one element v.

slist from initializer list

slist({1,2,3,4})

Precondition: All the elements in the list must have the same type.

slist_from_container

slist_from_container (C)

Requires C be an STL container with a begin() method returning
an input iterator and an end() method returning an end iterator.
Returns a list of all the elements in the container in the sequence
found from the iterator.

slist_from_iterators

slist_from_iterators<T> (begin,end)

Requires begin, end be valid iterators for a sequence.
Returns all the values in the range of the begin iterator
up to but excluding the end iterator. T::value_type must specify
the container value type.

size

size(x)
x.size()

Returns the length of the list x.

uniq

uniq(x)
x.uniq()

Returns true if x s empty or is the only reference to the underlying list
and all tails thereof. Implies the reference counts of all nodes
of the underlying list are 1.

cons

cons (h,t)
t.cons(h)

returns list t with value h added to front. Unique if and only if t is unique.

head

head (x)
x.head()

Precondition non-empty list. Returns first value on the list.

tail

tail (x)
x.tail()

Precondition non-empty list. Returns list with first value removed.
Unique if x is unique, may be unique even if x is not.

join

join (x,y)
x + y

Returns the list which is the concatenation of lists x and y.
Unique if y is unique.

rev

rev (x)

Returns the list reversed. always unique.

copy

copy (x)

Makes a copy of the list. Always unique.

make_unique

TODO.
Returns the list if it is unique, or a copy otherwise.
Result is always unique.

map

map<U> (f,x)
x.map(f)

Returns a list with elements of type U, the result of applying
f to each element of x. Always unique. Cost N allocations.

filter

filter (f,x)
x.filter(f)

Returns a sublist of elements of x satifying predicate f(v).
Always unique.

fold_left

fold_left (f,init,x)

TODO.
Uses f to fold each value of x starting at the front into init.
Returns final result. f must accept two arguments,
the first of type U, the type of init, and the second
of type T, the type of the elements of x.

zip

zip(x,y)

TODO.
Precondition, x and y have the same length. Returns a list of
std::pair of corresponding element from x and y.

unzip

unzip(x)

TODO.
Splits a list of pairs into a pair of lists. Precondition, the
value type of x must be a std::pair.

begin

x.begin()

Returns forward list iterator starting at head of list.
This iterator uses a strong pointer to the head of the list
but scans the list using a weak pointer, avoiding the overhead
of managing the reference count at the expense of retaining
the whole list during the scan.

end

x.end()

Returns terminal fast list iterator.

begin_input

x.begin_input()

Returns input list iterator starting at the head of the list.
This iterator uses a strong pointer to scan the list.
Reference counts are adjusted during the scan. If the list
is unique, then a scan will consume the list, freeing memory
during the scan.

end_input

x.end_input()

Returns terminal input list iterator.

get_back_inserter

x.get_back_inserter()

Fetches an output iterator for the list x.
The list should be unique. If not, the handle x
detaches its current list and is set to a copy,
making it unique. A prefix of the previous list may
be lost because the head node’s refcount is decremented.
Note the whole list cannot be lost because it would have to be
unique for that to happen, there must be at least one other reference
to some non-empty suffix of the list.

Writes to the output iterator append elements to the end of the list.
The pre-increment and post-increment operators have no effect.
The dereference operator returns a proxy which accepts an assignment
from the list value type, which causes a new node to be appended
to the end of the list and the output iterator then advances.

Note, the iterator returned by this method is faster than

std::back_inserter(x)

however at present it is not fully safe. If the iterator is retained
and the list shared, subsequent insertions will also be shared.

push_front

x.push_front(v);

Sematically equivalent to

x = x.cons(v);

Returns a reference to x.

push_back

x.push_back(v);

Sematically equivalent to

x = x + v;

Returns a reference to x.

Index

 nav.xhtml

 Table of Contents

 		
 Slist

 		
 Slist Design

 		
 Interface

 		
 empty

 		
 Default Constructor

 		
 singleton

 		
 slist from initializer list

 		
 slist_from_container

 		
 slist_from_iterators

 		
 size

 		
 uniq

 		
 cons

 		
 head

 		
 tail

 		
 join

 		
 rev

 		
 copy

 		
 make_unique

 		
 map

 		
 filter

 		
 fold_left

 		
 zip

 		
 unzip

 		
 begin

 		
 end

 		
 begin_input

 		
 end_input

 		
 get_back_inserter

 		
 push_front

 		
 push_back

_images/slist.jpg

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

