
slice-aggregator Documentation
Release 0.1.0

Bartosz Marcinkowski

Mar 15, 2018

Contents:

1 API 3

2 Advanced usage 5

3 Time and memory complexity 7

4 Underlying data structure 9
4.1 by_slice . 9
4.2 by_ix . 9

5 Indices and tables 11

i

ii

slice-aggregator Documentation, Release 0.1.0

It is a library for aggregating values assigned to indices by slices

>>> import slice_aggregator
>>> a = slice_aggregator.ixs_by_slices()
>>> a[-5] += 1
>>> a[10] -= 2.5
>>> a[-10:]
-1.5

and the other way around

>>> import slice_aggregator
>>> a = slice_aggregator.slices_by_ixs()
>>> a[:-5] += 1
>>> a[-10:10] -= 2.5
>>> a[-10]
-1.5

Contents: 1

slice-aggregator Documentation, Release 0.1.0

2 Contents:

CHAPTER 1

API

slice_aggregator.slices_by_ixs(*, zero_factory: typing.Callable[[], V] = None,
zero_test: typing.Callable[[V], bool] = None) →
slice_aggregator.by_ixs.Aggregator[V]

Returns an object that allows assigning values to slices and aggregating them by indices

Parameters

• zero_factory – callable returning additive identity

• zero_test – test for equality to zero

Returns a new instance of slice_aggregator.by_ixs.Aggregator

slice_aggregator.ixs_by_slices(*, zero_factory: typing.Callable[[], V] = None,
zero_test: typing.Callable[[V], bool] = None) →
slice_aggregator.by_slices.Aggregator[V]

Returns an object that allows assigning values to indices and aggregating them by slices

Parameters

• zero_factory – callable returning additive identity

• zero_test – test for equality to zero

Returns a new instance of slice_aggregator.by_slices.Aggregator

class slice_aggregator.by_ixs.Aggregator(*, dual: slice_aggregator.by_slices.Aggregator,
zero_factory: typing.Callable[[], V] = None)

A data structure for assigning values to slices and aggregating them by indices

It provides a method-based interface and an alternative based on __getitem__ and slices.

Warning: Only the method-based interface is suitable for custom values handling inplace operators. Read the
documentation on advances usage for more details.

get(ix: int)→ V
Get the aggregated value of all slices containing the specified index

inc(start: typing.Union[int, NoneType], stop: typing.Union[int, NoneType], value: V)→ None
Increment the value assigned to a slice

3

slice-aggregator Documentation, Release 0.1.0

dec(start: typing.Union[int, NoneType], stop: typing.Union[int, NoneType], value: V)→ None
Decrement the value assigned to a slice

class slice_aggregator.by_slices.Aggregator
A data structure for assigning values to indices and aggregating them by slices

It provides a method-based interface and an alternative based on __getitem__ and slices.

Warning Only the method-based interface is suitable for custom values handling inplace operators. Read the
documentation on advances usage for more details.

get(start: typing.Union[int, NoneType], stop: typing.Union[int, NoneType])→ V
Get the aggregated value of all indices contained by the specified slice

inc(ix: int, value: V)→ None
Increment the value assigned to an index

dec(ix: int, value: V)→ None
Decrement the value assigned to an index

set(ix: int, value: V)→ None
Set the value assigned to an index

4 Chapter 1. API

CHAPTER 2

Advanced usage

The library “just works” with value types that:

1. implement addition-like binary operation via Python magic-methods (__add__, __sub__, __sub__,
__pos__)

2. use 0 as the neutral element for their addition implementation

3. implement __eq__ that allows testing for equality to zero

4. do not implement inplace addition/subtraction (__iadd__, __isub__)

All Python’s numeric types (int, float, long, complex) fall into that category.

The first condition is a hard requirement for any type to be used for values, but the others are not. You can use another
value as a neutral element by using the zero_factory parameter, you don’t have to worry about __eq__ if you
supply zero_test and you can have __iadd__ and __isub__ if you use the method-based interface.

Example:

>>> import numpy as np
>>>
>>> def zero_factory():
... return np.zeros(3)
>>>
>>> zero = zero_factory()
>>>
>>> def zero_test(v):
... return np.array_equal(v, zero)
>>>
>>> import slice_aggregator
>>>
>>> a = slice_aggregator.ixs_by_slices(zero_factory=zero_factory, zero_test=zero_test)
>>> a.inc(-5, np.array([1, 0, 3.5]))
>>> a.dec(10, np.array([2.5, -1, 0]))
>>> tuple(a.get(-10, None)) # a[-10:]
(-1.5, 1.0, 3.5)

5

slice-aggregator Documentation, Release 0.1.0

6 Chapter 2. Advanced usage

CHAPTER 3

Time and memory complexity

After assigning values to n unique indices (we treat a slice as, up to two, indices) that are all within a (-v, v)
interval:

Reading (aggregating) time O(log v)
Writing (assigning) time O(log v + log n)
Memory O(n log v)

Assumptions:

• values and indices are constant-size and basic arithmetic operations on them are constant-time

• set item and get item on a dict are constant-time (which is true on average)

7

slice-aggregator Documentation, Release 0.1.0

8 Chapter 3. Time and memory complexity

CHAPTER 4

Underlying data structure

4.1 by_slice

The core concept is a data structure similar to a Fenwick tree that allows assigning values to nonnegative indices and
efficiently computing suffix sums. Where a Fenwick tree would store an aggregate for [a, b], it stores an aggregate for
[b, b + b - a]. With that change, while modifying the value for index ix it goes along decreasing indices, so it doesn’t
need to know the size of the internal table (maximum allowed value). So all values above the biggest index modified
by the user are zeroes. That’s useful for computing suffix sums - moving along increasing indices, the biggest one the
user has set to a non-zero value is where one can stop. A max heap with an index is used to efficiently track these
upper bounds.

The unbounded variant is just a combination of two such left-bounded data structures.

4.2 by_ix

This a thin layer on top of the previous data structure. Incrementing [a, b) translates to decrementing a - 1 and
incrementing b - 1 of the underlying by_slice aggregator, and aggregating slices translates to a suffix sum.

9

https://en.wikipedia.org/wiki/Fenwick_tree

slice-aggregator Documentation, Release 0.1.0

10 Chapter 4. Underlying data structure

CHAPTER 5

Indices and tables

• genindex

11

slice-aggregator Documentation, Release 0.1.0

12 Chapter 5. Indices and tables

Index

A
Aggregator (class in slice_aggregator.by_ixs), 3
Aggregator (class in slice_aggregator.by_slices), 4

D
dec() (slice_aggregator.by_ixs.Aggregator method), 4
dec() (slice_aggregator.by_slices.Aggregator method), 4

G
get() (slice_aggregator.by_ixs.Aggregator method), 3
get() (slice_aggregator.by_slices.Aggregator method), 4

I
inc() (slice_aggregator.by_ixs.Aggregator method), 3
inc() (slice_aggregator.by_slices.Aggregator method), 4
ixs_by_slices() (in module slice_aggregator), 3

S
set() (slice_aggregator.by_slices.Aggregator method), 4
slices_by_ixs() (in module slice_aggregator), 3

13

	API
	Advanced usage
	Time and memory complexity
	Underlying data structure
	by_slice
	by_ix

	Indices and tables

