

 Navigation

 	
 index

 	
 next |

 	SlamData 4.0 documentation

Welcome to SlamData’s documentation!

Contents:

	User’s Guide
	Section 1 - Introduction

	Section 2 - Quick Start

	Section 3 - The Workspace

	Section 4 - Cards

	Administrator’s Guide
	Section 1 - Installation

	Section 2 - Connecting to a Data Source

	Section 3 - Configuring SlamData

	Section 4 - SlamData User Security

	Section 5 - Security APIs

	Developer’s Guide
	Section 1 - Installing and Running SlamData

	Section 2 - Exploring Data

	Section 3 - Interactive Forms and Visualizations

	Section 4 - Publishing and Simple Embedding

	Section 5 - Secure Embedding

	Helpful Tips
	Section 1 - Basic Queries

	Section 2 - Complex Queries

	Reference - SQL²
	Section 1 - Introduction

	Section 2 - Basic Selection

	Section 3 - Filtering a Result Set

	Section 4 - Numeric and String Operations

	Section 5 - Dates and Times

	Section 6 - Grouping

	Section 7 - Nested Data and Arrays

	Section 8 - Pagination and Sorting

	Section 9 - Joining Collections

	Section 10 - Conditionals and Nulls

	Section 11 - Data Type Conversion

	Section 12 - Variables and SQL²

	Section 13 - Database Specific Notes

	Reference - SlamDown
	Section 1 - Introduction

	Section 2 - Block Elements

	Section 3 - Inline Elements

	Section 4 - Evaluated SQL² Queries

	Section 5 - Form Elements

	Section 6 - Slamdown Variables in Queries

	Troubleshooting FAQ
	Section 1 - Configuration

	Section 2 - Running SlamData

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, SlamData.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SlamData 4.0 documentation

[image: SlamData Logo]

User’s Guide

This User’s Guide will assist the user who is unfamiliar with SlamData to
understand the key product features and interface.

For information on how to use SlamData from an administrator’s perspective
see the SlamData Administrator’s Guide.

For information on how to use SlamData from a developer’s perspective
see the SlamData Developer’s Guide.

Section 1 - Introduction

1.1 Assumptions

This guide was written with the following assumptions in mind. The user:

	Has a basic to moderate understanding of JSON or semi-structured data.

	Has appropriate permissions to install the software.

	Has read and write access to a data source, such as a database system.

1.2 Requirements

For SlamData to run in an optimal environment please see the
Minimum System Requirements
section.

1.3 Installation

Please see the
Installation Section
of the Administrator’s Guide for installation instructions.

Section 2 - Quick Start

The following two sections will take a new user from no knowledge of the SlamData
workflow to creating a basic Workspace with some suggestions. This section is intended as a
quick start and not an exhaustive instruction set. The remaining
sections of the User’s Guide contain detailed information on specific
functionality.

2.1 - Configuration Suggestions

Modify the vmoptions file to adjust the Java memory heap space. JVM memory
allocation varies by default based upon the JVM vendor and version. To ensure
correct functionality, reserve 1GB or more of JVM heap space, increasing it
based upon requirements. It is not uncommon to have more than 4GB of heap space
reserved for SlamData server environments.

Some examples of where the vmoptions file can be found are as follows:

	Operating System
	File Location

	Mac OS
	/Applications/SlamData <version>.app/Contents/vmoptions.txt

	Microsoft Windows
	C:\Programs Files (x86)\slamdata <version>\SlamData.vmoptions

	Linux (various vendors)
	$HOME/slamdata<version>/SlamData.vmoptions

An example for reserving 4GB of JVM heap space for a server-class system is as follows:

-server
-Xms4g
-Xmx4g

The -server entry, depending on JVM vendor and version, will typically focus on
longer initial load times to allow better compilation methods for faster run-time. -Xms4g
immediately allocates no less than 4GB of memory and -Xmx4g allocates no more
than 4GB of memory.

2.2 The Log File

If a user suspects that SlamData is not functioning correctly, the first step
to troubleshooting is to look at the most recent log file, located as follows:

	Operating System
	File Location

	Mac OS
	/Applications/SlamData <version>.app/Contents/java/app/slamdata-<version>.log

	Microsoft Windows
	C:\Program Files (x86)\slamdata <version>\slamdata-<version>.log

	Linux (various vendors)
	$HOME/slamdata<version>/slamdata-<version>.log

Some JVM errors can cause the JVM to stop running completely, resulting in the SlamData
User Interface (UI) becoming unresponsive. Reviewing the log file should provide helpful information.

2.3 Browsers

The most compatible browsers with SlamData are always the most recent versions of Google Chrome
and Mozilla Firefox.

Section 3 - The Workspace

3.1 Workspace Background

SlamData approaches analytics workflows with the metaphor of a deck or multiple
decks of cards, sometimes on a Draftboard layout. A deck is built by stacking
unique cards on top of one another, each card having a specific purpose, such
as opening a table or collection, displaying a result set, displaying a
chart, and so on.

3.2 Mount Data Source

In this guide the MongoDB database will be used in the examples.

Default MongoDB installations run on port 27017 and have no user authentication
enabled. This guide assumes this configuration in the following instructions.

Click the New Mount icon. [image: Icon-Mount]

A dialog will appear requesting the name and Mount type.

[image: Mount-Dialog]

Enter the values below and the dialog will expand.

	Parameter
	Value

	Name
	myserver

	Mount Type
	MongoDB

In the expanded dialog enter the values below and click Mount. If a parameter
in the table below has no value, leave that field empty in the interface.

	Parameter
	Value

	Host
	localhost

	Port
	27017

	Username
	

	Password
	

	Database
	

	Other Settings
	

3.3 Creating a Database

	Click on the newly created server named myserver. The interface now shows the
databases that reside within the database system. A new database will need to
be created to follow along with the guide.

	Click on the Create Folder icon. [image: Create-Folder]

A new folder will appear titled Untitled Folder.

	Hover the mouse over the new Untitled Folder folder.

	Click the Move/Rename icon that appears to the right. [image: Move-Rename]

	Change the name from Untitled Folder to testdb and click Rename.

	Click on the newly renamed testdb folder.

3.4 Importing Example Data

This guide uses a data set of fictitious patient information that was randomly generated.
The examples in the remaining sections will assume that the patients data set is being used.

A data set with 10,000 documents can be downloaded by following these
instructions:

	Right click this link [https://github.com/damonLL/tutorial_files/raw/master/patients]
and save the file as patients. This is a 9 MB JSON file.

	If your operating system named the file something other than
patients you can either rename it or you can rename it
inside of SlamData once it has been uploaded.

	Ensure the SlamData UI is in testdb, and click
the Upload icon. [image: Upload]

	In the file dialog find the patients file and submit it.

As you can see, it is easy to quickly import JSON data into SlamData.
Other formats, such as CSV, can also be quickly imported.

The user may wish to index the newly imported patients data set. If
using MongoDB refer to
this section of
the Developer’s Guide to increase search and query performance.

3.5 Exploring Sample Data

	Click on patients in the user interface.

	A dialog will appear asking the name of the new Workspace being created.

	Give the Workspace a new name and click Explore.

	You will be presented with a table showing the contents of the patients data.

Note that the data in the table is not only top level fields but also
contains arrays of various types of data for each record or document.

In this instance SlamData created a new Workspace for you, created an
Open Card pointing to the patients data, then stacked a Preview Table Card
on top of the Open Card.

You can verify this by clicking on the left dots on the left side
of the screen and seeing the top most card slide to the right. The card now
displayed is the Open Card. This determines which table or collection is used
by the cards following it.

	Click on the right grippers to go back to the Preview Table Card.

Click on the browse arrows at the bottom to scroll through the pages of data.

Click on the Zoom Out [image: Zoom-Out] icon in the upper left of the interface to return to
the database view.

3.6 Querying Sample Data

	Create a new workspace by clicking on the Create Workspace icon. [image: Create-Workspace]

	Select the Query Card.

	Replace the provided query text with the query below:

SELECT
 last_name || ", " || first_name AS Name,
 city as City,
 state as State,
 codes[*].code AS Code,
 codes[*].desc AS Description
FROM `/myserver/testdb/patients`

Notice that we are concatenating two fields (last_name and first_name),
as well as analyzing each document within the codes array and fetching
the code and desc fields from each of those documents.

	Select Run Query in the bottom right.

	Click the right grip.

	Select the Preview Table Card to see the results.

	Click the Zoom Out [image: Zoom-Out] icon to return to the database view.

	Optionally rename the Untitled Workspace that was created for this workflow.

3.7 Searching Data

SlamData has several very powerful ways of finding the data you need. In the following
example, you will use the Search Card.

	Select the Create Workspace icon. [image: Create-Workspace]

	Select Open Card.

	Locate the patients entry in your database and select it.

	Click and drag the right-hand grip and slide it to the left.

The following card types will be presented:

[image: Card-Choices-1]

Notice how the cards are different shades of gray. The dark gray cards
are those that can be created directly after the Open Card. Light
gray cards are those cards that cannot be used following the previous
card. A helpful checkmark in the upper right of each selection also
indicates which cards can be used in the current situation.

	Select the Search Card.

A new Search Card will appear in the UI. The search string appears
simple but has some very powerful search features.

	Type the word Austin and either drag the right grip bar
to the left, or simply click on the right grip bar.

	Select the Preview Table Card.

Depending on the performance of your system and database it may take
several seconds before the results are displayed. Keep in mind that
SlamData is searching the patients collection that we imported into
the database system, and that indexes can significantly boost performance
for searches.

Once the results appear, you can browse them just like you did earlier
in the Explore Card with the controls in the bottom left of the
interface.

Did you notice that in the search string earlier we did not specify
which field we wanted to search? That is part of the power of SlamData.
Relatively non-technical users can use SlamData to search all of
their data sources with little (or even no) knowledge in advance of the data
stored within.

Of course when searching all available fields for the search string
it is going to take longer than if we were to explicitly define which field.
Let’s go back to the search card by dragging the current card
to the right again, or single-click on the left grip.

Let’s search for any patients currently living in the city of Dallas.

	Type the string city:Dallas and either drag the right grip bar
to the left, or simply click on the right grip bar.

	View the results in the Preview Table Card again.

The results should have appeared much faster than the previous search
because we told SlamData to only look at the city field.

We can also search on non-string values such as numbers. Let’s find
all of the patients who are between the ages of 45 and 50:

	Go back to the Search Card.

	Enter the string age:>=45 age:<=50.

	View the results in the Preview Table Card again.

As one last example let’s see how we can mix and match different types.
We want to know how many males over the age of 50 used to live in California.

	Go back to the Search Card.

	Enter the string previous_addresses:"[*]":state:CA age:>50 gender:=male.

	View the results.

3.8 - Downloading Data

This workspace can be adjusted to allow a user to download the results of the
search after the search is complete.

	Click the right gripper to stack a new card on top of the Preview Table Card.

	Select Setup Download.

	Select either C;S;V (CSV) or {JS} (JSON) format for the download.

	Click the right gripper to stack a new card on the deck.

	Select Show Download.

	Select the Download button to download the data.

You have now entered search criteria, browsed the results and downloaded
the results in a CSV or JSON format.

Section 4 - Cards

4.1 Introduction to Cards

Cards each have a distinct purpose and typically provide a single, unique action
that can often be combined with the cards before and after it to create a workflow.
This section describes the types of cards and the purpose of each. The cards are
described in alphabetical order.

4.2 - Cache Card

[image: Cache-Card]

Description

The Cache Card will store results, for example from a Query Card or a Search
Card, for faster retrieval while typically reducing database system load.

Behavior

The Cache Card requires a location to store its results. When a newly selected
Cache Card becomes active, the user is presented with a text field and a Confirm
button. The value of the text field can be edited directly
to change the location of the cached information. The credentials provided to
mount the original data source must have read and write privileges to the specified path
or the Cache Card will not be created.

Results stored in a Cache Card are updated when one of the following occurs:

	The table or collection in the Open Card is modified.

	The query in the Query Card is modified.

	The search parameters in the Search Card are modified.

4.3 - Open Card

[image: Open-Card]

Description

The Open Card can be used, for example, to specify a collection from which
subsequent cards will operate from.

Behavior

The Open Card is typically the first card in a workflow if a query
is not used as the source for subsequent cards. By selecting a collection
with the Open Card, the next card will have access to that collection
as a whole.

Common scenarios for using the Open Card include following it with
a Search Card or a Preview Table Card.

4.4 - Preview Table Card

[image: Preview-Table-Card]

Description

The Preview Table Card provides a tabular view of data from a data source. It is
particularly useful for data exploration and for presenting the results of a
Query Card or a Search Card.

Behavior

When working with a data source, it is very useful to visualize data in a tabular format.
The Preview Table Card provides a very convenient way to present data that is the
result of a user action, such as a Query Card. Controls are available in the lower-left
that allow the user to scroll through the result set.

4.5 - Query Card

[image: Query-Card]

Description

The Query Card is used, for example, to execute an SQL² query against one or
more collections. If variables were defined from either
a Setup Variables Card or a Setup Markdown Card in previous cards then
those variables may be used in the query. For more information
on the SQL² syntax please see the
SQL² Reference Guide.

Behavior

If a Query Card follows a Preview Table Card then the collection name
will be automatically populated in the query and cannot be changed.

A Query Card contains a Run Query button. This button is used after
the query has been entered. If a query has not changed, the query will
automatically execute within a workflow.

4.6 - Search Card

[image: Search-Card]

Description

The Search Card searches for entries from a data source.
A data source can either be a specific collection or table designated
by an Open Card or it can also be the result set from a Query Card.

Behavior

A Search Card is typically followed by a Preview Table Card to display
the results of a search.

Values not preceded by a field name and
colon, such as fieldName:, will cause the data source to search through
all fields and may cause a delay in producing results from large tables
or collections. Additionally, specifying a field name before a value will
typically result in a data source using an indexed query (if an appropriate
index exists), resulting in a faster response.

Search parameters are “AND”ed together, so the more parameters that are
provided, the more selective the result will be. The following table shows
some common search examples:

	Example
	Description

	foo, +foo
	Searches for the substring foo in all fields.

	-foo
	Searches for everything not containing the text foo.

	=foo
	Searches for the full word foo in all fields.

	foo:=50
	Searches the field foo for a value of 50.

	foo:>=50
	Searches the field foo for any value greater than or
equal to 50.

	foo:50..60
	Searches the field foo for values inside the range 50 to
60, inclusive.

	foo:bar:baz
	Searches for everything that contains a foo field which
contains a bar field which contains the text baz.

	foo:"[*]":bar:baz
	Performs a deep search through the foo array and
examines each subdocument’s bar field for the
substring baz.

4.7 - Setup Chart Card

[image: Setup-Chart-Card]

Description

The Setup Chart Card is required before using the Show Chart Card. This
card is used to specify the chart type and chart options of the subsequent
Show Chart Card. Major chart types include the following:

	Area Chart

	Bar Chart

	Line Chart

	Pie Chart

	Radar Chart

	Scatter Plot Chart

Behavior

Each major chart type will have options that allow control over
the look of the chart. For example, an Area Chart will
provide the option to stack values.

4.8 - Setup Dashboard Card

[image: Setup-Dashboard-Card]

Description

The Setup Dashboard Card may only be selected as the first card in the
first deck inside of a workspace. Creating a Setup Dashboard Card is
similar to flipping a workspace that contains a single deck and
choosing Wrap, except there is no existing deck and one must now
be created.

Behavior

Because the Setup Dashboard Card creates a workspace with no decks or
cards, it must be the first card in the deck. Additionally, a user
must now create a new deck inside of this Dashboard.

4.9 - Setup Download Card

[image: Setup-Download-Card]

Description

The Setup Download Card precedes the Show Download Card. The format
of the download file can be configured to either CSV or JSON. Additionally,
several other parameters can also be configured.

Behavior

The Setup Download Card must always precede a Show Download Card. Each
file format (CSV/JSON) will have different export options available. Once
options are configured, they can be changed by the workspace author, but not
by a user through a published or embedded workspace.

4.10 - Setup Markdown Card

[image: Setup-Markdown-Card]

Description

The Setup Markdown Card allows a user to write the Markdown code that
will be rendered within a Show Markdown Card.

Behavior

The Setup Markdown Card acts like a text editor to edit Markdown. Valid
Markdown code will typically be highlighted blue and line numbers are
listed in the left column.

For detailed information regarding SlamDown,
the SlamData-enhanced version of Markdown, please see the
SlamDown Reference Guide. The reference
guide describes how to create interactive UI elements such as drop
downs, radio boxes, check boxes, and more.

4.11 - Setup Variables Card

[image: Setup-Variables-Card]

Description

The Setup Variables Card allows a user to create a workspace where the
results are controlled by parameters that are programatically passed into it.

Behavior

Each variable in the Setup Variables Card is defined on a separate line. A
variable may be any data type listed in the Data Types section below.

Note that a Setup Variables Card followed by a Troubleshoot Card is helpful in
validating values passed into the Workspace.

When embedding a Workspace that contains a Setup Variables Card into a third party
application, the JavaScript and HTML that SlamData generates for a user
will be slightly different than workspaces without a Setup Variables Card.
For example, if two variables called state and city with values of
CO and DENVER, respectively, are defined in a variables card, the
resulting JavaScript will contain a vars section, similar to the following:

SlamData.embed({
 deckPath: "/server/db/collection/MyWorkspace.slam/",
 deckId: "deckid...abc...123...",
 // An array of custom stylesheets URLs can be provided here
 stylesheets: [],
 // The variables for the deck(s), you can change their values here:
 vars: {
 "deckid...abc...123...": {
 "state": "CO",
 "city": "DENVER"
 }
 }
});

Third party applications may generate this JavaScript programatically, changing
the values of the state and city variables based upon custom logic.

Data Types

Text

An input field will appear when Text is chosen. Alphanumeric
text may be entered.

Example: My 123 value here

DateTime

A date and time picker will appear when DateTime is chosen. Selecting a
date and time will designate the default value.

Date

A date picker will appear when Date is chosen. Selecting a
date will designate the default value.

Time

A time picker will appear when Time is chosen. Selecting a time
will designate the default value.

Interval

An input field will appear when Interval is selected. Selecting
an interval will designate the default value. Interval is defined
using the ISO 8601 format.

Example: PT12H34M

In the above example, P is the duration, T is the time designator,
12H is 12 hours and 34M is 34 minutes.

Boolean

A checkbox will appear when Boolean is chosen. Checking
the box will designate the default value to true.

Numeric

An input field will appear when Numeric is chosen. Only
numeric values are allowed in this field.

Example: 1 or 1.5

Object ID

An input field will appear when Object ID is chosen. Any
valid Object ID can be entered here. The subsequent query should not
be preceded by the OID function in SQL² as this will be handled
automatically. For instance, if the value 5792b247045175200c4fcd0f
is entered for the myoidvar variable, the resulting query would
look similar to the following:

SELECT *
FROM `/server/db/collection`
WHERE _id = :myoidvar

Array

An input field will appear when Array is chosen. A valid array
should be entered as the default.

Example: ["S1", "S2", "S3"]

The subsequent query should reference the values in the array appropriately.
For example, if the variable sensors was defined in the Setup
Variables Card, and the user wanted a query to return all records containing
a sensors field that matched any entry from the array, the query could
look similar to the following:

SELECT *
FROM `/server/db/collection`
WHERE sensor IN :sensors

Object

An input field will appear when Object is chosen. Object is a JSON object.

Example: { "a": 1 }

SQL² Expression

An input field will appear when SQL² Expression is chosen. A valid
SQL² Expression should be entered as the default.

Example:

SELECT *
FROM `/server/db/collection`

SQL² Identifier

An input field will appear when SQL² Identifier is chosen.
A valid query path should be entered as the default. This allows a user
to pass in a specific query path while the remainder of the query remains
unchanged.

Example: mypath = /server/db/collection

The subsequent query would look similar to the following:

SELECT *
FROM :mypath

4.12 - Show Chart Card

[image: Show-Chart-Card]

Description

The Show Chart Card follows the Setup Chart Card. Once the options
have been selected in the Setup Chart Card and a chart is ready to be rendered,
the Show Chart Card should be selected.

Behavior

The Show Chart Card renders the chart created using the Setup Chart Card.

4.13 - Show Download Card

[image: Show-Download-Card]

Description

The Show Download Card follows the Setup Download Card.

Behavior

The Show Download Card provides a button to download data using the format and options
selected using the Setup Download Card.

4.14 - Show Markdown Card

[image: Show-Markdown-Card]

Description

The Show Markdown Card follows the Setup Markdown Card. Once the options
have been selected in the Setup Markdown Card and the Markdown is ready to be rendered,
the Show Markdown Card should be selected.

Behavior

The Show Markdown Card renders the Markdown created using the Setup Markdown Card.

4.15 - Troubleshoot Card

[image: Troubleshoot-Card]

Description

The Troubleshoot Card is a useful tool to help find problem or issues in a Workspace.

Behavior

The Troubleshoot Card is helpful in validating values passed into a Workspace. For example,
a Setup Variables Card followed by a Troubleshoot Card would enable variable values to be checked.

 Copyright 2016, SlamData.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SlamData 4.0 documentation

[image: SlamData Logo]

Administrator’s Guide

This Administrator’s Guide can assist with installing and configuring
SlamData.

For information on how to use SlamData from a developer’s perspective
see the SlamData Developer’s Guide.

For information on how to use SlamData from a user’s perspective
see the SlamData User’s Guide.

Note

SlamData Advanced Features

Throughout this guide there are references to functionality available
only in SlamData Advanced Edition. Sections that apply only to SlamData
Advanced Edition will be called out with the Murray (MRA)
icon. [image: Murray-Small]

Section 1 - Installation

1.1 Minimum System Requirements

	
	Minimum memory

	
	2 GB memory

	An additional 25 MB is required for each active user

	
	Disk

	
	300 MB for a basic installation

	Additional space varies based upon Workspace size, cached queries, and so on

	
	Java

	
	Java 1.8 or newer

	Windows and Mac OS versions of SlamData with installers include Java

	Linux requires a separate Java installation

	
	Browsers

	
	The most compatible browsers with SlamData are always the most recent versions of Google Chrome and Mozilla Firefox

	
	Target data sources (for analytics)

	
	Apache Spark 2.1 or newer

	Couchbase x.x or newer

	MarkLogic x.x or newer

	MongoDB 2.6 or newer

SlamData Community Edition uses a file called quasar-config.json to
store server configuration data.

SlamData Analyst Edition and SlamData Advanced Edition store configuration
data in a metastore database. This should not be confused with target data
sources. The options for storing server configuration data are as follows:

	
	Metastore data sources

	
	Java H2 (included with SlamData)

	PostgreSQL 9.x (must be installed and configured separately)

1.2 Obtaining SlamData

1.2.1 Downloading the SlamData Installer

A fully automated installer package can be obtained directly from the
SlamData website here [http://slamdata.com/get-slamdata/].

1.2.2 Building SlamData from Source

1.2.2.1 Build Preparation

Before building SlamData, some required software must be installed.

	Install
Node.js [https://docs.npmjs.com/getting-started/installing-node]
version ~4.2, which includes the npm package manager

	Install Bower

npm install bower -g

	Install Gulp

npm install -g gulp

1.2.2.2 Build Process

Note

If you wish to have the SlamData build process automatically
download the required Quasar backend engine you will need to have
a shell environment variable GITHUB_AUTH_TOKEN populated with
the appropriate authorization token [https://github.com/settings/tokens/].

	Obtain the latest SlamData code

git clone https://github.com/slamdata/slamdata.git
cd slamdata

	Fetch the dependencies

Ensure that you are in slamdata directory.

bower install
npm install

	Build the code

npm i && bower i && gulp make && gulp bundle && gulp less

After this task completes, the public directory will contain the complete
SlamData front-end application.

1.3 Starting SlamData

SlamData is comprised of a front-end interface and a back-end analytics
engine. Starting the SlamData application will start both.

1.3.1 Starting SlamData from Source

If SlamData is installed from source, the launch process is the same
on all operating systems. After successfully building SlamData:

	Change directory to the directory created by git clone.

	Start SlamData: java -jar ./jars/quasar.jar --content-path public.

A message similar to the following should be displayed:

Server started listening on port 20223
Press Enter to stop.

1.3.2 Starting SlamData from the Installer Package

Mac OS

	Open the Applications folder.

	Double-click on the SlamData icon.

A new browser window or tab will open displaying the SlamData interface.
The SlamData icon will appear in the Mac OS dock. As with other dock
applications the SlamData icon may be right-clicked and the application
terminated.

Microsoft Windows

	Open the Start menu.

	Click on the newly installed SlamData icon or use the search bar
and type slamdata and press return to launch it. Select
appropriate network security settings if prompted.

Linux

	Change directory to the location of the SlamData executable: cd SlamData<version>.

	Execute the SlamData executable: ./SlamData.

Some Linux systems may not launch a browser automatically. If this is
the case, open a browser and point it to the following URL: http://localhost:20223/slamdata

1.3.3 Starting SlamData Advanced from the Command Line

SlamData Advanced Edition requires license key information before
launching. This information is passed into the JVM at startup.
An example of how this can be done is shown below. Note the use of
escaping the quote characters with \".

_JAVA_OPTIONS="-Xms1G -Xmx4G"

export SD_OPTS="\
-Dlicense_key=ABCDE-12345-ABCDE-12345-ABCDE \
-Dlicense_email=myemail@example.com \
-Dlicense_full_name=\"My Name\" \
-Dlicense_registered_to=\"Name Registered To\" \
-Dlicense_company=\"My Company Name\" \
-Dlicense_street=\"123 Anywhere Street, Suite A1\" \
-Dlicense_tel_number=3035551212 \
-Dlicense_fax_number=NA \
-Dlicense_city=Boulder \
-Dlicense_zip=80302 \
-Dlicense_country=US"

export _JAVA_OPTIONS="$_JAVA_OPTIONS $SD_OPTS"

java -jar quasar.jar --content-path public

Section 2 - Connecting to a Data Source

Connecting to a data source is the first step to analyzing data.

2.1 Data Sources

Supported data sources are listed in the following sections. As new
target data sources are released, they will be listed below.

2.1.1 MongoDB

To connect to MongoDB click on the Mount [image: Mount-Icon] icon in the upper
right.

A mount dialog will be presented, as shown below.

[image: SlamData Mount Dialog]

Enter a name for the data source mount. This name is used in the SlamData
User Interface (UI) as well as SQL² query paths.

Hint

Mount Name

Use a name that makes sense for the environment. For example,
if a data source were hosted on Amazon AWS/EC2 it might be named
aws or aws-1.

Select MongoDB as the mount type. Once the mount type has been selected,
additional fields will appear in the dialog. The following form shows
example values for the remaining fields.

[image: SlamData MongoDB Dialog]

Note

When using MongoDB, the database field value should be the
database the username and password will authenticate against. This value
will depend on which database the user was created in. For example,
it could be admin, the name of the user or something completely different.

Click the Mount button to mount the database in SlamData.

2.2 Several Mounts

After mounting several data sources, the SlamData UI might look like the
following image. In this image, there are two separate mounts named
aws and macbook, the latter representing a
locally mounted data source.

[image: SlamData Multiple Mounts]

2.3 Mount Options

The mount dialog will display the appropriate fields based upon the mount
type selected. For each data source that SlamData supports, a section
below describes the options available.

2.3.1 MongoDB

The MongoDB values listed in the Connection Options on the MongoDB
web site are supported. As of MongoDB 2.6 these options are as follows.

	Options
	Example
	Description

	ssl
	true
	Enable SSL encryption.

	connectTimeoutMS
	15000
	The time in milliseconds to attempt a connection before timing out.

	socketTimeoutMS
	10000
	The time in milliseconds to attempt a send or receive on a socket
before the attempt times out.

2.4 SQL² View

SQL² Views are covered in detail in the SlamData Developer’s Guide.

2.5 Enabling SSL

If you have difficulty following the steps below, you may also view the SSL
tutorial video [https://www.youtube.com/watch?v=FWdAMyZnOMM].

If a data source connection supports SSL encryption, that is to say
encryption between a client and server such as SlamData and the
data source, additional configuration will be required.

The backend engine of SlamData is written in
Scala [http://www.scala-lang.org/] and executes within a Java
Virtual Machine (JVM). To enable SSL encryption, several options must be
passed to the JVM when running SlamData. SlamData simplifies this by
allowing these options to be listed in a text file that the SlamData
launcher will reference when executed. The file location for each
operating system is shown in the following table.

	Operating System
	File Location

	Mac OS
	/Applications/SlamData <version>.app/Contents/vmoptions.txt

	Microsoft Windows
	C:\Programs Files (x86)\slamdata <version>\SlamData.vmoptions

	Linux (various vendors)
	$HOME/slamdata<version>/SlamData.vmoptions

There are two important options that must be passed to the JVM at
startup to enable SSL. These options are shown in the table below
and point the JVM to a Java Key Store (JKS).

	JVM Option
	Purpose

	javax.net.ssl.trustStore
	The location of the encrypted trust store file.

	javax.net.ssl.trustStorePassword
	The password required to decrypt the trust store file.

Example values for these two options could be as shown in the code below.

-Djavax.net.ssl.trustStore=/users/me/ssl/truststore.jks
-Djavax.net.ssl.trustStorePassword=mySecretPassword

This guide does not provide exhaustive steps to create a Java Key Store
in every scenario, but the following simple example should be helpful.

Let’s consider a data source hosted with a service provider. That service provider
makes a signed (or self-signed) certificate available so that the data source
can connect securely using SSL. Using the JKS configuration described above, the
your_provider.crt text file could be created as follows.

	Import the certificate into the Java trust store, as follows.

keytool -import -alias "your_providers_name" -file your_provider.crt \
-keystore /users/me/ssl/truststore.jks -noprompt -storepass mySecretPassword

	Ensure that the appropriate changes have been made to the JVM options file referenced above.

	Restart SlamData so it reloads the JVM options file and picks up the new certificate in the JKS.

	Mount the data source with SSL as shown in the following image. This example uses MongoDB.

[image: SlamData SSL Mounts]

Section 3 - Configuring SlamData

3.1 Community Edition Configuration File

The SlamData configuration file allows an administrator to change
settings, such as the port number SlamData listens on, the mounts
available, and so on. The location of the configuration file depends upon
the operating system being used, as shown in the table below.

	Operating System
	File Location

	Mac OS
	$HOME/Library/Application Support/quasar/quasar-config.json

	Microsoft Windows
	%HOMEDIR%\AppData\Local\quasar\quasar-config.json

	Linux (various vendors)
	$HOME/.config/quasar/quasar-config.json

An example configuration file for SlamData Community Edition is shown below.

{
 "server": {
 "port": 8080,
 "ssl": {
 "enabled": true,
 "port": 9090,
 "cert": "<base64 encoded pkcs12 cert file>"
 }
 },

 "mountings": {
 "/aws/": {
 "mongodb": {
 "connectionUri": "mongodb://myUser:myPass@aws-box.example.com:27017/admin"
 }
 },
 "/macbook/": {
 "mongodb": {
 "connectionUri": "mongodb://localhost:27017"
 }
 }
 },
}

3.2 Advanced Edition Configuration File

SlamData Advanced Edition
has additional configuration parameters to setup security, including the
authentication, auditing and metastore directives.

Attention

SlamData Advanced Features

The configuration file listed below is applicable only
to SlamData Advanced Edition and contains parameters and
values that are valid only in that version.

[image: Murray-Small]

An example configuration file for SlamData Advanced Edition might appear
as follows.

{
 "server": {
 "port": 8080,
 "ssl": {
 "enabled": true,
 "port": 9090,
 "cert": "<base64 encoded pkcs12 cert file>"
 }
 },

 "authentication": {
 "openid_providers": [
 {
 "issuer": "https://accounts.google.com",
 "client_id": "123...googleusercontent.com",
 "display_name": "Google",
 },
 {
 "issuer": "https://accounts.google.com",
 "client_id": "456...789.apps.googleusercontent.com",
 "display_name": "OAuth 2.0 Playground"
 }
]
 },
 {
 "display_name": "Our Company OP",
 "client_id": "123455976",
 "openid_configuration": {
 "issuer": "https://op.ourcompany.com",
 "authorization_endpoint": "https://op.ourcompany.com/authorize",
 "token_endpoint": "https://op.ourcompany.com/token",
 "userinfo_endpoint": "https://op.ourcompany.com/userinfo",
 "jwks": [
 {
 "kty": "RSA",
 "kid": "1234",
 "alg": "RS256",
 "use": "sig",
 "n": "2354098udw...2957835lkj"
 },
 {
 "kty": "RSA",
 "kid": "5678",
 "alg": "RS256",
 "use": "sig",
 "n": "skljhdfiugy...39587dlkjsd"
 }
]
 }
 },

 "auditing": {
 "log_file": "/aws/logdb/slamdata-logs"
 },

 "metastore": {
 "database": "<h2 config | postgresql config>"
 }
}

Section 4 - SlamData User Security

SlamData Advanced Edition provides additional features not available in other editions,
such as user authorization, authentication, and auditing.

Attention

SlamData Advanced Features

SlamData User Security is available only with SlamData Advanced Edition.

[image: Murray-Small]

4.1 Security Overview

SlamData Advanced Edition controls user security through the use of
tokens, permissions, groups, actions and types. Each of these is defined in the table below.

	
	Description

	Token
	Allows specific actions regardless of implicitly-assigned or explicitly-assigned
permissions.

	Permission
	Contains actions, users and groups.

	Group
	Contains users and other groups.

	Action
	Distinct operation(s) that can be performed on a resource based upon its type.

	Type
	Structural, Content, or Mount.

4.1.1 Users

Users are technically not objects stored in the SlamData metadata repository.
Since SlamData relies on OAuth to authenticate users, it trusts the OpenID
Provider to authenticate a user and state if the user is currently logged-in.

Once logged-in, a user may perform actions depending upon the configuration of groups and
permissions. Users are not created in the metadata store, but references
to them are listed within Groups and Permissions. So while technically a user does
not have an object in the metadata store, logically a user can be thought of as
an object with privileges provided by Groups, Permissions, and possibly
Tokens (when supplied with a request).

4.1.2 Groups

Groups contain users and other groups which are in the path (subgroups).

[image: SD-Group-Example]

Since permissions may contain a group, and groups may contain users, then a user
within a group inherits the permissions assigned to that group.

In the example above, both users John and Jack would inherit all of the
permissions that contain the /engineering group. Those permissions would
also apply to the subgroups for John and Jack.

The users Sayid, Kate, and Sawyer would inherit all of the permissions
that contain the /engineering/frontend group, but would not inherit the
permissions “above” from /engineering.

4.1.3 Permissions

[image: SD-Permission-Example-1]

In the example above, permission 150 contains several actions and the user John. This
allows John to perform all actions listed, which includes any operation under the /John path.

[image: SD-Permission-Example-2]

In the example above, both the user Damon and any other user within the /support
group may read data from the /customers path, but may not create, modify
or delete anything.

4.1.4 Tokens

If a token is passed in a request to SlamData, and the token is valid, the request
will proceed based upon the permissions assigned to that token.

In other words, if a user is trying to read from the /data mount, but does not
have permissions through direct assignment or through group assignment, if the appropriate
token with those permissions is passed into the same request, it will succeed.

In the following example, if a request included the token A1, then any operation performed
within /priv would succeed, despite the permissions the user actually had.

[image: SD-Token-Example]

4.2 Initializing the SlamData Metastore

SlamData Advanced Edition uses a metastore for user security. Before SlamData
Advanced Edition can be started, the metadata store must be initialized and
initial administrator users defined. The administrator users are added
to a group having complete and unrestricted access to the system allowing them
to provision additional groups and roles as needed.

To initialize the metadata store, run the bootstrap command and provide
the name of the administrator group and e-mail addresses of initial members,
as shown in the following example.

java -jar quasar.jar bootstrap --admin-group <name> --admin-users user1@example.com[,user2@example.com,...]

4.3 Authentication

SlamData Advanced Edition adds support for authenticated requests via the
OpenID Connect [http://openid.net/connect/] protocol. A request to any
SlamData or SlamData Advanced Edition API may be authenticated. If no
credentials are included in a request, it is considered unauthenticated
(or “anonymous”) and may fail if the system is not configured to allow
anonymous access for the given request.

4.3.1 Making an Authenticated Request

To make an authenticated request, clients first need to ensure their
OpenID Provider (OP) has been configured in SlamData Advanced Edition along
with the “Client Identifier” (CID) issued to the client by the OP, this
allows the SlamData Advanced Edition administrator to specify which clients
are permitted to access SlamData Advanced Edition. If an ID Token is received
from a known provider but with an unknown CID, it will be rejected outright.

Next, the client should obtain the list of known providers from the
/security/oidc/providers endpoint (see details on this endpoint below)
and authenticate the user against one of them, obtaining an
ID Token [http://openid.net/specs/openid-connect-core-1_0.html#IDToken/]
The ID Token MUST be requested using at least the openid and email scopes and
their claims must be included in the ID Token.

Once in possession of a valid ID Token, the client includes it, verbatim,
in the request to SlamData Advanced Edition via the Authorization header
as a
bearer token [http://self-issued.info/docs/draft-ietf-oauth-v2-bearer.html]
using the Bearer scheme.

If a request includes valid authentication and the identified subject is not
permitted to perform the requested action per the authorization policy,
a 403 Forbidden response will be returned. If, however, a request which
does not include any authentication information is denied due to the
authorization policy a 401 Unauthorized response will be returned to
indicate that repeating the request with authentication may allow it to
succeed.

4.3.1.1 Authentication and Performance

SlamData Advanced Edition requests require authentication before performing
most actions. When an OIDC Provider (OP) is configured with minimal
information, and the Discovery process is used, each action will make
a discovery request as well. This can result in a noticeable degradation
in performance.

To avoid this, the OP can be configured with all attributes normally
provided by the OIDC Discovery process within the configuration process
itself. See the “Our Company OP” example in Section 3.2.

4.4 Authorization

SlamData Advanced Edition adds support for authorization of service requests.
Permissions for a request are derived from the union of permission tokens
provided in the X-Extra-Permissions header and those configured for the
authenticated user and anonymous user. Permissions are defined as an
operation, its type, and a filesystem resource path. A permission token
grants a set of permissions.

The available operations and types are as follows.

Type: Content, Structural, Mount

Operation: Add, Read, Delete, Modify

	
	Content
	Structural
	Mount

	Add
	append to file
	create resource
	create mount

	Read
	read file contents
	list directory
	retrieve mount info

	Delete
	delete file contents
	delete resource
	remove mount

	Modify
	modify file contents
	rename or move resource
	Not Available

A permission on a parent resource is sufficient to authorize an action on a
resource granted the nature and type of the operation are the same.

A 403 Forbidden is returned by the server when a request does not have
sufficient permissions to perform the associated actions.

The X-Extra-Permissions header is formatted as follows.

X-Extra-Permissions: [token1],[token2]

4.5 Auditing

Attention

File System Definition

The SlamData product sometimes refers to virtual database paths
as file systems and tables or collections as file names. In the
Auditing section below, the log file path should be a
path to the collection or table you wish to save to. This does
not equate to an operating system file name or directory path.

When a log file is specified in the configuration file, all filesystem
operations will be logged to that file. SlamData Advanced Edition logs the
operations as data in the filesystem where the path is located. This
means that it is then possible to use SlamData Advanced Edition to
analyze the log data.

Section 5 - Security APIs

SlamData Advanced Edition provides additional APIs to control user access.

Actions and permissions are central concepts to the security api. An action
is any operation a subject can perform on a given resource in the system.
A permission represents the capability of a subject (group, user, token)
in the system to perform a given action. All permissions have a lineage
which represents by which authority a permission was granted to a subject.
Any subject in the system has the authority to grant a new permission which
is a subset of one of their own permissions. This new permission is said to
have been derived from the relevant permission(s) of the grantor and
that/those relevant permission(s) are said to be the parent(s) of that
permission.

Permissions can be revoked. If a permission is revoked, that permission as
well as all permissions derived from it become invalid and can no longer be
used to perform operations in the system. It is possible however for one of
those derived permissions to have been derived from more than one permission,
i.e. another permission than the one being revoked. In such a case, that
permission will not become invalid. It will only become invalid once all
its parents have been revoked. The permission being revoked however, will
be revoked, no matter how many sources of authority it possess.

Actions and permissions are found throughout the following api endpoints
and are represented as follows in JSON.

Action

{
 "operation": "ADD|READ|MODIFY|DELETE",
 "resource": "<filesystem_path>|<group_path>",
 "accessType": "Structural|Content|Mount",
}

Permission

{
 "id": "<permission_id>",
 "action": {
 "operation": "ADD|READ|MODIFY|DELETE",
 "resource": "<filesystem_path>|<group_path>",
 "accessType": "Structural|Content|Mount",
 },
 "grantedTo": "<user_id>|<group_path>|<token_id>",
 "grantedBy": ["<user_id>", "<group_path>", "<token_id>", "..."]
}

	<filesystem_path> is a path in the quasar virtual filesystem such as
data:/foo/bar for a file and data:/foo/bar/ for a directory

	<group_path> is a path uniquely identifying a group and its location
in the group hierarchy such as group:/engineering/backend

	<grantedBy> The sources of authority by which this permission was
granted. In reality, the sources are the parent permissions; here we are
simply surfacing the subjects which possess the permissions by which this
permission was granted.

	<user_id> is an email prefixed with the “user” string such as
user:bob@example.com

	<token_id> is a string identifier prefixed by the “token” string such
as token:786549382

Note

The Mount value of accessType is only valid if the resource is a
filesystem path. It is not a valid value for a group resource.

In the following API endpoints descriptions, “your permissions” refers to
the set of permissions associated with the HTTP request. In the case of an
authenticated user, this means all permissions directly associated with that
user as well as all groups that user is a explicitly or implicitly a part
of. Additionally, any permission associated with tokens present in the request
headers are added to the permissions associated with the request.

Whenever no return body is specified, a response with a 2XX status can be
expected along with an empty body.

In any of the following endpoints, if the request does not “carry” sufficient
permissions to satisfy the requirements of the particular endpoint, the server
will return a 403 Forbidden with an explanation of which permissions were
missing in order to perform the operation. Certain endpoints will always
succeed, but the results will be filtered based on what the user is
permitted to see. In such a case, the endpoint will document how to determine
what a user can and cannot see.

5.1 - Group Endpoint

GET /security/group/<path>

	Retrieves information about this group. The result of the query will depend
upon your permissions according to the rules described below.

	If you have READ content group permission on this group, then your view is
unrestricted. (all fields are present).

	If you have READ structural group permission on this group, then you can
know of the existence of this group and all of its sub-groups. (subGroups
field is present in response).

	If you have ANY OTHER group permission on this group, you can know of the
existence of this group, but nothing else. (response is empty).

	If you have READ content group permission on one of this group’s sub-groups,
then you can see that subgroup as well as any of its own subgroups. You can
see all members of that group and sub-groups. (allMembers and subGroups
fields are present in response).

	If you have READ structural group permission on one of this group’s sub-groups,
then you can see that subgroup as well as any of its own sub-groups. You
cannot see any of the members of those groups however. (subGroups field is
present in response).

	If you have ANY OTHER group permission on one of this group’s sub-groups,
then you can see that subgroup.

These rules are cumulative, so if more than one rule applies, you will see the
combined result. If none of the rules apply, the query will result in a
403 Forbidden. If certain fields do not apply to your view of this group,
they will be omitted in order to clearly convey that they are not necessarily
empty, you just don’t have permission to see anything related to that field.

	<path> is the path of the group in the group hierarchy

Note

All users are members of the root group (“/”) regardless of whether
they are a member of any other group. Permissions associated with the root
group represent the capabilities of any agent in the system.

Response:

The response body will vary depending on the rules outlined above. If you
have some relevant permission as outlined above and the group does
not exist, the response will be a 404 Not Found.

{
 "members": ["<user_email>", "..."],
 "allMembers": ["<user_email>", "..."],
 "subGroups": ["<group_path>", "..."],
}

	members All users are explicitly a member of this group.

	allMembers All users are explicitly and implicitly a member of this group.
Implicit members of a group refer to the users that are explicit members
of any of the sub-groups of this group.

	subGroups All descendants of this group in the group hierarchy.

Example:

Given the following groups exist in the system:

/corporate -> “Alice” /corporate/engineering -> “Bob” /corporate/engineering/software -> /corporate/engineering/software/scala -> “Marcy” /corporate/engineering/hardware -> (“Tom”, “Beth”)

GET /security/group/corporate/engineering will return the following:

{
 "members": ["bob@example.com"],
 "allMembers": ["bob@example.com",
 "marcy@example.com",
 "tom@example.com",
 "beth@example.com"
],
 "subGroups": ["/corporate/engineering/software",
 "/corporate/engineering/software/scala",
 "/corporate/engineering/hardware"
]
}

POST /security/group/<path>

Creates a new empty group. If any of the parent groups do not exist yet, they
will be created.

Requires ADD or MODIFY structural group permission.

Response:

If you have adequate permissions and the group already exists, will return
a 400 Bad Request.

PATCH /security/group/<path>

Add or remove users of a group.

Requires ADD content group permission to add users. Requires DELETE
content group permission to remove users. Alternatively, the MODIFY
content group permission is sufficient to add and/or remove users.

Request:

{
 "addUsers": ["<user_email>"],
 "removeUsers": ["<user_email>"]
}

Response:

If you have adequate permissions, but the group does not exist, the
response will be a 404 Not Found. If a user found in the removeUsers
field was not actually a member of the group, the request will
succeed nevertheless and simply ignore that user.

DELETE /security/group/<path>

Delete this group and all of its sub-groups. All permissions associated
with this group and subgroups as well as shared by this group and subgroups
will immediately become invalid.

Requires DELETE or MODIFY structural group permission.

Response:

If you have adequate permissions, but the group does not exist, the
response will be a 404 Not Found

5.2 - Authority Endpoint

GET /security/authority

Returns all permissions granted to you.

Response:

[<permission>]

5.3 - Permission Endpoint

GET /security/permission[?transitive]

Returns all permissions granted by you. If the transitive query param
is supplied, will also return all permissions which were derived from your own.

We may add query parameters in the future in order to filter the result set.

Response:

[<permission>]

GET /security/permission/<permission_id>

Retrieve a permission by its unique identifier. You may only retrieve
information about permissions shared with you or by you.

If the permission does not exist or you do not have adequate permission
to see it, the response will be a 404 Not Found.

Response:

<permission>

GET /security/permission/<permission_id>/children[?transitive]

Retrieve all permissions that were directly derived from this permission.
If the transitive query param is supplied, will also include permissions
which were indirectly derived. You may only retrieve information about
permissions shared with you or by you.

If the permission does not exist or you do not have adequate permission
to see it, the response will be a 404 Not Found.

Response:

[<permission>]

POST /security/permission

Grant new permissions to a given set of users and/or groups.

Request:

{
 "subjects" : ["<user_id>", "<group_id>", "..."],
 "actions": []
}

	user_id is a email prefixed with the “user” string such as user:bob@example.com
representing the users to whom you wish to grant permissions. Users do not
need to exist in the system at the time the permission is granted. When a
user first logs into the system, they will be able to perform any action
associated with permissions granted to their email.

	group_id a path prefixed with the “group” string such as
group:/engineering/backend. Groups DO need to exist in the system prior to
granting them a permission. Providing a group path that points to a group
that does not yet exist in the system will result in a 400 Bad Request and
no new permissions will have been granted to users or groups.

	actions The actions that the new permissions will allow the subjects
to perform. All actions must be the same or a subset of actions found in
your permissions. If that is not the case a 400 Bad Request with an appropriate
message will be returned and no new permissions will have been granted to users
or groups.

Although all fields accept arrays, a permission is only ever granted to ONE
subject to perform ONE action. Thus, many permissions will be created and
returned by this endpoint.

Response:

[<permission>]

DELETE /security/permission/

Revoke a permission. In order to revoke a permission, you must have a
permission which is a source of authority for the permission you wish
to revoke.

Refer to the top-level api description for explanation on the process of revoking.

Note

Revoking a permission does not guarantee that the subject associated
with that permission no longer has the capability to perform that action as
another subject in the system may have also granted a permission with the
capability to perform the same action. Unless you possess the root authority
(e.g. if you are a member of the “admin” group created when the metastore
was initialized), it is impossible for you to know for sure whether or not
a subject still has the ability to perform the action.

If the permission does not exist or you do not have adequate permission to
see it, the response will be a 404 Not Found. If you attempt to revoke
one of your own permissions, the response will be a 400 Bad Request.

5.4 - Token Endpoint

The following is the json representation of a token.

{
 "id": "<token_id>",
 "secret": "<token_hash>",
 "name": "<name>",
 "grantedBy": ["<token_id>", "<user_id>", "<group_id>", "..."],
 "actions": [{
 "operation": "ADD|READ|MODIFY|DELETE",
 "resource": "<filesystem_path>|<group_path>",
 "accessType": "Structural|Content|Mount",
 }]
}

	secret is a cryptographically secure string whose possession
allows you to perform the action associated with the token.

	name an optional field that may or may not have been provided
upon creation of the token.

	is a string identifier prefixed by the “token:” string

	an email address prefixed with the “user:” string

	a group path prefixed with the “group:” string

Note

Once again, the Mount value for accessType is only valid
for a filesystem path.

GET /security/token

List tokens that you have created. Does not list tokens that were created by
others based on your authority.

The json representation of the tokens does not contain the secret field
for this endpoint in order to reduce the chance of the secret leaking. The
secret can be retrieved by using the id endpoint.

Response:

[<token>]

GET /security/token/<id>

Retrieve token for a given id.

You may only retrieve information about a token that you created. If the token
does not exist or was not created by you, the response will be a 404 Not Found.

Response:

<token>

POST /security/token

Create a new token granting the capability to perform the given actions. All
actions must be a subset of your own capabilities. If the later condition is not
satisfied, a 400 Bad Request will be returned.

Request:

{
 "name": "",
 "actions": []
}

	name is an optional field

Response:

<token>

DELETE /security/token/<id>

Delete a token. In order to delete a token, you must have a permission which
is a source of authority of the token. If the token does not exist or was
not created by you, a 404 Not Found will be returned.

GET /security/oidc/providers

This endpoint allows clients to obtain the list of configured OpenID Providers
(OPs). Responses will be a JSON array of configurations similar to the
following.

Response:

[
 {
 "display_name": "Google",
 "client_id": "sdf9......dflkj",
 "openid_configuration": {
 "issuer": "https://accounts.google.com",
 "authorization_endpoint": "https://accounts.google.com/o/oauth2/v2/auth",
 "token_endpoint": "https://www.googleapis.com/oauth2/v4/token",
 "userinfo_endpoint": "https://www.googleapis.com/oauth2/v3/userinfo",
 "jwks": [
 {
 "kty": "RSA",
 "alg": "RS256",
 "use": "sig",
 "kid": "1195d......6abd",
 "n": "qy5D0......tJRJY02Qt0UKzJ2OquiPw",
 "e": "AQAB"
 },
 {
 "kty": "RSA",
 "alg": "RS256",
 "use": "sig",
 "kid": "b0a61.....9ba8575712",
 "n": "rvhjUe0..........n2IRNM8S8iJ36w",
 "e": "AQAB"
 }
]
 }
 },
 {
 "display_name": "Our Company OP",
 "client_id": "123455976",
 "openid_configuration": {
 "issuer": "https://op.ourcompany.com",
 "authorization_endpoint": "https://op.ourcompany.com/authorize",
 "token_endpoint": "https://op.ourcompany.com/token",
 "userinfo_endpoint": "https://op.ourcompany.com/userinfo",
 "jwks": [
 {
 "kty": "RSA",
 "kid": "1234",
 "alg": "RS256",
 "use": "sig",
 "n": "2354098udw...2957835lkj"
 },
 {
 "kty": "RSA",
 "kid": "5678",
 "alg": "RS256",
 "use": "sig",
 "n": "skljhdfiugy...39587dlkjsd"
 }
]
 }
 }
]

 Copyright 2016, SlamData.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SlamData 4.0 documentation

[image: SlamData Logo]

Developer’s Guide

This Developer’s Guide will assist the developer who is unfamiliar with
SlamData to install, configure, customize and embed a complete solution
from start to finish.

For information on how to use SlamData from an administration perspective
see the SlamData Administration Guide.

For information on how to use SlamData from a user’s perspective
see the SlamData User’s Guide.

Note

SlamData Advanced Features

Throughout this guide there are references to functionality available
only in SlamData Advanced Edition. Sections that apply only to SlamData
Advanced Edition will be called out with the Murray (MRA)
icon. [image: Murray-Small]

Section 1 - Installing and Running SlamData

1.1 Purpose

The purpose of this Developer’s Guide is to walk a software developer
through SlamData from installation through to a completed project. The goal
is to provide a step-by-step process that a developer can follow,
including sample data, that is repeatable with other data sets and
environments.

1.2 Introduction

SlamData is both an Open Source Software project and a commercially
available Visual Analytics platform for multidimensional data (including
two-dimensional RDBMS data). SlamData provides the ability to query
all of your data, in any form, in any location with a single solution.
This is achieved with some of the following features of SlamData:

	Patented multidimensional relational technology, allowing SlamData to
communicate with any data source in any data format. This includes not
only historical two-dimensional data such as RDBMS in rows and columns,
but also deeply nested, semi-structured data such as JSON and XML.

	Ability to understand schemas dynamically, resulting in absolutely no
need to map field types from one technology to another. This also allows
SlamData to use both field values and the schema as data. This is
not possible with other NoSQL -> relational solutions.

	A fully generalized database backend technology, providing a reliable
and ANSI compatible superset of SQL called SQL² that runs on top of any
supported data source. There is no need to learn yet another proprietary
query language.

	Fully embeddable solution that merges seamlessly with your own applications
providing a consistent look and feel while providing significant and
immediate value out of the box.

	Easy to use search capabilities for non-technical users. Search for a
key word, value or any other data type without knowing where it is or
in which format.

	Visually appealing charts (eCharts [https://ecomfe.github.io/echarts/index-en.html] from Baidu) that can be customized
and natively understand nested data.

	Ability to secure data in a multi-tenant environment through OpenID Connect
and OAuth 2.0.

1.3 Assumptions

This guide was written with the following assumptions in mind. The reader
is a developer that:

	Has a basic to moderate understanding of SQL.

	Has a basic to moderate understanding of JSON.

	Has a basic to moderate understanding of HTML web applications.

	Can perform basic navigation of a data source, such as a database system.

	Has appropriate permissions to install relevant software.

1.4 Requirements

For SlamData to run in an optimal environment see the
Minimum System Requirements
section.

Attention

Windows Developers

This Developer’s Guide includes example code in several sections in addition to
shell scripts or command line utilities. While this guide can be followed
by most Mac OS and Linux developers, Microsoft Windows developers will have to
implement similar functionality through other means such as DOS shell scripts.

1.5 Installation

Instructions for installing SlamData can be found
here.

1.6 Starting SlamData

Instructions for starting SlamData can be found
here.

Once SlamData is running then continue to Section 2.

Section 2 - Exploring Data

By the end of this Developer’s Guide the reader will have a fully working
SlamData environment that is securely embedded with user authentication,
interactive forms and dynamic charts. To start, however, the basics of
the user interface will need to be covered. The guide will then move
on to more complex topics focused on importing data, exploring that data
and searching it with keywords and eventually using SlamData’s SQL² dialect
to perform SQL queries on the data.

2.1 Interface Navigation

The image below shows the Home screen after starting SlamData Community
Edition. Note the numbers and their descriptions following the image.

[image: Home-Annotated]

	Number
	Description

	1
	Server or Mount names that have been configured.

	2
	The current path you are viewing. In this example it is the Home path (/).

	3
	The wrench icon configures a mount.

	4
	The eye icon toggles visibility of the trash can icon.

	5
	Download all data starting from this path.

	6
	Mount a new data source.

	7
	Create a new folder in the datasource virtual file system.

	8
	Upload a data file.

	9
	Create a new workspace.

2.2 Workspaces, Decks and Cards

Before we start looking at our data we need to discuss how to interact with
it. This is done through the use of a Workspace. A Workspace is the
primary method that users interact with data within SlamData. A
Workspace in turn is comprised of cards, and decks of cards.

	Root Deck - Each Workspace must have a Root Deck in which all other unit types
are stored. A Root Deck is always present in a Workspace but never visible.

	Deck - Each deck contains at least one or more cards that each perform a
specific action and build upon each other. Decks can be mirrored which allows
easy creation of a new target deck that starts with the same functionality as
the origin deck. Changes in each deck, up to the point where they were
mirrored, will impact each other.

	Draftboard Card - A special card type that creates a visual area to arrange
multiple decks.

	Card - A unit that performs a distinct action. Examples include:

	Query Card.

	Search Card.

	Preview Table Card.

	and more ...

	Unit Type
	May Contain:

	Root Deck
	Either a single Draftboard Card or multiple normal cards.

	Deck
	One or more cards, including one Draftboard Card.

	Draftboard Card
	One or more decks.

	Card
	N/A

A visual example of the allowable nesting follows:

[image: SD-Nesting]

Don’t worry! You won’t need to know any of this until section 3, and by then we
will take you through it step-by-step.

2.3 Creating a New Mount

In this guide the MongoDB database will be used in the examples. As such,
the reader should download and run the latest stable version of MongoDB.

Default MongoDB installations run on port 27017 and have no user
authentication enabled. This guide assumes this configuration in the following
instructions.

Click the New Mount Icon. [image: Icon-Mount]

A dialog will appear requesting the name and Mount type.

[image: Mount-Dialog]

Enter the values below and the dialog will expand.

	Parameter
	Value

	Name
	devguide

	Mount Type
	MongoDB

In the expanded dialog enter the values below and click Mount.
If a parameter in the table below has no value, leave that
field empty in the interface.

	Parameter
	Value

	Host
	localhost

	Port
	27017

	Username
	

	Password
	

	Database
	

	Other Settings
	

[image: Mount-Dialog-Complete]

2.4 Creating a Database

	Click on the newly created server named devguide. The interface now
shows the databases that reside within the database system. A new database
will need to be created to follow along with the guide.

	Click on the Create Folder icon. [image: Create-Folder]

A new folder will appear titled Untitled Folder.

	Hover the mouse over the new Untitled Folder folder.

	Click the Move/Rename icon that appears to the right. [image: Move-Rename]

	Change the name from Untitled Folder to devdb and click Rename.

	Click on the newly renamed devdb folder.

The interface should now look like this:

[image: In-Devdb]

So far in this guide you’ve installed SlamData, mounted a database and
created and renamed a folder. Good progress. Let’s now get some data into
the database and start exploring.

2.5 Importing Example Data

This guide uses a data set of fictitious patient information that was
randomly generated. The reader can use any data set they wish, but
the examples in the remaining sections will assume the patients data
set is being used.

You can download a data set with 10,000 documents by following these
instructions:

	Right click this link [https://github.com/damonLL/tutorial_files/raw/master/patients]
and save the file as patients. This is a 9 MB JSON file.

	If your operating system named the file something other than
patients you can either rename it or you can rename it
inside of SlamData once it has been uploaded.

	Ensure that the SlamData UI is in devdb, and click
the Upload icon. [image: Upload]

	In the file dialog find the patients file and submit it.

	After successful upload a new collection should appear in the UI
as follows:

[image: After-Upload]

As you can see, it is easy to quickly import JSON data into SlamData.
Other formats, such as CSV, can also be quickly imported.

2.5.1 Indexing Your Database

Attention

Indexing Your Database

While this step is not necessary, any database without
indexes is going to perform slowly. In SlamData this can be
seen as a delay in displaying results. If you choose to skip
this step, be prepared to wait several seconds while the database
system performs your searches.

The following commands are specific to MongoDB and must be executed
from the mongo shell console.

use devdb
db.patients.createIndex({first_name:1})
db.patients.createIndex({middle_name:1})
db.patients.createIndex({last_name:1})
db.patients.createIndex({city:1})
db.patients.createIndex({county:1})
db.patients.createIndex({state:1})
db.patients.createIndex({zip_code:1})
db.patients.createIndex({street_address:1})
db.patients.createIndex({height:1})
db.patients.createIndex({weight:1})
db.patients.createIndex({age:1})
db.patients.createIndex({gender:1})
db.patients.createIndex({last_visit:1})
db.patients.createIndex({previous_visits:1})
db.patients.createIndex({previous_addresses:1})
db.patients.createIndex({codes:1})
db.patients.createIndex({"codes.code":1})
db.patients.createIndex({"codes.desc":1})

Congratulations! There is now a usable dataset in your database
that is full of complex, nested data that you can explore. Let’s
start!

2.6 Exploring Data

To simply look around and explore data, you can click on any file
(collection) that you see. Start by clicking on the patients
file.

You’ll be prompted to provide a name for a new Workspace. A
Workspace is how users interact with the actual data within the
database. Let’s start by calling this My First Test and
clicking Explore.

[image: Name-Workspace]

Once you click Explore, the following screen should appear:

[image: First-Explore-Annotated]

Feel free to click around on the browse arrows at the bottom to flip through the pages of
data. It’s easy to get an idea of the schema of this data set by looking at the top row.
In this case you can also see that the codes field is not actually a simple field but
an array of other documents! Each of those documents in turn have a code and desc
field.

Hint

Workspace Usage

You may not know it, but you actually just created a Workspace and a Root Deck,
which contains an Open Card and an Explore Card! SlamData did this
automatically to save you time.

Any changes made within a Workspace are saved automatically.
At any time the user may zoom out of the current window.

2.7 Searching Data

Viewing and browsing the data is helpful but data becomes less useful if you can’t
find what you’re looking for. SlamData has two very powerful ways of finding
the data you need. One is the Search Card and the other is the
Query Card. We’ll start with the Search Card.

	Click the Flip Card Icon (#2 in the previous image).

You’ll see the following options on the back of that card:

[image: Card-Back]

	Click on Delete card.

The UI will now show the only remaining card in the deck which is the
Open Card. This card allows you to select which collection you wish
to operate on with subsequent cards. Let’s leave this card in place.

	Click and drag the right-hand grip and slide it to the left.

You’ll be presented with the following card types to choose from:

[image: Card-Choices-1]

Notice how the cards are different shades of gray. The dark gray cards
are those that can be created directly after the Open Card. Light
gray cards are those cards that cannot be used following the previous
card. A helpful checkmark in the upper right of each selection also
indicates which cards can be used in the current situation.

	Select the Search Card.

A new Search Card will appear in the UI. The search string appears
simple but has some very powerful search features within.

	Type the word Austin and either drag the right grip bar
to the left, or simply click on the right grip bar.

	Select the Preview Table Card.

Depending on the performance of your system and database it may take
several seconds before the results are displayed. Keep in mind that
SlamData is searching the patients collection that we imported into
the database system, and that indexes can significantly boost performance
for searches.

Once the results appear, you can browse them just like you did earlier
in the Explore Card with the controls in the bottom left of the
interface.

Did you notice that in the search string earlier we did not specify
which field we wanted to search? That is part of the power of SlamData.
Relatively non-technical users can use SlamData to search all of
their data sources with little (or even no) knowledge in advance of the data
stored within.

Of course when searching all available fields for the search string
it is going to take longer than if we were to explicitly define which field.
Let’s go back to the search card by dragging the current card
to the right again, or single-click on the left grip.

Let’s search for any patients currently living in the city of Dallas.

	Type the string city:Dallas and either drag the right grip bar
to the left, or simply click on the right grip bar.

	View the results in the Preview Table Card again.

The results should have appeared much faster than the previous search
because we told SlamData to only look at the city field.

We can also search on non-string values such as numbers. Let’s find
all of the patients who are between the ages of 45 and 50:

	Go back to the Search Card.

	Enter the string age:>=45 age:<=50.

	View the results in the Preview Table Card again.

As one last example let’s see how we can mix and match different types.
We want to know how many males over the age of 50 used to live in California.

	Go back to the Search Card.

	Enter the string previous_addresses:"[*]":state:CA age:>50 gender:=male.

	View the results.

See the table below for some helpful query examples:

	Example
	Description

	colorado
	Searches for the substring colorado in all fields.

	=colorado
	Searches for the full word colorado in all fields.

	age:=50
	Searches the field age for a value of 50.

	age:>=50
	Searches the field age for any value over 50.

	age:>=50 age:<=60
	Searches the field age for values between or equal to
50 and 60.

	codes:"[*]":desc:flu
	Performs a deep search through the codes array and
examines each subdocument’s desc field for the
substring flu.

As you can see even users with no knowledge of SQL² can perform powerful
searches within SlamData!

2.8 Querying Data with SQL²

In addition to the Search Card SlamData provides a Query Card which
allows users to execute ANSI-compatible SQL queries on top of any data source,
including NoSQL databases! This is accomplished by using SlamData’s SQL²
dialect, which is a superset of SQL that allows dynamic modeling and querying
of deeply nested, semi-structured data.

Using the same dataset we are going to perform queries, moving from basic
queries to more advanced queries. Let’s start off by cleaning up our
Workspace.

	Go to the Preview Table Card.

	Flip it over.

	Click on Delete card.

This should take you to the Search Card.

	Flip it over.

	Click on Delete card.

This should take you to the Open Card. We will be using full
path names in the queries we will write, and Query Cards do not
use the Open Card so let’s delete that one as well.

	Flip it over.

	Click on Delete card.

	Create a new Query Card.

The UI now presents the Query Card. Within this card users can
enter simple or very long and complex SQL² queries against one,
two or more collections.

	Type in the following query:

SELECT * FROM `/devguide/devdb/patients`

Notice how the path to the dataset is surrounded by
back-ticks (`) not apostrophes (')

	Select Run Query in the bottom right.

	Click the right grip.

	Select the Preview Table Card to see the results.

	Slide back to the Query Card.

	Type in or paste the following query:

SELECT
 first_name,
 last_name
FROM `/devguide/devdb/patients`
WHERE
 state="TX" AND
 city="DALLAS"

Note that the query can span multiple lines, and that strings
are surrounded by quotation marks (") on both ends. This
is a requirement for all string data types.

	Select Run Query in the bottom right.

	Slide back to the Preview Table Card to see the results.

	Slide back to the Query Card.

Let’s now create a query that formats the results a little better.

	Type in or paste the following query:

SELECT
 last_name || ',' || first_name AS Name,
 city AS City,
 zip_code AS Zip
FROM `/devguide/devdb/patients`
WHERE
 state="TX"
ORDER BY zip_code ASC

	Select Run Query in the bottom right.

	Slide back to the Preview Table Card to see the results.

Notice in this query we are concatenating the last_name and
first_name fields together, separated by a comma. The comma
itself is surrounded by apostrophes (') because it is a single
character. If it was more than one character it would be a string
and would require full quotation marks around it.

We have also given the results some aliases to display rather
than the actual field names.

Finally, we are ordering (ORDER BY) the results in ascending (ASC)
order based on the zip_code field.

The results table should now look similar to the following image:

[image: Zip-Results]

Up to this point we have been using SQL² to query simple top-level fields,
or those fields which are not nested. We know from previous examples
that this data set stores nested data in the codes array, but
it also contains previous_addresses and previous_visits arrays.

Let’s find out the total number of male and female patients
from each state that have an illness related to an ulcer. This will
require using the flattening operator ([*]) so SlamData
can examine all of the documents in the codes array.

	Slide to the Query Card.

	Type or paste the following query:

SELECT
 state AS State,
 gender AS Gender,
 COUNT(*) AS Count
FROM `/devguide/devdb/patients`
WHERE
 codes[*].desc LIKE "%ulcer%"
GROUP BY state, gender
ORDER BY COUNT(*) DESC
LIMIT 20

	Select Run Query in the bottom right.

	Slide to the Preview Table Card to see the results.

SQL² allows for very complex queries. You can find out more by
reviewing the SQL² Reference.
Additional features include using the JOIN command to combine data
from two or more tables, utilizing variables within queries
(as explained in Section 3), using standard math operations,
retrieving not only field values but also field names
dynamically, and much more.

Now that you have a good idea of what can be accomplished with
SQL² queries, let’s create some forms that your users can
interact with. These forms can drive the results of the charts
we’ll use for visualization, which makes it easy for your users
to find, report and chart complex data without understanding
the mechanics behind it!

Section 3 - Interactive Forms and Visualizations

SlamData provides everything you need to create an interactive
visual analytics environment for your users.

From this point on in the guide we will assume that we
are creating an environment for medical facilities to search
through patient data for various reasons. The Workspaces we
create will be used by medical staff for this purpose.

3.1 Static Markdown Forms

We will start this section with a new Workspace. You can leave
the existing Workspace alone or you can delete it if you wish.

To (optionally) delete the existing Workspace:

	If you are still in the Workspace, click on the zoom-out
icon. [image: Zoom-Out]

	Locate the My First Test Workspace and hover your mouse over it.

	Click on the trash can icon that appears to the right. [image: Trash-Can]

We’ll create a new Workspace and call it Average Weight by City.

	Click the Create Workspace icon in the upper right. [image: Create-Workspace]

	Select the Setup Markdown Card.

This step is necessary so that the Workspace is saved and we can go
back to rename it soon.

	Create a Show Markdown card directly after the Setup Markdown Card.

	Zoom back out to the database view.

Let’s rename the Workspace now so it’s obvious that we are working
with it.

	Hover over the new Workspace labeled Untitled Workspace.slam.

	Click the Move/Rename icon to the right. [image: Move-Rename]

	Replace Untitled Workspace with Average Weight by City
and click Rename.

	Click on the Average Weight by City.slam Workspace again.

Ensure that you are in the Setup Markdown Card.

SlamData uses a specific form of Markdown [https://daringfireball.net/projects/markdown/]
sometimes referred to
as SlamDown. Markdown allows a user to format text with a few
simple syntax rules. SlamData’s version also allows UI elements
(such as drop downs, radio buttons and check boxes) to be dynamically
populated from the results of queries.

Let’s first show some examples of what the Markdown forms can do.
Paste the following text into the card:

Heading 1

Heading 2

Text formatting

* Here is an unnumbered list.
* You can have _emphasized_ and **bold** text.

1. Here is a numbered list.
2. Here is the second entry with ```inline formatting```

Paragraphs are separated by
an empty line.

This is another new paragraph.

> You can also have some nice
> block quote areas.

You can also have fenced code blocks like this:

```
SELECT * FROM `/devguide/devdb/patients`
WHERE
  first_name = "Sue"
```

Interactive Elements

Input Fields

name = ____ (Sue)

numberOnly = #____ (1984)

Selectors

city = {Austin, Dallas, Houston}

favoriteColor = (x) red () blue () green

computers = [] PC [x] Mac [x] Linux

beginDate = ____-__-__

stopTime = __:__

fullDateTime = ____-__-__ __:__

	Select Run Query in the bottom right.

	Click over to the Show Markdown Card to view the results.

Notice how much control you have over the presentation of
the information. You can also include links and images inside
of Markdown as well. For a full description of all fields
and their behavior see the SlamDown Reference.

	Click back to the Setup Markdown Card.

Replace the contents with something more useful and appropriate
to our use case:

General Patient Information

There are !`` SELECT COUNT(*) FROM `/devguide/devdb/patients` `` patients

Average age: !`` SELECT AVG(age) FROM `/devguide/devdb/patients` ``

The *Heaviest* patient: !`` SELECT MAX(weight) FROM `/devguide/devdb/patients` `` pounds

The **Shortest** patient: !`` SELECT MIN(height) FROM `/devguide/devdb/patients` `` inches

	Select Run Query in the bottom right.

	Click over to the Show Markdown Card to see the results.

Notice that we populated some of the text with actual results from the database.
Keep in mind that to print the results of a query in Markdown, the query must
begin with an exclamation point (!) and two back-ticks (``) and end
with two more back-ticks (``).

	Click back to the Setup Markdown Card.

We will use similar syntax to populate the elements of an interactive form
in the next section.

3.2 Interactive Markdown Forms

Here is where things get really fun for both you and your users.
Let’s actually provide the functionality that we promise with the
title of Average Weight by City.

First we want the user to select the state to report on. This will
then allow us to query the database for patients that reside in
cities within that state.

	Replace the contents of the current Markdown Setup Card
with the following code.

Select the state to report on

state = {!``SELECT DISTINCT(state) FROM `/devguide/devdb/patients` ORDER BY state``}

	Select Run Query in the bottom right.

	Click over to the Show Markdown Card to see the results.

	Click on the dropdown next to State to see that the element
was populated with the query we typed in.

	Flip the Show Markdown Card over by clicking the icon in the upper right. [image: Icon-Flip]

	Select Wrap.

Note that your interface should now look similar to the following:

[image: Wrapped-Deck]

You can click and drag the left and right hand grips just as before to see
the previous cards.

	Click on the deck to make it active.

	Flip the deck by clicking the icon. [image: Icon-Flip]

	Select Mirror.

Your interface should now look similar to the following:

[image: Mirrored-Deck]

We have just mirrored a deck. This means that the second deck starts off
from where the first left off, but it also means any changes to the first
deck will immediately impact the second deck as well. This is how
we chain events in a Workspace and allow the actions in one deck to
affect other decks.

	Click on the new second deck to make it active.

	Create a new card in this second deck, selecting the Query Card.

	Type in or paste the following query into the Query Card:

SELECT
 city AS City,
 AVG(weight) AS AvgWeight
FROM `/devguide/devdb/patients`
WHERE
 state IN :state
GROUP BY
 city
ORDER BY AVG(weight) DESC

Whenever a variable from a Markdown form is used in a query it must be
preceded by a colon (:).

Also note that we can ORDER BY an aggregation value such as AVG.

	Select Run Query in the bottom right.

	Click on the right grip to create a new card and select the Preview Table Card.

[image: MD-and-Show-Decks]

	Select a different state in the first deck and watch the results
table update automatically.

Viewing data in table form is useful but sometimes a graphical representation
makes all the difference. To prepare for that, let’s go back and change
the query and limit the results to 20 cities, so a bar chart doesn’t appear crowded.

	Click the left grip to go back to the Query Card.

	Add the following line to the end of the query:

LIMIT 20

	Select Run Query in the bottom right.

	Slide back over to the Preview Table Card.

Now we are ready to add some visualizations!

3.3 Creating a Chart

Before creating an actual chart we need to set it up. Remember earlier
that decks can build off one another. We need to now mirror the
Preview Table Card:

	Click on second deck to make it active.

	Click on the flip icon to flip the deck over. [image: Icon-Flip]

	Select Mirror.

	Resize so that your interface looks similar to the following image:

[image: All-3-Decks]

	Select the new deck and click on the right grip and then select the Setup Chart Card.

	Select the Bar Chart icon. [image: Icon-Gray-Bar-Chart]

The bar chart icon will change from gray to blue to show that it is active.

	In the Category drop down select .City as the axis source.

	Slide to the right to create a new card and select Show Chart.

Your interface should now look like the following image:

[image: All-3-With-Chart]

	Select a new state in the first deck and watch both of the other
decks update dynamically.

	Try hovering your mouse over the individual bars in the chart and you can
view the actual value.

Setting up interactive forms and charts is as simple as that! In the next
section we’ll go over how to share these charts with others.

Section 4 - Publishing and Simple Embedding

4.1 - Publishing

SlamData makes it easy to take all the work you’ve done up to this
point and publish it so that others can use it as well.

	Click the flip icon on the Draftboard Card. Note that this
is the card that contains all of the existing decks. Just as
each deck has a back to it, each card does as well, including
the Draftboard Card. Be sure not to flip any of the three
decks we’ve created - click the icon in the white box border
surrounding the other decks.

	Select Publish deck.

A URL will be presented to you that you can share with others.
The URL will only be accessible while SlamData is running.

Warning

Published URLs

Anyone with access to the URL may be able to view this deck. They may also be able
to modify the link to view or edit any deck in this workspace. Please see
Securing SlamData Community Edition for more information.

NOTE: SlamData Advanced Edition provides complete security including
authorization, authentication and full auditing.

4.2 - Simple Embedding

SlamData allows content authors and developers to embed Decks into
external web applications such as customer portals, dashboards, etc.

4.2.1 - Downloading Sample Code

For examples of how to do this go to this repository link. You can either download
the zip file or clone the repository.

Option 1 - Download Zip File

	Click the repository link.

	Click the green Clone or download button.

	Select Download ZIP.

	Unzip the contents once downloaded.

Option 2 - Clone the Repository

You will need to install git [https://git-scm.com/downloads] and then
type the following in a command line terminal:

git clone https://github.com/slamdata/slamdata-dev-examples.git
cd slamdata-dev-examples

This section will be using the sample1 code from that repository.

	Open a web browser and open the sample1/index.html file.

In this mock-up application we are going to simulate a reporting application that allows
healthcare professionals to run a few reports based on patient data. In this example we will have two reports.

4.2.2 - Sample Report 1

We have already done most of the work for the first report, we just need to
embed the appropriate code from SlamData into the web application. Again, this
is a mock-up application which does not actually generate dynamic web pages, so
we will be modifying static HTML files to simulate this. The guide will point
out relevant areas in code that should be generated by your application.

	If not already open then navigate to the Average Weight by City Workspace.

	Flip the Draftboard Card over (again, this is the card that surrounds all
of the decks with a white border).

	Select Embed Deck.

Notice that SlamData provides sample code to copy and paste into your own
application or HTML file.

4.2.2.1 Snippet 1 Code

	Copy the highlighted part of the text, as shown below.

[image: Embed-Code-1]

	Open the sample1/report1.html file in a text editor.

	Paste the Snippet 1 code that SlamData provided into the HTML file’s <HEAD> section,
just after the line that reads <!-- SLAMDATA SNIPPET 1 -->.

Let’s refer to this section of code as Snippet 1.

Snippet 1 should be placed within the HTML file’s <HEAD>
tags as it’s a JavaScript snippet. This section of code can
easily be inserted into individual HTML files, or you can save it
to it’s own JavaScript (.js) file to include in many documents.

This snippet is generic and is typically the same regardless of
what is being embedded - which makes it a great candidate to
save into that JS file and insert into multiple web pages based on
your web application framework.

You’ll see with Snippets 2 and 3 how we control what is being seen
even though the code in this snippet is generic.

4.2.2.2 Snippet 2 Code

	Go back to the SlamData UI. Scroll down until you see the next section of
sample code, highlighted in the image below.

[image: Embed-Code-2]

	Copy the id value from the <div> element. It starts with sd-deck-.

	Go back to your text editor, and replace the text REPLACE_ME
with the copied value. This should be in the section directly below
<!-- SLAMDATA SNIPPET 2 -->.

One important piece to note here is that the example report1.html file
is formatted with some CSS and <div> tags already. In your own application
you can either paste the entire line of code that SlamData provides, or create
your own <div> tag and programmatically insert the id as we did in this example.

4.2.2.3 Snippet 3 Code

	Go back to the SlamData UI. Scroll down until you see the next section of
sample code, highlighted in the image below.

[image: Embed-Code-3]

	Copy the highlighted text as shown above.

	Go back to your text editor, and paste the contents of Snippet 3 code directly
below the line that reads <!-- SLAMDATA SNIPPET 3 -->.

	Save your sample1/report1.html file to disk.

This is the code that provides the most important information when embedding
the Deck. Notice the variables deckPath and deckId. This section of code
would normally be generated by your own web application, and these two variables
would be populated based on some logic in your application.

In small examples where we are only using two reports it’s easy enough to paste
this code directly into files. However, when the number of reports that are being
embedded grows, it will quickly start to make sense when to programmatically
generate this code.

4.2.2.4 Full Code - Report 1

After making changes to the sample1/report1.html file and saving it,
it should appear almost identical to the following. The differences will
only be related to your local environment, such as possibly the hostname,
the deckId, sd-deck value, etc.

Code:

<head>
<meta charset="utf-8">
<title>Your Reporting App</title>
<link rel="stylesheet" type="text/css" href="styles.css">
<!-- SLAMDATA SNIPPET 1 -->
<script type="text/javascript">
 var slamdata = window.SlamData = window.SlamData || {};
 slamdata.embed = function(options) {
 var queryParts = [];
 if (options.permissionTokens) queryParts.push("permissionTokens=" + options.permissionTokens.join(","));
 if (options.stylesheets && options.stylesheets.length) queryParts.push("stylesheets=" + options.stylesheets.map(encodeURIComponent).join(","));
 var queryString = "?" + queryParts.join("&");
 var varsParam = options.vars ? "/?vars=" + encodeURIComponent(JSON.stringify(options.vars)) : "";
 var uri = "http://localhost:20223/slamdata/workspace.html" + queryString;
 var iframe = document.createElement("iframe");
 iframe.width = iframe.height = "100%";
 iframe.frameBorder = 0;
 iframe.src = uri + "#" + options.deckPath + options.deckId + "/view" + varsParam;
 var deckElement = document.getElementById("sd-deck-" + options.deckId);
 if (deckElement) deckElement.appendChild(iframe);
 };
</script>
</head>
<body>
<div class="container">
 <nav class="navbar navbar-default" role="navigation">
 <div class="navbar-header">
 <div class="row">

 </div>
 <div class="row">

 Your Reporting App
 </div>
 </div>
 </nav>
 <div id="main">
 <div class="container">
 <div class="row">
 <div class="col-md-6">
 <H3>Average Weight by City</H3>
 </div>
 </div>
 <!-- SLAMDATA SNIPPET 2 -->
 <div
 style="min-height: 700px;min-width: 800px;"
 class="col-lg-12 col-md-12 col-sm-12"
 class="row"
 id="sd-deck-33a2fbf9-6c1f-487e-b043-f62565572caa">
 </div>
 </div>
 </div>
</div>
<!-- SLAMDATA SNIPPET 3 -->
<script type="text/javascript">
 SlamData.embed({
 deckPath: "/devguide/devdb/Average+Weight+by+City.slam/",
 deckId: "33a2fbf9-6c1f-487e-b043-f62565572caa",
 // An array of custom stylesheets URLs can be provided here
 stylesheets: []
 });
</script>
</body>

4.2.2.5 Overview of Report 1

Now that the sample1/report1.html file has been saved, it can be loaded
into the web browser.

	Go back to the browser where sample1/index.html is displayed,
or optionally re-open the file with the browser.

	Click on the Average Weight by City link. It should appear similar
to the image below.

	Observe how the entire contents of that Deck is now being displayed
in a third party web application.

[image: Sample-1-1-Full-Report]

The purpose of copying and pasting all of the values in the file above
was to show what a completed web page is comprised of, including the
code to make the calls to SlamData.

A larger web application would typically generate the entire contents
of sample1/report1.html, replacing the relevant values in
Snippet 2 and Snippet 3. Again, Snippet 1 can simply be
saved as a JS file and included in the necessary pages within the application.

4.2.3 - Sample Report 2

This section will give you the relevant information for creating a new
Workspace, Deck and report, but will not give you the full instructions.

From your previous work you understand how to create a Workspace, rename
it, add cards, etc. The list below shows the necessary cards you’ll need to create
and their order. Remember you’ll need to Wrap everything to be able
to move the individual decks around.

Initial Card Order:

	Query Card (wrap the deck here)

Query:

SELECT
 COUNT(*) as Count,
 state,
 gender
FROM `/devguide/devdb/patients`
WHERE
 codes[*].desc like "%ulcer%"
GROUP BY state, gender

	Preview Table Card (mirror the deck here)

Mirrored Deck Card Order

	Setup Chart Card

	Bar Chart

	Category: .state

	Measure: .Count

	Stack: .gender

	Show Chart Card

The results should look similar to the following image:

[image: Report-2-Workspace]

Copy all of the relevant data from Embed Deck and paste
it into the sample1/report2.html file. Once it is saved, you
can click on the Ulcer-related Illnesses by Gender report in the
mock-up application and see something similar to the following image.

[image: Sample-1-2-Full-Report]

Section 5 - Secure Embedding

This section describes how to enable user authorization and authentication
with examples. This not only provides security when users are within
the SlamData user interface but can also be used to control access
from other web applications as well.

Attention

SlamData Advanced Required

[image: Murray-Small] This section requires SlamData Advanced Edition

This section assumes you understand the basics of SlamData
Advanced Edition security
here [http://docs.slamdata.com/en/v3.0/administration-guide.html#security-overview].

SlamData Advanced Edition utilizes OpenID Connect [http://openid.net/connect/],
which is a simple identity layer on top of the OAuth 2.0 protocol.

5.1 Bootstrapping Security

If you have already setup authentication for SlamData you may skip this section.

To enable user security a default administrator group must be created along with
a user email. In the next step this user will be provided all permissions
within SlamData. This allows the user to perform administration tasks within
the user interface as well as make calls via the SlamData API that require
elevated privileges.

From the SlamData Advanced Edition directory, type the following to bootstrap
the SlamData Advanced Edition environment, replacing the email address with
the user you wish to authenticate with.

`
java -jar quasar.jar bootstrap --admin-group --admin-users you@example.com
`

5.2 Creating an OIDC Provider

If you have already setup an OIDC provider you may skip this section.

At least one OpenID Connect (OIDC) Provider must be listed in the configuration
file for SlamData Advanced Edition. This OpenID Connector Provider (OP) will be
trusted by SlamData for authentication information.

The remainder of this guide will assume that a Google OP will be used and the
examples are configured based on this assumption. However, any OpenID Connect Provider
can be used.

5.2.1 Google OIDC Provider

The best method to create an OP is to follow instructions from the
Google API Console project here [https://developers.google.com/identity/sign-in/web/devconsole-project].

Most of the fields should be self explanatory. Once the project is created, go to the
Credentials tab in the API Manager. Under the Authorized redirect URIs enter the following
value and save your changes, assuming hostname and port are correct for your environment:

http://localhost:20223/files/auth_redirect.html

In SlamData’s quasar-config.json file create a new entry based off the client_id,
similar to the image below:

[image: Config-Example]

Restart SlamData Advanced Edition so the new provider will be active.

5.3 Logging Into SlamData

You should now be able to click on the application tab bar pull out at the top of the page.

[image: Header-Grip]

You can then click on the Sign in icon to the right.

Once clicked it should display all of the OIDC Providers that are configured, similar
to the image below:

[image: Sign-In]

Sign in with the user you specified in the bootstrap step above. This user has
complete access to all SlamData Advanced Edition functionality.

5.4 New Decks for Secure Embedding

In this section we’re going to spend time setting up SlamData so that multiple
customers can utilize it from an external web application. This will require
creating SQL² Views, new Workspaces and permission tokens.

Additionally we’ll configure SlamData so that reports and views are now stored
in a separate directory structure for enhanced security.

5.4.1 Setting up SQL² Views

In this simulated application we will assume we are a national
healthcare provider. We also want to create some reports for
our healthcare professionals. However, those reports must be limited
to the states to which the healthcare professional is licensed.

One option would be to create a report for each state, and specify access
to that report for each of that state’s healthcare professionals. Now
consider we would have to do that for each report type. So if one report type was
Average Weight by City, we would have to create 50 of those reports, and
then provide access to each professional in each state.
Then if we wanted another report called Most Diagnosed Disease
we would have to create yet another 50 reports, one for each state, and
setup the professionals to view it again.

A better solution to this is to create a single report, and change
the source data set based upon who is logged in. This is accomplished
through the use of a view. Let’s set one up as an example.

In SlamData, navigate to the root folder. We have primarily been
working in the /devguide/devdb database which means we’ll need
to go up two levels.

From the main Home page in SlamData, go to the devguide mount,
then into the devdb database where the previous Workspaces
were created, similar to this image:

[image: Navigate]

	Click on the Create Folder icon. [image: Create-Folder]

	Hover over the Untitled Folder and click the Move-Rename icon to the right. [image: Move-Rename]

	Rename the folder to state-views.

Now we have a folder which is specifically designed to hold views. This makes
it easier to manage.

Now let’s create our first view.

	Click into the state-views folder.

	Click on the Mount icon. [image: Icon-Mount]

	In the mount dialog provide colorado as the name.

	Select SQL² as the mount type.

	Paste or type the following query into the SQL² query field:

SELECT * FROM `/devguide/devdb/patients` WHERE state = "CO"

	Click Mount.

Congratulations, you just created a view! Now this view path can
be used in queries. When this view is used as the data source,
the results will only be those documents where the state
field is CO.

What we just did can also be accomplished via the SlamData API
quite easily. This is covered in the SlamData API Reference.
To create a view for each of the 50 states would take some time
through the user interface (even with the API), so let’s create
just one more view to use.

	Create another view named texas that queries against the
state field for the value of TX.

We’ll now use the colorado and texas views as the data
sources for some of our reports.

5.4.2 Setting up the Reports

Just like we setup a special folder for the state-views, we
will now setup a special folder for the reports we wish
to securely embed into third party web applications.

	Navigate back to the /devguide/devdb location within SlamData.

	Create a new folder and rename it reports.

	Click into the reports folder.

We are only going to create a single report but this process can
of course be repeated for as many reports as you like. This report
will make use of the views we created previously.

	Click on the Create Workspace icon. [image: Create-Workspace]

	Create a Setup Variables Card.

	Provide the values from the following table:

	Field
	Value

	Name
	viewpath

	Type
	SQL² Identifier

	Default value
	/devguide/devdb/state-views/colorado

	Create a Query Card with the following query:

SELECT
 city AS City,
 AVG(weight) AS AvgWeight
FROM :viewpath
GROUP BY
 city
ORDER BY AVG(weight) DESC
LIMIT 20

	Select Run Query in the bottom right.

	Create a Setup Chart Card with the following settings:

	Field
	Value

	Chart Type
	Bar Chart

	Category
	.City

	Create a Show Chart Card.

We’ve created an interesting chart. Let’s go back out and rename
the Workspace now.

	Zoom back out to the navigation screen.

	Rename the Untitled Workspace.slam Workspace to
Average Weight by City.

	Click into the Average Weight by City Workspace again.

	Flip the deck. [image: Icon-Flip]

	Select the Embed deck icon.

This screen should look familiar! You’ll notice that a few new entries
are now residing in the code. Specifically the viewpath variable is
exposed. We’ll be able to change this value later to control which
data set we’re looking at.

	Click on the Include a permission token... checkbox at the bottom
of the code window.

Notice how the permissionTokens value is now populated within the code.
Now we are ready to securely embed this deck into our simulated web application.

5.4.3 - Setting up the Web Application

Now that we have the views and reports created we can move on to copying
the provided code into the appropriate HTML files to simulate our
healthcare web application.

5.4.3.1 Snippet 1 Code

	Copy the highlighted part of the text, as shown below.

[image: Embed-Code-Secure-1]

	Open the sample2/report1.html file in a text editor (note this is sample2 now,
not sample1).

	Paste the Snippet 1 code that SlamData provided into the HTML file’s <HEAD> section,
just after the line that reads <!-- SLAMDATA SNIPPET 1 -->.

Let’s refer to this section of code as Snippet 1.

As before, this snippet is ideal for usage in an external JS file
that can be included in multiple web pages.

5.4.3.2 Snippet 2 Code

	Go back to the SlamData UI. Scroll down until you see the next section of
sample code, highlighted in the image below.

[image: Embed-Code-Secure-2]

	Copy the id value from the <div> element. It starts with sd-deck-.

	Go back to your text editor, and replace the text REPLACE_ME
with the copied value. This should be in the section directly below
<!-- SLAMDATA SNIPPET 2 -->.

One important piece to note here is that the example report1.html file
is formatted with some CSS and <div> tags already. In your own application
you can either paste the entire line of code that SlamData provides, or create
your own <div> tag and programmatically insert the id as we did in this example.

5.4.3.3 Snippet 3 Code

	Go back to the SlamData UI. Scroll down until you see the next section of
sample code, highlighted in the image below.

[image: Embed-Code-Secure-3]

	Copy the highlighted text as shown above.

	Go back to your text editor, and paste the contents of Snippet 3 code directly
below the line that reads <!-- SLAMDATA SNIPPET 3 -->.

	Save your sample2/report1.html file to disk.

	Now go to your browser and load sample2/index.html.

	Click on the Average Weight by City - Colorado link.

Notice how the Deck is embedded securely inside of our simulated web application.

Try changing the secret token in the sample2/report1.html file and reloading
the page. You’ll notice that you receive an authentication error.

We are now going to use the exact same report, and same code but provide this
functionality to our Texas healthcare professionals as well.

From the command line inside of the repository directory, type or paste the
following command:

cp sample2/report1.html sample2/report2.html

	Open the sample2/report2.html file with a text editor.

	Change the title of the page in the <H3> header to Average Weight by City - Texas

	Change the viewpath value toward the bottom of this file to
/devguide/devdb/state-views/texas

	Save your changes

	Open the sample2/index.html file again, and now click on the
Average Weight by City - Texas report.

Notice that with just the change of the viewpath we are able to provide this
to our Texas professionals as well.

In a real-world application we would generate the web pages represented by
report1.html and report2.html, replacing the variables where
necessary.

 Copyright 2016, SlamData.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SlamData 4.0 documentation

[image: SlamData Logo]

Helpful Tips

This Helpful Tips document provides SQL² snippets that
may not otherwise be covered in the other guides.

Examples in this guide will show the SQL² query as well as the generated
MongoDB query directly below it for reference.

Section 1 - Basic Queries

1.1 Counting

1.1.1 Documents / Rows

SQL Example

SELECT COUNT(*)
FROM `/devguide/devdb/patients`

MongoDB query equivalent

db.patients.aggregate(
 [
 {
 "$group": {
 "0": { "$sum": { "$literal": NumberInt("1") } },
 "_id": { "$literal": null }
 }
 },
 { "$limit": NumberLong("11") }],
 { "allowDiskUse": true });

1.1.2 Documents / Rows with Filter

SQL Example

SELECT COUNT(*)
FROM `/devguide/devdb/patients`
WHERE age >= 50

MongoDB query equivalent

db.patients.aggregate(
 [
 {
 "$match": {
 "$and": [
 {
 "$or": [
 { "age": { "$type": NumberInt("16") } },
 { "age": { "$type": NumberInt("18") } },
 { "age": { "$type": NumberInt("1") } },
 { "age": { "$type": NumberInt("2") } },
 { "age": { "$type": NumberInt("9") } },
 { "age": { "$type": NumberInt("8") } }]
 },
 { "age": { "$gte": NumberInt("50") } }]
 }
 },
 {
 "$group": {
 "0": { "$sum": { "$literal": NumberInt("1") } },
 "_id": { "$literal": null }
 }
 },
 { "$limit": NumberLong("11") }],
 { "allowDiskUse": true });

1.2 Concatenating Field Values

Use the double-pipe (||) symbol to concatenate char and string values.

SQL Example

SELECT
 "Full Name is " ||
 first_name ||
 ' ' ||
 last_name
FROM `/devguide/devdb/patients`

MongoDB query equivalent

db.patients.aggregate(
 [
 { "$limit": NumberLong("11") },
 {
 "$project": {
 "0": {
 "$cond": [
 {
 "$and": [
 { "$lte": [{ "$literal": "" }, "$last_name"] },
 { "$lt": ["$last_name", { "$literal": { } }] }]
 },
 {
 "$cond": [
 {
 "$and": [
 { "$lte": [{ "$literal": "" }, "$first_name"] },
 { "$lt": ["$first_name", { "$literal": { } }] }]
 },
 {
 "$concat": [
 {
 "$concat": [
 {
 "$concat": [{ "$literal": "Full Name is " }, "$first_name"]
 },
 { "$literal": " " }]
 },
 "$last_name"]
 },
 { "$literal": undefined }]
 },
 { "$literal": undefined }]
 }
 }
 }],
 { "allowDiskUse": true });

1.3 Converting Data Types

SlamData provides the ability to convert between many data types.

1.3.1 TO_STRING() Function

Any data type can be converted into a string data type using the TO_STRING() function.

SQL Example

SELECT
 TO_STRING(DATE_PART("year", last_visit)) ||
 "-" ||
 TO_STRING(DATE_PART("month", last_visit)) AS Year_Month
FROM `/devguide/devdb/patients`

Example Output

[image: Year-Month]

MongoDB query equivalent

db.patients.mapReduce(
 function () {
 emit.apply(
 null,
 (function (key, value) {
 return [
 key,
 {
 "Year_Month": (((value.last_visit instanceof Date) || (value.last_visit instanceof Timestamp)) && ((value.last_visit instanceof Date) || (value.last_visit instanceof Timestamp))) ? ((((value.last_visit.getFullYear() instanceof NumberInt) || (value.last_visit.getFullYear() instanceof NumberLong)) ? String(value.last_visit.getFullYear()).replace(
 RegExp("[^-0-9]+", "g"),
 "") : ((value.last_visit.getFullYear() instanceof Timestamp) || (value.last_visit.getFullYear() instanceof Date)) ? value.last_visit.getFullYear().toISOString() : String(value.last_visit.getFullYear())) + "-") + ((((value.last_visit.getMonth() + 1) instanceof NumberInt) || ((value.last_visit.getMonth() + 1) instanceof NumberLong)) ? String(value.last_visit.getMonth() + 1).replace(
 RegExp("[^-0-9]+", "g"),
 "") : (((value.last_visit.getMonth() + 1) instanceof Timestamp) || ((value.last_visit.getMonth() + 1) instanceof Date)) ? (value.last_visit.getMonth() + 1).toISOString() : String(value.last_visit.getMonth() + 1)) : undefined
 }]
 })(
 this._id,
 this))
 },
 function (key, values) { return values[0] },
 {
 "out": { "replace": "tmp.gen_840a7e9a_0", "db": "devdb" },
 "limit": NumberLong("11")
 });
db.tmp.gen_840a7e9a_0.aggregate(
 [{ "$project": { "Year_Month": "$value.Year_Month" } }],
 { "allowDiskUse": true });

1.3.2 TO_TIMESTAMP() Function

An epoch data type can be converted into a TIMESTAMP data type using the TO_TIMESTAMP() function.

The following example assumes a collection that has documents which contain a field epoch with values such as 1408255200000.

SQL Example

SELECT *
FROM `/devguide/epochtest/c1`
WHERE TO_TIMESTAMP(epoch) <= TIMESTAMP("2016-01-01T00:00:00Z")

MongoDB query equivalent

db.c1.aggregate(
 [
 {
 "$project": {
 "__tmp2": {
 "$cond": [
 {
 "$and": [
 { "$lt": [{ "$literal": null }, "$epoch"] },
 { "$lt": ["$epoch", { "$literal": "" }] }]
 },
 {
 "$lte": [
 {
 "$add": [{ "$literal": ISODate("1970-01-01T00:00:00Z") }, "$epoch"]
 },
 { "$literal": ISODate("2016-01-01T00:00:00Z") }]
 },
 { "$literal": undefined }]
 },
 "__tmp3": "$$ROOT"
 }
 },
 { "$match": { "__tmp2": true } },
 { "$limit": NumberLong("11") },
 { "$project": { "value": "$__tmp3", "_id": false } }],
 { "allowDiskUse": true });

1.4 Grouping

1.4.1 By Calendar Quarter

The following example assumes a document structure similar to the following:

{
 "_id": ObjectId("...abcd1234..."),
 ...
 "city": "AUSTIN",
 "first_name": "John",
 "last_name": "Smith",
 "middle_name": "Duke",
 "last_visit": ISODate("2016-01-01T15:56:36Z"),
 "weight": 145
 ...
}

We can generate a concise report showing how many patients
visited per quarter, per year. This requires use of the TO_STRING()
and DATE_PART() functions, as well as the modulus (%) operator
to assist in rounding.

First part of the query:

SELECT
 COUNT(*) as cnt,
 TO_STRING(DATE_PART("year",last_visit))
 || "-Q" ||
 TO_STRING((DATE_PART("quarter",last_visit)) - (DATE_PART("quarter",last_visit) %1)) AS QUARTER

Line 3: Converts the “year” portion of the last_visit field to a string.

Line 4: Concatenates “-Q” to the output of Line 3.

Line 5: Rounds the month to the quarter, then concatenates the output to Lines 3 and 4 and assigns the alias QUARTER.

Second part of the query:

FROM `/devguide/devdb/patients`
GROUP BY
 TO_STRING(DATE_PART("year",last_visit))
 || "-Q" ||
 TO_STRING((DATE_PART("quarter",last_visit)) - (DATE_PART("quarter",last_visit) %1))
ORDER BY QUARTER ASC

The GROUP BY clause is used here to group all quarterly entries together.
The same functions are used here that are used in the SELECT clause for consistency.
Currently, aliases cannot be used in GROUP BY clauses as they can in ORDER BY clauses.

Line 1: fetches from the appropriate collection.

Line 2: Starts the GROUP BY clause.

Line 3: Similar to Line 3 in the first part of the query, converts the “year” portion of the last_visit field to a string.

Line 4: Concatenates “-Q” to the output of Line 3.

Line 5: Rounds the month to the quarter, then concatenates the output to Lines 3 and 4.

Line 6: Orders the results based on yearly quarters in ascending order.

Complete query:

SELECT
 COUNT(*) as cnt,
 TO_STRING(DATE_PART("year",last_visit))
 || "-Q" ||
 TO_STRING((DATE_PART("quarter",last_visit)) - (DATE_PART("quarter",last_visit) %1)) AS QUARTER
FROM `/devguide/devdb/patients`
GROUP BY
 TO_STRING(DATE_PART("year",last_visit))
 || "-Q" ||
 TO_STRING((DATE_PART("quarter",last_visit)) - (DATE_PART("quarter",last_visit) %1))
ORDER BY QUARTER ASC

This results in the following table:

[image: Quarter-Year-Group-By]

When the query results are rendered as a bar chart, the output would look similar to the following:

[image: Quarter-Year-Group-By-Chart]

Section 2 - Complex Queries

This section goes into more advanced queries that include documents with
nested data, documents that utilize schema as data, and multi-collection
JOINs.

The following examples assume a document structure similar to the following,
using fictitious sample data, randomly generated:

{
 "_id": ObjectId("5781ae797689630b25452c73"),
 "city": "COLONIA",
 "first_name": "Keesha",
 "last_name": "Odonnell",
 "middle_name": "Alice",
 "last_visit": ISODate("2016-01-01T15:56:36Z"),
 "weight": 145,
 "loc": [
 -74.314688,
 40.590853
],
 "gender": "female",
 "age": 98,
 "previous_visits": [
 ISODate("2009-02-14T15:09:30Z"),
 ISODate("2006-02-23T17:45:05Z")
],
 "height": 61,
 "county": "MIDDLESEX",
 "state": "NJ",
 "ssn": "383-97-3804",
 "previous_addresses": [
 {
 "city": "HUDSON",
 "longitude": -108.582745,
 "county": "FREMONT",
 "state": "WY",
 "latitude": 42.900791,
 "zip_code": 82515
 },
 {
 "city": "SMYRNA",
 "longitude": -75.565131,
 "county": "KENT",
 "state": "DE",
 "latitude": 39.194026,
 "zip_code": 19977
 },
 {
 "city": "ZOAR",
 "longitude": -81.414245,
 "county": "TUSCARAWAS",
 "state": "OH",
 "latitude": 40.61829,
 "zip_code": 44697
 }
],
 "codes": [
 {
 "code": "S72.001C",
 "desc": "Displaced fracture of medial malleolus of right tibia, subsequent encounter for open fracture type IIIA, IIIB, or IIIC with routine healing"
 },
 {
 "code": "S72.009E",
 "desc": "Other yatapoxvirus infections"
 },
 {
 "code": "S56.417D",
 "desc": "Other fracture of shaft of radius, left arm, subsequent encounter for closed fracture with routine healing"
 },
 {
 "code": "B55.2",
 "desc": "Varicose veins of right lower extremity with ulcer of thigh"
 }
],
 "street_address": "8320 45TH ST",
 "zip_code": 7067
}

1.2 Nested Data

SlamData provides the flattening operator ([*]) to iterate through arrays and
extract values from fields.

1.2.1 Return Nested Array

Querying documents with arrays without the ([*]) operator results in an
array being returned, as shown in the example output below.
Compare this to section 1.2.2 Return Flattened Array.

SQL Example

SELECT
 last_name || "," || first_name AS NAME,
 age AS PATIENT_AGE,
 codes AS Z_CODES
FROM `/devguide/devdb/patients`

Example Output

[image: Return-Nested-Array]

MongoDB query equivalent

db.patients.aggregate(
 [
 { "$limit": NumberLong("11") },
 {
 "$project": {
 "NAME": {
 "$cond": [
 {
 "$and": [
 { "$lte": [{ "$literal": "" }, "$first_name"] },
 { "$lt": ["$first_name", { "$literal": { } }] }]
 },
 {
 "$cond": [
 {
 "$and": [
 { "$lte": [{ "$literal": "" }, "$last_name"] },
 { "$lt": ["$last_name", { "$literal": { } }] }]
 },
 {
 "$concat": [
 { "$concat": ["$last_name", { "$literal": "," }] },
 "$first_name"]
 },
 { "$literal": undefined }]
 },
 { "$literal": undefined }]
 },
 "PATIENT_AGE": "$age",
 "Z_CODES": "$codes"
 }
 }],
 { "allowDiskUse": true });

1.2.2 Return Flattened Array

Compare the output of this section to section 1.2.1 Return Nested Array. The
difference is that in the following example there is one row per patient, per diagnosis.

SQL Example

SELECT
 last_name || "," || first_name AS NAME,
 age AS PATIENT_AGE,
 codes[*] AS Z_CODES
FROM `/devguide/devdb/patients`

Example Output

[image: Return-Flattened-Array]

MongoDB query equivalent

Notice the inclusion now of the MongoDB $unwind operator in the code below.

db.patients.aggregate(
 [
 {
 "$project": {
 "__tmp8": {
 "$cond": [
 {
 "$and": [
 { "$lte": [{ "$literal": [] }, "$codes"] },
 { "$lt": ["$codes", { "$literal": BinData(0, "") }] }]
 },
 "$codes",
 { "$literal": [undefined] }]
 },
 "__tmp9": "$$ROOT"
 }
 },
 { "$unwind": "$__tmp8" },
 { "$limit": NumberLong("11") },
 {
 "$project": {
 "NAME": {
 "$cond": [
 {
 "$and": [
 { "$lte": [{ "$literal": "" }, "$__tmp9.first_name"] },
 { "$lt": ["$__tmp9.first_name", { "$literal": { } }] }]
 },
 {
 "$cond": [
 {
 "$and": [
 { "$lte": [{ "$literal": "" }, "$__tmp9.last_name"] },
 { "$lt": ["$__tmp9.last_name", { "$literal": { } }] }]
 },
 {
 "$concat": [
 { "$concat": ["$__tmp9.last_name", { "$literal": "," }] },
 "$__tmp9.first_name"]
 },
 { "$literal": undefined }]
 },
 { "$literal": undefined }]
 },
 "PATIENT_AGE": "$__tmp9.age",
 "Z_CODES": "$__tmp8"
 }
 },
 {
 "$project": { "NAME": true, "PATIENT_AGE": true, "Z_CODES": true, "_id": false }
 }],
 { "allowDiskUse": true });

 Copyright 2016, SlamData.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SlamData 4.0 documentation

[image: SlamData Logo]

Reference - SQL²

Section 1 - Introduction

SQL² is a subset of ANSI SQL. SQL² is designed for queries on NoSQL database systems.

SQL² has support for every major SQL SELECT clause, such as AS,
WHERE, JOIN, GROUP BY, HAVING, LIMIT, OFFSET,
CROSS, and so on. It follows PostgreSQL where SQL dialects diverge.

1.1 Data Types

The following data types are used by SQL².

Note

Some data types are not natively supported by all database systems.
Instead, they are emulated by SlamData, meaning that you can use them as
if they were supported by the database system.

MDB = Native MongoDB Support

XYZ = Native XYZ DB Support (example for future databases)

	Type
	Description
	Examples
	MDB
	XYZ

	Null
	Indicates missing information.
	null
	Yes
	???

	Boolean
	true or false
	true, false
	Yes
	???

	Integer
	Whole numbers (no fractional
component)
	1, -2
	Yes
	???

	Decimal
	Decimal numbers (optional
fractional components)
	1.0, -2.19743
	Yes
	???

	String
	Text
	"221B Baker Street"
	Yes
	???

	DateTime
	Date and time, in ISO8601 format
	TIMESTAMP("2004-10-19T10:23:54Z")
	Yes
	???

	Time
	Time in the format HH:MM:SS.
	TIME("10:23:54")
	No
	???

	Date
	Date in the format YYYY-MM-DD
	DATE("2004-10-19")
	No
	???

	Interval
	Time interval, in ISO8601 format
	INTERVAL("P3DT4H5M6S")
	No
	???

	Object ID
	Unique object identifier.
	OID("507f1f77bcf86cd799439011")
	Yes
	???

	Ordered
Set
	Ordered list with no duplicates
allowed
	(1, 2, 3)
	No
	???

	Array
	Ordered list with duplicates
allowed
	[1, 2, 2]
	Yes
	???

1.2 Clauses, Operators, and Functions

The following clauses are supported:

	Type
	Clauses

	Basic
	SELECT, AS, FROM

	Joins
	LEFT OUTER JOIN, RIGHT OUTER JOIN, INNER JOIN, FULL JOIN, CROSS

	Filtering
	WHERE

	Grouping
	GROUP BY, HAVING, ARBITRARY

	Conditional
	CASE , WHEN, DEFAULT

	Paging
	LIMIT, OFFSET

	Sorting
	ORDER BY , DESC, ASC

The following operators are supported:

	Type
	Operators

	Numeric
	+, -, *, /, %

	String
	~ , ~*, !~, !~*, LIKE, ||

	Array
	||, [...]

	Relational
	=, >=, <=, <>, BETWEEN, IN, NOT IN

	Boolean
	AND, OR, NOT

	Projection
	foo.bar, foo[2], foo{*}, foo[*]

	Date/Time
	TIMESTAMP, DATE, INTERVAL, TIME

	Identity
	OID

Note

~ , ~*, !~, and !~* are regular expression
operators. ~*, !~, and !~* are preliminary and may not
work in the current release.

Note

The || operator for strings will concatenate two
strings. For example, you can create a full name from a first and last
name property: c.firstName || ' ' || c.lastName. The ||
operator for arrays will concatenate two arrays; for example, if xy
is an array with two values, then c.xy || [0] will create an array
with three values, where the third value is zero.

The following functions are supported:

	Type
	Functions

	String
	CONCAT, LOWER, UPPER, SUBSTRING, LENGTH, SEARCH

	DateTime
	DATE_PART, TO_TIMESTAMP

	Nulls
	COALESCE

	Arrays
	ARRAY_LENGTH, FLATTEN_ARRAY

	Objects
	FLATTEN_OBJECT

	Set-Level
	DISTINCT, DISTINCT_BY

	Aggregation
	COUNT, SUM, MIN, MAX, AVG

	Identity
	SQUASH

Section 2 - Basic Selection

The SELECT statement returns a result set of records from one or
more tables.

2.1 Select all values from a path

To select all values from a path, use the asterisk (*).

Example:

SELECT *
FROM `/users`

2.2 Select specific fields from a path

To select specific fields from a path, use the field names, separated by
commas.

Example:

SELECT name, age
FROM `/users`

2.3 Path Aliases

Follow the path name with an AS and an alias name, and then you can
use the alias name when specifying the fields. This is especially useful
when you have data from more than one source.

Example:

SELECT c.name, c.age
FROM `/users` AS c

Section 3 - Filtering a Result Set

You can filter a result set using the WHERE clause. The following
operators are supported:

	Relational: -, =, >=, <=, <>, BETWEEN,
IN, NOT IN

	Boolean: AND, OR, NOT

3.1 Filtering using a numeric value

Example:

SELECT c.name
FROM `/users` AS c
WHERE c.age > 40

3.2 Filtering using a string value

Example:

SELECT c.name
FROM `/users` AS c
WHERE c.name = "Sherlock Holmes"

3.3 Filtering using multiple Boolean predicates

Example:

SELECT
 c.name FROM `/users` AS c
WHERE
 c.name = "Sherlock Holmes" AND
 c.street = "Baker Street"

Section 4 - Numeric and String Operations

You can use any of the operators or functions listed in the Clauses,
Operators, and Functions section on
numbers and strings. Some common string operators and functions include:

	Operator or Function
	Description

	||
	Concatenates

	LOWER
	Converts to lowercase

	UPPER
	Converts to uppercase

	SUBSTRING
	Returns a substring

	LENGTH
	Returns length of string

4.1 - Examples

Using mathematical operations:

SELECT c.age + 2 * 1 / 4 % 2
FROM `/users` AS c

Concatenating strings:

SELECT c.firstName || ' ' || c.lastName AS name
FROM `/users` AS c

Filtering by fuzzy string comparison using the LIKE operator:

SELECT * FROM `/users` AS c
WHERE c.firstName LIKE "%Joan%"

Filtering by regular expression:

SELECT * FROM `/users` AS c
WHERE c.firstName ~ "[sS]h+""

Section 5 - Dates and Times

Filter by dates and times using the TIMESTAMP, TIME, and
DATE operators. The DATEPART operator can also be used
to select part of a date, such as the day.

Note

Some database systems will automatically convert strings into dates
or date/times. SlamData does not perform this conversion, since the
underlying database system has no schema and no fixed type for any field. As a
result, an expression like WHERE ts > "2015-02-10" compares
string-valued ts fields with the string "2015-02-10" instead of
a date comparison.

If you want to embed literal dates, timestamps, etc. into your SQL
queries, you should use the time conversion operators, which accept
a string and return value of the appropriate type. For example, the
above snippet could be converted to
WHERE ts > DATE("2015-02-10"), which looks for date-valued
ts fields and compares them with the date 2015-02-10.

Note

MongoDB Users

If your MongoDB data does not use MongoDB’s native date/time type,
and instead, you store your timestamps as epoch milliseconds in a
numeric value, then you should either compare numbers or use the
TO_TIMESTAMP function.

5.1 Filter based on a timestamp

Use the TIMESTAMP operator to convert a string into a date and time.
The string should have the format YYYY-MM-DDTHH:MM:SSZ.

Example:

SELECT *
FROM `/log/events` AS c
WHERE c.ts > TIMESTAMP("2015-04-29T15:16:55Z")

5.2 Filter based on a time

Use the TIME operator to convert a string into a time. The string
should have the format HH:MM:SS.

Example:

SELECT *
FROM `/log/events` AS c
WHERE c.ts > TIME("15:16:55")

5.3 Filter based on a date

Use the DATE operator to convert a string into a date. The string
should have the format YYYY-MM-DD.

Example:

SELECT *
FROM `/log/events` AS c
WHERE c.ts > DATE("2015-04-29")

5.4 Filter based on part of a date

Use the DATE_PART function to select part of a date. DATE_PART
has two arguments: a string that indicates what part of the date or time
that you want and a timestamp field. Valid values for the first argument
are century, day, decade, dow (day of week), doy (day of year),
hour, isodoy, microseconds, millenium, milliseconds,
minute, month, quarter, second, and year.

Example:

SELECT DATE_PART("day", c.ts)
FROM `/log/events` AS c

5.5 Filter based on a Unix epoch

Use the TO_TIMESTAMP function to convert Unix epoch (milliseconds)
to a timestamp.

Example:

SELECT *
FROM `/log/events` AS c
WHERE c.ts > TO_TIMESTAMP(1446335999)

Section 6 - Grouping

SQL² allows you to group data by fields and by date parts.

6.1 Group based on a single field

Use GROUP BY to group results by a field.

Example:

SELECT
 c.age,
 COUNT(*) AS cnt
FROM `/users` AS c
GROUP BY c.age

6.2 Group based on multiple fields

You can group by multiple fields with a comma-separated list of fields
after GROUP BY.

Example:

SELECT
 c.age,
 c.gender,
 COUNT(*) AS cnt
FROM `/users` AS c
GROUP BY c.age, c.gender

6.3 Group based on date part

Use the DATE_PART function to group by a part of a date, such as the
month.

Example:

SELECT
 DATE_PART("day", c.ts) AS day,
 COUNT(*) AS cnt
FROM `/log/events` AS c
GROUP BY DATE_PART("day", c.ts)

6.4 Filter within a group

Filter results within a group by adding a HAVING clause followed by
a Boolean predicate.

Example:

SELECT
 DATE_PART("day", c.ts) AS day,
 COUNT(*) AS cnt
FROM `/prod/purger/events` AS c
GROUP BY DATE_PART("day", c.ts)
HAVING c.gender = "female"

6.5 Filter with Arbitrary Value

ARBITRARY returns an arbitrary value from a set. Each target
data source may implement this differently but is intended to retrieve
a single value from a set in the cheapest way, and is not necessarily
deterministic.

6.6 Double grouping

Perform double-grouping operations by putting operators inside other
operators. The inside operator will be performed on each group created
by the GROUP BY clause, and the outside operator will be performed
on the results of the inside operator.

Example:

This query returns the average population of states. The outer
aggregation function (AVG) operates on the results of the inner
aggregation (SUM) and GROUP BY clause.

SELECT AVG(SUM(pop))
FROM `/population`
GROUP BY state

Section 7 - Nested Data and Arrays

Unlike a relational database system, many NoSQL database systems allow data to be
nested (that is, data can be objects) and to contain arrays.

7.1 Nesting

Nesting is represented by levels separated by a full stop (.).

Example:

SELECT c.profile.address.street.number
FROM `/users` AS c

7.2 Arrays

Array elements are represented by the array index in square brackets
([n]).

Example:

SELECT c.profile.allAddress[0].street.number
FROM `/users` AS c

7.2.1 Flattening

You can extract all elements of an array or all field values
simultaneously, essentially removing levels and flattening the data. Use
the asterisk in square brackets ([*]) to extract all array elements.

Example:

SELECT c.profile.allAddresses[*]
FROM `/users` AS c

Use the asterisk in curly brackets ({*}) to extract all field
values.

Example:

SELECT c.profile.{*}
FROM `/users` AS c

7.2.2 Filtering using arrays

You can filter using data in all array elements by using the asterisk in
square brackets ([*]) in a WHERE clause.

Example:

SELECT DISTINCT *
FROM `/users` AS c
WHERE c.profile.allAddresses[*].street.number = "221B"

Section 8 - Pagination and Sorting

8.1 Pagination

Pagination is used to break large return results into smaller chunks.
Use the LIMIT operator to set the number of results to be returned
and the OFFSET operator to set the index at which the results should
start.

Example (Limit results to 20 entries):

SELECT *
FROM `/users`
LIMIT 20

Example (Return the 100th to 119th entry):

SELECT *
FROM `/users`
OFFSET 100
LIMIT 20

8.2 Sorting

Use the ORDER BY clause to sort the results. You can specify one or
more fields for sorting, and you can use operators in the ORDER BY
arguments. Use ASC for ascending sorting and DESC for descending
sorting.

Example (Sort users by ascending age):

SELECT *
FROM `/users`
ORDER BY age ASC

Example (Sort users by last digit in age, descending, and full name,
ascending):

SELECT *
FROM `/users`
ORDER BY age % 10 DESC, firstName + lastName ASC

Section 9 - Joining Collections

Use the JOIN operator to join two or more collections.

There is no technical limitation to the number of collections or tables
that can be joined, but users are encouraged to consider the performance
impact based upon the dataset sizes.

For MongoDB JOIN s, see the database specific notes section about
JOINs on MongoDB.

9.1 Examples

This example returns the names of employees and the names of the
departments they belong to by matching up the employee department ID with
the department’s ID, where both IDs are ObjectID types.

SELECT
 emp.name,
 dept.name
FROM `/employees` AS emp
JOIN `/departments` AS dept ON dept._id = emp.departmentId

If one of the IDs is a string, then use the OID operator to convert
it to an ID.

SELECT
 emp.name,
 dept.name
FROM `/employees` AS emp
JOIN `/departments` AS dept ON dept._id = OID(emp.departmentId)

9.2 Join Considerations

On JOINs with more than two collections or tables, the standard
rule of thumb is to place the tables in order from smallest to largest.
If the collections a, b, and c have 4, 8, and 16
documents respectively, then ordering FROM `/a`, `/b`, `/c` is most
efficient with WHERE a._id = b._id.

If, however, the filter condition is WHERE b._id = c._id then the
appropriate ordering would be
FROM `/b`, `/c`, `/a` WHERE b._id = c._id. This is because without
the filter |a ⨯ b| = 32 which is less than |b ⨯ c| = 128, but with
the filter, |b ⨯ c| is limited to the number of documents in b, which
is 8 (and which is lower than the unconstrained |a ⨯ b|).

Section 10 - Conditionals and Nulls

10.1 Conditionals

Use the CASE expression to provide if-then-else logic to SQL². The
CASE sytax is:

SELECT (CASE <field>
 WHEN <value1> THEN <result1>
 WHEN <value2> THEN <result2>
 ...
 ELSE <elseResult>
 END)
FROM `<path>`

Example:

The following example generates a code based on gender string values.

SELECT (CASE c.gender
 WHEN "male" THEN 1
 WHEN "female" THEN 2
 ELSE 3
 END) AS genderCode
FROM `/users` AS c

10.2 Nulls

Use the COALESCE function to evaluate the arguments in order and
return the current value of the first expression that initially does not
evaluate to NULL.

Example:

This example returns a full name, if not null, but returns the first
name if the full name is null.

SELECT COALESCE(c.fullName, c.firstName) AS name
FROM `/users` AS c

Section 11 - Data Type Conversion

11.1 Converting to Boolean

SQL² allows String data type fields with values of either "true" or
"false" to be converted to their corresponding Boolean value.

Prefix the field name with the BOOLEAN function.

Example:

SELECT BOOLEAN(survey_complete) AS Survey
FROM `/users`

11.2 Converting to Strings

SQL² allows most fields to be converted to String data types by prefixing
the field name with the TO_STRING function.

Example:

SELECT TO_STRING(zip_code) AS ZipCode
FROM `/users`

11.3 Converting to Integer

SQL² allows string representations of valid integer values to be converted
to an actual integer number. Prefix the field name with the
INTEGER function.

If a field named myField had the value
of "1234" as a String, it could be converted to an integer with this example:

SELECT INTEGER(myField) AS MyField
FROM `/users`

If a field is not a valid string representation of an integer value then a
null value will be returned.

11.4 Converting to Decimal

SQL² allows string representations of valid integer and decimal values to be converted
to an actual decimal number. Prefix the field name with the
DECIMAL function.

If a field named myField had the value
of "1.234" as a String, it could be converted to a decimal with this example:

SELECT DECIMAL(myField) AS MyField
FROM `/users`

If the field does not a contain a valid string representation of a numeric value,
such as "123" or "123.456" then a null value will be returned.

11.5 Converting to Dates and Times

SQL² allows strings in a specific format to be converted
to date and time related data types. See
Section 5
for examples of converting to date, time, and timestamp types.

Section 12 - Variables and SQL²

SQL² has the ability to use variables in queries in addition to statically
typed content. Variables can be generated through the use of a Variables Card
or through a combination of Setup Markdown Card / Show Markdown Card. Both
scenarios require that the variables be defined before the Query Card is
executed.

Attention

SlamData Version

The syntax for using variables within SQL² was changed slightly
in version 3.0.8. This document assumes you are using a version
no older than 3.0.8.

12.1 Single Values

Single values are generated in Markdown through the following elements:

	String text field

	Numeric text field

	Calendar Picker

	Calendar / Time Picker

	Radio Boxes

	Drop Downs

For more information on Markdown / Slamdown and how to generate form
elements see the
Form Elements Section
of the Slamdown Reference Guide.

Variables can be used in queries by prefixing the variable name with
a colon (:).

For example, if the following Markdown code was used:

Select year to report on

year = {2011,2012,2013,2014,2015,2016}

The value selected by the user from the year dropdown can be referenced
like this:

SELECT * FROM `/users`
WHERE last_visit = :year

12.2 Multiple Values

Multiple values are generated in Markdown only through the Check Boxes
UI element.

For example, if the following Markdown code was used:

Select years to report on

years = [x] 2014 [] 2015 [] 2016 [] 2017

The values selected by the user from the years set of Check Boxes
should be referenced using the IN clause:

SELECT * FROM `/users`
WHERE last_visit IN :years

This example would find all users who have a last_visit that matched
one of the check boxes selected.

Section 13 - Database Specific Notes

13.1 MongoDB

13.1.1 The _id Field

By default, the _id field will not appear in a result set. However,
you can specify it by selecting the _id field. For example:

SELECT _id AS cust_id
FROM `/users`

MongoDB has special rules about fields called _id. For example, they
must remain unique, which means that some queries (such as
SELECT myarray[*] FROM foo) will introduce duplicates that MongoDB
won’t allow. In addition, other queries change the value of _id
(such as grouping). So SlamData manages _id and treats it as a
special field.

Note

To filter on _id, you must first convert a string to an
object ID, by using the OID function, as shown in the
example below.

SELECT *
FROM `/foo`
WHERE _id = OID("abc123")

13.1.2 JOINs on MongoDB

When executing a JOIN in SQL² against MongoDB, the analytics engine
will decide whether to use the mapreduce API, or the aggregation API along
with the $lookup operator. This operator was introduced in MongoDB
version 3.2 and is the equivalent of a left outer equijoin. You can
find out more here [https://docs.mongodb.com/manual/reference/operator/aggregation/lookup].

To leverage the $lookup operator, the query must satisfy the following
conditions that are imposed by MongoDB:

	Must be running MongoDB 3.2 or newer.

	One collection must use an indexed field.

	That collection must not be sharded.

	Both collections must be in the same database.

	Match must be an equijoin, based on equality only (a.field = b.field is ok, a.field < b.field is not).

If $lookup cannot be used, SlamData will fall back to utilizing the
mapreduce API. Utilizing mapreduce is slower but more flexible
and is also backwards compatible for MongoDB 2.6 and later.

 Copyright 2016, SlamData.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SlamData 4.0 documentation

[image: SlamData Logo]

Reference - SlamDown

This SlamDown Reference can assist with the correct formatting of
SlamDown code to produce static and interactive forms within SlamData.

Section 1 - Introduction

SlamData contains its own markup language called SlamDown, that is
useful for creating reports and forms. SlamDown is a subset of
CommonMark [http://commonmark.org/], a specification for a highly
compatible implementation of
Markdown [https://en.wikipedia.org/wiki/Markdown].

In addition, SlamDown also includes two extensions to CommonMark:
form fields and
evaluated SQL² queries.

Section 2 - Block Elements

The following SlamDown elements create blocks of content.

2.1 Horizontal Rules

Three dashes or more create a horizontal line. Put a blank line above
and below the dashes.

Example:

Text here

More text here

This results in the following output:

Text here

More text here

2.2 Headers

Use hash marks (#) for ATX
headers [http://spec.commonmark.org/0.22/#atx-header], with one
hash mark for each level.

Example:

Top level
Second level
Third level

This results in a first, second, and third level heading, as follows:

[image: Headers]

2.3 Code Blocks

You can create blocks of code (that is, literal content in monospace
font) in two ways:

1. Indented code blocks

Indent by four spaces.

Example:

 for (int i = 0; i

 Troubleshooting FAQ

 Navigation

 	
 index

 	
 previous |

 	SlamData 4.0 documentation

[image: SlamData Logo]

Troubleshooting FAQ

Section 1 - Configuration

1.1 Configuration File Locations

Upon initial launch, SlamData will not have a configuration file.
However, once a valid database mount has been configured, a file
will be created and used to store mount points.
Unless specified on the command line, SlamData will look for its
configuration file in the following locations by default:

	Operating System
	File Location

	Mac OS
	$HOME/Library/Application Support/quasar/quasar-config.json

	Microsoft Windows
	%HOMEDIR%\AppData\Local\quasar\quasar-config.json

	Linux (various vendors)
	$HOME/.config/quasar/quasar-config.json

Warning

Modifying the configuration file

If the configuration file needs to be modified by hand, a backup copy should be created
first. Furthermore, if the file is modified while SlamData is running, any changes may
be overwritten.

1.1.1 Configuration File Differences

SlamData Community Edition relies on the quasar-config.json
configuration file to store all metadata for the product, including
server configurations, mount points, views, and so on.

SlamData Analyst and Advanced Editions rely upon a PostgreSQL or
Java H2 database to store metadata. Depending upon the edition,
additional information will be stored such as security information for users,
groups, permissions, actions and tokens.

If there is no metadata source when SlamData Analyst or Advanced Edition
start, the quasar-config.json file will be used.

1.2 Log File Locations

SlamData has a single log file whose location depends upon the Operating System.
Replace version in the table below with the actual version number that you are
running.

	Operating System
	File Location

	Mac OS
	/Applications/SlamData <version>.app/Contents/java/app/slamdata-<version>.log

	Microsoft Windows
	C:\Program Files (x86)\slamdata <version>\slamdata-<version>.log

	Linux (various vendors)
	$HOME/slamdata<version>/slamdata-<version>.log

Section 2 - Running SlamData

2.1 SlamData Won’t Start

Follow the steps below to ensure all known issues have been addressed.

	If an older version of SlamData is installed in a Virtual Machine (VM),
it may require more than one CPU core before it will launch. If you are
experiencing problems running an older version of SlamData in a VM, try
increasing the number of cores and restarting.

	In older versions of SlamData, an invalid database mount may prevent SlamData
from starting. An invalid database mount could be a database that was
previously available but is no longer available, credentials may have changed, port
number changed, or any other configuration change that does not allow
previously validated configurations to successfully connect.

2.2 Accessing SlamData

The default SlamData URL is http://<servername>:20223

Example: http://localhost:20223

2.3 How do I see which version I’m running?

SlamData’s version will be displayed in the browser title bar or
tab title.

The version of the Quasar analytics backend engine can be obtained
by browsing to http://<servername>:20223/server/info

Example: http://localhost:20223/server/info

2.4 Running SlamData in the Cloud

When running SlamData with a hosting provider, such as Amazon EC2, the
most common error encountered is a security policy misconfiguration.
SlamData will need to connect to a data source over the same port as a
standard database client.

A data source or database server and the SlamData server do not
need to run on the same system.

Use the following checklist to ensure network problems are minimized.

	Verify the security policy for the data source or database server is:

	Accepting incoming connections from the SlamData server IP address.

	Accepting incoming connections on the correct port.

	If you are still unable to connect to your hosted data source or database system:

	Verify that you can connect with a standard database client from any system.

	Connect with a standard database client from the same system SlamData is running on.

 Copyright 2016, SlamData.
 Created using Sphinx 1.3.5.

 Index

 Navigation

 	
 index

 	SlamData 4.0 documentation

Index

 Copyright 2016, SlamData.
 Created using Sphinx 1.3.5.

_images/icon-create-folder.png

_images/card-show-chart.png
al

Show Chart

_images/mount-dialog.png
Mount

Name

Mount type

_images/card-setup-download.png
Setup Download

_static/up.png

securing-slamdata.html

 Navigation

 		
 index

 		SlamData 4.0 documentation »

[image: SlamData Logo]

Securing SlamData

Pending

 © Copyright 2016, SlamData.
 Created using Sphinx 1.3.5.

_images/mount-ssl.png
Mount

Name service_provider

Mounttype MongoDB

Server(s)

Host service_provider_host_name Port 27017

Authentication

Username myuser

Password

Database admin

Settings

Name Value

st true

_images/mount-all-mounts.png
path:/

Home

Name A

aws

B macbook

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/plus.png

_images/icon-move-rename.png

_images/all-3-decks.png
Select the state to report on

AvgWeight City

466 TODDVILLE
DEAL ISLAND
GLEN ECHO
FREELAND
COLTONS POINT
MARBURY
GREENBELT
RIDGE
LA PLATA

PATUXENT RIVER

of2 | M M Perpage:

AvgWeight

466

City
TODDVILLE
DEAL ISLAND
GLEN ECHO
FREELAND
COLTONS POINT
MARBURY
GREENBELT
RIDGE

LA PLATA

PATUXENT RIVER

of2 | M M Perpage:

_images/config-example.png
"server": {
"port": 20223

}

"authentication": {
"openid_providers": [

{
"issuer": "https://accounts.google.com",
client_id": " - < ops - googleusercontent.com”,
"display_name": "Google"

}

]

_images/md-and-show-decks.png
Select the state to report on

state

AvgWeight

TODDVILLE

DEAL ISLAND

GLEN ECHO

FREELAND

COLTONS POINT

MARBURY

GREENBELT

_static/minus.png

_static/up-pressed.png

_static/file.png

_images/report-2-workspace.png
gender

female

male

male

male

female

male

male

female

male

male

Al

AK AZ CT GA ID KS MA MI MT NE NM OH PA SD UT WA WwY

0 female [male

ofg | M M Perpage:

_images/sample-2-1-full-report.png
Your Reporting App

Average Weight by City - Colorado

S & S o 5 bt > o S
&M&‘f‘&wﬁ s dﬁ;@‘*‘w“;ﬁ“@m‘ﬁw“p o W”)‘pﬂ“;v“f,;c‘&d@@@“ & 0%

_static/comment-bright.png

_images/new-card-choices-1.png
SELECT *

111
111
I:‘I:!I:I

Preview Table

Setup Chart

al

Show Chart

© WA
© MWW

Setup Markdown Show Markdown Setup Dashboard

Setup Variables Troubleshoot

Setup Download

Show Download

_images/icon-mount.png

_images/after-upload.png
path:/devguide/devdb/

Home / devguide / devdb

Name A

B patients

_images/mount-dialog-complete.png
Mount

Name devguide

Mount type MongoDB

Server(s)

Host localhost

Authentication

Port 27017

Username

Password

Database

Settings

Value

_images/radio-buttons-dynamic.png
Q

commute @ blue green red yellow

_images/sample-1-2-full-report.png
Your Reporting App

Ulcer Related llinesses

Count gender state

1 female ME

2 male GA

2 male MI

1 male TX

2 female AK

4 male vT

3 male MT

2 female NE

1 male HI

2 male wy
I Page < of9 L] Per page: 10 v \

12

10

|

N

AK AZ CT GA

0

) female) male

|
i { ot
[

ID KS MA Ml MT NE NM OH PA SD UT WA WY

_images/embed-code-3.png
Embed deck

var queryString = "?" + queryParts.join("&");
var varsParam = options.vars ? "/?vars=" + encodeURIComponent(JSON.stringify(options.vars)) : "";
var uri = "http://localhost:20223/slamdata/workspace.html" + queryString;
var iframe = document.createElement("iframe");
iframe.width = iframe.height = "100%";
iframe.frameBorder = 0;
iframe.src = uri + "#" + options.deckPath + options.deckld + "/view" + varsParam;
var deckElement = document.getElementByld("sd-deck-" + options.deckld);
if (deckElement) deckElement.appendChild(iframe);
i

</script>

<!--This is the DOM element that the deck will be embedded into ->
<div id="sd-deck-33a2fbf9-6¢1f-487e-b043-f62565572caa"></div>

<!-- This is the code that performs the deck insertion, placing it at the end of the body is suggested -->
<script type="text/javascript">
SlamData.embed({
deckPath: "/devguide/devdb/Average+Weight+by+City.slam/",
deckld: "33a2fbf9-6c1f-487e-b043-f62565572caa",

// An array of custom stylesheets URLs can be provided here
stylesheets: []
i

</script>

_images/embed-code-secure-1.png
Embed deck

<!-This is the generic SlamData embedding code. ->

<!-- You can put this in the header or save it in a .js file included in the document -->

<script type="text/javascript">

var slamdata = window.SlamData = window.SlamData || {};

slamdata.embed = function(options) {
var queryParts = [J;
if (options.permissionTokens) queryParts.push("permissionTokens=" + options.permissionTokens.join(","));
if (options.stylesheets && options.stylesheets.length) queryParts.push("stylesheets=" + options.stylesheets.map(encodeURIComponent).join(","));
var queryString = "?" + queryParts.join("&");
var varsParam = options.vars ? "/?vars=" + encodeURIComponent(JSON.stringify(options.vars)) :
var uri = "http://localhost:20223/files/workspace.html" + queryString;

n,
'

var iframe = document.createElement("iframe");
iframe.width = iframe.height = "100%";
iframe.frameBorder = 0;

iframe.src = uri + "#" + options.deckPath + options.deckld + "/view" + varsParam;
var deckElement = document.getElementByld("sd-deck-" + options.deckld);

if (deckElement) deckElement.appendChild(iframe);

i

</script>

<!--This is the DOM element that the deck will be embedded into ->
<div id="sd-deck-3e0d1ea9-a605-403e-803d-6cc8cd14eeff"></div>

<!-- This is the code that performs the deck insertion, placing it at the end of the body is suggested >

Include a permission token so the deck can be accessed by anyone who has the access to this script. You may undo this by revoking access.

_images/card-preview-table.png
Preview Table

_images/check-boxes-dynamic.png
Q
myphone @ Android - Blackberry [iPhone

_images/in-devdb-clean.png
path:/devguide/devdb/

Home / devguide / devdb

Name A

?
L]
L

2

_images/home-annotated-with-numbers.png
2

Hoe OPEE@®®
SIS S ST
Name 3456789

/1

_images/sd-token-example.png
s N
Token ID: A1
Action Action Action
Resource: /priv Resource: /priv Resource: /priv
Type: Structural Type: Content Type: Mount
Operations: Operations: Operations:
- Add - Add - Add
- Read - Read - Read
- Delete - Delete - Delete
- Modify - Modify

e

_images/card-open.png
Open

_images/fake-levels.png
Top Level

Second Level
Third Level

_images/card-troubleshoot.png
N
PN

Troubleshoot

_images/date-and-time.png
start

04/15/201
rorzore + EEE
Sun von Tue es Thu FiSat
T2
s a5 6 76 e
W omonow s
IBE TEER:
PR)

_images/quarter-year-group-by.png
QUARTER
2006-Q1
2006-Q2
2006-Q3
2006-Q4
2007-Q1
2007-Q2
2007-Q3
2007-Q4
2008-Q1

2008-Q2

Page 1

of 5

»

t
55
i
66

38

73
67
55
7

102

Per page:

10

‘8

_images/icon-zoom-out.png

_images/check-boxes-static.png
Q
phones < iPhone Android , Blackberry

_images/navigate.png
pathy/devguide/devdb/

Home / devguide / devdb

Name A

W Average Weight by City.slam
W Ulcer Related lllnesses.slam

B patients

w

system

_images/date-only.png
start 04/19/2016 i

April 2016 +

Sun Mon Tue Wed Thu Fri

3 4 5 8 7 8
o2 B oS
v w18 20 2 2
2 25 28 27 28 29 30

_images/mount-mongodb.png
Mount

Name aws

Mounttype MongoDB

Server(s)

Host db.example.com Port | 27017
Authentication

Username joe

Password e

Database joesdb

Settings

Name Value

.

_images/header-grip.png
path/

Home

>
n
2

_images/card-query.png
SELECT *

Query

_images/sd-group-example.png
Group: /engineering

Group: /engineering/backend

User:Charlie || User:Hurley || User:Claire
Group: /engineering/frontend
User:Sayid User:Kate |[User:Sawyer

é| &

User:Jack

o

_images/wrapped-deck.png
Select the state to report on

_images/all-3-with-chart.png
Select the state to report on

state X 9 ‘

AvgWeight City

395 LEDBETTER

353 SUGAR LAND

GREENVILLE

POTEET

COTTON CENTER

ALPINE

BRANDON

MAXWELL

STAFFORD

BARNHART

0
ALPINE MISSION POTEET SUGAR LAND

_images/card-setup-chart.png
Setup Chart

_images/icon-create-workspace.png

_images/name-workspace.png
Explore file

Create a new workspace in /devguide/devdb/ to explore patients

My First Test

e

_images/card-search.png
Search

bic-manual.html

 Navigation

 		
 index

 		SlamData 4.0 documentation »

[image: SlamData Logo]

SlamData BI Connector Manual

Section 1 - Introduction

This README is for the SlamData BI Connector only. It does not apply to
the SlamData Standard or SlamData Advanced editions.

The Quasar Analytics engine, also written by SlamData, provides native
analytics for MongoDB and other NoSQL databases. It is also used in the
SlamData Standard and SlamData Advanced analytics products. These two
solutions provide a graphical front end to Quasar, which in turn
provides data access to multiple target databases, both NoSQL and
relational. These SlamData flagship products allow users to embed
beautiful charts with enterprise-grade security into any app, while
using SQL against both NoSQL and relational data sources. Find out more
at www.slamdata.com

More information about Quasar Analytics can be found at:
https://github.com/quasar-analytics/quasar/blob/master/README.md

1.1 Advantages

The advantages of using the SlamData BI Connector over alternatives are:

		Takes full advantage of computational “push down”. This allows
maximum processing in the database before returning results to the
client. Other solutions will pull back a much larger data set and
then process it within PostgreSQL instead.

		Written in C for maximum speed.

		Full commercial support from the SlamData team.

1.2 Requirements

		PostgreSQL version 9.4.x (does not run on 9.3 or 9.5)

		MongoDB version 2.6, 2.8, 3.0 or 3.2

		Python 2.7 (for use with the gen_schema.py script)

		Mac OS X 10.10 or newer, Windows 7 or newer, Ubuntu Linux 16.04 or
newer

		Read/write access to MongoDB. Required when MongoDB runs large
queries and must use temporary writing space (see ‘allowDiskUse’
MongoDB term)

		Read/write file system access to system that the SlamData BI
Connector is installed.

1.3 Data Flow

The SlamData BI Connector allows communication from a client to
PostgreSQL, from PostgreSQL to the Quasar analytics engine, and from
Quasar to MongoDB.

User Flow: User -> PostgreSQL -> Quasar -> MongoDB

Data Flow: User <- PostgreSQL <- Quasar <- MongoDB

Section 2 - Installation

2.1 All environments

		Ensure MongoDB is installed properly prior to install of the SlamData
BI Connector

		Ensure PostgreSQL 9.4.x is installed properly prior to install of the
SlamData BI Connector

		Verify appropriate credentials for MongoDB. User should have both
read and write capabilities for the databases and collections that
will be queried.

		Verify firewalls allow appropriate ports between relevant systems.
Default values are below.
		MongoDB: 27017

		SlamData BI Connector: 8080

		PostgreSQL: 5432

2.2 OS X

		Mount the .dmg file image

		Execute the SlamData BI Connector installer

		Proceed to the Configuration section below

2.3 Linux

		User executing the install script must have sudo privileges to
write to system directories.

		Extract the sdbic.tar.gz file:

tar xvfz ./sdbic.tar.gz

2.4 Windows

		Unzip the provided installation package

		Execute the SlamData BI Connector installer

		Proceed to Configuration section below

Section 3 - Configuration

To successfully configure the SlamData BI Connector an administrator
must understand JSON formatting for MongoDB and schemas in PostgreSQL.

After the installation steps in the previous section have been
completed, it is time to configure the SlamData BI Connector.

3.1 Assisted Configuration

The sd_install is a bash shell script will allow administrators to
create a basic BI Connector configuration. If you are on a Windows
platform, you can either install a Bash shell executor on your system,
or you may choose to manually configure the product by following steps
in the next section.

		Run the script:

cd sdbic
sudo ./sd_install

		Enter install at the prompt

		Provide appropriate values to prompted questions.

The install module of the script will copy platform-specific
libraries to appropriate directories based on your operating system. It
will also copy the .jar files to /opt/slamdata/bic. Finally it places a
quasar-config.json file in that directory.

Subsequent runs of the sd_install script allow you to choose other
options to repeat any portion of the initial install, including
create_config, install_libs, restart_postgres and
install_quasar.

3.2 Manual Configuration

If you successfully used the install script from section 3.1 above
you may skip all of section 3.2.

If you are unable to run the sd_install script you may follow these
steps:

		Create a directory located at /opt/slamdata/bic

		Copy the core_2.11-9.2.2-one-jar.jar and
web_2.11-9.2.2-one-jar.jar files to /opt/slamdata/bic

		Create symbolic links /opt/slamdata/bic/quasar-repl.jar for the
core jar file, and /opt/slamdata/bic/quasar-web.jar for the web
jar file.

		Ensure directory and file permissions are appropriate for your
environment

Note: Users may choose a different directory, especially Windows
users. If an alternate directory is used, use that directory in any
subsequent steps.

		Ensure MongoDB is running on a system you have access to.

		Create a new quasar-config.json configuration file and place it
in the /opt/slamdata/bic/ directory. This is used by Quasar to
connect to MongoDB.

		Configure the file (see
https://github.com/quasar-analytics/quasar#configure)

		Start Quasar to test it:

java -jar /opt/slamdata/bic/quasar-repl.jar -c /opt/slamdata/bic/quasar-config.json

Only after Quasar is successfully communicating to MongoDB, and you can
run SQL queries with it, should you proceed to the next step. If you’re
unable to run queries against Quasar and MongoDB, do not proceed as the
next steps rely on a working environment.

		Stop PostgreSQL if it is running

3.2.1 Required Libraries

		Copy the PostgreSQL and YAJL library files to appropriate directories
listed below:

3.2.1.1 Ubuntu Linux

		Packaged file name and location
		Copy to

		platforms/all/libraries/quasar_fdw.control
		/usr/share/postgresql/9.4/extension

		platforms/all/libraries/quasar_fdw–1.2.2.sql
		/usr/share/postgresql/9.4/extension

		platforms/debian/libraries/quasar_fdw.so
		/usr/lib/postgresql/9.4/lib

		platforms/debian/libraries/yajl/libyajl.so
		/usr/lib/x86_64-linux-gnu

		platforms/debian/libraries/yajl/libyajl.so.2
		/usr/lib/x86_64-linux-gnu

		platforms/debian/libraries/yajl/libyajl.so.2.1.1
		/usr/lib/x86_64-linux-gnu

		platforms/debian/libraries/yajl/libyajl_s.a
		/usr/lib/x86_64-linux-gnu

3.2.1.2 Apple MacOS / OS X

The file destination will depend on how PostgreSQL was installed. The example below
assumes that PostgreSQL 9.4.5_2 was installed via brew install postgres

		Packaged file name and location
		Copy to

		platforms/all/libraries/quasar_fdw.control
		/usr/share/postgresql/9.4/extension

		platforms/all/libraries/quasar_fdw–1.2.2.sql
		/usr/share/postgresql/9.4/extension

		platforms/osx/libraries/quasar_fdw.so
		/usr/local/Cellar/postgresql/9.4.5_2/lib/postgresql

		platforms/osx/libraries/yajl/libyajl.so
		/usr/local/Cellar/postgresql/9.4.5_2/share/postgresql/extension

		platforms/osx/libraries/yajl/libyajl.so.2
		/usr/local/Cellar/postgresql/9.4.5_2/share/postgresql/extension

		platforms/osx/libraries/yajl/libyajl.so.2.1.1
		/usr/local/Cellar/postgresql/9.4.5_2/share/postgresql/extension

		platforms/osx/libraries/yajl/libyajl_s.a
		/usr/local/Cellar/postgresql/9.4.5_2/share/postgresql/extension

		Restart PostgreSQL

		Load the Quasar Foreign Data Wrapper extension. You should only need
to execute this command once, unless it fails.

Section 4 - Initial Server Setup

Once all of the files are installed or copied to their appropriate locations,
it is time to configure PostgreSQL to communicate with Quasar by registering
the quasar_fdw foreign data wrapper, and creating a remote/foreign server.

From the psql command line as user postgres:

CREATE EXTENSION quasar_fdw;

PostgreSQL should respond with an empty CREATE EXTENSION response.

		Create the Quasar foreign server object within PostgreSQL.

This step assumes that Quasar has already been successfully installed,
and configured with a MongoDB mount name of /target, and that MongoDB has
a database called quasar.

DROP SERVER mybox CASCADE;
CREATE SERVER mybox FOREIGN DATA WRAPPER quasar_fdw
 OPTIONS (server 'http://localhost:8080'
 ,path '/target/quasar/'
 ,timeout_ms '1000'
 ,use_remote_estimate 'true'
 ,fdw_startup_cost '10'
 ,fdw_tuple_cost '0.01');

PostgreSQL should respond with an empty CREATE SERVER response.

The following parameters can be set on a Quasar foreign server object:

		Option
		Description
		Default Value

		server
		URL of remote Quasar Server.
		http://localhost:8080

		path
		Path to the data on remote Quasar.
		/test

		timeout_ms
		Timeout in milliseconds of querying data
from Quasar.
		1000 ms (1 sec)

		use_remote_estimate
		Boolean (true or false) to allow
quasar_fdw to contact Quasar with
rowcounts to estimate cost of queries.
		true

		fdw_startup_cost
		Cost (floating-point) of starting up a
query to Quasar.
		100.0

		fdw_tuple_cost
		Cost (floating-point) of processing a
tuple in quasar_fdw.
		0.01

Section 5 - Table Setup

Before queries can be successfully executed through PostgreSQL to MongoDB,
there must be a mapping of PostgreSQL table columns to MongoDB collection fields.

Additionally, PostgreSQL does not understand the concept of nested data such as
arrays and subdocuments. Due to these two factors, each collection that you wish
to query inside of MongoDB must have one or more PostgreSQL tables mapped to it.

This example assumes that a collection zips exists on the MongoDB server under
the quasar database mentioned in the previous step. This example will create
a table with the name of myzips and map it to equivalent fields in the MongoDB
zips collection, on the mybox Quasar server.

CREATE FOREIGN TABLE zips(
 city varchar,
 pop integer,
 state char(2),
 loc float[2])
 SERVER mybox
 OPTIONS (table 'myzips');

The following parameters can be set on a Quasar foreign table object:

		Option
		Description
		Default value

		table
		Name of the Quasar table / mongo
collection to query.
		N/A

		use_remote_estimate
		Override the server-level option
		Server value

At this point you have successfully setup a PostgreSQL < - > MongoDB mapping.

The example below assumes you have the patients JSON collection located
here [https://github.com/damonLL/tutorial_files/raw/master/patients]

		Create a Quasar foreign table object using column mappings.

Note the use of the
flattening operator [*] from SQL² syntax.

CREATE FOREIGN TABLE patients(
 _id VARCHAR,
 first_name VARCHAR,
 last_name VARCHAR,
 middle_name VARCHAR,
 street_address VARCHAR,
 city VARCHAR,
 state VARCHAR,
 zip_code BIGINT,
 county VARCHAR,
 ssn VARCHAR,
 age BIGINT,
 weight FLOAT,
 height FLOAT,
 loc FLOAT [],
 last_visit TIMESTAMP,
 gender CHAR(6),
 previous_visits TIMESTAMP [],
 i10_code VARCHAR OPTIONS (map 'codes[*].code'),
 i10_description VARCHAR OPTIONS (map 'codes[*].desc')
 SERVER mybox
 OPTIONS (table 'patients');

The following parameters can be set on a column in a Quasar foreign
field:

		Option
		Default Value
		Description

		map
		The lower case name of
the column in PostgreSQL
		Name of the column to query in
PostgreSQL

		nopushdown
		false
		Boolean (true or false)
value telling PostgreSQL not to
push down any comparison clauses
with this column in it. Used
when underlying data is not
stored as the correct type.

		join_rowcount_esitmate
		1
		Integer value representing the
distinctness of a column’s value in the
underlying data. This will be used to
estimate the number of rows that might be
queried from a single value. For columsn
with unique values, this should be 1.

Important notes regarding field mapping configuration:

		Postgres will downcase all field names, so if a field has a capital letter in it,
you must use the map option: OPTIONS (map "camelCaseSensitive")

		The SlamData BI Connector will convert strings to other types, such as dates, times,
timestamps, intervals, integers, and floats. However, if the
underlying data is a string, we should NOT push down type-specific
operations such as WHERE clauses to Quasar. Therefore, you should
enforce a no pushdown restriction in the column options. Use the
OPTIONS (nopushdown 'true') option to force no pushdown of any
clause containing the column.

Section 6 - Queries

6.1 Queries via PostgreSQL

Once the appropriate server components are configured, and at least one
table and collection have been mapped, then PostgreSQL will act
as a proxy query server to MongoDB. This essentially means that users
can either use the psql command line tool to query PostgreSQL, and
in turn MongoDB; but it also means that standard JDBC clients can
now query MongoDB through PostgreSQL as well.

The Quasar analytics engine has the advantage of pushing maximum
computation down to MongoDB. This means that whatever complex aggregations
that may be submitted in a query will actually occur in MongoDB, rather
than inside PostgreSQL or the client. With data sets ranging into
terabytes this is an important feature.

Example SQL queries:

SELECT * FROM zips LIMIT 10;

SELECT city, pop FROM zips WHERE pop % 2 = 1 LIMIT 10;

SELECT * FROM zips ORDER BY pop DESC LIMIT 10;

SELECT * FROM zips z1 INNER JOIN zips z2 ON z1.city = z2.city LIMIT 10;

6.2 Queries via Quasar

After the SlamData BI Connector is fully installed, users have the
additional option of leveraging the REPL (read, evaluate, print, loop)
console. This allows direct access to the MongoDB database, bypassing
PostgreSQL completely. The primary benefit being that unstructured
databases such as MongoDB can be directly queried without any mapping
of fields.

Additionally users can leverage enhanced SQL² functionality that standard
JDBC and PostgreSQL drivers do not support, such as the flattening [*]
operator to drill down into arrays, or dot-notation sub documents.

The SlamData BI Connector comes with two .jar files. One is designed
to operator as a REST API for the PostgreSQL < - > communication pipeline.
The other is designed to be called independently and provides the interactive
REPL shell to the mounted MongoDB databases.

First, start the REPL console:

java -jar /opt/slamdata/bic/quasar-repl.jar -c /opt/slamdata/bic/quasar-config.json

You’ll be greeted with the Quasar console:

💪 $

You can navigate the currently mounted databases very much like a Unix/Linux OS:

💪 $ ls
aws@ (mongodb)
macbook@ (mongodb)
💪 $ cd macbook
💪 $ ls
bp/
charts/
demo/
devdb/
local/
numbers/
quasar/
💪 $ cd demo
💪 $ ls
dis
💪 $ select * from dis
MongoDB
db.dis.find();

Query time: 0.2s
 name |
--------|
 Abby |
 David |
 Tina |
 Xavier |
💪 $

The example above shows two mount points: aws and macbook. Inside
the macbook mount point there is a demo database, and within that
database the collection dis.

Standard SQL can be executed within the REPL console, as well as enhanced
SQL² queries. See the combination of both below.

Example SQL and SQL² queries:

SELECT * FROM zips LIMIT 10;

SELECT city, pop FROM zips WHERE pop % 2 = 1 LIMIT 10;

SELECT loc[1] AS lat, loc[2] AS long FROM zips LIMIT 10;

SELECT * FROM zips ORDER BY pop DESC LIMIT 10;

SELECT * FROM zips z1 INNER JOIN zips z2 ON z1.city = z2.city LIMIT 10;

To view detailed information regarding the query plan for
a query, utilize the EXPLAIN function as follows.

To see the query that PostgreSQL sends to Quasar:

EXPLAIN (COSTS off) SELECT * FROM zips LIMIT 10;

To see the query that Quasar sends to MongoDB:

EXPLAIN (COSTS off, VERBOSE on) SELECT * FROM zips LIMIT 10;

		General Type
		Specific Type

		String type
		char, text, varchar,
bpchar, name

		Number type
		numeric, int4, int8,
int2, float4, float8,
oid

		Time type
		time, timestamp, date,
timestamptz

		Boolean
		

		Complex types
		arrays, json, jsonb

6.3 JOIN Query Functionality

JOINs can be executed in one of three ways, depending on the cost
estimation. This is why use_remote_estimate is so important. A
merge join is used for very large and similarly sized datasets. A
hash join is used for a large and a small dataset. A parameterized
join is used when one join condition is only going to return a very
small number of rows. This parameterized join is the best pushdown
that can be achieved with PostgreSQL 9.4’s FDW interface.

 © Copyright 2016, SlamData.
 Created using Sphinx 1.3.5.

tutorial.html

 Navigation

 		
 index

 		SlamData 4.0 documentation »

[image: SlamData Logo]

Tutorial

Pending

 © Copyright 2016, SlamData.
 Created using Sphinx 1.3.5.

_images/embed-code-1.png
Embed deck

<!-This is the generic SlamData embedding code. ->
<!-- You can put this in the header or save it in a s file included in the document -->
<script type="text/javascript">
var slamdata = window.SlamData = window.SlamData || {};
slamdata.embed = function(options) {
var queryParts = [J;
if (options.permissionTokens) queryParts.push("permissionTokens=" + options.permissionTokens.join(","));
if (options.stylesheets && options.stylesheets.length) queryParts.push("stylesheets=" + options.stylesheets.map(encodeURIComponent).join(","));
var queryString = "?" + queryParts.join("&");
var varsParam = options.vars ? "/?vars=" + encodeURIComponent(JSON.stringify(options.vars)) :
var uri = "http://localhost:20223/slamdata/workspace.html" + queryString;
var iframe = document.createElement("iframe");
iframe.width = iframe.height = "100%";
iframe.frameBorder = 0;
iframe.src = uri + "#" + options.deckPath + options.deckld + "/view" + varsParam;
var deckElement = document.getElementByld("sd-deck-" + options.deckld);
if (deckElement) deckElement.appendChild(iframe);
i

</script>

<!--This is the DOM element that the deck will be embedded into ->
<div id="sd-deck-33a2fbf9-6¢1f-487e-b043-f62565572caa"></div>

<!I-- This is the code that performs the deck insertion, placing it at the end of the body is suggested >

_images/embed-code-secure-3.png
Embed deck

var deckElement = document.getElementByld("sd-deck-" + options.deckld);
if (deckElement) deckElement.appendChild(iframe);
i

</script>

<!--This is the DOM element that the deck will be embedded into ->
<div id="sd-deck-3e0d1ea9-a605-403e-803d-6cc8cd14eeff"></div>

<!-- This is the code that performs the deck insertion, placing it at the end of the body is suggested -->
<script type="text/javascript">
SlamData.embed({

deckPath: "/devguide/devdb/reports/Average+Age+by+City.slam/",

deckld: "3e0d1ea9-a605-403e-803d-6cc8cd14eeff",

// An array of custom stylesheets URLs can be provided here

stylesheets: [],

// The variables for the deck(s), you can change their values here:

vars: {

"3e0d1ea9-a605-403e-803d-6cc8cd14eeff": {
"viewpath": "/devguide/devdb/state-views/colorado"

)
permissionTokens: ["1b7b557e6d10ee6648b2b7983f27fc7f783136d006975dbf5249558c9d51307a"]

Include a permission token so the deck can be accessed by anyone who has the access to this script. You may undo this by revoking access.

_images/card-setup-markdown.png
Setup Markdown

_images/dropdown-static.png
city 7 BOS
sF0
NYC

_images/mount-dialog-start.png
Mount

Mount type

[23

_images/sd-permission-example-1.png
s N

Permission ID: 150
(Action Action Action
Resource: /john Resource: /john Resource: /john
Type: Structural Type: Content Type: Mount
Operations: Operations: Operations:

- Add - Add - Add

- Read - Read - Read

- Delete - Delete - Delete
- Modify - Modify

User:John

_images/sample-1-1-full-report.png
Your Reporting App

Average Weight by City

Select the state to report on

a

state fco ¢

AvgWeight City

394 ARAPAHOE
344 HAMILTON
329 PAONIA

322 OTIS

318 WESTCLIFFE
303 ORCHARD
298 DEER TRAIL
296 SEIBERT

291 VERNON
285 COMMERCE CITY

M| M Page 1t of2 W M Perpage:{m :\‘

400

300

200

100

0
ARAPAHOE

CALHAN

DEER TRAIL

QoTIS

TABERNASH

api-reference.html

 Navigation

 		
 index

 		SlamData 4.0 documentation »

[image: SlamData Logo]

API Reference

Pending

 © Copyright 2016, SlamData.
 Created using Sphinx 1.3.5.

_images/radio-buttons-static.png
Q

commute @ bus o car bike

_images/card-show-markdown.png
© M
© MWW
[

Show Markdown

_images/embed-code-secure-2.png
Embed deck

var deckElement = document.getElementByld("sd-deck-" + options.deckld);
if (deckElement) deckElement.appendChild(iframe);
i

</script>

<!--This is the DOM element that the deck will be embedded into ->
<div id<|"sd-deck-3e0d1ea9-a605-403e-803d-6cc8cd14eeff"b</div>

<!-This is the code that performs the deck insertion, placing it at the end of the body is suggested -->
<script type="text/javascript">
SlamData.embed({
deckPath: "/devguide/devdb/reports/Average+Age+by+City.slam/",
deckld: "3e0d1ea9-a605-403e-803d-6cc8cd14eeff",
// An array of custom stylesheets URLs can be provided here
stylesheets: [],
// The variables for the deck(s), you can change their values here:
vars: {
"3e0d1ea9-a605-403e-803d-6cc8cd14eeff": {
"viewpath": "/devguide/devdb/state-views/colorado"
}
)
permissionTokens: ["1b7b557e6d10ee6648b2b7983f27fc7f783136d006975dbf5249558c9d51307a"]
i

</script>

Include a permission token so the deck can be accessed by anyone who has the access to this script. You may undo this by revoking access.

_images/icon-trash-can.png

_images/murray.png

_images/card-setup-variables.png
f_

Setup Variables

_images/back-of-card.png
°

Delete card

v
>
4

Rename deck

<>

Embed deck

o

Delete deck

v

Mirror

a9

Publish deck

_images/murray-small.png

_images/sign-in.png
Sign in with Google

Home

© & A 3 » N

Name A

_images/year-month.png
Year_Month
20118
20158
20158
2010-11
20167
20154
20129
201410
20152

20125

M K Page 5 of 1000

5]

_images/mirrored-deck.png
Select the state to report on

state

Select the state to report on

state

_images/sd-nesting.png
"Root" Deck

_images/icon-flip.png

_images/card-setup-dashboard.png
Setup Dashboard

_images/card-cache.png
Cache

_images/card-show-download.png
©

Show Download

_images/embed-code-2.png
Embed deck

var queryString = "?" + queryParts.join("&");
var varsParam = options.vars ? "/?vars=" + encodeURIComponent(JSON.stringify(options.vars)) : "";
var uri = "http://localhost:20223/slamdata/workspace.html" + queryString;
var iframe = document.createElement("iframe");
iframe.width = iframe.height = "100%";
iframe.frameBorder = 0;
iframe.src = uri + "#" + options.deckPath + options.deckld + "/view" + varsParam;
var deckElement = document.getElementByld("sd-deck-" + options.deckld);
if (deckElement) deckElement.appendChild(iframe);
i

</script>

<!-- This is the DOM element that the deck will be embedded into ->
<div id="sd-deck-33a2fbf9-6¢1f-487e-b043-f62565572caa"p</div>

<!-This is the code that performs the deck insertion, placing it at the end of the body is suggested -->
<script type="text/javascript">
SlamData.embed({

deckPath: "/devguide/devdb/Average+Weight+by+City.slam/",
deckld: "33a2fbf9-6c1f-487e-b043-f62565572caa",
// An array of custom stylesheets URLs can be provided here
stylesheets: []

i

</script>

_images/sd-permission-example-2.png
-
Permission ID: 155

(Action

Action Action
Resource: /custom Resource: /customers Resource: /customers
Type: Structural Type: Content Type: Mount
Operations: Operations: Operations:
- Read - Read - Read
N

User:Damon

&

_images/zip-results.png
City
BARRY
FERRIS
MALAKOFF
DALLAS
DALLAS
DALLAS
DALLAS
DALLAS
DALLAS

DALLAS

Page 1

(e JO)

Name

Wright,Freeda
Mcpherson,Marianela
Sellers,Rasheeda
Reid,Manuel
Duncan,llona
Atkinson,Marc
Werner,Amalia
Ross,Zula
Jordan,Michaele

Becker,Evangeline

of20 M W Perpage:

10

Zip

75102
75125
75148
75204
75214
75219
75226
75250
75301

75355

_images/quarter-year-group-by-chart.png
1,250

1,000

2000 +

_images/time-only.png
02:30PM

_images/icon-gray-bar.png

_images/return-nested-array.png
NAME

Shepherd Patrick

Bishop.Dean

MaysVicente

Clayyirgiio

‘Schwartz Michael

OconnellRosie
CarsonMarianna

Bruce Celestina

Moreno Emesto

Macdonald Lorenza

W W Page 3

e+

PATIENT_AGE

&

50

&

@

54

2
%

2l

2%

3

oF 1000

2_copes

code

M8s.062
42123k
@3

VB0

33031
M8a.574K
820155

5781210

T83.59:0
6558
haas13

60155
sa2023

Ks0819

desc

Pre-existing hypertensive heart and chronic idney disease complicating the puerperium
Displ