
Skosprovider_sqlalchemy
Documentation

Release 2.1.1

Flanders Heritage

Apr 28, 2023

Contents

1 Support 3
1.1 Setup . 3
1.2 API Documentation . 4
1.3 History . 10

2 Indices and tables 15

Python Module Index 17

Index 19

i

ii

Skosprovider_sqlalchemy Documentation, Release 2.1.1

This library offers an implementation of the skosprovider.providers.VocabularyProvider interface
that uses a SQLALchemy backend. While a VocabularyProvider is a read-only interface, the underlying
SQLAlchemy domain model is fully writeable.

This library is fully integrated into Atramhasis, an online open source editor for SKOS vocabularies.

Contents 1

https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.providers.VocabularyProvider
http://docs.sqlalchemy.org/
https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.providers.VocabularyProvider
http://docs.sqlalchemy.org/
https://atramhasis.readthedocs.org

Skosprovider_sqlalchemy Documentation, Release 2.1.1

2 Contents

CHAPTER 1

Support

If you have questions regarding Skosprovider_SQLAlchemy, feel free to contact us. Any bugs you find or feature
requests you have, you can add to our issue tracker. If you’re unsure if something is a bug or intentional, or you just
want to have a chat about this library or SKOS in general, feel free to join the Atramhasis discussion forum. While
these are separate software projects, they are being run by the same people and they integrate rather tightly.

1.1 Setup

1.1.1 Installation

Installation of Skosprovider_sqlalchemy is easily done using pip.

$ pip install skosprovider_sqlalchemy

1.1.2 Creating a database

Since Skosprovider_sqlalchemy implements the SkosProvider interface with a relational database as a backend, you
first need to create this database. To do this, please follow the instructions of your database software. If you’re working
with SQLite, you don’t need to do anything.

Note: Because Skosprovider_sqlalchemy uses SQLAlchemy as an ORM layer, it’s not tailored to any specific
database. The codebase is continuously tested on both SQLite and PostgreSQL. Other databases are untested by
us, but as long as they are supported by SQLAlchemy, they should work.

Once your database has been created, you can initialise it with the necessary database tables that will contain your
SKOS vocabularies and concepts.

$ init_skos_db sqlite:///vocabs.db

3

https://github.com/koenedaele/skosprovider_sqlalchemy/issues
https://groups.google.com/forum/#!forum/atramhasis
http://skosprovider.readthedocs.org
http://www.sqlite.org
http://docs.sqlalchemy.org/
http://www.sqlite.org
http://www.postgresql.org
http://docs.sqlalchemy.org/

Skosprovider_sqlalchemy Documentation, Release 2.1.1

Let’s have a look at what this script did.

$ sqlite3 vocabs.db
SQLite version 3.7.9 2011-11-01 00:52:41
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite> .tables
collection_concept conceptscheme_note
concept label
concept_hierarchy_collection labeltype
concept_hierarchy_concept language
concept_label match
concept_note matchtype
concept_related_concept note
conceptscheme notetype
conceptscheme_label visitation

1.1.3 Upgrading from skosprovider_sqlalchemy 1.x to 2.x

A change in the models has been made which requires a database upgrade. The “concept” table’s “concept_id” column
has changed from being an int to a string.

Existing databases will therefor require a small change to update table scheme. Typically this will look like:

ALTER TABLE concept ALTER COLUMN concept_id TEXT NOT NULL;

1.2 API Documentation

1.2.1 Providers module

class skosprovider_sqlalchemy.providers.SQLAlchemyProvider(metadata, session,
**kwargs)

A skosprovider.providers.VocabularyProvider that uses SQLAlchemy as backend.

expand(concept_id)
Expand a concept or collection to all it’s narrower concepts.

This method should recurse and also return narrower concepts of narrower concepts.

If the id passed belongs to a skosprovider.skos.Concept, the id of the concept itself should be
include in the return value.

If the id passed belongs to a skosprovider.skos.Collection, the id of the collection itself must
not be present in the return value In this case the return value includes all the member concepts and their
narrower concepts.

Parameters id – A concept or collection id.

Return type A list of id’s or False if the concept or collection doesn’t exist.

expand_strategy = 'recurse'
Determines how the expand method will operate. Options are:

• recurse: Determine all narrower concepts by recursivly querying the database. Can take a long time
for concepts that are at the top of a large hierarchy.

4 Chapter 1. Support

https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.providers.VocabularyProvider
https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.skos.Concept
https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.skos.Collection

Skosprovider_sqlalchemy Documentation, Release 2.1.1

• visit: Query the database’s Visitation table. This table contains a nested set representation of
each conceptscheme. Actually creating the data in this table needs to be scheduled.

find(query, **kwargs)
Find concepts that match a certain query.

Currently query is expected to be a dict, so that complex queries can be passed. You can use this dict to
search for concepts or collections with a certain label, with a certain type and for concepts that belong to a
certain collection.

Find anything that has a label of church.
provider.find({'label': 'church'})

Find all concepts that are a part of collection 5.
provider.find({'type': 'concept', 'collection': {'id': 5})

Find all concepts, collections or children of these
that belong to collection 5.
provider.find({'collection': {'id': 5, 'depth': 'all'})

Find anything that has a label of church.
Preferentially display a label in Dutch.
provider.find({'label': 'church'}, language='nl')

Find anything that has a match with an external concept
Preferentially display a label in Dutch.
provider.find({

'matches': {
'uri': 'http://id.python.org/different/types/of/trees/nr/1/the/larch'

}}, language='nl')

Find anything that has a label of lariks with a close match to an external
→˓concept
Preferentially display a label in Dutch.
provider.find({

'label': 'lariks',
'matches': {

'type': 'close',
'uri': 'http://id.python.org/different/types/of/trees/nr/1/the/larch'

}}, language='nl')

Parameters

• query – A dict that can be used to express a query. The following keys are permitted:

– label: Search for something with this label value. An empty label is equal to searching
for all concepts.

– type: Limit the search to certain SKOS elements. If not present or None, all is assumed:

* concept: Only return skosprovider.skos.Concept instances.

* collection: Only return skosprovider.skos.Collection instances.

* all: Return both skosprovider.skos.Concept and skosprovider.
skos.Collection instances.

– collection: Search only for concepts belonging to a certain collection. This argument
should be a dict with two keys:

* id: The id of a collection. Required.

1.2. API Documentation 5

https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.skos.Concept
https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.skos.Collection
https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.skos.Concept
https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.skos.Collection
https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.skos.Collection

Skosprovider_sqlalchemy Documentation, Release 2.1.1

* depth: Can be members or all. Optional. If not present, members is assumed, mean-
ing only concepts or collections that are a direct member of the collection should
be considered. When set to all, this method should return concepts and collections
that are a member of the collection or are a narrower concept of a member of the
collection.

– matches: Search only for concepts having a match to a certain external concept.
Since collections can’t have matches, this automatically excludes collections. The
argument with two keys:

* uri: The uri of the concept to match. Required.

* type: The type of match, see matchtypes for the full list of options.

• language (string) – Optional. If present, it should be a language-tag. This language-
tag is passed on to the underlying providers and used when selecting the label to display
for each concept.

• sort (string) – Optional. If present, it should either be id, label or sortlabel. The
sortlabel option means the providers should take into account any sortLabel if present, if
not it will fallback to a regular label to sort on.

• sort_order (string) – Optional. What order to sort in: asc or desc. Defaults to asc

Returns

A lst of concepts and collections. Each of these is a dict with the following keys:

• id: id within the conceptscheme

• uri: URI of the concept or collection

• type: concept or collection

• label: A label to represent the concept or collection. It is determined by looking at the
language parameter, the default language of the provider and finally falls back to en.

get_all(**kwargs)
Returns all concepts and collections in this provider.

Parameters

• language (string) – Optional. If present, it should be a language-tag. This
language-tag is passed on to the underlying providers and used when selecting the
label to display for each concept.

• sort (string) – Optional. If present, it should either be id, label or sortlabel.
The sortlabel option means the providers should take into account any sortLabel if
present, if not it will fallback to a regular label to sort on.

• sort_order (string) – Optional. What order to sort in: asc or desc. Defaults
to asc

Returns

A lst of concepts and collections. Each of these is a dict with the following keys:

• id: id within the conceptscheme

• uri: URI of the concept or collection

• type: concept or collection

6 Chapter 1. Support

https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.skos.Concept.matchtypes
https://skosprovider.readthedocs.io/en/latest/glossary.html#term-language-tag
https://skosprovider.readthedocs.io/en/latest/glossary.html#term-language-tag

Skosprovider_sqlalchemy Documentation, Release 2.1.1

• label: A label to represent the concept or collection. It is determined by looking at
the language parameter, the default language of the provider and finally falls back
to en.

get_by_id(concept_id)
Get all information on a concept or collection, based on id.

Providers should assume that all id’s passed are strings. If a provider knows that internally it uses numeric
identifiers, it’s up to the provider to do the typecasting. Generally, this should not be done by changing
the id’s themselves (eg. from int to str), but by doing the id comparisons in a type agnostic way.

Since this method could be used to find both concepts and collections, it’s assumed that there are no id
collisions between concepts and collections.

Return type skosprovider.skos.Concept or skosprovider.skos.
Collection or False if the concept or collection is unknown to the provider.

get_by_uri(uri)
Get all information on a concept or collection, based on a URI.

This method will only find concepts or collections whose URI is actually stored in the database. It will
not find anything that has no URI in the database, but does have a matching URI after generation.

Return type skosprovider.skos.Concept or skosprovider.skos.
Collection or False if the concept or collection is unknown to the provider.

get_children_display(thing_id, **kwargs)
Return a list of concepts or collections that should be displayed under this concept or collection.

Parameters thing_id – A concept or collection id.

Return type A list of concepts and collections. For each an id is present and a label. The
label is determined by looking at the **kwargs parameter, the default language of the
provider and falls back to en if nothing is present. If the id does not exist, return False.

get_top_concepts(**kwargs)
Returns all top-level concepts in this provider.

Top-level concepts are concepts that have no broader concepts themselves. They might have narrower
concepts, but this is not mandatory.

Parameters

• language (string) – Optional. If present, it should be a language-tag. This
language-tag is passed on to the underlying providers and used when selecting the
label to display for each concept.

• sort (string) – Optional. If present, it should either be id, label or sortlabel.
The sortlabel option means the providers should take into account any sortLabel if
present, if not it will fallback to a regular label to sort on.

• sort_order (string) – Optional. What order to sort in: asc or desc. Defaults
to asc

Returns

A lst of concepts, NOT collections. Each of these is a dict with the following keys:

• id: id within the conceptscheme

• uri: URI of the concept or collection

• type: concept or collection

1.2. API Documentation 7

https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.skos.Concept
https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.skos.Collection
https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.skos.Collection
https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.skos.Concept
https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.skos.Collection
https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.skos.Collection
https://skosprovider.readthedocs.io/en/latest/glossary.html#term-language-tag

Skosprovider_sqlalchemy Documentation, Release 2.1.1

• label: A label to represent the concept or collection. It is determined by looking at
the language parameter, the default language of the provider and finally falls back
to en.

get_top_display(**kwargs)
Returns all concepts or collections that form the top-level of a display hierarchy.

As opposed to the get_top_concepts(), this method can possibly return both concepts and collec-
tions.

Return type Returns a list of concepts and collections. For each an id is present and a label.
The label is determined by looking at the **kwargs parameter, the default language of
the provider and falls back to en if nothing is present.

1.2.2 Models module

class skosprovider_sqlalchemy.models.Collection(**kwargs)
A collection as know by skos.

class skosprovider_sqlalchemy.models.Concept(**kwargs)
A concept as know by skos.

class skosprovider_sqlalchemy.models.ConceptScheme(**kwargs)
A skos conceptscheme.

class skosprovider_sqlalchemy.models.Initialiser(session)
Initialises a database.

Adds necessary values for labelType, noteType and language to the database.

The list of languages added by default is very small and will probably need to be expanded for your local needs.

init_all()
Initialise all objects (labeltype, notetype, language).

init_labeltype()
Initialise the labeltypes.

init_languages()
Initialise the languages.

Only adds a small set of languages. Will probably not be sufficient for most use cases.

init_matchtypes()
Initialise the matchtypes.

init_notetype()
Initialise the notetypes.

class skosprovider_sqlalchemy.models.Label(label, labeltype_id=’prefLabel’, lan-
guage_id=None)

A label for a Concept, Collection or ConceptScheme.

class skosprovider_sqlalchemy.models.LabelType(name, description)
A labelType according to skos.

class skosprovider_sqlalchemy.models.Language(id, name)
A Language.

class skosprovider_sqlalchemy.models.Match(**kwargs)
A match between a Concept in one ConceptScheme and those in another one.

8 Chapter 1. Support

Skosprovider_sqlalchemy Documentation, Release 2.1.1

class skosprovider_sqlalchemy.models.MatchType(name, description)
A matchType according to skos.

class skosprovider_sqlalchemy.models.Note(note, notetype_id, language_id, markup=None)
A note for a Concept, Collection or ConceptScheme.

class skosprovider_sqlalchemy.models.NoteType(name, description)
A noteType according to skos.

class skosprovider_sqlalchemy.models.Source(citation, markup=None)
The source where a certain piece of information came from.

class skosprovider_sqlalchemy.models.Thing(**kwargs)
Abstract class for both Concept and Collection.

class skosprovider_sqlalchemy.models.Visitation(**kwargs)
Holds several nested sets.

The visitation object and table hold several nested sets. Each skosprovider_sqlalchemy.models.
Visitation holds the positional information for one conceptplacement in a certain nested set.

Each conceptscheme gets its own separate nested set.

skosprovider_sqlalchemy.models.label(labels=[], language=’any’, sortLabel=False)
Provide a label for a list of labels.

Deprecated since version 0.5.0: Please use skosprovider.skos.label(). Starting with skosprovider
0.6.0, the function can function on skosprovider_sqlalchemy.models.Label instances as well.

Parameters

• labels (list) – A list of labels.

• language (str) – The language for which a label should preferentially be returned.
This should be a valid IANA language tag.

• sortLabel (boolean) – Should sortLabels be considered or not? If True, sortLabels
will be preferred over prefLabels. Bear in mind that these are still language dependent.
So, it’s possible to have a different sortLabel per language.

Return type A Label or None if no label could be found.

skosprovider_sqlalchemy.models.related_concepts_append_listener(target, value,
initiator)

Listener that ensures related concepts have a bidirectional relationship.

skosprovider_sqlalchemy.models.related_concepts_remove_listener(target, value,
initiator)

Listener to remove a related concept from both ends of the relationship.

1.2.3 Utils module

class skosprovider_sqlalchemy.utils.VisitationCalculator(session)
Generates a nested set for a conceptscheme.

visit(conceptscheme)
Visit a skosprovider_sqlalchemy.models.Conceptscheme and calculate a nested set rep-
resentation.

Parameters conceptscheme – A skosprovider_sqlalchemy.models.
Conceptscheme for which the nested set will be calculated.

1.2. API Documentation 9

https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.skos.label
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

Skosprovider_sqlalchemy Documentation, Release 2.1.1

skosprovider_sqlalchemy.utils.import_provider(provider: skosprovider.providers.VocabularyProvider,
session: sqlalchemy.orm.session.Session,
conceptscheme:
skosprovider_sqlalchemy.models.ConceptScheme
= None) →
skosprovider_sqlalchemy.models.ConceptScheme

Import a provider into a SQLAlchemy database.
Parameters

• provider – The skosprovider.providers.VocabularyProvider to im-
port. Since the SQLAlchemy backend uses integers as keys, this backend should have
id values that can be cast to int.

• conceptscheme – A skosprovider_sqlalchemy.models.
Conceptscheme to import the provider into. This should be an empty scheme
so that there are no possible id clashes. If no conceptscheme is provided, one will be
created.

• session – A sqlalchemy.orm.session.Session.

Returns The conceptscheme that holds the concepts and collections. Either the same con-
ceptscheme that was passed into the provider, or the one that was created by this function.

Return type skosprovider_sqlalchemy.models.Conceptscheme

1.3 History

1.3.1 2.1.1 (2023-04-28)

• Fixed an issue with casting ids to string during import. (#104)

1.3.2 2.1.0 (2023-03-30)

• Minor BC break: Changed the order of parameters to the import_provider function and make the con-
ceptscheme argument optional. (#100)

1.3.3 2.0.1 (2023-03-20)

• Fixed an issue with import_provider still assuming ids are numeric. (#97)

1.3.4 2.0.0 (2023-01-19)

• Major BC break: Change concept.concept_id from Integer to String to allow storing concepts and collections
with a non-numeric id. Existing instance will need to update their SQL database. Please consult the docs or the
README for some help in doing so. (#87)

• Skosprovider_sqlalchemy now depends on SQLAlchemy 1.4 or higher and should be compatible with
SQLAlchemy 2. Older versions of SQLAlchemy are no longer supported. (#90)

• Refactored the Skosprovider_sqlalchemy constructor to call the super constructor. (#95)

• Drop support for Python 3.6 and 3.7. Add support for Python 3.11. (#86)

• Drop pyup support. (#85)

10 Chapter 1. Support

https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.providers.VocabularyProvider

Skosprovider_sqlalchemy Documentation, Release 2.1.1

1.3.5 1.0.0 (2021-12-21)

• Drop python 2 support (#80)

• Upgrade requirements (#78)

• Add a CITATION.cff file

1.3.6 0.6.0 (2020-07-29)

• Update to the latest skosprovider version and implement the infer_concept_relations attribute. (#53)

• Add the ability to query on matches in line with the latest skosprovider version. (#57)

• Drop the session decorator that was added in 0.4.0 since it did not fix the issue we wanted it to fix and it added
a lot of overhead. A provider should now be passed a sqlachemy.orm.session.Session at startup, or
a callable that returns such a session. (#64)

• Improved performance of getting the concept_scheme by caching it. (#71)

• Make querying a collection with depth=all possible. Before the provider would only provide the direct members
of a collection. (#76)

• Drop support for Python 3.4 and 3.5. Add support for Python 3.7 and 3.8. This is also the last version to support
Python 2. (#62)

1.3.7 0.5.2 (2018-11-13)

• Update a lot of dependencies.

• Add __str__ implementations to the model classes. (#43)

1.3.8 0.5.1 (2016-10-05)

• Catch linking errors when importing a provider and turn them into log warning. By linking errors we mean
cases where one concept has a relation to a non-existing other concept. (#25)

• Allow building as wheel.

1.3.9 0.5.0 (2016-08-11)

• Update to skosprovider 0.6.0

• Minor BC break: A skosprovider_sqlalchemy.models.Language that gets cast to a string, now
returns the language’s ID (the IANA language code),as opposed to the language’s description it would previously
return.

• Minor BC break: The URI attribute has been made required for a skosprovider_sqlalchemy.
models.ConceptScheme. Before it was optional, but it probably would have caused problems with
skosprovider anyway.

• Due to the update to skosprovider 0.6.0, a new field markup, was added to a skosprovider_sqlalchemy.
models.Note. When upgrading from a previous version of skosprovider_sqlalchemy, any databases created
in that previous verions will need to be updated as well. Please add a field called markup to the note table.

1.3. History 11

Skosprovider_sqlalchemy Documentation, Release 2.1.1

• Inline with the skosprovider 0.6.0 update, a languages attribute was added to
skosprovider_sqlalchemy.models.ConceptScheme. When upgrading from a previous ver-
sion of skosprovider_sqlalchemy, any databases created with that previous verions will need to be updated as
well. Please add a table called conceptscheme_language with fields conceptscheme_id and language_id. (#18)

• To comply with the skosprovider 0.6.0 update, the sources attribute was added to
skosprovider_sqlalchemy.models.Conceptscheme, skosprovider_sqlalchemy.
models.Concept and skosprovider_sqlalchemy.models.Collection. When upgrading from
a previous version of skosprovider_sqlalchemy, any databases created with that previous verions will need to be
updated as well. Please add a table source with fields id, citation and markup, a table concept_source with fields
concept_id and source_id and a table conceptscheme_source with fields conceptscheme_id and source_id.

• All methodes that return a list have been modified in line with skosprovider 0.6.0 to support sorting. Sorting
is possible on id, uri, label and sortlabel. The last two are language dependent. The sortlabel allows custom
sorting of concepts. This can be used to eg. sort concepts representing chronological periods in chronological
in stead of alphabetical order. (#20)

• To comply with the skosprovider 0.6.0 update, the deprecated skosprovider_sqlalchemy.
providers.SQLAlchemyProvider.expand_concept() was removed.

• When importing a provider, check if the languages that are being used in the provider are already in our database.
If not, validate them and add them to the database. In the past the entire import would fail if not all languages
had previously been added to the database. (#14)

• When importing a provider, try to import as much information as possible about the concept_scheme that’s
attached to the provider. (#19)

• When querying for indvidual an conceptscheme or concept, use joinedload to reduce the number of queries
needed to collect everything. (#15)

• Deprecated the skosprovider_sqlalchemy.models.label() function. Please use
skosprovider.skos.label() from now once, since this function can now operate on both
skosprovider.skos.Label and skosprovider_sqlalchemy.models.Label instances.
This was the reason for the BC break in this release.

1.3.10 0.4.2 (2015-03-02)

• Make README work better on pypi.

• Fix a further problem with the length of language identifiers. Previous fix in 0.3.0 only fixed the length of
the identifiers in the languages table, but not in the links from the labels and the notes to the language table.
[BartSaelen]

• Added some documentation about setting up a database.

1.3.11 0.4.1 (2014-12-18)

• Fix a bug with the deletion of a Concept not being possible without having it’s matches deleted first. [BartSaelen]

1.3.12 0.4.0 (2014-10-28)

• Major BC break: A provider is no longer passed a database session, but a database session maker. This change
was needed to get the provider to function properly in threaded web applications. This will mean changing the
code where you’re creating your provider. In the past, you probably called a session maker first and then passed
the result of this call to the provider. Now you should just pass the session maker itself and let the provider
create the sessions for you.

12 Chapter 1. Support

https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.skos.label
https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.skos.Label

Skosprovider_sqlalchemy Documentation, Release 2.1.1

• Different way of fetching the ConceptScheme for a provider. No longer fetches a conceptscheme at provider
instantiation, but when needed. Otherwise we end up with a possibly very long cached version of a con-
ceptscheme.

1.3.13 0.3.0 (2014-10-17)

• Update to skosprovider 0.4.0.

• Add ConceptScheme information to a provider so it can be attached to Concept objects that are handled
by the provider.

• Let provider handle superordinates and subordinate arrays.

• Let provider add notes to collections.

• Added a Match model to handle matches. Expand the provider to actually provide information on these
matches.

• Expand the field length for language identifiers. IANA suggests that identifiers up to 35 characters should be
permitted. Updated our field length to 64 to have a bit of an extra buffer.

1.3.14 0.2.1 (2014-08-25)

• Switch to py.test

• Add Coveralls support for code coverage.

• Add ability to configure the SQLAlchemy URL used for testing. Allows testing on multiple RDBMS systems.

• Run Travis tests for both SQLite and Postgresql.

• Fix a bug in skosprovider_sqlalchemy.utils.import_provider() when dealing with narrower
collections (#8). [cahytinne]

• Make the provider actually generate a URI if there’s none in the database.

1.3.15 0.2.0 (2014-05-14)

• Compatibility with skosprovider 0.3.0

• Implement skosprovider.providers.VocabularyProvider.get_by_uri().

• Implement skosprovider.providers.VocabularyProvider.get_top_concepts().

• Implement skosprovider.providers.VocabularyProvider.get_top_display() and
skosprovider.providers.VocabularyProvider.get_children_display().

• Add a UniqueConstraint(conceptscheme_id, concept_id) to Thing. (#3)

• Rename the colletions attribute of skosprovider_sqlalchemy.models.Thing to member_of. (#7)

1.3.16 0.1.2 (2013-12-06)

• Pinned dependency on skosprovider < 0.3.0

• Pass data to skosprovider.skos.Concept using keywords in stead of positions.

1.3. History 13

https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.skos.ConceptScheme
https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.skos.ConceptScheme
https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.skos.Concept
https://coveralls.io
https://travis-ci.org
https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.providers.VocabularyProvider.get_by_uri
https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.providers.VocabularyProvider.get_top_concepts
https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.providers.VocabularyProvider.get_top_display
https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.providers.VocabularyProvider.get_children_display
https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.skos.Concept

Skosprovider_sqlalchemy Documentation, Release 2.1.1

1.3.17 0.1.1 (2013-11-28)

• Fixed a bug with collection members being passed instead of their ids.

• Fixed another bug where model ids were used instead of concept ids.

1.3.18 0.1.0

• Initial version

• Implementation of a SKOS domain model in SQLAlchemy.

• Implementation of a skosprovider.providers.VocabularyProvider that uses this model.

• Can query a hierarchy recursively or using nested sets.

• Utility function to import a skosprovider.providers.VocabularyProvider in a database.

14 Chapter 1. Support

https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.providers.VocabularyProvider
https://skosprovider.readthedocs.io/en/latest/api.html#skosprovider.providers.VocabularyProvider

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

15

Skosprovider_sqlalchemy Documentation, Release 2.1.1

16 Chapter 2. Indices and tables

Python Module Index

s
skosprovider_sqlalchemy.models, 8
skosprovider_sqlalchemy.providers, 4
skosprovider_sqlalchemy.utils, 9

17

Skosprovider_sqlalchemy Documentation, Release 2.1.1

18 Python Module Index

Index

C
Collection (class in

skosprovider_sqlalchemy.models), 8
Concept (class in skosprovider_sqlalchemy.models), 8
ConceptScheme (class in

skosprovider_sqlalchemy.models), 8

E
expand() (skosprovider_sqlalchemy.providers.SQLAlchemyProvider

method), 4
expand_strategy (skosprovider_sqlalchemy.providers.SQLAlchemyProvider

attribute), 4

F
find() (skosprovider_sqlalchemy.providers.SQLAlchemyProvider

method), 5

G
get_all() (skosprovider_sqlalchemy.providers.SQLAlchemyProvider

method), 6
get_by_id() (skosprovider_sqlalchemy.providers.SQLAlchemyProvider

method), 7
get_by_uri() (skosprovider_sqlalchemy.providers.SQLAlchemyProvider

method), 7
get_children_display()

(skosprovider_sqlalchemy.providers.SQLAlchemyProvider
method), 7

get_top_concepts()
(skosprovider_sqlalchemy.providers.SQLAlchemyProvider
method), 7

get_top_display()
(skosprovider_sqlalchemy.providers.SQLAlchemyProvider
method), 8

I
import_provider() (in module

skosprovider_sqlalchemy.utils), 9
init_all() (skosprovider_sqlalchemy.models.Initialiser

method), 8

init_labeltype() (skosprovider_sqlalchemy.models.Initialiser
method), 8

init_languages() (skosprovider_sqlalchemy.models.Initialiser
method), 8

init_matchtypes()
(skosprovider_sqlalchemy.models.Initialiser
method), 8

init_notetype() (skosprovider_sqlalchemy.models.Initialiser
method), 8

Initialiser (class in
skosprovider_sqlalchemy.models), 8

L
Label (class in skosprovider_sqlalchemy.models), 8
label() (in module skosprovider_sqlalchemy.models),

9
LabelType (class in skosprovider_sqlalchemy.models),

8
Language (class in skosprovider_sqlalchemy.models), 8

M
Match (class in skosprovider_sqlalchemy.models), 8
MatchType (class in skosprovider_sqlalchemy.models),

8

N
Note (class in skosprovider_sqlalchemy.models), 9
NoteType (class in skosprovider_sqlalchemy.models), 9

R
related_concepts_append_listener() (in

module skosprovider_sqlalchemy.models), 9
related_concepts_remove_listener() (in

module skosprovider_sqlalchemy.models), 9

S
skosprovider_sqlalchemy.models (module), 8
skosprovider_sqlalchemy.providers (mod-

ule), 4

19

Skosprovider_sqlalchemy Documentation, Release 2.1.1

skosprovider_sqlalchemy.utils (module), 9
Source (class in skosprovider_sqlalchemy.models), 9
SQLAlchemyProvider (class in

skosprovider_sqlalchemy.providers), 4

T
Thing (class in skosprovider_sqlalchemy.models), 9

V
visit() (skosprovider_sqlalchemy.utils.VisitationCalculator

method), 9
Visitation (class in

skosprovider_sqlalchemy.models), 9
VisitationCalculator (class in

skosprovider_sqlalchemy.utils), 9

20 Index

	Support
	Setup
	API Documentation
	History

	Indices and tables
	Python Module Index
	Index

