
SkoolKit Documentation
Release 6.0

Richard Dymond

Jul 14, 2017

Contents

1 What is SkoolKit? 1

2 Installing and using SkoolKit 3

3 Disassembly DIY 5

4 Commands 11

5 Supported assemblers 25

6 Migrating from SkoolKit 5 27

7 Changelog 33

8 Technical reference 51

9 Developer reference 131

i

ii

CHAPTER 1

What is SkoolKit?

SkoolKit is a collection of utilities that can be used to disassemble a Spectrum game (or indeed any piece of Spectrum
software written in machine code) into a format known as a skool file. Then, from this skool file, you can use SkoolKit
to create a browsable disassembly in HTML format, or a re-assemblable disassembly in ASM format. So the skool
file is - from start to finish as you develop it by organising and annotating the code - the common ‘source’ for both
the reader-friendly HTML version of the disassembly, and the developer- and assembler-friendly ASM version of the
disassembly.

The latest stable release of SkoolKit can always be obtained from skoolkit.ca; the latest development version can be
found on GitHub.

Features

SkoolKit can:

• convert a TAP or TZX file into a ‘pristine’ snapshot (using tap2sna.py)

• disassemble SNA, Z80 and SZX snapshots as well as raw memory files

• distinguish code from data by using a code execution map produced by an emulator

• build still and animated PNG/GIF images from graphic data in the game snapshot (using the #UDG, #UDGAR-
RAY , #FONT and #SCR macros)

• create hyperlinks between routines and data blocks that refer to each other (by use of the #R macro in annota-
tions, and automatically in the operands of CALL and JP instructions)

• neatly render lists of bugs, trivia and POKEs on separate pages (using [Bug:*], [Fact:*] and [Poke:*] sections
in a ref file)

• produce ASM files that include bugfixes declared in the skool file (with @ofix, @bfix and other ASM directives)

• produce TAP files from assembled code (using bin2tap.py)

For a demonstration of SkoolKit’s capabilities, take a look at the complete disassemblies of Skool Daze, Back to
Skool, Contact Sam Cruise, Manic Miner and Jet Set Willy. The latest stable releases of the source skool files for
these disassemblies can always be obtained from skoolkit.ca; the latest development versions can be found on GitHub.

1

http://en.wikipedia.org/wiki/ZX_Spectrum
http://skoolkit.ca/
https://github.com/skoolkid/
http://skoolkit.ca/disassemblies/skool_daze/
http://skoolkit.ca/disassemblies/back_to_skool/
http://skoolkit.ca/disassemblies/back_to_skool/
http://skoolkit.ca/disassemblies/contact_sam_cruise/
http://skoolkit.ca/disassemblies/manic_miner/
http://skoolkit.ca/disassemblies/jet_set_willy/
http://skoolkit.ca/
https://github.com/skoolkid/

SkoolKit Documentation, Release 6.0

Authors

SkoolKit is developed and maintained by Richard Dymond, and contains contributions from Philip M Anderson.

Licence

SkoolKit is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License
as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

See the file ‘COPYING’ (distributed with SkoolKit) for the full text of the licence.

2 Chapter 1. What is SkoolKit?

CHAPTER 2

Installing and using SkoolKit

Requirements

SkoolKit requires Python 3.4+. If you’re running Linux or one of the BSDs, you probably already have Python
installed. If you’re running Windows, you can get Python here.

Installation

There are various ways to install the latest stable release of SkoolKit:

• from the zip archive or tarball available at skoolkit.ca

• from PyPI by using pip

• from the PPA for Ubuntu

• from the copr repo for Fedora

If you choose the zip archive or tarball, note that SkoolKit can be used wherever it is unpacked: it does not need to be
installed in any particular location. However, if you would like to install SkoolKit as a Python package, you can do so
by using the supplied setup.py script.

Windows

To install SkoolKit as a Python package on Windows, open a command prompt, change to the directory where SkoolKit
was unpacked, and run the following command:

> setup.py install

This will install the SkoolKit command scripts in C:\Python36\Scripts (assuming you have installed Python in
C:\Python36), which means you can run them from anywhere (assuming you have added C:\Python36\Scripts to
the Path environment variable).

3

http://www.python.org/
http://www.python.org/download/
http://skoolkit.ca/?page_id=177
https://pypi.python.org/pypi/skoolkit
https://pip.pypa.io/
https://launchpad.net/~rjdymond/+archive/ppa
https://copr.fedorainfracloud.org/coprs/rjdymond/SkoolKit/

SkoolKit Documentation, Release 6.0

Linux/*BSD

To install SkoolKit as a Python package on Linux/*BSD, open a terminal window, change to the directory where
SkoolKit was unpacked, and run the following command as root:

./setup.py install

This will install the SkoolKit command scripts in /usr/local/bin (or some other suitable location in your PATH), which
means you can run them from anywhere.

Linux/*BSD v. Windows command line

Throughout this documentation, commands that must be entered in a terminal window (‘Command Prompt’ in Win-
dows) are shown on a line beginning with a dollar sign ($), like this:

$ some-script.py some arguments

On Windows, and on Linux/*BSD if SkoolKit has been installed as a Python package (see above), the commands may
be entered exactly as they are shown. On Linux/*BSD, use a dot-slash prefix (e.g. ./some-script.py) if the
script is being run from the current working directory.

4 Chapter 2. Installing and using SkoolKit

CHAPTER 3

Disassembly DIY

The following sections describe how to use SkoolKit to get started on your own Spectrum game disassembly.

Getting started

The first thing to do is select a Spectrum game to disassemble. For the purpose of this discussion, we’ll use Hungry
Horace. To build a pristine snapshot of the game, run the following command in the directory where SkoolKit was
unpacked:

$ tap2sna.py @examples/hungry_horace.t2s

(If that doesn’t work, or you prefer to make your own snapshot, just grab a copy of the game, load it in an emulator,
and save a Z80 snapshot named hungry_horace.z80.)

The next thing to do is create a skool file from this snapshot. Run the following command from the SkoolKit directory:

$ sna2skool.py hungry_horace.z80 > hungry_horace.skool

Note that the ‘.skool’ file name suffix is merely a convention, not a requirement. In general, any suffix besides ‘.ref’
(which is used by skool2html.py to identify ref files) will do. If you are fond of the traditional three-letter suffix,
then perhaps ‘.sks’ (for ‘SkoolKit source’) or ‘.kit’ would be more to your liking. However, for the purpose of this
particular tutorial, it would be best to stick with ‘.skool’.

Now take a look at hungry_horace.skool. As you can see, by default, sna2skool.py disassembles everything from
16384 to 65535, treating it all as code. Needless to say, this is not particularly useful - unless you have no idea where
the code and data blocks are yet, and want to use this disassembly to find out.

Once you have figured out where the code and data blocks are, it would be handy if you could supply sna2skool.py
with this information, so that it can disassemble the blocks accordingly. That is where the control file comes in.

5

http://www.worldofspectrum.org/infoseekid.cgi?id=0002390
http://www.worldofspectrum.org/infoseekid.cgi?id=0002390

SkoolKit Documentation, Release 6.0

The control file

In its most basic form, a control file contains a list of start addresses of code and data blocks. Each address is marked
with a ‘control directive’, which is a single letter that indicates what the block contains: c for a code block, or b for
a data block (for example). A control file may contain annotations too, which will be interpreted as routine titles,
descriptions, instruction-level comments or whatever else depending on the control directive they accompany.

A control file for Hungry Horace might start like this:

b 16384 Loading screen
i 23296
c 24576 The game has just loaded
c 25167
...

This control file declares that there is:

• a data block at 16384 titled ‘Loading screen’

• a block at 23296 that should be ignored

• a code block (routine) at 24576 titled ‘The game has just loaded’

• another code block at 25167

For more information on control file directives and their syntax, see Control files.

A skeleton disassembly

So if we had a control file for Hungry Horace, we could produce a much more useful skool file. As it happens,
SkoolKit includes one: hungry_horace.ctl. You can use it with sna2skool.py thus:

$ sna2skool.py -c examples/hungry_horace.ctl hungry_horace.z80 > hungry_horace.skool

This time, hungry_horace.skool is split up into meaningful blocks, with code as code, data as data (DEFBs), and text
as text (DEFMs). Much nicer.

By default, sna2skool.py produces a disassembly with addresses and instruction operands in decimal notation. If you
prefer to work in hexadecimal, however, use the -H option:

$ sna2skool.py -H -c examples/hungry_horace.ctl hungry_horace.z80 > hungry_horace.
→˓skool

The next step is to create an HTML disassembly from this skool file:

$ skool2html.py hungry_horace.skool

Now open hungry_horace/index.html in a web browser. There’s not much there, but it’s a base from which you can
start adding explanatory comments.

In order to replace ‘hungry_horace’ in the page titles and headers with something more appropriate, or add a game logo
image, or otherwise customise the disassembly, we need to create a ref file. Again, as it happens, SkoolKit includes
an example ref file for Hungry Horace: hungry_horace.ref. To use it with the skool file we’ve just created:

$ skool2html.py examples/hungry_horace.ref

6 Chapter 3. Disassembly DIY

SkoolKit Documentation, Release 6.0

Now the disassembly will sport a game logo image.

See Ref files for more information on how to use a ref file to configure and customise a disassembly.

Generating a control file

If you are planning to create a disassembly of some game other than Hungry Horace, you will need to create your own
control file. To get started, you can use the -g option with sna2skool.py to perform a rudimentary static code analysis
of the snapshot file and generate a corresponding control file:

$ sna2skool.py -g game.ctl game.z80 > game.skool

This will do a reasonable job of splitting the snapshot into blocks, but won’t be 100% accurate (except by accident);
you will need to examine the resultant skool file (game.skool in this case) to see which blocks have been incorrectly
marked as text, data or code, and then edit the generated control file (game.ctl) accordingly.

To generate a better control file, you could use a code execution map produced by an emulator to tell sna2skool.py
where at least some of the code is in the snapshot. sna2skool.py will read a map (otherwise known as a profile or trace)
produced by Fuse, SpecEmu, Spud, Zero or Z80 when specified by the -M option:

$ sna2skool.py -M game.map -g game.ctl game.z80 > game.skool

Needless to say, in general, the better the map, the more accurate the resulting control file will be. To create a good
map file, you should ideally play the game from start to finish in the emulator, in an attempt to exercise as much code
as possible. If that sounds like too much work, and your emulator supports playing back RZX files, you could grab
a recording of your chosen game from the RZX Archive, and set the emulator’s profiler or tracer going while the
recording plays back.

By default, sna2skool.py generates a control file and a skool file with addresses and instruction operands in decimal
notation. If you prefer to work in hexadecimal, however, use the -h option to produce a hexadecimal control file, and
the -H option to produce a hexadecimal skool file:

$ sna2skool.py -h -H -g game.ctl game.z80 > game.skool

Developing the skool file

When you’re happy that your control file does a decent job of distinguishing the code blocks from the data blocks in
your memory snapshot, it’s time to start work on the skool file.

Figuring out what the code blocks do and what the data blocks contain can be a time-consuming job. It’s probably not
a good idea to go through each block one by one, in order, and move to the next only when it’s fully documented -
unless you’re looking for a nervous breakdown. Instead it’s better to approach the job like this:

1. Skim the code blocks for any code whose purpose is familiar or obvious, such as drawing something on the
screen, or producing a sound effect.

2. Document that code (and any related data) as far as possible.

3. Find another code block that calls the code block just documented, and figure out when, why and how it uses it.

4. Document that code (and any related data) as far as possible.

5. If there’s anything left to document, return to step 3.

6. Done!

3.4. Generating a control file 7

http://rzxarchive.co.uk/

SkoolKit Documentation, Release 6.0

It also goes without saying that figuring out what a piece of code or data might be used for is easier if you’ve played
the game to death already.

Annotating the code and data in a skool file is done by adding comments just as you would in a regular ASM file. For
example, you might add a comment to the instruction at 26429 in hungry_horace.skool thus:

26429 DEC A ; Decrement the number of lives

See the skool file format reference for a full description of the kinds of annotations that are supported in skool files.
Note also that SkoolKit supports many skool macros that can be used in comments and will be converted into hyper-
links and images (for example) in the HTML version of the disassembly.

As you become more familiar with the layout of the code and data blocks in the disassembly, you may find that some
blocks need to be split up, joined, or otherwise reorganised. You could do this manually in the skool file itself, or you
could regenerate the skool file from a new control file. To ensure that you don’t lose all the annotations you’ve already
added to the skool file, though, you should use skool2ctl.py to preserve them.

First, create a control file that keeps your annotations intact:

$ skool2ctl.py game.skool > game-2.ctl

Now edit game-2.ctl to fit your better understanding of the layout of the code and data blocks. Then generate a new
skool file:

$ sna2skool.py -c game-2.ctl game.z80 > game-2.skool

This new skool file, game-2.skool, will contain your reorganised code and data blocks, and all the annotations you
carefully added to game.skool.

Adding pokes, bugs and trivia

Adding ‘Pokes’, ‘Bugs’, and ‘Trivia’ pages to a disassembly is done by adding [Poke:*], [Bug:*], and [Fact:*]
sections to the ref file. For any such sections that are present, skool2html.py will add links to the disassembly index
page.

For example, let’s add a poke. Add the following lines to hungry_horace.ref :

[Poke:infiniteLives:Infinite lives]
The following POKE gives Horace infinite lives:

POKE 26429,0

Now run skool2html.py again:

$ skool2html.py examples/hungry_horace.ref

Open hungry_horace/index.html and you will see a link to the ‘Pokes’ page in the ‘Reference’ section.

The format of a Bug or Fact section is the same, except that the section name prefix is Bug: or Fact: (instead of
Poke:) as appropriate.

Add one Poke, Bug or Fact section for each poke, bug or trivia entry to be documented. Entries will appear on the
‘Pokes’, ‘Bugs’ or ‘Trivia’ page in the same order as the sections appear in the ref file.

See Ref files for more information on the format of the Poke, Bug, and Fact (and other) sections that may appear in
a ref file.

8 Chapter 3. Disassembly DIY

SkoolKit Documentation, Release 6.0

Themes

In addition to the default theme (defined in skoolkit.css), SkoolKit includes some alternative themes:

• dark (dark colours): skoolkit-dark.css

• green (mostly green): skoolkit-green.css

• plum (mostly purple): skoolkit-plum.css

• wide (wide comment fields on the disassembly pages, and wide boxes on the Changelog, Glossary, Trivia, Bugs
and Pokes pages): skoolkit-wide.css

In order to use a theme, run skool2html.py with the -T option; for example, to use the ‘dark’ theme:

$ skool2html.py -T dark game.skool

Themes may be combined; for example, to use both the ‘plum’ and ‘wide’ themes:

$ skool2html.py -T plum -T wide game.skool

3.7. Themes 9

SkoolKit Documentation, Release 6.0

10 Chapter 3. Disassembly DIY

CHAPTER 4

Commands

bin2sna.py

bin2sna.py converts a binary (raw memory) file into a Z80 snapshot. For example:

$ bin2sna.py game.bin

will create a file named game.z80. By default, the origin address (the address of the first byte of code or data), the
start address (the first byte of code to run) and the stack pointer are set to 65536 minus the length of game.bin. These
values can be changed by passing options to bin2sna.py. Run it with no arguments to see the list of available options:

usage: bin2sna.py [options] file.bin [file.z80]

Convert a binary (raw memory) file into a Z80 snapshot. 'file.bin' may be a
regular file, or '-' for standard input. If 'file.z80' is not given, it
defaults to the name of the input file with '.bin' replaced by '.z80', or
'program.z80' if reading from standard input.

Options:
-b BORDER, --border BORDER

Set the border colour (default: 7)
-o ORG, --org ORG Set the origin address (default: 65536 minus the

length of file.bin)
-p STACK, --stack STACK

Set the stack pointer (default: ORG)
-s START, --start START

Set the address at which to start execution (default:
ORG)

-V, --version Show SkoolKit version number and exit

Version Changes
5.2 New

11

SkoolKit Documentation, Release 6.0

bin2tap.py

bin2tap.py converts a binary (raw memory) file or a SNA, SZX or Z80 snapshot into a TAP file. For example:

$ bin2tap.py game.bin

will create a file called game.tap. By default, the origin address (the address of the first byte of code or data), the start
address (the first byte of code to run) and the stack pointer are set to 65536 minus the length of game.bin. These values
can be changed by passing options to bin2tap.py. Run it with no arguments to see the list of available options:

usage: bin2tap.py [options] FILE [file.tap]

Convert a binary (raw memory) file or a SNA, SZX or Z80 snapshot into a TAP
file. FILE may be a regular file, or '-' to read a binary file from standard
input.

Options:
-c N, --clear N Use a 'CLEAR N' command in the BASIC loader and leave

the stack pointer alone
-e ADDR, --end ADDR Set the end address when reading a snapshot
-o ORG, --org ORG Set the origin address (default: 16384 for a snapshot,

otherwise 65536 minus the length of FILE)
-p STACK, --stack STACK

Set the stack pointer (default: ORG)
-s START, --start START

Set the start address to JP to (default: ORG)
-S FILE, --screen FILE

Add a loading screen to the TAP file; FILE may be a
snapshot or a 6912-byte SCR file

-V, --version Show SkoolKit version number and exit

Note that the ROM tape loading routine at 1366 ($0556) and the load routine used by bin2tap.py together require 14
bytes for stack operations, and so STACK must be at least 16384+14=16398 ($400E). This means that if ORG is less
than 16398, you should use the -p option to set the stack pointer to something appropriate. If the main data block
(derived from game.bin) overlaps any of the last four bytes of the stack, bin2tap.py will replace those bytes with the
values required by the tape loading routine for correct operation upon returning. Stack operations will overwrite the
bytes in the address range STACK-14 to STACK-1 inclusive, so those addresses should not be used to store essential
code or data.

If the input file contains a program that returns to BASIC, you should use the --clear option to add a CLEAR
command to the BASIC loader. This option leaves the stack pointer alone, enabling the program to return to BASIC
without crashing. The lowest usable address with the --clear option on a bare 48K Spectrum is 23952 ($5D90).

Ver-
sion

Changes

5.3 Added the --screen option
5.2 Added the ability to read a binary file from standard input; added a second positional argument

specifying the TAP filename
4.5 Added the --clear and --end options, and the ability to convert SNA, SZX and Z80 snapshots
3.4 Added the -V option and the long options
2.2.5 Added the -p option
1.3.1 New

12 Chapter 4. Commands

SkoolKit Documentation, Release 6.0

skool2asm.py

skool2asm.py converts a skool file into an ASM file that can be fed to an assembler (see Supported assemblers). For
example:

$ skool2asm.py game.skool > game.asm

skool2asm.py supports many options; run it with no arguments to see a list:

usage: skool2asm.py [options] FILE

Convert a skool file into an ASM file and write it to standard output. FILE may
be a regular file, or '-' for standard input.

Options:
-c, --create-labels Create default labels for unlabelled instructions
-D, --decimal Write the disassembly in decimal
-E ADDR, --end ADDR Stop converting at this address
-f N, --fixes N Apply fixes:

N=0: None (default)
N=1: @ofix only
N=2: @ofix and @bfix
N=3: @ofix, @bfix and @rfix (implies -r)

-H, --hex Write the disassembly in hexadecimal
-l, --lower Write the disassembly in lower case
-p, --package-dir Show path to skoolkit package directory and exit
-P p=v, --set p=v Set the value of ASM writer property 'p' to 'v'; this

option may be used multiple times
-q, --quiet Be quiet
-r, --rsub Apply safe substitutions (@ssub) and relocatability

substitutions (@rsub) (implies '-f 1')
-s, --ssub Apply safe substitutions (@ssub)
-S ADDR, --start ADDR

Start converting at this address
-u, --upper Write the disassembly in upper case
-V, --version Show SkoolKit version number and exit
-w, --no-warnings Suppress warnings
-W CLASS, --writer CLASS

Specify the ASM writer class to use

See ASM modes and directives for a description of the @ssub and @rsub substitution modes, and the @ofix, @bfix
and @rfix bugfix modes.

See the @set directive for information on the ASM writer properties that can be set by the --set option.

Version Changes
5.0 Added the --set option
4.5 Added the --start and --end options
4.1 Added the --writer option
3.4 Added the -V and -p options and the long options
2.2.2 Added the ability to read a skool file from standard input
2.1.1 Added the -u, -D and -H options
1.1 Added the -c option

4.3. skool2asm.py 13

SkoolKit Documentation, Release 6.0

skool2bin.py

skool2bin.py converts a skool file into a binary (raw memory) file. For example:

$ skool2bin.py game.skool

To list the options supported by skool2bin.py, run it with no arguments:

usage: skool2bin.py [options] file.skool [file.bin]

Convert a skool file into a binary (raw memory) file. 'file.skool' may be a
regular file, or '-' for standard input. If 'file.bin' is not given, it
defaults to the name of the input file with '.skool' replaced by '.bin'.
'file.bin' may be a regular file, or '-' for standard output.

Options:
-b, --bfix Apply @ofix and @bfix directives
-E ADDR, --end ADDR Stop converting at this address
-i, --isub Apply @isub directives
-o, --ofix Apply @ofix directives
-s, --ssub Apply @isub and @ssub directives
-S ADDR, --start ADDR

Start converting at this address
-V, --version Show SkoolKit version number and exit

Version Changes
5.2 Added the ability to write the binary file to standard output
5.1 Added the --bfix, --ofix and --ssub options
5.0 New

skool2ctl.py

skool2ctl.py converts a skool file into a control file. For example:

$ skool2ctl.py game.skool > game.ctl

In addition to block types and addresses, game.ctl will contain block titles, block descriptions, registers, mid-block
comments, block start and end comments, sub-block types and addresses, instruction-level comments, and some ASM
directives.

To list the options supported by skool2ctl.py, run it with no arguments:

usage: skool2ctl.py [options] FILE

Convert a skool file into a control file and write it to standard output. FILE
may be a regular file, or '-' for standard input.

Options:
-b, --preserve-base Preserve the base of decimal and hexadecimal values in

instruction operands and DEFB/DEFM/DEFS/DEFW statements
-E ADDR, --end ADDR Stop converting at this address
-h, --hex Write addresses in upper case hexadecimal format
-l, --hex-lower Write addresses in lower case hexadecimal format
-S ADDR, --start ADDR

Start converting at this address

14 Chapter 4. Commands

SkoolKit Documentation, Release 6.0

-V, --version Show SkoolKit version number and exit
-w X, --write X Write only these elements, where X is one or more of:

a = ASM directives
b = block types and addresses
t = block titles
d = block descriptions
r = registers
m = mid-block comments and block start/end comments
s = sub-block types and addresses
c = instruction-level comments

If you need to preserve any elements that control files do not support (such as data definition entries and ASM block
directives), consider using skool2sft.py to create a skool file template instead.

Version Changes
6.0 Added support for the ‘a’ identifier in the --write option
5.1 A terminal i directive is appended if the skool file ends before 65536
4.5 Added the --start and --end options
4.4 Added the --hex-lower option
3.7 Added the --preserve-base option
3.4 Added the -V option and the long options
2.4 Added the ability to preserve some ASM directives
2.2.2 Added the ability to read a skool file from standard input
2.0.6 Added the -h option
1.1 New

skool2html.py

skool2html.py converts a skool file (and its associated ref files, if any exist) into a browsable disassembly in HTML
format.

For example:

$ skool2html.py game.skool

will convert the file game.skool into a bunch of HTML files. If any files named game*.ref (e.g. game.ref, game-
bugs.ref, game-pokes.ref and so on) also exist, they will be used to provide further information to the conversion
process.

skool2html.py can operate directly on ref files, too. For example:

$ skool2html.py game.ref

In this case, the skool file declared in the [Config] section will be used; if no skool file is declared, game.skool will
be used if it exists. In addition, any existing files besides game.ref that are named game*.ref (e.g. game-bugs.ref,
game-pokes.ref and so on) will also be used, along with any extra files named in the RefFiles parameter in the
[Config] section.

If an input file’s name ends with ‘.ref’, it will be treated as a ref file; otherwise it will be treated as a skool file.

skool2html.py supports several options; run it with no arguments to see a list:

usage: skool2html.py [options] FILE [FILE...]

Convert skool files and ref files to HTML. FILE may be a regular file, or '-'
for standard input.

4.6. skool2html.py 15

SkoolKit Documentation, Release 6.0

Options:
-1, --asm-one-page Write all routines and data blocks to a single page
-a, --asm-labels Use ASM labels
-c S/L, --config S/L Add the line 'L' to the ref file section 'S'; this

option may be used multiple times
-C, --create-labels Create default labels for unlabelled instructions
-d DIR, --output-dir DIR

Write files in this directory (default is '.')
-D, --decimal Write the disassembly in decimal
-H, --hex Write the disassembly in hexadecimal
-j NAME, --join-css NAME

Concatenate CSS files into a single file with this name
-l, --lower Write the disassembly in lower case
-o, --rebuild-images Overwrite existing image files
-p, --package-dir Show path to skoolkit package directory and exit
-P PAGES, --pages PAGES

Write only these pages (when using '--write P');
PAGES is a comma-separated list of page IDs

-q, --quiet Be quiet
-r PREFIX, --ref-sections PREFIX

Show default ref file sections whose names start with
PREFIX and exit

-R, --ref-file Show the entire default ref file and exit
-s, --search-dirs Show the locations skool2html.py searches for resources
-S DIR, --search DIR Add this directory to the resource search path; this

option may be used multiple times
-t, --time Show timings
-T THEME, --theme THEME

Use this CSS theme; this option may be used multiple
times

-u, --upper Write the disassembly in upper case
-V, --version Show SkoolKit version number and exit
-w X, --write X Write only these files, where X is one or more of:

d = Disassembly files o = Other code
i = Disassembly index P = Other pages
m = Memory maps

-W CLASS, --writer CLASS
Specify the HTML writer class to use; shorthand for
'--config Config/HtmlWriterClass=CLASS'

skool2html.py searches the following directories for skool files, ref files, CSS files, JavaScript files, font files, and files
listed in the [Resources] section of the ref file:

• The directory that contains the skool or ref file named on the command line

• The current working directory

• ./resources

• ~/.skoolkit

• $PACKAGE_DIR/resources

• Any other directories specified by the -S/--search option

where $PACKAGE_DIR is the directory in which the skoolkit package is installed (as shown by skool2html.py
-p). When you need a reminder of these locations, run skool2html.py -s.

The -T option sets the CSS theme. For example, if game.ref specifies the CSS files to use thus:

16 Chapter 4. Commands

SkoolKit Documentation, Release 6.0

[Game]
StyleSheet=skoolkit.css;game.css

then:

$ skool2html.py -T dark -T wide game.ref

will use the following CSS files, if they exist, in the order listed:

• skoolkit.css

• skoolkit-dark.css

• skoolkit-wide.css

• game.css

• game-dark.css

• game-wide.css

• dark.css

• wide.css

Version Changes
5.4 Added the --asm-one-page option
5.0 The --theme option also looks for a CSS file whose base name matches the theme name
4.1 Added the --search and --writer options
4.0 Added the --ref-sections and --ref-file options
3.6 Added the --join-css and --search-dirs options
3.5 Added support for multiple CSS themes
3.4 Added the -a and -C options and the long options
3.3.2 Added $PACKAGE_DIR/resources to the search path; added the -p and -T options
3.2 Added ~/.skoolkit to the search path
3.1 Added the -c option
3.0.2 No longer shows timings by default; added the -t option
2.3.1 Added support for reading multiple ref files per disassembly
2.2.2 Added the ability to read a skool file from standard input
2.2 No longer writes the Skool Daze and Back to Skool disassemblies by default; added the -d option
2.1.1 Added the -l, -u, -D and -H options
2.1 Added the -o and -P options
1.4 Added the -V option

skool2sft.py

skool2sft.py converts a skool file into a skool file template. For example:

$ skool2sft.py game.skool > game.sft

To list the options supported by skool2sft.py, run it with no arguments:

usage: skool2sft.py [options] FILE

Convert a skool file into a skool file template and write it to standard
output. FILE may be a regular file, or '-' for standard input.

4.7. skool2sft.py 17

SkoolKit Documentation, Release 6.0

Options:
-b, --preserve-base Preserve the base of decimal and hexadecimal values in

instruction operands and DEFB/DEFM/DEFS/DEFW
statements

-E ADDR, --end ADDR Stop converting at this address
-h, --hex Write addresses in upper case hexadecimal format
-l, --hex-lower Write addresses in lower case hexadecimal format
-S ADDR, --start ADDR

Start converting at this address
-V, --version Show SkoolKit version number and exit

Version Changes
5.1 i blocks are preserved in the same way as code and data blocks (instead of verbatim)
4.5 Added the --start and --end options
4.4 Added the --hex-lower option
3.7 Added the --preserve-base option
3.4 Added the -V option and the long options
2.4 New

sna2img.py

sna2img.py converts the screenshot in a SCR file or SNA/SZX/Z80 snapshot into a PNG or GIF file. For example:

$ sna2img.py game.scr

will create a file named game.png.

To list the options supported by sna2img.py, run it with no arguments:

usage: sna2img.py [options] INPUT [OUTPUT]

Convert a Spectrum screenshot (or a portion of it) into a PNG or GIF file.
INPUT may be a SCR file, or a SNA, SZX or Z80 snapshot.

Options:
-e MACRO, --expand MACRO

Expand a #FONT, #SCR, #UDG or #UDGARRAY macro. The '#'
prefix may be omitted.

-f N, --flip N Flip the image horizontally (N=1), vertically (N=2),
or both (N=3).

-i, --invert Invert video for cells that are flashing.
-n, --no-animation Do not animate flashing cells.
-o X,Y, --origin X,Y Top-left crop at (X,Y).
-p a[-b[-c]],[^+]v, --poke a[-b[-c]],[^+]v

POKE N,v for N in {a, a+c, a+2c..., b}. Prefix 'v'
with '^' to perform an XOR operation, or '+' to
perform an ADD operation. This option may be used
multiple times.

-r N, --rotate N Rotate the image 90*N degrees clockwise.
-s SCALE, --scale SCALE

Set the scale of the image (default=1).
-S WxH, --size WxH Crop to this width and height (in tiles).
-V, --version Show SkoolKit version number and exit.

18 Chapter 4. Commands

SkoolKit Documentation, Release 6.0

Version Changes
6.0 Added the --expand option
5.4 New

sna2skool.py

sna2skool.py converts a binary (raw memory) file or a SNA, SZX or Z80 snapshot into a skool file. For example:

$ sna2skool.py game.z80 > game.skool

Now game.skool can be converted into a browsable HTML disassembly using skool2html.py, or into an assembler-
ready ASM file using skool2asm.py.

sna2skool.py supports several options; run it with no arguments to see a list:

usage: sna2skool.py [options] FILE

Convert a binary (raw memory) file or a SNA, SZX or Z80 snapshot into a skool
file. FILE may be a regular file, or '-' for standard input.

Options:
-c FILE, --ctl FILE Use FILE as the control file (may be '-' for standard

input)
-e ADDR, --end ADDR Stop disassembling at this address (default=65536)
-g FILE, --generate-ctl FILE

Generate a control file in FILE
-h, --ctl-hex Write upper case hexadecimal addresses in the

generated control file
-H, --skool-hex Write hexadecimal addresses and operands in the

disassembly
-i, --ctl-hex-lower Write lower case hexadecimal addresses in the

generated control file
-l L, --defm-size L Set the maximum number of characters per DEFM

statement to L (default=66)
-L, --lower Write the disassembly in lower case
-m M, --defb-mod M Group DEFB blocks by addresses that are divisible by M
-M FILE, --map FILE Use FILE as a code execution map when generating a

control file
-n N, --defb-size N Set the maximum number of bytes per DEFB statement to

N (default=8)
-o ADDR, --org ADDR Specify the origin address of a binary (.bin) file

(default: 65536 - length)
-p PAGE, --page PAGE Specify the page (0-7) of a 128K snapshot to map to

49152-65535
-r, --no-erefs Don't add comments that list entry point referrers
-R, --erefs Always add comments that list entry point referrers
-s ADDR, --start ADDR

Start disassembling at this address (default=16384)
-t, --text Show ASCII text in the comment fields
-T FILE, --sft FILE Use FILE as the skool file template (may be '-' for

standard input)
-V, --version Show SkoolKit version number and exit
-w W, --line-width W Set the maximum line width of the skool file (default:

79)
-z, --defb-zfill Pad decimal values in DEFB statements with leading

zeroes

4.9. sna2skool.py 19

SkoolKit Documentation, Release 6.0

If the input filename does not end with ‘.sna’, ‘.szx’ or ‘.z80’, it is assumed to be a binary file.

By default, any control file or skool file template whose name (minus the ‘.ctl’ or ‘.sft’ suffix) matches the input
filename (minus the ‘.bin’, ‘.sna’, ‘.szx’ or ‘.z80’ suffix, if any) will be used, if present.

The -M option may be used (in conjunction with the -g option) to specify a code execution map to use when generating
a control file. The supported file formats are:

• Profiles created by the Fuse emulator

• Code execution logs created by the SpecEmu, Spud and Zero emulators

• Map files created by the SpecEmu and Z80 emulators

If the file specified by the -M option is 8192 bytes long, it is assumed to be a Z80 map file; if it is 65536 bytes long, it
is assumed to be a SpecEmu map file; otherwise it is assumed to be in one of the other supported formats.

Ver-
sion

Changes

5.0 Added support for SpecEmu’s 64K code execution map files
4.4 Added the --ctl-hex-lower and --end options
4.3 Added the --line-width option
3.4 Added the -V and -R options and the long options
3.3 Added the -M option, along with support for code execution maps produced by Fuse, SpecEmu, Spud,

Zero and Z80; added the ability to read 128K SNA snapshots
3.2 Added the -p option, and the ability to read SZX snapshots and 128K Z80 snapshots
2.4 Added the -T option
2.1.2 Added the -L option
2.1 Added the -H option
2.0.6 Added the -h option
2.0.1 Added the -o, -r and -l options, and the ability to read binary files
2.0 Added the -n, -m and -z options
1.0.5 Added the -t option
1.0.4 Added the -g and -s options

snapinfo.py

snapinfo.py shows information on the registers and RAM in a SNA, SZX or Z80 snapshot. For example:

$ snapinfo.py game.z80

To list the options supported by snapinfo.py, run it with no arguments:

usage: snapinfo.py [options] file

Analyse an SNA, SZX or Z80 snapshot.

Options:
-b, --basic List the BASIC program
-f A[,B...[-M[-N]]], --find A[,B...[-M[-N]]]

Search for the byte sequence A,B... with distance
ranging from M to N (default=1) between bytes

-p A[-B[-C]], --peek A[-B[-C]]
Show the contents of addresses A TO B STEP C; this
option may be used multiple times

-t TEXT, --find-text TEXT
Search for a text string

20 Chapter 4. Commands

SkoolKit Documentation, Release 6.0

-T X,Y[-M[-N]], --find-tile X,Y[-M[-N]]
Search for the graphic data of the tile at (X,Y) with
distance ranging from M to N (default=1) between bytes

-v, --variables List variables
-V, --version Show SkoolKit version number and exit
-w A[-B[-C]], --word A[-B[-C]]

Show the words at addresses A TO B STEP C; this option
may be used multiple times

With no options, snapinfo.py displays register values, the interrupt mode, and the border colour. By using one of
the options shown above, it can list the BASIC program and variables (if present), show the contents of a range of
addresses, or search the RAM for a sequence of byte values or a text string.

Ver-
sion

Changes

6.0 Added support to the --find option for distance ranges; added the --find-tile and --word
options; the --peek option shows UDGs and BASIC tokens

5.4 Added the --variables option; UDGs in a BASIC program are shown as special symbols (e.g.
{UDG-A})

5.3 New

snapmod.py

snapmod.py modifies the registers and RAM in a 48K Z80 snapshot. For example:

$ snapmod.py --poke 32768,0 game.z80 poked.z80

To list the options supported by snapmod.py, run it with no arguments:

usage: snapmod.py [options] in.z80 [out.z80]

Modify a 48K Z80 snapshot.

Options:
-f, --force Overwrite an existing snapshot.
-m src,size,dest, --move src,size,dest

Move a block of bytes of the given size from src to
dest. This option may be used multiple times.

-p a[-b[-c]],[^+]v, --poke a[-b[-c]],[^+]v
POKE N,v for N in {a, a+c, a+2c..., b}. Prefix 'v'
with '^' to perform an XOR operation, or '+' to
perform an ADD operation. This option may be used
multiple times.

-r name=value, --reg name=value
Set the value of a register. Do '--reg help' for more
information. This option may be used multiple times.

-s name=value, --state name=value
Set a hardware state attribute. Do '--state help' for
more information. This option may be used multiple
times.

-V, --version Show SkoolKit version number and exit.

Version Changes
5.3 New

4.11. snapmod.py 21

SkoolKit Documentation, Release 6.0

tap2sna.py

tap2sna.py converts a TAP or TZX file (which may be inside a zip archive) into a Z80 snapshot. For example:

$ tap2sna.py game.tap game.z80

To list the options supported by tap2sna.py, run it with no arguments:

usage:
tap2sna.py [options] INPUT snapshot.z80
tap2sna.py @FILE

Convert a TAP or TZX file (which may be inside a zip archive) into a Z80
snapshot. INPUT may be the full URL to a remote zip archive or TAP/TZX file,
or the path to a local file. Arguments may be read from FILE instead of (or as
well as) being given on the command line.

Options:
-d DIR, --output-dir DIR

Write the snapshot file in this directory.
-f, --force Overwrite an existing snapshot.
-p STACK, --stack STACK

Set the stack pointer.
--ram OPERATION Perform a load, move or poke operation on the memory

snapshot being built. Do '--ram help' for more
information. This option may be used multiple times.

--reg name=value Set the value of a register. Do '--reg help' for more
information. This option may be used multiple times.

-s START, --start START
Set the start address to JP to.

--state name=value Set a hardware state attribute. Do '--state help' for
more information. This option may be used multiple
times.

-V, --version Show SkoolKit version number and exit.

Note that support for TZX files is limited to block types 0x10 (standard speed data), 0x11 (turbo speed data) and 0x14
(pure data).

By default, tap2sna.py loads bytes from every data block on the tape, using the start address given in the corresponding
header. For tapes that contain headerless data blocks, headers with incorrect start addresses, or irrelevant blocks, the
--ram option can be used to load bytes from specific blocks at the appropriate addresses. For example:

$ tap2sna.py --ram load=3,30000 game.tzx game.z80

loads the third block on the tape at address 30000, and ignores all other blocks. (To see information on the blocks in
a TAP or TZX file, use the tapinfo.py command.) The --ram option can also be used to move blocks of bytes from
one location to another, POKE values into individual addresses or address ranges, and modify memory with XOR and
ADD operations before the snapshot is saved. For more information on the operations that the --ram option can
perform, run:

$ tap2sna.py --ram help

For complex snapshots that require many --ram, --reg or --state options to build, it may be more convenient
to store the arguments to tap2sna.py in a file. For example, if the file game.t2s has the following contents:

;
; tap2sna.py file for GAME

22 Chapter 4. Commands

SkoolKit Documentation, Release 6.0

;
http://example.com/pub/games/GAME.zip
game.z80
--ram load=4,32768 # Load the fourth block at 32768
--ram move=40960,512,43520 # Move 40960-41471 to 43520-44031
--reg pc=34816 # Start at 34816
--reg sp=32768 # Stack at 32768
--state iff=0 # Disable interrupts

then:

$ tap2sna.py @game.t2s

will create game.z80 as if the arguments specified in game.t2s had been given on the command line.

Ver-
sion

Changes

5.3 Added the --stack and --start options
4.5 Added support for TZX block type 0x14 (pure data), for loading the first and last bytes of a tape block,

and for modifying memory with XOR and ADD operations
3.5 New

tapinfo.py

tapinfo.py shows information on the blocks in a TAP or TZX file. For example:

$ tapinfo.py game.tzx

To list the options supported by tapinfo.py, run it with no arguments:

usage: tapinfo.py FILE

Show the blocks in a TAP or TZX file.

Options:
-b IDs, --tzx-blocks IDs

Show TZX blocks with these IDs only; 'IDs' is a comma-
separated list of hexadecimal block IDs, e.g. 10,11,2a

-B N[,A], --basic N[,A]
List the BASIC program in block N loaded at address A
(default 23755)

-V, --version Show SkoolKit version number and exit

Version Changes
6.0 Added the --basic option
5.0 New

4.13. tapinfo.py 23

SkoolKit Documentation, Release 6.0

24 Chapter 4. Commands

CHAPTER 5

Supported assemblers

If you use SkoolKit to generate an ASM version of your disassembly, and you want to assemble it, you will need to use
a supported assembler. At the time of writing, the assemblers listed below are known to work with the ASM format
generated by skool2asm.py:

• pasmo (v0.5.3)

• SjASMPlus (v1.07-rc7)

• z80asm, the assembler distributed with z88dk (v1.8)

Note: SjASMPlus does not recognise instructions that operate on the high or low half of the IX and IY registers in
the default form used by SkoolKit (e.g. LD A,IXl). A workaround is to write the ASM file in lower case using the
--lower option of skool2asm.py.

Note: z80asm does not recognise binary constants in the form supported by SkoolKit (e.g. %10101010). If your
skool file contains any such constants, the % characters must be replaced by @ (e.g. @10101010) after conversion to
ASM format.

The following sections give examples of how to use each of these assemblers to create a binary (raw memory) file or
a tape file that can be used with an emulator.

Using pasmo

First, create an ASM version of the disassembly:

$ skool2asm.py game.skool > game.asm

Then use pasmo to create a binary file named game.bin thus:

25

http://pasmo.speccy.org/
http://sjasmplus.sourceforge.net/
http://www.z88dk.org/

SkoolKit Documentation, Release 6.0

$ pasmo game.asm game.bin

Using SjASMPlus

First, create an ASM version of the disassembly:

$ skool2asm.py game.skool > game.asm

Then create a file named game.sjasm with the following contents:

; SjASMPlus source file for game.asm
device zxspectrum48
include game.asm
savebin "game.bin",ORG,LENGTH

replacing ORG and LENGTH with the origin address and the length of the assembled program. Now run sjasmplus on
this source file:

$ sjasmplus game.sjasm

and a binary file named game.bin will be created.

Using z80asm (z88dk)

First, create an ASM version of the disassembly:

$ skool2asm.py game.skool > game.asm

Then use z80asm to create a binary file named game.bin thus:

$ z80asm -rORG -b game.asm

replacing ORG with the origin address (in hexadecimal notation) of the program.

Creating a TAP file

Having created game.bin by using your chosen assembler, you can now create a TAP file by using bin2tap.py:

$ bin2tap.py game.bin

The resultant TAP file, game.tap, can then be loaded into an emulator.

26 Chapter 5. Supported assemblers

CHAPTER 6

Migrating from SkoolKit 5

SkoolKit 6 includes some changes that make it incompatible with SkoolKit 5. If you have developed a disassembly
using SkoolKit 5 and find that the SkoolKit commands no longer work with your control files or skool files, or produce
broken output, look through the following sections for tips on how to migrate your disassembly to SkoolKit 6.

#BUG, #FACT, #POKE

The #BUG, #FACT and #POKE macros are not supported in SkoolKit 6. However, they can be brought back into
service by using suitable @replace directives to convert them into equivalent #LINK macros. For example:

@replace=/#BUG(#[a-zA-Z\d$#]+(?![a-zA-Z\d$#(])|(?![#(A-Z]))/#LINK:Bugs\1(bug)
@replace=/#BUG(?![A-Z])/#LINK:Bugs

The first directive replaces #BUG macros that have no link text parameter (as in This is a #BUG#bug1.); it may
be omitted if all the #BUG macros in your disassembly have a link text parameter. The second directive replaces #BUG
macros that do have a link text parameter.

The corresponding @replace directives for the #FACT macro are:

@replace=/#FACT(#[a-zA-Z\d$#]+(?![a-zA-Z\d$#(])|(?![#(A-Z]))/#LINK:Facts\1(fact)
@replace=/#FACT(?![A-Z])/#LINK:Facts

And for the #POKE macro:

@replace=/#POKE(#[a-zA-Z\d$#]+(?![a-zA-Z\d$#(])|(?![#(A-Z]))/#LINK:Pokes\1(poke)
@replace=/#POKE(?![A-Z])/#LINK:Pokes

#EREFS, #REFS

The #EREFS and #REFS macros are not supported in SkoolKit 6.

27

SkoolKit Documentation, Release 6.0

A near equivalent to the #EREFS macro can be defined by using the @replace directive thus:

@replace=/#erefs\i/#IF(#neref\1);;the routine#IF(#neref\1>1)(s) at
→˓#FOREACH(EREF\1)||n|#Rn|, | and ||;no other routines;;
@replace=/#neref\i/0#FOREACH(EREF\1)(n,+1)

and used like this:

; This entry point is used by #erefs32769.

A near equivalent to the #REFS macro can be defined by using the @replace directive thus:

@replace=/#refs\i/#IF(#nref\1);;the routine#IF(#nref\1>1)(s) at #FOREACH(REF\1)||n|
→˓#Rn|, | and ||;no other routines;;
@replace=/#nref\i/0#FOREACH(REF\1)(n,+1)

and used like this:

; Used by #refs32768.

[PageContent:*]

[PageContent:*] sections are not supported in SkoolKit 6; instead, the PageContent parameter in the
[Page:*] section should be used.

If you have a [PageContent:*] section consisting of a single line, then bring that line into the PageContent
parameter of a corresponding [Page:*] section. For example:

[PageContent:MyPage]
#CALL:myPageContents()

can be replaced by:

[Page:MyPage]
PageContent=#CALL:myPageContents()

If you have a [PageContent:*] section consisting of more than one line, then add a [Page:*] section (or update
an existing one) with a PageContent parameter that uses the #INCLUDE macro. For example:

[PageContent:MyOtherPage]
Line 1.
Line 2.

can be activated by adding a corresponding [Page:*] section:

[Page:MyOtherPage]
PageContent=#INCLUDE(PageContent:MyOtherPage)

Created

In SkoolKit 5, wherever $VERSION appeared in the Created parameter in the [Game] section, it was replaced by
the version number of SkoolKit. In SkoolKit 6, this replacement is no longer made; use the #VERSION macro instead.

28 Chapter 6. Migrating from SkoolKit 5

SkoolKit Documentation, Release 6.0

DefaultAnimationFormat

In SkoolKit 5, the DefaultAnimationFormat parameter in the [ImageWriter] section defaulted to the value of
the DefaultFormat parameter (png by default). In SkoolKit 6, DefaultAnimationFormat defaults to gif.

UDGFilename

In SkoolKit 5, the UDGFilename parameter lived in the [Game] section. In SkoolKit 6, it has moved to the [Paths]
section.

changelog_* templates

The changelog_entry and changelog_item_list templates have been renamed list_entry and list_items.
(They are general purpose templates used not just by the ‘Changelog’ page, but by any box page whose
SectionType is BulletPoints or ListItems.) Accordingly, the t_changelog_item_list and
m_changelog_item identifiers in those templates have been renamed t_list_items and m_list_item.

CSS selectors

The class attributes of some HTML elements have changed in SkoolKit 6.

The following table lists the selectors that appeared in the CSS files in SkoolKit 5, and their replacements in SkoolKit
6.

SkoolKit 5 SkoolKit 6
div.changelog div.list-entry
div.changelog-1 div.list-entry-1
div.changelog-2 div.list-entry-2
div.changelog-desc div.list-entry-desc
div.changelog-title div.list-entry-title
ul.changelog ul.list-entry

In addition, the ‘ul.changelogN’ selector (N=1, 2, 3 etc.), which is used in the stock list_items template but is unstyled
(i.e. does not appear in any of the CSS files), has been replaced by ‘ul.list-entryN’ in SkoolKit 6.

PageHeaders:Asm-t

In SkoolKit 5, the default header for Asm-t pages (disassembly pages for ‘t’ blocks) was ‘Data’. In SkoolKit 6, it is
‘Messages’.

Titles:Asm-t

In SkoolKit 5, the default title for Asm-t pages (disassembly pages for ‘t’ blocks) was ‘Data at’. In SkoolKit 6, it is
‘Text at’.

6.5. DefaultAnimationFormat 29

SkoolKit Documentation, Release 6.0

bin2tap.py -t

In SkoolKit 5, bin2tap.py had a -t/--tapfile option for specifying the output TAP filename. In SkoolKit 6,
this option is not supported; instead the TAP filename should be specified, if necessary, after the input filename. For
example:

$ bin2tap.py in.bin out.tap

skool2ctl.py -a

In SkoolKit 5, skool2ctl.py had a -a/--no-asm-dirs option for omitting ASM directives from the output. In
SkoolKit 6, this option is not supported; instead, the -w/--write option now recognises the ‘a’ identifier for speci-
fying whether to include ASM directives in the output.

skool2html.py -w

In SkoolKit 5, the -w/--write option of skool2html.py recognised the ‘B’ (Graphic glitches), ‘b’ (Bugs), ‘c’
(Changelog), ‘p’ (Pokes), ‘t’ (Trivia) and ‘y’ (Glossary) file identifiers. In SkoolKit 6, these file identifiers are not
supported; instead, the ‘P’ file identifier should be used along with the -P/--pages option.

For example, to write only the ‘Bugs’ and ‘Changelog’ pages:

$ skool2html.py --write P --pages Bugs,Changelog game.ref

Udg

In SkoolKit 5.4, the Udg class moved from skoolkit.skoolhtml to skoolkit.graphics, but was still available in
skoolkit.skoolhtml. In SkoolKit 6, it is no longer available in skoolkit.skoolhtml.

flip_udgs()

The flip_udgs() method on HtmlWriter has been removed in SkoolKit 6. Use the flip_udgs() function in
skoolkit.graphics instead.

rotate_udgs()

The rotate_udgs() method on HtmlWriter has been removed in SkoolKit 6. Use the rotate_udgs() function
in skoolkit.graphics instead.

parse_image_params()

The parse_image_params() method on HtmlWriter has been removed in SkoolKit 6. Use the
parse_image_macro() function instead.

30 Chapter 6. Migrating from SkoolKit 5

SkoolKit Documentation, Release 6.0

parse_params()

The parse_params() function in skoolkit.skoolmacro has been removed in SkoolKit 6. Use the parse_ints()
and parse_brackets() functions instead.

skoolkit5to6.py

The skoolkit5to6.py script may be used to convert a ref file or CSS file that is compatible with SkoolKit 5 into a file
that will work with SkoolKit 6. For example, to convert game.ref :

$ skoolkit5to6.py game.ref > game6.ref

6.18. parse_params() 31

https://github.com/skoolkid/skoolkit/raw/master/utils/skoolkit5to6.py

SkoolKit Documentation, Release 6.0

32 Chapter 6. Migrating from SkoolKit 5

CHAPTER 7

Changelog

6.0 (2017-05-06)

• Dropped support for Python 2.7 and 3.3

• Added the --expand option to sna2img.py (for expanding a #FONT , #SCR, #UDG or #UDGARRAY macro)

• Added the --basic option to tapinfo.py (for listing the BASIC program in a tape block)

• Added the --find-tile option to snapinfo.py (for searching for the graphic data of a tile currently on screen)

• Added the --word option to snapinfo.py (for showing the words at a range of addresses)

• Added support to the --find option of snapinfo.py for specifying a range of distances between byte values
(e.g. --find 1,2,3-1-10)

• The --peek option of snapinfo.py now shows UDGs and BASIC tokens

• Added support for replacement fields (such as {base} and {case}) in the expr parameter of the #IF macro
and the key parameter of the #MAP macro

• Added support for parsing a box page entry section as a sequence of multi-line list items prefixed by ‘-‘ (with
SectionType=BulletPoints)

• The following ref file components may now contain skool macros: the anchor and title of a box page entry
section name; every parameter in the [Game], [MemoryMap:*], [Page:*], [PageHeaders], [Paths] and [Titles]
sections

• The @replace directive now acts on ref file section names as well as their contents

• The #EVAL macro now renders hexadecimal values in lower case when the --lower option of skool2asm.py
or skool2html.py is used

• Added the #VERSION macro (which expands to the version of SkoolKit)

• Fixed how an image is cropped when the crop rectangle is very narrow

• Fixed how a masked image with flashing cells is built

33

SkoolKit Documentation, Release 6.0

• Fixed how sna2skool.py handles a snapshot that contains a dangling IX/IY prefix (DD/FD) when generating a
control file

• Fixed the bug that prevents the expansion of skool macros in a page’s link text on the disassembly home page

5.4 (2017-01-08)

• Added the sna2img.py command (for converting the screenshot in a SCR file or SNA/SZX/Z80 snapshot into a
PNG or GIF file)

• Added the @equ ASM directive (which produces an EQU directive in the ASM output)

• The #REG macro now accepts an arbitrary text parameter (e.g. #REG(hlh'l'))

• When the #LINK macro links to an entry on a box page, the link text defaults to the title of the entry if left blank

• Added the SectionType parameter to the [Page:*] section (for specifying how to parse and render the ref
file sections from which a box page is built)

• Added the --asm-one-page option to skool2html.py (for writing all routines and data blocks to a single
page)

• Added the --variables option to snapinfo.py (for showing the contents of the variables area)

• snapinfo.py now shows special symbols for UDGs in a BASIC program (e.g. {UDG-A})

• Improved how @end, @org, @replace, @set, @start and @writer directives are preserved and restored via a
control file

• Added support for page-specific HTML subtemplates

• The #UDGARRAY macro now pads out the bottom row of an array with extra UDGs if necessary (to prevent the
creation of a broken image file)

5.3 (2016-09-05)

• Dropped support for Python 3.2

• Added the snapinfo.py command (for showing information on the registers and RAM in a SNA, SZX or Z80
snapshot)

• Added the snapmod.py command (for modifying the registers and RAM in a 48K Z80 snapshot)

• Added the #INCLUDE macro (which expands to the contents of a ref file section)

• Added the ability to write the HTML disassembly to a single page (by using the AsmSinglePageTemplate
parameter in the [Game] section and the AsmAllInOne and asm_entry templates)

• Added the SectionPrefix parameter to the [Page:*] section (for specifying the prefix of the names of ref
file sections from which to build a box page)

• Added the --screen option to bin2tap.py (for adding a loading screen to the TAP file)

• Added the --stack and --start options to tap2sna.py (for specifying the stack and start addresses)

• Added support to the #REG macro for the F and F’ registers

• Improved how skool2asm.py scans annotations for addresses not converted to labels

• Fixed how a memory block that ends with a single ED byte is compressed in a Z80 snapshot

34 Chapter 7. Changelog

SkoolKit Documentation, Release 6.0

• Removed the Spectrum ROM disassembly from the SkoolKit distribution; it is now being developed separately
here

5.2 (2016-05-02)

• Added the bin2sna.py command (for converting a binary file into a Z80 snapshot)

• Added the #N macro (which renders a numeric value in hexadecimal format when the --hex option is used
with skool2asm.py or skool2html.py)

• Added the @rfix ASM directive (which makes an instruction substitution in @rfix mode)

• Added the UDGFilename parameter to the [Game] section (for specifying the format of the default filename
for images created by the #UDG macro)

• bin2tap.py can now read a binary file from standard input

• skool2bin.py can now write to standard output (and so its output can be piped to bin2sna.py or bin2tap.py)

• When the #LINK macro links to an entry on a memory map page, the anchor is converted to the format specified
by the AddressAnchor parameter

• Fixed how required integer macro parameters are handled when left blank (e.g. #POKES30000,,8)

5.1 (2016-01-09)

• Added the @replace ASM directive (which replaces strings that match a regular expression in skool file anno-
tations and ref file sections)

• Added the #(), #EVAL, #FOR, #FOREACH, #IF, #MAP and #PEEK macros (which can be used to program-
matically specify the parameters of any macro)

• Added support for arithmetic expressions and skool macros in numeric macro parameters

• Added the --bfix, --ofix and --ssub options to skool2bin.py (for parsing the skool file in @bfix, @ofix
and @ssub mode)

• Added the DefaultAnimationFormat parameter to the [ImageWriter] section (for specifying the default
format for animated images)

• The #R macro now converts an anchor that matches the entry address to the format specified by the
AddressAnchor parameter (making it easier to link to the first instruction in an entry when using a cus-
tom anchor format)

• skool2ctl.py now appends a terminal i directive if the skool file ends before 65536

• skool2sft.py now preserves i blocks in the same way as code and data blocks (instead of verbatim), which
enables their conversion to decimal or hexadecimal when restored from a skool file template

• Fixed how the colours in flashing blank tiles are detected when writing an uncropped image file

• Fixed how a 2-colour PNG image is created when it contains an attribute with equal INK and PAPER colours

5.0 (2015-10-04)

• Added the skool2bin.py command (for converting a skool file into a binary file)

7.4. 5.2 (2016-05-02) 35

https://github.com/skoolkid/rom

SkoolKit Documentation, Release 6.0

• Added the tapinfo.py command (for showing information on the blocks in a TAP or TZX file)

• Converted the HTML templates from XHTML 1.0 to HTML5

• Added the footer template (for formatting the <footer> element of a page)

• Added the @assemble ASM directive

• Added the --set option to skool2asm.py (for setting ASM writer property values)

• Added the RefFiles parameter to the [Config] section (for specifying extra ref files to use)

• Added support to sna2skool.py for reading SpecEmu’s 64K code execution map files

• Fixed how tap2sna.py does a standard load from a TZX file

Older versions

SkoolKit 4.x changelog

4.5 (2015-07-04)

• Added support to tap2sna.py for TZX block type 0x14 (pure data), for loading the first and last bytes of a tape
block (which are usually, but not always, the flag and parity bytes), and for modifying memory with XOR and
ADD operations

• Added the --clear option to bin2tap.py (to use a CLEAR command in the BASIC loader and leave the stack
pointer alone)

• Added the --end option to bin2tap.py and the ability to convert SNA, SZX and Z80 snapshots

• Added --start and --end options to skool2asm.py, skool2ctl.py and skool2sft.py

• The --start and --end options of sna2skool.py now take effect when reading a control file or a skool file
template

• Added support to skool2ctl.py and skool2sft.py for preserving characters in DEFW statements (e.g. DEFW "!")

• Added support for characters in DEFS statements (e.g. DEFS 10,"!")

• Fixed how tap2sna.py compresses a RAM block that contains a single ED followed by five or more identical
values (e.g. ED0101010101)

• Fixed the erroneous replacement of DEFS operands with labels

• Fixed how instruction-level comments that contain braces are restored from a control file

• Fixed the handling of terminal compound sublengths on ‘S’ directives (e.g. S 30000,10,5:32)

4.4 (2015-05-23)

• Added support to control files and skool file templates for specifying that numeric values in instruction operands
be rendered as characters or in a specific base

• Added support for @ssub block directives

• Added the --end option to sna2skool.py (for specifying the address at which to stop disassembling)

• Added the --ctl-hex-lower option to sna2skool.py (for writing addresses in lower case hexadecimal for-
mat in the generated control file)

36 Chapter 7. Changelog

SkoolKit Documentation, Release 6.0

• Added the --hex-lower option to skool2ctl.py and skool2sft.py (for writing addresses in lower case hexadec-
imal format)

• Fixed the parsing of DEFB and DEFM statements that contain semicolons

• Fixed the base conversion of LD (HL),n instructions that contain extraneous whitespace (e.g. LD (HL
),5)

• Fixed the erroneous replacement of RST operands with labels in HTML output

• Fixed the handling of uncompressed version 1 Z80 snapshots by sna2skool.py

4.3 (2015-02-14)

• Added support for block start comments (which appear after the register section and before the first instruction
in a routine or data block)

• Added the CodeFiles parameter to the [Paths] section (for specifying the format of a disassembly page
filename based on the address of the routine or data block)

• Added the AddressAnchor parameter to the [Game] section (for specifying the format of the anchors at-
tached to instructions on disassembly pages and entries on memory map pages)

• The #FONT , #SCR and #UDG macros now have the ability to create frames for an animated image

• Added the --line-width option to sna2skool.py (for specifying the maximum line width of the skool file)

• Writing an ASM directive in a skool file can now be done by starting a line with @; writing an ASM directive
by starting a line with ; @ is deprecated

• Added the @ directive for declaring ASM directives in a control file; the old style of declaring ASM directives
(; @directive:address[=value]) is deprecated

• Fixed the flip_udgs() and rotate_udgs() methods on HtmlWriter so that they work with a UDG array that contains
the same UDG in more than one place

• Fixed the bug that prevents register descriptions from being HTML-escaped

• Fixed the erroneous substitution of address labels in instructions that have 8-bit numeric operands

4.2 (2014-12-07)

• Added support for control directive loops using the L directive

• Added support to control files for preserving the location of @ignoreua directives

• Each image macro now has the ability to specify alt text for the element it produces

• Added support for splitting register descriptions over multiple lines

• skool2asm.py now warns about unconverted addresses in register descriptions, and the @ignoreua directive can
be used to suppress such warnings

• Added the table, table_cell, table_header_cell and table_row templates (for formatting tables produced by the
#TABLE macro)

• Added the list and list_item templates (for formatting lists produced by the #LIST macro)

• Fixed the bug that prevents the expansion of skool macros in the intro text of a Changelog:* section

7.7. Older versions 37

SkoolKit Documentation, Release 6.0

4.1.1 (2014-09-20)

• Updated links to SkoolKit’s new home at skoolkit.ca

• Added example control and ref files for Hungry Horace

• Removed the Manic Miner disassembly from the SkoolKit distribution; it is now being developed separately
here

4.1 (2014-08-30)

• Added the --search option to skool2html.py (to add a directory to the resource search path)

• Added the --writer option to skool2html.py (for specifying the HTML writer class to use)

• Added the --writer option to skool2asm.py (for specifying the ASM writer class to use)

• Added the LinkInternalOperands parameter to the [Game] section (for specifying whether to hyperlink
instruction operands that refer to an address in the same entry)

• Register sections in b, g, s, t, u and w blocks are now included in the output of skool2asm.py and skool2html.py

• Fixed how the address ‘0’ is rendered in HTML output when converted to decimal or hexadecimal

• Fixed the bug that creates a broken hyperlink in a DEFW statement or LD instruction that refers to the address
of an ignored entry

• Removed the Jet Set Willy disassembly from the SkoolKit distribution; it is now being developed separately
here

4.0 (2014-05-25)

• Every HTML page is built from templates defined in [Template:*] sections in the ref file

• Added support for keyword arguments to the #FONT , #SCR, #UDG and #UDGARRAY macros

• Added the mask parameter to the #UDG and #UDGARRAY macros (for specifying the type of mask to apply)

• Added support for defining page headers in the [PageHeaders] section of the ref file

• Added the --ref-file and --ref-sections options to skool2html.py (to show the entire default ref file
or individual sections of it)

• Added the EntryDescriptions parameter to the [MemoryMap:*] section (for specifying whether to dis-
play entry descriptions on a memory map page)

• Added the LengthColumn parameter to the [MemoryMap:*] section (for specifying whether to display the
‘Length’ column on a memory map page)

SkoolKit 3.x changelog

3.7 (2014-03-08)

• Added support for numbers in binary notation (e.g. %10101010)

• Added the s and S control directives for encoding DEFS statements (with optional non-zero byte values); the z
and Z directives are now deprecated

• Added support to control files and skool file templates for specifying the base of numeric values in DEFB,
DEFM, DEFS and DEFW statements

38 Chapter 7. Changelog

http://skoolkit.ca
http://www.worldofspectrum.org/infoseekid.cgi?id=0002390
https://github.com/skoolkid/manicminer
https://github.com/skoolkid/jetsetwilly

SkoolKit Documentation, Release 6.0

• Added the --preserve-base option to skool2ctl.py and skool2sft.py (to preserve the base of decimal and
hexadecimal values in DEFB, DEFM, DEFS and DEFW statements)

• Added the JavaScript parameter to the [Game] section (for specifying JavaScript files to include in every
page of a disassembly)

• Fixed the bug that prevents DEFB statements containing only strings and DEFM statements containing only
bytes from being restored from a control file or a skool file template

• Added changelog entries to manic_miner.ref, jet_set_willy.ref and 48.rom.ref

3.6 (2013-11-02)

• Enhanced the #UDGARRAY macro so that it can create an animated image from an arbitrary sequence of frames

• Enhanced the #FONT macro so that it can create an image of arbitrary text

• Added support for copying arbitrary files into an HTML disassembly by using the [Resources] section in the ref
file

• Added the --join-css option to skool2html.py (to concatenate CSS files into a single file)

• Added the --search-dirs option to skool2html.py (to show the locations that skool2html.py searches for
resources)

• Added support for creating disassemblies with a start address below 10000

• Added an example control file for the 48K Spectrum ROM: 48.rom.ctl

• Control files can now preserve blank comments that span two or more instructions

• The [Config] section no longer has to be in the ref file named on the skool2html.py command line; it can be
in any secondary ref file

• Fixed the bug that makes skool2html.py fail if the FontPath, JavaScriptPath or StyleSheetPath
parameter in the [Paths] section of the ref file is set to some directory other than the default

3.5 (2013-09-01)

• Added the tap2sna.py command (for building snapshots from TAP/TZX files)

• Added support to skool2html.py for multiple CSS themes

• Added the ‘green’, ‘plum’ and ‘wide’ CSS themes: skoolkit-green.css, skoolkit-plum.css, skoolkit-wide.css

• Moved the Font and StyleSheet parameters from the [Paths] section to the [Game] section

• Moved the JavaScript parameter from the [Paths] section to the [Page:*] section

• Moved the Logo parameter from the [Paths] section to the [Game] section and renamed it LogoImage

• The #R macro now renders the addresses of remote entries in the specified case and base, and can resolve the
addresses of remote entry points

• skool2asm.py now writes ORG addresses in the specified case and base

• Annotated the source code remnants at 39936 in jet_set_willy.ctl

7.7. Older versions 39

SkoolKit Documentation, Release 6.0

3.4 (2013-07-08)

• Dropped support for Python 2.6 and 3.1

• Added long options to every command

• Added the --asm-labels and --create-labels options to skool2html.py (to use ASM labels defined
by @label directives, and to create default labels for unlabelled instructions)

• Added the --erefs option to sna2skool.py (to always add comments that list entry point referrers)

• Added the --package-dir option to skool2asm.py (to show the path to the skoolkit package directory)

• Added support for the LinkOperands parameter in the [Game] section of the ref file, which may be used to
enable the address operands of LD instructions to be hyperlinked

• Added support for defining image colours by using hex triplets in the [Colours] section of the ref file

• Added support to the @set ASM directive for the handle-unsupported-macros and wrap-column-width-min
properties

• Fixed the #EREFS and #REFS macros so that they work with hexadecimal address parameters

• Fixed the bug that crashes sna2skool.py when generating a control file from a code execution map and a snapshot
with a code block that terminates at 65535

• Fixed how skool2asm.py renders table cells with rowspan > 1 and wrapped contents alongside cells with rowspan
= 1

• Removed support for the #NAME macro (what it did can be done by the #HTML macro instead)

• Removed the documentation sources and man page sources from the SkoolKit distribution (they can be obtained
from GitHub)

3.3.2 (2013-05-13)

• Added the -T option to skool2html.py (to specify a CSS theme)

• Added the -p option to skool2html.py (to show the path to the skoolkit package directory)

• setup.py now installs the resources directory (so a local copy is no longer required when SkoolKit has been
installed via setup.py install)

• Added jet_set_willy-dark.css (to complete the ‘dark’ theme for that disassembly)

• Added documentation on how to write an instruction-level comment that contains opening or closing braces
when rendered

• Fixed the appearance of transparent table cells in HTML output

• Fixed sna2skool.py so that a control file specified by the -c option takes precedence over a default skool file
template

• Fixed manic_miner.ctl so that the comments at 40177-40191 apply to a pristine snapshot (before stack operations
have corrupted those addresses)

3.3.1 (2013-03-04)

• Added support to the @set ASM directive for the comment-width-min, indent, instruction-width, label-colons,
line-width and warnings properties

40 Chapter 7. Changelog

https://github.com/skoolkid/skoolkit

SkoolKit Documentation, Release 6.0

• Added support to the HtmlWriterClass parameter (in the [Config] section) and the @writer directive for
specifying a module outside the module search path (e.g. a standalone module that is not part of an installed
package)

• sna2skool.py now correctly renders an empty block description as a dot (.) on a line of its own

3.3 (2013-01-08)

• Added support to sna2skool.py for reading code execution maps produced by the Fuse, SpecEmu, Spud, Zero
and Z80 emulators (to generate more accurate control files)

• Increased the speed at which sna2skool.py generates control files

• Added support to sna2skool.py for disassembling 128K SNA snapshots

3.2 (2012-11-01)

• Added support to sna2skool.py for disassembling 128K Z80 snapshots and 16K, 48K and 128K SZX snapshots

• Added the #LIST macro (for rendering lists of bulleted items in both HTML mode and ASM mode)

• Added the @set ASM directive (for setting properties on the ASM writer)

• Added trivia entries to jet_set_willy.ref

• Annotated the source code remnants at 32768 and 37708 in manic_miner.ctl

3.1.4 (2012-10-11)

• Added support to skool2ctl.py and skool2sft.py for DEFB and DEFM statements that contain both strings and
bytes

• skool2ctl.py now correctly processes lower case DEFB, DEFM, DEFS and DEFW statements

• The length of a string (in a DEFB or DEFM statement) that contains one or more backslashes is now correctly
calculated by skool2ctl.py and skool2sft.py

• DEFB and DEFM statements that contain both strings and bytes are now correctly converted to lower case, upper
case, decimal or hexadecimal (when using the -l, -u, -D and -H options of skool2asm.py and skool2html.py)

• Operations involving (IX+n) or (IY+n) expressions are now correctly converted to lower case decimal or hex-
adecimal (when using the -l, -D and -H options of skool2asm.py and skool2html.py)

3.1.3 (2012-09-11)

• The ‘Glossary’ page is formatted in the same way as the ‘Trivia’, ‘Bugs’, ‘Pokes’ and ‘Graphic glitches’ pages

• When the link text of a #LINK macro is left blank, the link text of the page is substituted

• The disassembler escapes backslashes and double quotes in DEFM statements (so that skool2asm.py no longer
has to)

• DEFB and DEFM statements that contain both strings and bytes are parsed correctly for the purpose of building
a memory snapshot

7.7. Older versions 41

SkoolKit Documentation, Release 6.0

3.1.2 (2012-08-01)

• Added the #HTML macro (for rendering arbitrary text in HTML mode only)

• Added support for distinguishing input values from output values in a routine’s register section (by using prefixes
such as ‘Input:’ and ‘Output:’)

• Added support for the InputRegisterTableHeader and OutputRegisterTableHeader parame-
ters in the [Game] section of the ref file

• Added the ‘default’ CSS class for HTML tables created by the #TABLE macro

3.1.1 (2012-07-17)

• Enhanced the #UDGARRAY macro so that it accepts both horizontal and vertical steps in UDG address ranges

• Added support for the Font and FontPath parameters in the [Paths] section of the ref file (for specifying
font files used by CSS @font-face rules)

• Added a Spectrum theme CSS file that uses the Spectrum font and colours: skoolkit-spectrum.css

• Fixed skool2asm.py so that it escapes backslashes and double quotes in DEFM statements

3.1 (2012-06-19)

• Dropped support for Python 2.5

• Added documentation on extending SkoolKit

• Added the @writer ASM directive (to specify the class to use for producing ASM output)

• Added the #CHR macro (for rendering arbitrary unicode characters); removed support for the redundant #C
macro accordingly

• Added support for the #CALL, #REFS, #EREFS, #PUSHS, #POKES and #POPS macros in ASM mode

• Added the -c option to skool2html.py (to simulate adding lines to the ref file)

• Added a dark theme CSS file: skoolkit-dark.css

3.0.2 (2012-05-01)

• Added room images and descriptions to manic_miner.ctl and jet_set_willy.ctl (based on reference material from
Andrew Broad and J. G. Harston)

• Fixed the bug that prevents the ‘Data tables and buffers’ section from appearing on the disassembly index page
when the default DataTables link group is used

3.0.1 (2012-04-11)

• Added support for creating GIF files (including transparent and animated GIFs)

• Added support for creating animated PNGs in APNG format

• Added support for transparency in PNG images (by using the PNGAlpha parameter in the [ImageWriter]
section of the ref file)

• Added an example control file: jet_set_willy.ctl

42 Chapter 7. Changelog

http://webspace.webring.com/people/ja/andrewbroad/
http://mdfs.net/Software/JSW/Docs/

SkoolKit Documentation, Release 6.0

• Fixed the bug in how images are cropped by the #FONT , #SCR, #UDG and #UDGARRAY macros when using
non-zero X and Y parameters

3.0 (2012-03-20)

• SkoolKit now works with Python 3.x

• Added a native image creation library, which can be configured by using the [ImageWriter] section of the ref
file; gd and PIL are no longer required or supported

• Enhanced the #SCR macro so that graphic data and attribute bytes in places other than the display file and
attribute file may be used to build a screenshot

• Added image-cropping capabilities to the #FONT , #SCR, #UDG and #UDGARRAY macros

SkoolKit 2.x changelog

2.5 (2012-02-22)

• Added support for [MemoryMap:*] sections in ref files (for defining the properties of memory map pages);
removed support for the [MapDetails] section accordingly

• Added support for multiple style sheets per HTML disassembly (by separating file names with a semicolon in
the StyleSheet parameter in the [Paths] section of the ref file)

• Added support for multiple JavaScript files per HTML disassembly (by separating file names with a semicolon
in the JavaScript parameter in the [Paths] section of the ref file)

2.4.1 (2012-01-30)

• The @ignoreua directive can now be used on entry titles, entry descriptions, mid-block comments and block
end comments in addition to instruction-level comments; the @ignoredua and @ignoremrcua directives are
correspondingly deprecated

• The #SPACE macro now supports the syntax #SPACE([num]), which can be useful to distinguish it from
adjacent text where necessary

2.4 (2012-01-10)

• Added the skool2sft.py command (for creating skool file templates)

• Added support to skool2ctl.py for preserving some ASM directives in control files

• Enhanced the #UDG and #UDGARRAY macros so that images can be rotated

• Added the ability to separate paragraphs in a skool file by using a dot (.) on a line of its own; removed support
for the redundant #P macro accordingly

2.3.1 (2011-11-15)

• Added support to skool2html.py for multiple ref files per disassembly

• Enhanced the #UDG and #UDGARRAY macros so that images can be flipped horizontally and vertically

• Enhanced the #POKES macro so that multiple pokes may be specified

7.7. Older versions 43

SkoolKit Documentation, Release 6.0

• Added support for the #FACT and #POKE macros in ASM mode

• When the link text of a #BUG, #FACT or #POKE macro is left blank, the title of the corresponding bug, trivia
or poke entry is substituted

• Fixed the parsing of link text in skool macros in ASM mode so that nested parentheses are handled correctly

• Fixed the rendering of table borders in ASM mode where cells with rowspan > 1 in columns other than the first
extend to the bottom row

2.3 (2011-10-31)

• Fixed the bug where the operands in substitute instructions defined by @bfix, @ofix, @isub, @ssub and
@rsub directives are not converted to decimal or hexadecimal when using the -D or -H option of skool2asm.py
or skool2html.py

• Removed the source files for the Skool Daze, Back to Skool and Contact Sam Cruise disassemblies from the
SkoolKit distribution; they are now available as separate downloads

2.2.5 (2011-10-17)

• Enhanced the #UDGARRAY macro so that masks can be specified

• Added the -p option to bin2tap.py (to set the stack pointer)

• Fixed the parsing of link text in #BUG, #FACT, #POKE and other skool macros so that nested parentheses are
handled correctly

• Fixed the handling of version 1 Z80 snapshots by sna2skool.py

• Added support for the IndexPageId and Link parameters in [OtherCode:*] sections of the ref file

• Reintroduced support for [Changelog:*] sections in ref files

• Added ‘Changelog’ pages to the Skool Daze, Back to Skool and Contact Sam Cruise disassemblies

• Updated the Contact Sam Cruise disassembly

2.2.4 (2011-08-10)

• Added support for the @ignoredua ASM directive

• skool2asm.py automatically decreases the width of the comment field for a ‘wide’ instruction instead of printing
a warning

• bin2tap.py can handle binary snapshot files with ORG addresses as low as 16398

• Fixed the bug in bin2tap.py that prevents the START address from defaulting to the ORG address when the ORG
address is specified with the -o option

• Added ASM directives to csc.skool so that it works with skool2asm.py

• Updated the Contact Sam Cruise disassembly

2.2.3 (2011-07-15)

Updated the Contact Sam Cruise disassembly; it is now ‘complete’.

44 Chapter 7. Changelog

http://skoolkit.ca/?page_id=113

SkoolKit Documentation, Release 6.0

2.2.2 (2011-06-02)

• Added support for the @end ASM directive

• Added ASM directives to {bts,csc,sd}-{load,save,start}.skool to make them work with skool2asm.py

• skool2asm.py, skool2ctl.py and skool2html.py can read from standard input

• Fixed the bug that made sna2skool.py generate a control file with a code block at 65535 for a snapshot that ends
with a sequence of zeroes

• Unit test test_skool2html.py:Skool2HtmlTest.test_html now works without an internet connection

2.2.1 (2011-05-24)

• SkoolKit can now be installed as a Python package using setup.py install

• Unit tests are included in the tests directory

• Man pages for SkoolKit’s command scripts are included in the man directory

• Added ‘Developer reference’ documentation

• Fixed the bugs that made skool2html.py produce invalid XHTML

2.2 (2011-05-10)

• Changed the syntax of the skool2html.py command (it no longer writes the Skool Daze and Back to Skool
disassemblies by default)

• Fixed the bug that prevented skool2asm.py from working with a zero-argument skool macro (such as #C) at the
end of a sentence

• Fixed the -w option of skool2asm.py (it really does suppress all warnings now)

• Fixed how sna2skool.py handles #P macros (it now writes a newline before and after each one)

• Fixed the bug that made sna2skool.py omit the ‘*’ control directive from routine entry points when the -L option
was used

• ASM labels are now unaffected by the -l (lower case) and -u (upper case) options of skool2asm.py

• Added support for the ‘*’ notation in statement length lists in sub-block control directives (e.g. B 32768,
239,16*14,15)

• Updated the Skool Daze disassembly

• Updated the Back to Skool disassembly

2.1.2 (2011-04-28)

• Added the -L option to sna2skool.py (to write the disassembly in lower case)

• Added the -i option to skool2html.py (to specify the image library to use)

• In control files, DEFM, DEFW and DEFS statement lengths in T, W and Z sub-blocks may be declared

• Fixed the bug in skool2asm.py‘s handling of the #SPACE macro that prevented it from working with csc.skool

• Fixed the bug that made skool2asm.py produce invalid output when run on sd.skool with the -H and -f3 options

7.7. Older versions 45

SkoolKit Documentation, Release 6.0

2.1.1 (2011-04-16)

• Added the -l, -u, -D and -H options to skool2html.py (to write the disassembly in lower case, upper case,
decimal or hexadecimal)

• Added the -u, -D and -H options to skool2asm.py (to write the disassembly in upper case, decimal or hexadec-
imal)

• In control files, an instruction-level comment that spans a group of two or more sub-blocks of different types
may be declared with an M directive

• Updated the incomplete Contact Sam Cruise disassembly

2.1 (2011-04-03)

• Added support for hexadecimal disassemblies

• Added the #LINK macro (for creating hyperlinks to other pages in an HTML disassembly)

• Added the ability to define custom pages in an HTML disassembly using [Page:*] and [PageContent:*]
sections in the ref file

• Added the -o option to skool2html.py (to overwrite existing image files)

• Optional parameters in any position in a skool macro may be left blank

• In control files, DEFB statement lengths in multi-line B sub-blocks may be declared

• Updated the Skool Daze disassembly

• Updated the Back to Skool disassembly

• Updated the incomplete Contact Sam Cruise disassembly

2.0.6 (2011-03-09)

• sna2skool.py can read and write hexadecimal numbers in a control file

• skool2ctl.py can write hexadecimal numbers in a control file

• sna2skool.py no longer chokes on blank lines in a control file

• Updated the incomplete Contact Sam Cruise disassembly

2.0.5 (2011-02-09)

• Added the #UDGARRAY macro (for creating images of blocks of UDGs)

• Enhanced the #FONT macro so that it works with regular 8x8 fonts as well as the Skool game fonts

• Enhanced the #SCR macro so that it can take screenshots of rectangular portions of the screen

• The contents of the ‘Other graphics’ page of a disassembly are now defined in the [Graphics] section of the
ref file

• Added the ability to define the layout of the disassembly index page in the [Index] and [Index:*:*]
sections of the ref file

• Added the ability to define page titles in the [Titles] section of the ref file

• Added the ability to define page link text in the [Links] section of the ref file

46 Chapter 7. Changelog

SkoolKit Documentation, Release 6.0

• Added the ability to define the image colour palette in the [Colours] section of the ref file

• Fixed the bug in sna2skool.py that prevented it from generating a control file for a snapshot with the final byte
of a ‘RET’, ‘JR d’, or ‘JP nn’ instruction at 65535

• Updated the incomplete Contact Sam Cruise disassembly

2.0.4 (2010-12-16)

Updated the incomplete Contact Sam Cruise disassembly.

2.0.3 (2010-12-08)

Updated the incomplete Contact Sam Cruise disassembly.

2.0.2 (2010-12-01)

• Fixed the #EREFS, #REFS and #TAPS macros

• Fixed the bug where the end comment for the last entry in a skool file is not parsed

• Updated the incomplete Contact Sam Cruise disassembly

2.0.1 (2010-11-28)

• Added the -r option to skool2html.py (for specifying a ref file)

• Added the -o, -r, and -l options to sna2skool.py, along with the ability to read binary (raw memory) files

• Fixed skool2ctl.py so that it correctly creates sub-blocks for commentless DEF{B,M,S,W} statements, and
writes the length of a sub-block that is followed by a mid-routine comment

• Updated the incomplete Contact Sam Cruise disassembly

2.0 (2010-11-23)

• Updated the Back to Skool disassembly

• Enhanced the #R macro to support ‘other code’ disassemblies, thus making the #ASM, #LOAD, #SAVE and
#START macros obsolete

• Split load.skool, save.skool and start.skool into separate files for each Skool game

• Added documentation on the ref file sections

• Simplified SkoolKit by removing all instances of and support for ref file macros and skool directives

• Added files that were missing from SkoolKit 1.4: csc-load.skool, csc-save.skool and csc-start.skool

SkoolKit 1.x changelog

1.4 (2010-11-11)

• Updated the Skool Daze disassembly

• Updated the Back to Skool disassembly

7.7. Older versions 47

SkoolKit Documentation, Release 6.0

• Updated the incomplete Contact Sam Cruise disassembly

1.3.1 (2010-10-18)

• Added documentation on supported assemblers

• Added the bin2tap.py utility

• Documentation sources included in docs-src

• When running skool2asm.py or skool2html.py on Linux/BSD, show elapsed time instead of CPU time

1.3 (2010-07-23)

• Updated the Skool Daze disassembly

• Updated the Back to Skool disassembly

• Updated the incomplete Contact Sam Cruise disassembly

1.2 (2010-05-03)

Updated the Back to Skool disassembly.

1.1 (2010-02-25)

• Updated the Skool Daze disassembly

• Updated the Back to Skool disassembly

• Updated contact_sam_cruise.ctl

• Added csc.ref (to supply extra information to the Contact Sam Cruise disassembly)

• Added the skool2ctl.py utility

1.0.7 (2010-02-12)

• Extended the control file syntax to support block titles, descriptions, registers and comments, and sub-block
types and comments

• Added two example control files: contact_sam_cruise.ctl and manic_miner.ctl

• Fixed the bug in sna2skool.py that made it list referrers of entry points in non-code blocks

• Added support to sna2skool.py for the LD IXh,r and LD IXl,r instructions

1.0.6 (2010-02-04)

Above each entry point in a code block, sna2skool.py will insert a comment containing a list of the routines that call
or jump to that entry point.

48 Chapter 7. Changelog

SkoolKit Documentation, Release 6.0

1.0.5 (2010-02-03)

Made the following changes to sna2skool.py:

• Added the -t option (to show ASCII text in the comment fields)

• Set block titles according to the apparent contents (code/text/data) when using the -g option

1.0.4 (2010-02-02)

Made the following changes to sna2skool.py:

• Fixed the bug that caused the last instruction before the 64K boundary to be disassembled as a DEFB statement

• Added the -g option (to generate a control file using rudimentary static code analysis)

• Added the -s option (to specify the disassembly start address)

1.0.3 (2010-02-01)

• sna2skool.py copes with instructions that cross the 64K boundary

• skool2html.py writes the ‘Game status buffer’, ‘Glossary’, ‘Trivia’, ‘Bugs’ and ‘Pokes’ pages for a skool file
specified by the -f option (in addition to the disassembly files and memory maps)

1.0.2 (2010-01-31)

Modified sna2skool.py so that it:

• recognises instructions that are unchanged by a DD or FD prefix

• recognises instructions with a DDCB or FDCB prefix

• produces a 4-byte DEFB for the ED-prefixed LD HL,(nn) and LD (nn),HL instructions

• produces a 2-byte DEFB for a relative jump across the 64K boundary

1.0.1 (2010-01-30)

Fixed the following bugs in sna2skool.py:

• ‘X’ was replaced by ‘Y’ instead of ‘IX’ by ‘IY’ (leading to nonsense mnemonics such as YOR IYh)

• ED72 was disassembled as SBC HL,BC instead of SBC HL,SP

• ED7A was disassembled as ADD HL,SP instead of ADC HL,SP

• ED63 and ED6B were disassembled as LD (nn),HL and LD HL,(nn) (which is correct, but won’t assemble
back to the same bytes)

1.0 (2010-01-28)

Initial public release.

7.7. Older versions 49

SkoolKit Documentation, Release 6.0

50 Chapter 7. Changelog

CHAPTER 8

Technical reference

Parsing, rendering, and modes

The following subsections explain at a high level the two phases involved in transforming a skool file (and its related
ref files, if any exist) into HTML or ASM format by using skool2html.py or skool2asm.py: parsing and rendering.

Parsing

In the first phase, the skool file is parsed. Parsing a skool file entails reading each line of the file, and processing any
relevant ASM directives that are found along the way.

After an ASM directive has been processed, it is discarded, so that it cannot be ‘seen’ during the rendering phase. The
purpose of the ASM directives is to transform the skool file into something suitable for rendering (in either HTML or
ASM format) later on.

Whether a particular ASM directive is processed depends on the mode in which the parsing is being done: HTML
mode or ASM mode.

HTML mode

HTML mode is used when the target output format is HTML, as is the case when running skool2html.py. In HTML
mode, some ASM directives are ignored because they are irrelevant to the purpose of creating the HTML version of
the disassembly. The only ASM directives that are processed in HTML mode are the following:

• @assemble

• @keep

• @label

• @replace

• @bfix block directives

• @isub block directives

51

SkoolKit Documentation, Release 6.0

• @ofix block directives

• @rfix block directives

• @rsub block directives

• @ssub block directives

The reason that the block directives are processed is that they may define two different versions of a section of code
or data: first, a version to include in the output if the corresponding ASM mode (@bfix, @isub, @ofix, @rfix, @rsub,
@ssub) is in effect; and second, a version to include in the output if the corresponding ASM mode is not in effect -
which will always be the case when parsing in HTML mode.

For example:

@bfix-begin
32459 CP 26 ; This is a bug; it should be 'CP 27'

@bfix+else
CP 27 ;

@bfix+end

This instance of a @bfix block directive defines two versions of a section of code. The first version (between
@bfix-begin and @bfix+else) will be included in the HTML output, and the second version (between
@bfix+else and @bfix+end) will be omitted.

ASM mode

ASM mode is used when the target output format is ASM, as is the case when running skool2asm.py. In ASM mode,
all ASM directives are processed.

Rendering

In the second phase, the skool file (stripped of all its ASM directives during the parsing phase) is ‘rendered’ - as either
HTML or ASM, depending on the mode.

HTML mode

HTML mode is used to render the skool file (and its related ref file, if one exists) as a bunch of HTML files. During
rendering, any skool macros found along the way are expanded to the required HTML markup.

ASM mode

ASM mode is used to render the skool file as a single, assembler-ready ASM file. During rendering, any skool macros
found along the way are expanded to some appropriate plain text.

Control files

A control file contains a list of start addresses of code and data blocks. This information can be used by sna2skool.py
to organise a skool file into corresponding code and data blocks.

Each block address in a control file is marked with a ‘control directive’, which is a single letter that indicates what the
block contains:

52 Chapter 8. Technical reference

SkoolKit Documentation, Release 6.0

• b indicates a data block

• c indicates a code block

• g indicates a game status buffer entry

• i indicates a block that will be ignored

• s indicates a block containing bytes that are all the same value (typically unused zeroes)

• t indicates a block containing text

• u indicates an unused block of memory

• w indicates a block containing words (two-byte values)

(If these letters remind you of the valid characters that may appear in the first column of each line of a skool file, that
is no coincidence.)

For example:

c 24576 Do stuff
b 24832 Important data
t 25088 Interesting messages
u 25344 Unused

This control file declares that:

• Everything before 24576 will be ignored

• There is a routine at 24576-24831 titled ‘Do stuff’

• There is data at 24832-25087

• There is text at 25088-25343

• Everything from 25344 onwards is unused (but will still be disassembled as data)

Addresses may be written as hexadecimal numbers, too; the equivalent example control file using hexadecimal notation
would be:

c $6000 Do stuff
b $6100 Important data
t $6200 Interesting messages
u $6300 Unused

Besides the declaration of block types, addresses and titles, the control file syntax also supports the declaration of the
following things:

• Block descriptions

• Register values

• Block start comments

• Mid-block comments

• Block end comments

• Sub-block types and comments

• DEFB/DEFM/DEFW/DEFS statement lengths in data, text and unused sub-blocks

• ASM directives (except block directives)

The syntax for declaring these things is described in the following sections.

8.2. Control files 53

SkoolKit Documentation, Release 6.0

Block descriptions

To provide a description for a code block at 24576 (for example), use the D directive thus:

c 24576 This is the title of the routine at 24576
D 24576 This is the description of the routine at 24576.

If the description consists of two or more paragraphs, declare each one with a separate D directive:

D 24576 This is the first paragraph of the description of the routine at 24576.
D 24576 This is the second paragraph of the description of the routine at 24576.

Register values

To declare the values of the registers upon entry to the routine at 24576, add one line per register with the R directive
thus:

R 24576 A An important value in the accumulator
R 24576 DE Display file address

Block start comments

To declare a block start comment that will appear above the instruction at 24576, use the N directive thus:

N 24576 And so this routine begins.

If the start comment consists of two or more paragraphs, declare each one with a separate N directive:

N 24576 This is the first paragraph of the start comment.
N 24576 This is the second paragraph of the start comment.

Mid-block comments

To declare a mid-block comment that will appear above the instruction at 24592, use the N directive thus:

N 24592 The next section of code does something really important.

If the mid-block comment consists of two or more paragraphs, declare each one with a separate N directive:

N 24592 This is the first paragraph of the mid-block comment.
N 24592 This is the second paragraph of the mid-block comment.

Block end comments

To declare a comment that will appear at the end of the routine at 24576, use the E directive thus:

E 24576 And so the work of this routine is done.

If the block end comment consists of two or more paragraphs, declare each one with a separate E directive:

54 Chapter 8. Technical reference

SkoolKit Documentation, Release 6.0

E 24576 This is the first paragraph of the end comment for the routine at 24576.
E 24576 This is the second paragraph of the end comment for the routine at 24576.

Sub-block syntax

Sometimes a block marked as one type (code, data, text, or whatever) may contain instructions or statements of another
type. For example, a word (w) block may contain the odd non-word here and there. To declare such sub-blocks whose
type does not match that of the containing block, use the following syntax:

w 32768 A block containing mostly words
B 32800,3 But here's a sub-block of 3 bytes at 32800
T 32809,8 And an 8-byte text string at 32809
C 32821,10 And 10 bytes of code at 32821
S 32831,17 Followed by 17 zeroes at 32831

The directives (B, T, C and S) used here to mark the sub-blocks are the upper case equivalents of the directives used
to mark top-level blocks (b, t, c and s). The comments at the end of these sub-block declarations are taken as
instruction-level comments and will appear as such in the resultant skool file.

If an instruction-level comment spans a group of two or more sub-blocks, it must be declared with an M directive:

M 40000,21 This comment covers the following 3 sub-blocks
B 40000,3
W 40003,10
T 40013,8

An M directive with no length parameter covers all sub-blocks from the given start address to either the next mid-block
comment or the end of the containing block (whichever is closer).

If a sub-block directive is left blank, then it is assumed to be of the same type as the containing block. So in:

c 24576 A great routine
24580,8 A great section of code at 24580

the sub-block at 24580 is assumed to be of type C.

If the length parameter is omitted from a sub-block directive, then it is assumed to end where the next sub-block starts.
So in:

c 24576 A great routine
24580 A great section of code at 24580
24588,10 Another great section of code at 24588

the sub-block at 24580 has length 8, because it is implicitly terminated by the following sub-block at 24588.

Sub-block lengths

Normally, a B sub-block declared thus:

B 24580,12 Interesting data

would result in something like this in the corresponding skool file:

24580 DEFB 1,2,3,4,5,6,7,8 ; {Interesting data
24588 DEFB 9,10,11,12 ; }

8.2. Control files 55

SkoolKit Documentation, Release 6.0

But what if you wanted to split the data in this sub-block into groups of 3 bytes each? That can be achieved with:

B 24580,12,3 Interesting data

which would give:

24580 DEFB 1,2,3 ; {Interesting data
24583 DEFB 4,5,6
24586 DEFB 7,8,9
24589 DEFB 10,11,12 ; }

That is, in a B directive, the desired DEFB statement lengths may be given as a comma-separated list of “sublengths”
following the main length parameter, and the final sublength in the list is used for all remaining data in the block. So,
for example:

B 24580,12,1,2,3 Interesting data

would give:

24580 DEFB 1 ; {Interesting data
24581 DEFB 2,3
24583 DEFB 4,5,6
24586 DEFB 7,8,9
24589 DEFB 10,11,12 ; }

Note that even if sublengths are specified, the main length parameter can be omitted (by leaving it blank) if the sub-
block is implicitly terminated by the next sub-block. For example:

B 24580,,1,2,3 No need to specify the main length parameter here...
B 24592,10 ...because this sub-block implies that it must be 12

If the sublength list contains sequences of two or more identical lengths, as in:

B 24580,21,2,2,2,2,2,2,1,1,1,3

then it may be abbreviated thus:

B 24580,21,2*6,1*3,3

Sublengths can be used on C, S, T and W directives too (though on C directives they are really only useful for specifying
number bases). For example:

S 32768,100,25 Four 25-byte chunks of zeroes

would give:

32768 DEFS 25 ; {Four 25-byte chunks of zeroes
32793 DEFS 25
32818 DEFS 25
32843 DEFS 25 ; }

DEFB and DEFM statements may contain both bytes and strings; for example:

40000 DEFM "Hi ",5
40004 DEFB 4,"go"

Such statements can be encoded in a control file thus:

56 Chapter 8. Technical reference

SkoolKit Documentation, Release 6.0

T 40000,,3:B1
B 40004,3,1:T2

That is, the length of a string in a DEFB statement is prefixed by T, the length of a sequence of bytes in a DEFM
statement is prefixed by B, and the lengths of all strings and byte sequences are separated by colons. This notation can
also be combined with the ‘*’ notation; for example:

T 50000,8,2:B2*2

which is equivalent to:

T 50000,8,2:B2,2:B2

DEFS statements may specify a byte value other than zero; for example:

60000 DEFS 20,170
60020 DEFS 40,85

These statements can be encoded in a control file thus:

S 60000,60,20:170,40:85

Loops

Sometimes the instructions and statements in a code or data block follow a repeating pattern. For example:

b 30000 Two bytes and one word, times ten
B 30000,2
W 30002
B 30004,2
W 30004
...
B 30036,2
W 30038

Repeating patterns like this can be expressed more succinctly as a loop by using the L directive, which has the following
format:

L start,length,count[,blocks]

where:

• start is the loop start address

• length is the length of the loop (the size of the address range to repeat)

• count is the number of times to repeat the loop (only values of 2 or more make sense)

• blocks is 1 to repeat block-level elements, or 0 to repeat only sub-block elements (default: 0)

So using the L directive, the body of the data block above can be expressed in three lines instead of 20:

b 30000 Two bytes and one word, times ten
B 30000,2
W 30002
L 30000,4,10

8.2. Control files 57

SkoolKit Documentation, Release 6.0

The L directive can also be used to repeat entire blocks, by setting the blocks argument to 1. For example:

b 40000 A block of five pairs of bytes
B 40000,10,2
L 40000,10,3,1

is equivalent to:

b 40000 A block of five pairs of bytes
B 40000,10,2
b 40010 A block of five pairs of bytes
B 40010,10,2
b 40020 A block of five pairs of bytes
B 40020,10,2

Note that ASM directives in the address range of an L directive loop are not repeated.

Number bases

Numeric values in instruction operands and DEFB, DEFM, DEFS and DEFW statements are normally rendered in
either decimal or hexadecimal, depending on the options passed to sna2skool.py. To render a numeric value in a
specific base or as a character, attach a b (binary), c (character), d (decimal) or h (hexadecimal) prefix to the relevant
length or sublength parameter on the B, C, S, T or W directive.

For example:

C 30000,b
C 30002,c

will result in something like this:

30000 LD A,%10001111
30002 LD B,"?"

and:

B 40000,8,b1:d2:h1,d1,b1,h2
S 40008,8,8:c"!"

will result in something like this:

40000 DEFB %10101010,23,43,$5F
40004 DEFB 56
40005 DEFB %11110000
40006 DEFB $2B,$80
40008 DEFS 8,"!"

Note that attaching a prefix to the main length parameter sets the default base for any sublength parameters that follow.
So:

B 40000,b,1:d2,1
B 40004,h4,1:b1:d1,1

will result in something like this:

58 Chapter 8. Technical reference

SkoolKit Documentation, Release 6.0

40000 DEFB %01010101,32,57
40003 DEFB %00001111
40004 DEFB $0F,%11110000,93
40007 DEFB $A0

Some instructions have two numeric operands. To specify a different base for each one, use two prefixes:

C 30000,hb4

which will result in something like this:

30000 LD (IX+$0A),%10000001

To use the default base for one operand, and a specific base for the other, use the n (none) prefix to denote the default
base. So if the default base is decimal, then:

C 30000,,nb4,hn4

will result in something like this:

30000 LD (IX+10),%10000001
30004 LD (IX+$0B),130

ASM directives

To declare an ASM directive for a block or an individual instruction, use the @ directive thus:

@ address directive[=value]

where:

• directive is the directive name

• address is the address of the block or instruction to which the directive applies

• value is the value of the directive (if it requires one)

For example, to declare a @label directive for the instruction at 32768:

@ 32768 label=LOOP

When declaring an @ignoreua directive for anything other than an instruction-level comment, a suffix must be ap-
pended to the directive to specify the type of comment it applies to:

@ address ignoreua:X

where X is one of:

• d - entry description

• e - block end comment

• i - instruction-level comment (default)

• m - block start comment or mid-block comment

• r - register description section

• t - entry title

8.2. Control files 59

SkoolKit Documentation, Release 6.0

For example, to declare an @ignoreua directive for the description of the routine at 49152:

@ 49152 ignoreua:d
D 49152 This is the description of the routine at 49152.

Instruction-level comments

One limitation of storing instruction-level comments as shown so far is that there is no way to distinguish between a
blank comment that spans two or more instructions and no comment at all. For example, both:

30000 DEFB 0 ; {
30001 DEFB 0 ; }

and:

30000 DEFB 0 ;
30001 DEFB 0 ;

would be preserved thus:

B 30000,2,1

To solve this problem, a special syntax is used to preserve blank multi-instruction comments:

B 30000,2,1 .

When restored, this comment is reduced to an empty string.

But how then to preserve a multi-instruction comment consisting of a single dot (.), or a sequence of two or more
dots? In that case, another dot is prefixed to the comment. So:

30000 DEFB 0 ; {...
30001 DEFB 0 ; }

is preserved thus:

B 30000,2,1

Note that this scheme does not apply to multi-instruction comments that contain at least one character other than a dot;
such comments are preserved verbatim (that is, without a dot prefix).

Control file comments

A comment may be added to a control file by starting a line with a hash character (#), a per cent sign (%), or a semicolon
(;). For example:

This is a comment
% This is another comment
; This is yet another comment

Control file comments are ignored by sna2skool.py, and will not show up in the skool file.

60 Chapter 8. Technical reference

SkoolKit Documentation, Release 6.0

Limitations

A control file can be useful in the early stages of developing a skool file for reorganising code and data blocks, but it
cannot preserve the following:

• ASM block directives

• data definition entries (‘d’ blocks) and remote entries (‘r’ blocks)

• comments that are not part of a code or data block

Skool file templates, however, can preserve all of these elements, and so may be a better choice for skool files that
contain any of them.

Revision history

Ver-
sion

Changes

4.5 Added support for specifying character values in DEFS statements
4.4 Added support for specifying that numeric values in instruction operands be rendered as characters or in a

specific base; added support for specifying character values in DEFW statements
4.3 Added the @ directive, the N directive and support for block start comments
4.2 Added the L directive and support for preserving the location of @ignoreua directives
3.7 Added support for binary numbers; added support for specifying the base of numeric values in DEFB,

DEFM, DEFS and DEFW statements; added the s and S directives and support for DEFS statements with
non-zero byte values

3.6 Added support for preserving blank comments that span two or more instructions
3.1.4 Added support for DEFB and DEFM statements that contain both strings and bytes
2.4 Added support for non-block ASM directives
2.2 Added support for the * notation in DEFB, DEFM, DEFS and DEFW statement length lists
2.1.2 Added support for DEFM, DEFS and DEFW statement lengths
2.1.1 Added the M directive
2.1 Added support for DEFB statement lengths
2.0.6 Added support for hexadecimal numbers
1.0.7 Added support for block titles, block descriptions, register values, mid-block comments, block end

comments, sub-block types and instruction-level comments

Skool files

A skool file contains the list of Z80 instructions that make up the routines and data blocks of the program being
disassembled, with accompanying comments (if any).

Skool file format

A skool file must be in a certain format to ensure that it is processed correctly by skool2html.py, skool2asm.py,
skool2ctl.py and skool2sft.py. The rules are as follows:

• entries (an ‘entry’ being a routine or data block) must be separated by blank lines, and an entry must not contain
any blank lines

• an entry header is a sequence of comment lines broken into four sections; see Entry header format

• each line in an entry may start with one of the following characters: ;* @bcdgirstuw; see Entry line format

8.3. Skool files 61

SkoolKit Documentation, Release 6.0

• tables (grids) have their own markup syntax; see #TABLE for details

Entry header format

An entry header is a sequence of comment lines broken into four sections:

• entry title

• entry description (optional)

• registers (optional)

• start comment (optional)

The sections are separated by an empty comment line, and paragraphs within the entry description and start comment
must be separated by a comment line containing a dot (.) on its own. For example:

; This is the entry title
;
; This is the first paragraph of the entry description.
; .
; This is the second paragraph of the entry description.
;
; A An important parameter
; B Another important parameter
;
; This is the start comment above the first instruction in the entry.

If a start comment is required but a register section is not, either append the start comment to the entry description, or
specify a blank register section by using a dot (.) thus:

; This entry has a start comment but no register section
;
; This is the entry description.
;
; .
;
; This is the start comment above the first instruction in the entry.

Likewise, if a register section is required but an entry description is not, a blank entry description may be specified by
using a dot (.) thus:

; This entry has a register section but no description
;
; .
;
; A An important parameter
; B Another important parameter

Registers may be listed as shown above, or with colon-terminated prefixes (such as ‘Input:’ and ‘Output:’, or simply
‘I:’ and ‘O:’) to distinguish input values from output values:

; Input:A An important parameter
; B Another important parameter
; Output:C The result

In the HTML version of the disassembly, input values and output values are shown in separate tables. If a register’s
prefix begins with the letter ‘O’, it is regarded as an output value; if it begins with any other letter, it is regarded as an

62 Chapter 8. Technical reference

SkoolKit Documentation, Release 6.0

input value. If a register has no prefix, it will be placed in the same table as the previous register; if there is no previous
register, it will be placed in the table of input values.

If a register description is very long, it may be split over two or more lines by starting the second and subsequent lines
with a dot (.) thus:

; HL The description for this register is quite long, so it is split over two
; . lines for improved readability

Entry line format

Each line in an entry may start with one of ;* @bcdgirstuw, where:

• ; begins a comment line

• * denotes an entry point in a routine

• @ begins an ASM directive

• b denotes the first instruction in a data block

• c denotes the first instruction in a code block (routine)

• d denotes the first instruction in a data definition entry

• g denotes the first instruction in a game status buffer entry

• i denotes an ignored entry

• r denotes the first instruction in a remote entry

• s denotes the first instruction in a data block containing bytes that are all the same value (typically unused
zeroes)

• t denotes the first instruction in a data block that contains text

• u denotes the first instruction in an unused code or data block

• w denotes the first instruction in a data block that contains two-byte values (words)

• a space begins a line that does not require any of the markers listed above

The format of a line containing an instruction is:

C##### INSTRUCTION[; comment]

where:

• C is one of the characters listed above: * bcdgirstuw

• ##### is an address (e.g. 24576, or $6000 if you prefer hexadecimal notation)

• INSTRUCTION is an instruction (e.g. LD A,(HL))

• comment is a comment (which may be blank)

The comment for a single instruction may span multiple lines thus:

c24296 CALL 57935 ; This comment is too long to fit on a single line, so
; we use two lines

A comment may also be associated with more than one instruction by the use of braces ({ and }) to indicate the start
and end points, thus:

8.3. Skool files 63

SkoolKit Documentation, Release 6.0

*24372 SUB D ; {This comment applies to the two instructions at
24373 JR NZ,24378 ; 24372 and 24373}

The opening and closing braces are removed before the comment is rendered in ASM or HTML mode. (See Braces in
comments.)

Comments may appear between instructions, or after the last instruction in an entry; paragraphs in such comments
must be separated by a comment line containing a dot (.) on its own. For example:

*28975 JR 28902
; This is a mid-block comment between two instructions.
; .
; This is the second paragraph of the comment.
28977 XOR A

Lines that start with * will have their addresses shown in bold in the HTML version of the disassembly (generated by
skool2html.py), and will have labels generated for them in the ASM version (generated by skool2asm.py).

ASM directives

To write an ASM directive in a skool file, start a line with @; for example:

; Start the game
@label=START
c24576 XOR A

See ASM modes and directives for more details.

Escaping characters

Backslash (\) and double quote (") characters in string and character operands must be escaped by preceding them
with a backslash. For example:

c32768 LD A,"\"" ; LD A,34
32770 LD B,"\\" ; LD B,92

This ensures that SkoolKit or an assembler can parse such operands correctly.

Braces in comments

As noted above, opening and closing braces ({, }) are used to mark the start and end points of an instruction-level
comment that is associated with more than one instruction, and the braces are removed before the comment is rendered.
This means that if the comment requires an opening or closing brace when rendered, some care must be taken to get
the syntax correct.

The rules regarding an instruction-level comment that starts with an opening brace are as follows:

• The comment terminates on the line where the total number of closing braces in the comment becomes equal to
or greater than the total number of opening braces

• Adjacent opening braces at the start of the comment are removed before rendering

• Adjacent closing braces at the end of the comment are removed before rendering

64 Chapter 8. Technical reference

SkoolKit Documentation, Release 6.0

By these rules, it is possible to craft an instruction-level comment that contains matched or unmatched opening and
closing braces when rendered.

For example:

b50000 DEFB 0 ; {{This comment (which spans two instructions) has an
50001 DEFB 0 ; unmatched closing brace} }

will render in ASM mode as:

DEFB 0 ; This comment (which spans two instructions) has an
DEFB 0 ; unmatched closing brace}

And:

b50002 DEFB 0 ; { {{Matched opening and closing braces}} }

will render as:

DEFB 0 ; {{Matched opening and closing braces}}

Finally:

b50003 DEFB 0 ; { {Unmatched opening brace}}

will render as:

DEFB 0 ; {Unmatched opening brace

Data definition entries

If the first instruction line in an entry starts with d, the entry is regarded as a data definition entry. Such entries do not
appear in the memory map generated by skool2html.py, but may contain DEFB, DEFM, DEFS and DEFW statements
that will be used to insert data into the memory snapshot.

For example:

; The eight bytes of code in this routine are also used as UDG data.
; .
; #HTML(#UDG44919)
c44919 LD DE,46572 ;
44922 CP 200 ;
44924 JP 45429 ;

d44919 DEFB 17,236,181,254,200,195,117,177

If this data definition entry were not present, the memory snapshot would contain zeroes at addresses 44919-44926,
and the image created by the #UDG macro would be blank. The reason for this is that by default, the skool file parser
does not convert assembly language instructions into byte values. However, this behaviour can be changed by using
the @assemble directive.

Remote entries

If the first instruction line in an entry starts with r, the entry is regarded as a remote entry. Such entries do not appear
in the memory map generated by skool2html.py, but they enable JR, JP and CALL instructions to be hyperlinked to
entries defined in other skool files.

8.3. Skool files 65

SkoolKit Documentation, Release 6.0

For example:

r26880 main

This entry, if it were present in a secondary skool file, would enable any JR, JP and CALL instruction with 26880 as
the operand to be hyperlinked to that routine in the main disassembly (the entry for which should be defined in the
main skool file).

If the desired target of the hyperlink is an entry point within a routine that is defined in another skool file (as opposed to
the address of the routine itself), both the routine address and the entry point address should be declared in the remote
entry. For example:

r29012 main
29015

This enables hyperlinks to 29015 in the main disassembly, which is an entry point in the routine at 29012. It also
enables the #R macro to create hyperlinks to remote entry points using the short form:

#R29015@main

instead of the longer form (which would be required if the remote entry were not defined):

#R29012@main#29015(29015)

Revision history

Ver-
sion

Changes

4.3 Added support for the start comment in entry headers; an ASM directive can be declared by starting a
line with @

4.2 Added support for splitting register descriptions over multiple lines
3.7 Added support for binary numbers; added the s block type
3.1.2 Added support for ‘Input’ and ‘Output’ prefixes in register sections
2.4 Added the ability to separate paragraphs and specify a blank entry description by using a dot (.) on a

line of its own
2.1 Added support for hexadecimal numbers
2.0 Added support for data definition entries and remote entries

Skool file templates

A skool file template defines the basic structure of a skool file, but, unlike a skool file, contains directives on how to
disassemble a program into Z80 instructions instead of the Z80 instructions themselves. The directives are similar to
those that may appear in a control file.

The skool2sft.py command can generate a skool file template from an existing skool file; the sna2skool.py command
can then generate a skool file from the template and an appropriate snapshot.

Skool file template format

A skool file template has the same layout as a skool file, except that the lines in b, c, g, i, s, t, u and w blocks that
correspond to Z80 instructions look like this:

66 Chapter 8. Technical reference

SkoolKit Documentation, Release 6.0

xX#####,N[;c[comment]]

where:

• x is one of the characters * bcgistuw (with the same meaning as in a skool file)

• X is one of the characters BCSTW (with the same meaning as in a control file), or I (meaning the instruction
field is blank, as may be the case in the first line of an i block)

• ##### is the address at which to start disassembling

• N is the number of bytes to disassemble (or a list of sublengths; see Sub-block syntax)

• c is the index of the column in which the comment marker (;) appears in the line (if it does appear)

• comment, if present, is the instruction-level comment for the line on which the instruction occurs

If a comment for a single instruction spans two or more lines in a skool file, as in:

c24296 CALL 57935 ; This comment is too long to fit on a single line, so
; we use two lines

then it will be rendered in the skool file template thus:

cC24296,3;21 This comment is too long to fit on a single line, so
;21 we use two lines

Sub-block syntax

The syntax for specifying B, C, S, T and W sub-blocks is analogous to the syntax used in control files. A brief summary
of the syntax is given here.

Sequences of DEFB statements can be declared on a single line by a comma-separated list of sublengths thus:

bB40960,8*2,5

which is equivalent to:

bB40960,8
B40968,8
B40976,5

The same syntax also applies for declaring sequences of DEFM, DEFS and DEFW statements.

DEFB and DEFM statements may contain both strings and bytes; for example:

b30000 DEFB 1,2,3,4,"Hello!"
30010 DEFM 5,6
30012 DEFM "B",7,8

Such statements are preserved in a skool file template thus:

bB30000,4:T6
T30010,B2,1:B2

DEFB, DEFM, DEFS and DEFW statements may contain numeric values in various bases or as characters. For
example:

8.4. Skool file templates 67

SkoolKit Documentation, Release 6.0

b40000 DEFB %10101010,23,43,$5F
40004 DEFB 56
40005 DEFB %11110000
40006 DEFB $2B,$80
40008 DEFS 8,"!"

These statements may be preserved in a skool file template thus:

bB40000,b1:d2:h1,d1,b1,h2
S40008,8:c"!"

Instruction operands may also contain numeric values in various bases or as characters. For example:

c50000 LD A,%00011000
50002 LD B,"!"
50004 LD (IX+$1A),%00001111

These instructions may be preserved in a skool file template by using b (binary), c (character), d (decimal) and h
(hexadecimal) prefixes on sublength parameters thus:

cC50000,b2,c2,hb4

Skool file template comments

Any line that begins with a hash character (#) is ignored by sna2skool.py, and will not show up in the skool file.

Data definition entries

In the same way as skool2html.py uses data definition entries (d blocks) in a skool file to insert data into the memory
snapshot it constructs, sna2skool.py uses data definition entries in a skool file template to replace data in the snapshot
given on the command line. This feature can be used to make sure that a ‘volatile’ part of memory is set to a specific
value before being disassembled.

For example, if address 32400 holds the number of lives, you could make sure that its contents are set to 0 so that it
will disassemble to DEFB 0 (whatever the contents may be in the snapshot itself) thus:

d32400 DEFB 0

; Number of lives
bB32400,1

Note that in order to take effect, a d block must appear before the block that it overrides.

68 Chapter 8. Technical reference

SkoolKit Documentation, Release 6.0

Revision history

Ver-
sion

Changes

5.1 Added support for preserving i blocks in the same way as code and data blocks (instead of verbatim)
4.5 Added support for specifying character values in DEFS statements
4.4 Added support for specifying that numeric values in instruction operands be rendered as characters or in a

specific base; added support for specifying character values in DEFW statements
3.7 Added support for binary numbers; added support for specifying the base of numeric values in DEFB,

DEFM, DEFS and DEFW statements; added the s and S directives and support for DEFS statements with
non-zero byte values

3.1.4 Added support for DEFB and DEFM statements that contain both strings and bytes
2.4 New

Skool macros

Skool files and ref files may contain skool macros that are ‘expanded’ to an appropriate piece of HTML markup (when
rendering in HTML mode), or to an appropriate piece of plain text (when rendering in ASM mode).

Syntax

Skool macros have the following general form:

#MACROrparam1,rparam2,...[,oparam1,oparam2,...]

where:

• MACRO is the macro name

• rparam1, rparam2 etc. are required parameters

• oparam1, oparam2 etc. are optional parameters

If an optional parameter is left blank or omitted entirely, it assumes its default value. So, for example:

#UDG39144

is equivalent to:

#UDG39144,56,4,1,0,0,0,1

and:

#UDG30115,,2

is equivalent to:

#UDG30115,56,2

Numeric parameters

Numeric parameters may be written in decimal notation:

8.5. Skool macros 69

SkoolKit Documentation, Release 6.0

#UDG51673,17

or in hexadecimal notation (prefixed by $):

#UDG$C9D9,$11

Wherever a sequence of numeric parameters appears in a macro, that sequence may optionally be enclosed in paren-
theses: (and). Parentheses are required if any numeric parameter is written as an expression containing arithmetic
operations or skool macros:

#UDG(51672+1,#PEEK51672)

The following operators are permitted in an arithmetic expression:

• arithmetic operators: +, -, *, /, % (modulo), ** (power)

• bitwise operators: & (AND), | (OR), ^ (XOR)

• bit shift operators: >>, <<

• Boolean operators: && (and), || (or)

• comparison operators: ==, !=, >, <, >=, <=

Parentheses and spaces are also permitted in an arithmetic expression:

#IF(1 == 2 || (1 <= 2 && 2 < 3))(Yes,No)

The expr parameter of the #IF macro and the key parameter of the #MAP macro also recognise some replacement
fields:

• asm - 1 if in ASM mode, 0 otherwise

• base - 10 if the --decimal option is used with skool2asm.py or skool2html.py, 16 if the --hex option is
used, or 0 if neither option is used

• case - 1 if the --lower option is used with skool2asm.py or skool2html.py, 2 if the --upper option is used,
or 0 if neither option is used

• html - 1 if in HTML mode, 0 otherwise

For example:

#IF({case}==1)(hl,HL)

expands to hl if in lower case mode, or HL otherwise.

Note that if a replacement field is used, the numeric parameter must be enclosed in parentheses.

String parameters

Where a macro requires a single string parameter consisting of arbitrary text, it must be enclosed in parentheses, square
brackets or braces:

(text)
[text]
{text}

If text contains unbalanced brackets, any non-whitespace character that is not present in text may be used as an
alternative delimiter. For example:

70 Chapter 8. Technical reference

SkoolKit Documentation, Release 6.0

/text/
|text|

Where a macro requires multiple string parameters consisting of arbitrary text, they must be enclosed in parentheses,
square brackets or braces and be separated by commas:

(string1,string2)
[string1,string2]
{string1,string2}

Alternatively, an arbitrary delimiter - d, which cannot be whitespace - and separator - s, which can be whitespace -
may be used. (They can be the same character.) The string parameters must open with ds, be separated by s, and
close with sd. For example:

//same/delimiter/and/separator//
| different delimiter and separator |

This form is required if any of the strings contain a comma.

SMPL macros

The macros described in this section constitute the Skool Macro Programming Language (SMPL). They can be used
to programmatically specify values in the parameter string of any macro.

#()

The #() macro expands the skool macros in its sole string parameter.

#(text)

It takes effect only when it immediately follows the opening token of another skool macro, and is expanded before that
macro. For example:

#UDGARRAY#(2#FOR37159,37168,9||n|;(n+1),#PEEKn||)(item)

This instance of the #() macro expands the #FOR macro first, giving:

2;(37159+1),#PEEK37159;(37168+1),#PEEK37168

It then expands the #PEEK macros, ultimately forming the parameters of the #UDGARRAY macro.

See String parameters for details on alternative ways to supply the text parameter. Note that if an alternative
delimiter is used, it must not be an alphanumeric character (A-Z, a-z, 0-9).

#EVAL

The #EVAL macro expands to the value of an arithmetic expression.

#EVALexpr[,base,width]

• expr is the arithmetic expression

• base is the number base in which the value is expressed: 2, 10 (the default) or 16

8.5. Skool macros 71

SkoolKit Documentation, Release 6.0

• width is the minimum number of digits in the output (default: 1); the value will be padded with leading zeroes
if necessary

For example:

; The following mask byte is #EVAL(#PEEK29435,2,8).
29435 DEFB 62

This instance of the #EVAL macro expands to ‘00111110’ (62 in binary).

Version Changes
6.0 Hexadecimal values are rendered in lower case when the --lower option is used
5.1 New

#FOR

The #FOR macro expands to a sequence of strings based on a range of integers.

#FORstart,stop[,step](var,string[,sep,fsep])

• start is first integer in the range

• stop is the final integer in the range

• step is the gap between each integer in the range (default: 1)

• var is the variable name; for each integer in the range, it evaluates to that integer

• string is the output string that is evaluated for each integer in the range; wherever the variable name (var)
appears, its value is substituted

• sep is the separator placed between each output string (default: the empty string)

• fsep is the separator placed between the final two output strings (default: sep)

For example:

; The next three bytes (#FOR31734,31736||n|#PEEKn|, | and ||) define the
; item locations.
31734 DEFB 24,17,156

This instance of the #FOR macro expands to ‘24, 17 and 156’.

See String parameters for details on alternative ways to supply the var, string, sep and fsep parameters.

Version Changes
5.1 New

#FOREACH

The #FOREACH macro expands to a sequence of output strings based on a sequence of input strings.

#FOREACH([s1,s2,...])(var,string[,sep,fsep])

or:

#FOREACH(svar)(var,string[,sep,fsep])

• s1, s2 etc. are the input strings

72 Chapter 8. Technical reference

SkoolKit Documentation, Release 6.0

• svar is a special variable that expands to a specific sequence of input strings (see below)

• var is the variable name; for each input string, it evaluates to that string

• string is the output string that is evaluated for each input string; wherever the variable name (var) appears,
its value is substituted

• sep is the separator placed between each output string (default: the empty string)

• fsep is the separator placed between the final two output strings (default: sep)

For example:

; The next three bytes (#FOREACH(31734,31735,31736)||n|#PEEKn|, | and ||)
; define the item locations.
31734 DEFB 24,17,156

This instance of the #FOREACH macro expands to ‘24, 17 and 156’.

The #FOREACH macro recognises certain special variables, each one of which expands to a specific sequence of
strings. The special variables are:

• ENTRY[types] - the addresses of every entry of the specified type(s) in the memory map; if types is not
given, every type is included

• EREFaddr - the addresses of the routines that jump to or call a given instruction (at addr)

• REFaddr - the addresses of the routines that jump to or call a given routine (at addr), or jump to or call any
entry point within that routine

For example:

; The messages can be found at #FOREACH(ENTRYt)||n|n|, | and ||.

This instance of the #FOREACH macro expands to a list of the addresses of the entries of type t (text).

See String parameters for details on alternative ways to supply the var, string, sep and fsep parameters.

Version Changes
5.1 New

#IF

The #IF macro expands to an arbitrary string based on the truth value of an arithmetic expression.

#IFexpr(true[,false])

• expr is the arithmetic expression

• true is the output string when expr is true

• false is the output string when expr is false (default: the empty string)

For example:

; #FOR0,7||n|#IF(#PEEK47134 & 2**(7-n))(X,O)||
47134 DEFB 170

This instance of the #IF macro is used (in combination with a #FOR macro and a #PEEK macro) to display the con-
tents of the address 47134 in the memory snapshot in binary format with ‘X’ for one and ‘O’ for zero: XOXOXOXO.

See String parameters for details on alternative ways to supply the true and false output strings.

8.5. Skool macros 73

SkoolKit Documentation, Release 6.0

See Numeric parameters for details on the replacement fields that may be used in the expr parameter.

Version Changes
6.0 Added support for replacement fields in the expr parameter
5.1 New

#MAP

The #MAP macro expands to a value from a map of key-value pairs whose keys are integers.

#MAPkey(default[,k1:v1,k2:v2...])

• key is the integer to look up in the map

• default is the default output string (used when key is not found in the map)

• k1:v1, k2:v2 etc. are the key-value pairs in the map

For example:

; The next three bytes specify the directions that are available from here:
; #FOR56112,56114||q|#MAP(#PEEKq)(?,0:left,1:right,2:up,3:down)|, | and ||.
56112 DEFB 0,1,3

This instance of the #MAP macro is used (in combination with a #FOR macro and a #PEEK macro) to display a list of
directions available based on the contents of addresses 56112-56114: ‘left, right and down’.

Note that the keys (k1, k2 etc.) may be expressed using arithmetic operations. They may also be expressed using
skool macros, but in that case the entire parameter string of the #MAP macro must be enclosed by a #() macro.

See String parameters for details on alternative ways to supply the default output string and the key-value pairs.

See Numeric parameters for details on the replacement fields that may be used in the key parameter.

Version Changes
6.0 Added support for replacement fields in the key parameter
5.1 New

#PEEK

The #PEEK macro expands to the contents of an address in the memory snapshot.

#PEEKaddr

• addr is the address

For example:

; At the start of the game, the number of lives remaining is #PEEK33879.

This instance of the #PEEK macro expands to the contents of the address 33879 in the memory snapshot.

See also #POKES.

Version Changes
5.1 New

74 Chapter 8. Technical reference

SkoolKit Documentation, Release 6.0

General macros

#CALL

In HTML mode, the #CALL macro expands to the return value of a method on the HtmlWriter class or subclass that
is being used to create the HTML disassembly (as defined by the HtmlWriterClass parameter in the [Config]
section of the ref file).

In ASM mode, the #CALL macro expands to the return value of a method on the AsmWriter class or subclass that is
being used to generate the ASM output (as defined by the @writer ASM directive in the skool file).

#CALL:methodName(args)

• methodName is the name of the method to call

• args is a comma-separated list of arguments to pass to the method

For example:

; The word at address 32768 is #CALL:word(32768).

This instance of the #CALL macro expands to the return value of the word method (on the HtmlWriter or AsmWriter
subclass being used) when called with the argument 32768.

For information on writing methods that may be called by a #CALL macro, see the documentation on extending
SkoolKit.

Version Changes
5.1 Added support for arithmetic expressions and skool macros in numeric method arguments
3.1 Added support for ASM mode
2.1 New

#CHR

In HTML mode, the #CHR macro expands to a numeric character reference (&#num;). In ASM mode, it expands to
a unicode character in the UTF-8 encoding.

#CHRnum

For example:

26751 DEFB 127 ; This is the copyright symbol: #CHR169

In HTML mode, this instance of the #CHR macro expands to ©. In ASM mode, it expands to the copyright
symbol.

Version Changes
5.1 Added support for arithmetic expressions and skool macros in the num parameter
3.1 New

#D

The #D macro expands to the title of an entry (a routine or data block) in the memory map.

#Daddr

• addr is the address of the entry.

8.5. Skool macros 75

SkoolKit Documentation, Release 6.0

For example:

; Now we make an indirect jump to one of the following routines:
; .
; #TABLE(default,centre)
; { =h Address | =h Description }
; { #R27126 | #D27126 }

This instance of the #D macro expands to the title of the routine at 27126.

Version Changes
5.1 Added support for arithmetic expressions and skool macros in the addr parameter

#HTML

The #HTML macro expands to arbitrary text (in HTML mode) or to an empty string (in ASM mode).

#HTML(text)

The #HTML macro may be used to render HTML (which would otherwise be escaped) from a skool file. For example:

; #HTML(For more information, go here.)

text may contain other skool macros, which will be expanded before rendering. For example:

; #HTML[The UDG defined here (32768) looks like this: #UDG32768,4,1]

See String parameters for details on alternative ways to supply the text parameter. Note that if an alternative
delimiter is used, it must not be an upper case letter.

See also #UDGTABLE.

Version Changes
3.1.2 New

#INCLUDE

In HTML mode, the #INCLUDE macro expands to the contents of a ref file section; in ASM mode, it expands to an
empty string.

#INCLUDE[paragraphs](section)

• paragraphs specifies how to format the contents of the ref file section: verbatim (0 - the default), or into
paragraphs (1)

• section is the name of the ref file section

The #INCLUDE macro can be used to insert the contents of one ref file section into another. For example:

[MemoryMap:RoutinesMap]
Intro=#INCLUDE(RoutinesMapIntro)

[RoutinesMapIntro]
This is the intro to the 'Routines' map page.

See String parameters for details on alternative ways to supply the section parameter.

76 Chapter 8. Technical reference

SkoolKit Documentation, Release 6.0

Version Changes
5.3 New

#LINK

In HTML mode, the #LINK macro expands to a hyperlink (<a> element) to another page.

#LINK:PageId[#name](link text)

• PageId is the ID of the page to link to

• name is the name of an anchor on the page to link to

• link text is the link text to use

In HTML mode, if the link text is blank, it defaults either to the title of the entry being linked to (if the page is a box
page and contains an entry with the specified anchor), or to the page’s link text.

In ASM mode, the #LINK macro expands to the link text.

The page IDs that may be used are the same as the file IDs that may be used in the [Paths] section of a ref file, or the
page IDs defined by [Page:*] sections.

For example:

; See the #LINK:Glossary(glossary) for a definition of 'chuntey'.

In HTML mode, this instance of the #LINK macro expands to a hyperlink to the ‘Glossary’ page, with link text
‘glossary’.

In ASM mode, this instance of the #LINK macro expands to ‘glossary’.

To create a hyperlink to an entry on a memory map page, use the address of the entry as the anchor. For example:

; Now we update the #LINK:GameStatusBuffer#40000(number of lives).

In HTML mode, the anchor of this #LINK macro (40000) is converted to the format specified by the
AddressAnchor parameter in the [Game] section.

Ver-
sion

Changes

5.4 When linking to an entry on a box page, the link text, if left blank, defaults to the title of the entry (in
HTML mode)

5.2 An entry address anchor in a link to a memory map page is converted to the format specified by the
AddressAnchor parameter

3.1.3 If left blank, the link text defaults to the page’s link text in HTML mode
2.1 New

#LIST

The #LIST macro marks the beginning of a list of bulleted items; LIST# is used to mark the end. Between these
markers, the list items are defined.

#LIST[(class)]<items>LIST#

• class is the CSS class to use for the element

8.5. Skool macros 77

SkoolKit Documentation, Release 6.0

Each item in a list must start with { followed by a whitespace character, and end with } preceded by a whitespace
character.

For example:

; #LIST(data)
; { Item 1 }
; { Item 2 }
; LIST#

This list has two items, and will have the CSS class ‘data’.

In ASM mode, lists are rendered as plain text, with each item on its own line, and an asterisk as the bullet character.
The bullet character can be changed by using a @set directive to set the bullet property on the ASM writer.

Version Changes
3.2 New

#N

The #N macro renders a numeric value in hexadecimal format when the --hex option is used with skool2asm.py or
skool2html.py, or in decimal format otherwise. A hexadecimal number is rendered in lower case when the --lower
option is used, or in upper case otherwise.

#Nvalue[,hwidth,dwidth,affix][(prefix[,suffix])]

• value is the numeric value

• hwidth is the minimum number of digits printed in hexadecimal output (default: 2 for values < 256, or 4
otherwise)

• dwidth is the minimum number of digits printed in decimal output (default: 1)

• affix is 1 if prefix or suffix is specified, 0 if not (default: 0)

• prefix is the prefix for a hexadecimal number (default: empty string)

• suffix is the suffix for a hexadecimal number (default: empty string)

For example:

#N15,4,5,1(0x)

This instance of the #N macro expands to one of the following:

• 00015 (when --hex is not used)

• 0x000F (when --hex is used without --lower)

• 0x000f (when both --hex and --lower are used)

See String parameters for details on alternative ways to supply the prefix and suffix parameters.

Version Changes
5.2 New

#R

In HTML mode, the #R macro expands to a hyperlink (<a> element) to the disassembly page for a routine or data
block, or to a line at a given address within that page.

78 Chapter 8. Technical reference

SkoolKit Documentation, Release 6.0

#Raddr[@code][#name][(link text)]

• addr is the address of the routine or data block (or entry point thereof)

• code is the ID of the disassembly that contains the routine or data block (if not given, the current disassembly
is assumed; otherwise this must be an ID defined in an [OtherCode:*] section of the ref file)

• #name is the named anchor of an item on the disassembly page

• link text is the link text to use (default: addr)

The disassembly ID (code) and anchor name (name) must be limited to the characters ‘$’, ‘#’, 0-9, A-Z and a-z.

In ASM mode, the #R macro expands to the link text if it is specified, or to the label for addr, or to addr if no label
is found.

For example:

; Prepare for a new game
;
; Used by the routine at #R25820.

In HTML mode, this instance of the #R macro expands to a hyperlink to the disassembly page for the routine at 25820.

In ASM mode, this instance of the #R macro expands to the label for the routine at 25820 (or simply 25820 if that
routine has no label).

To create a hyperlink to the first instruction in a routine or data block, use an anchor that evaluates to the address of
that instruction. For example:

; See the #R40000#40000(first item) in the data table at 40000.

In HTML mode, the anchor of this #R macro (40000) is converted to the format specified by the AddressAnchor
parameter in the [Game] section.

Ver-
sion

Changes

5.1 An anchor that matches the entry address is converted to the format specified by the AddressAnchor
parameter; added support for arithmetic expressions and skool macros in the addr parameter

3.5 Added the ability to resolve (in HTML mode) the address of an entry point in another disassembly when
an appropriate remote entry is defined

2.0 Added support for the @code notation

#REG

In HTML mode, the #REG macro expands to a styled element containing a register name or arbitrary text
(with case adjusted as appropriate).

#REGreg

where reg is the name of the register, or:

#REG(text)

where text is arbitrary text (e.g. hlh'l').

See String parameters for details on alternative ways to supply the text parameter. Note that if an alternative
delimiter is used, it must not be a letter.

8.5. Skool macros 79

SkoolKit Documentation, Release 6.0

In ASM mode, the #REG macro expands to either reg or text (with case adjusted as appropriate).

The register name (reg) must be one of the following:

a b c d e f h l
a' b' c' d' e' f' h' l'
af bc de hl
af' bc' de' hl'
ix iy ixh iyh ixl iyl
i r sp pc

For example:

24623 LD C,31 ; #REGbc'=31

Version Changes
5.4 Added support for an arbitrary text parameter
5.3 Added support for the F and F’ registers
5.1 The reg parameter must be a valid register name

#SPACE

The #SPACE macro expands to one or more expressions (in HTML mode) or spaces (in ASM mode).

#SPACE[num]

• num is the number of spaces required (default: 1)

For example:

; '#SPACE8' (8 spaces)
t56832 DEFM " "

In HTML mode, this instance of the #SPACE macro expands to:

In ASM mode, this instance of the #SPACE macro expands to a string containing 8 spaces.

The form SPACE([num]) may be used to distinguish the macro from adjacent text where necessary. For example:

; 'Score:#SPACE(5)0'
t49152 DEFM "Score: 0"

Version Changes
5.1 Added support for arithmetic expressions and skool macros in the num parameter
2.4.1 Added support for the #SPACE([num]) syntax

#TABLE

The #TABLE macro marks the beginning of a table; TABLE# is used to mark the end. Between these markers, the
rows of the table are defined.

#TABLE[([class[,class1[:w][,class2[:w]...]]])]<rows>TABLE#

• class is the CSS class to use for the <table> element

80 Chapter 8. Technical reference

SkoolKit Documentation, Release 6.0

• class1, class2 etc. are the CSS classes to use for the <td> elements in columns 1, 2 etc.

Each row in a table must start with { followed by a whitespace character, and end with } preceded by a whitespace
character. The cells in a row must be separated by | with a whitespace character on each side.

For example:

; #TABLE(default,centre)
; { 0 | Off }
; { 1 | On }
; TABLE#

This table has two rows and two columns, and will have the CSS class ‘default’. The cells in the first column will have
the CSS class ‘centre’.

By default, cells will be rendered as <td> elements. To render a cell as a <th> element, use the =h indicator before
the cell contents:

; #TABLE
; { =h Header 1 | =h Header 2 }
; { Regular cell | Another one }
; TABLE#

It is also possible to specify colspan and rowspan attributes using the =c and =r indicators:

; #TABLE
; { =r2 2 rows | X | Y }
; { =c2 2 columns }
; TABLE#

Finally, the =t indicator makes a cell transparent (i.e. gives it the same background colour as the page body).

If a cell requires more than one indicator, separate the indicators by commas:

; #TABLE
; { =h,c2 Wide header }
; { Column 1 | Column 2 }
; TABLE#

The CSS files included in SkoolKit provide two classes that may be used when defining tables:

• default - a class for <table> elements that provides a background colour to make the table stand out from
the page body

• centre - a class for <td> elements that centres their contents

In ASM mode, tables are rendered as plain text, using dashes (-) and pipes (|) for the borders, and plus signs (+)
where a horizontal border meets a vertical border.

ASM mode also supports the :w indicator in the #TABLE macro’s parameters. The :w indicator marks a column as
a candidate for having its width reduced (by wrapping the text it contains) so that the table will be no more than 79
characters wide when rendered. For example:

; #TABLE(default,centre,:w)
; { =h X | =h Description }
; { 0 | Text in this column will be wrapped in ASM mode to make the table less
→˓than 80 characters wide }
; TABLE#

See also #UDGTABLE.

8.5. Skool macros 81

SkoolKit Documentation, Release 6.0

#UDGTABLE

The #UDGTABLE macro behaves in exactly the same way as the #TABLE macro, except that the resulting table will
not be rendered in ASM mode. Its intended use is to contain images that will be rendered in HTML mode only.

See #TABLE, and also #HTML.

#VERSION

The #VERSION macro expands to the version of SkoolKit.

#VERSION

Version Changes
6.0 New

Image macros

The #FONT , #SCR, #UDG and #UDGARRAY macros (described in the following sections) may be used to create
images based on graphic data in the memory snapshot. They are not supported in ASM mode.

These macros have several numeric parameters, most of which are optional. This can give rise to a long sequence of
commas in a macro parameter string, making it hard to read (and write); for example:

#UDG32768,,,,,,1

To alleviate this problem, the image macros accept keyword arguments at any position in the parameter string; the
#UDG macro above could be rewritten as follows:

#UDG32768,rotate=1

#FONT

In HTML mode, the #FONT macro expands to an element for an image of text rendered in the game font.

#FONT[:(text)]addr[,chars,attr,scale][{CROP}][(fname)]

• text is the text to render (default: the 96 characters from code 32 to code 127)

• addr is the base address of the font graphic data

• chars is the number of characters to render (default: the length of text)

• attr is the attribute byte to use (default: 56)

• scale is the scale of the image (default: 2)

• CROP is the cropping specification (see Cropping)

• fname is the name of the image file (default: ‘font‘); ‘.png‘ or ‘.gif ‘ will be appended (depending on the default
image format specified in the [ImageWriter] section of the ref file) if not present

If an image with the given filename doesn’t already exist, it will be created. If fname starts with a ‘/’, the filename is
taken to be relative to the root of the HTML disassembly; otherwise the filename is taken to be relative to the directory
defined by the FontImagePath parameter in the [Paths] section of the ref file.

For example:

82 Chapter 8. Technical reference

SkoolKit Documentation, Release 6.0

; Font graphic data
;
; #HTML[#FONT:(0123456789)49152]

In HTML mode, this instance of the #FONT macro expands to an element for the image of the digits 0-9 in
the 8x8 font whose graphic data starts at 49152.

See String parameters for details on alternative ways to supply the text parameter.

Version Changes
5.1 Added support for arithmetic expressions and skool macros in the numeric parameters
4.3 Added the ability to create frames
4.2 Added the ability to specify alt text for the element
4.0 Added support for keyword arguments
3.6 Added the text parameter, and made the chars parameter optional
3.0 Added image-cropping capabilities
2.0.5 Added the fname parameter and support for regular 8x8 fonts

#SCR

In HTML mode, the #SCR macro expands to an element for an image constructed from the display file
and attribute file (or suitably arranged graphic data and attribute bytes elsewhere in memory) of the current memory
snapshot (in turn constructed from the contents of the skool file).

#SCR[scale,x,y,w,h,df,af][{CROP}][(fname)]

• scale is the scale of the image (default: 1)

• x is the x-coordinate of the top-left tile of the screen to include in the screenshot (default: 0)

• y is the y-coordinate of the top-left tile of the screen to include in the screenshot (default: 0)

• w is the width of the screenshot in tiles (default: 32)

• h is the height of the screenshot in tiles (default: 24)

• df is the base address of the display file (default: 16384)

• af is the base address of the attribute file (default: 22528)

• CROP is the cropping specification (see Cropping)

• fname is the name of the image file (default: ‘scr‘); ‘.png‘ or ‘.gif ‘ will be appended (depending on the default
image format specified in the [ImageWriter] section of the ref file) if not present

If an image with the given filename doesn’t already exist, it will be created. If fname starts with a ‘/’, the filename is
taken to be relative to the root of the HTML disassembly; otherwise the filename is taken to be relative to the directory
defined by the ScreenshotImagePath parameter in the [Paths] section of the ref file.

For example:

; #UDGTABLE
; { #SCR(loading) | This is the loading screen. }
; TABLE#

Note: In SkoolKit 5.0 and earlier versions, #SCR(2) would create an image file named 2.png using the default
parameter values. However, since the introduction in version 5.1 of support for arithmetic expressions in numeric

8.5. Skool macros 83

SkoolKit Documentation, Release 6.0

parameters, #SCR(2) creates an image file with the default name and scale 2; to create an image file named 2.png
with the default parameter values in SkoolKit 5.1+, write #SCR()(2) instead.

Version Changes
5.1 Added support for arithmetic expressions and skool macros in the numeric parameters
4.3 Added the ability to create frames
4.2 Added the ability to specify alt text for the element
4.0 Added support for keyword arguments
3.0 Added image-cropping capabilities and the df and af parameters
2.0.5 Added the scale, x, y, w, h and fname parameters

#UDG

In HTML mode, the #UDG macro expands to an element for the image of a UDG (an 8x8 block of pixels).

#UDGaddr[,attr,scale,step,inc,flip,rotate,mask][:MASK][{CROP}][(fname)]

• addr is the base address of the UDG bytes

• attr is the attribute byte to use (default: 56)

• scale is the scale of the image (default: 4)

• step is the interval between successive bytes of the UDG (default: 1)

• inc is added to each UDG byte before constructing the image (default: 0)

• flip is 1 to flip the UDG horizontally, 2 to flip it vertically, 3 to flip it both ways, or 0 to leave it as it is (default:
0)

• rotate is 1 to rotate the UDG 90 degrees clockwise, 2 to rotate it 180 degrees, 3 to rotate it 90 degrees
anticlockwise, or 0 to leave it as it is (default: 0)

• mask is the type of mask to apply (see Masks)

• MASK is the mask specification (see below)

• CROP is the cropping specification (see Cropping)

• fname is the name of the image file (if not given, a name specified by the UDGFilename parameter in the
[Game] section will be used); ‘.png‘ or ‘.gif ‘ will be appended (depending on the default image format specified
in the [ImageWriter] section) if not present

The mask specification (MASK) takes the form:

addr[,step]

• addr is the base address of the mask bytes to use for the UDG

• step is the interval between successive mask bytes (defaults to the value of step for the UDG)

Note that if any of the parameters in the mask specification is expressed using arithmetic operations or skool macros,
then the entire specification must be enclosed in parentheses.

If an image with the given filename (fname) doesn’t already exist, it will be created. If fname starts with a ‘/’, the
filename is taken to be relative to the root of the HTML disassembly; otherwise the filename is taken to be relative to
the directory defined by the UDGImagePath parameter in the [Paths] section of the ref file.

For example:

84 Chapter 8. Technical reference

SkoolKit Documentation, Release 6.0

; Safe key UDG
;
; #HTML[#UDG39144,6(safe_key)]

In HTML mode, this instance of the #UDG macro expands to an element for the image of the UDG at 39144
(which will be named safe_key.png or safe_key.gif), with attribute byte 6 (INK 6: PAPER 0).

Version Changes
5.1 Added support for arithmetic expressions and skool macros in the numeric parameters
4.3 Added the ability to create frames
4.2 Added the ability to specify alt text for the element
4.0 Added the mask parameter and support for AND-OR masking; added support for keyword arguments
3.1.2 Made the attr parameter optional
3.0 Added image-cropping capabilities
2.4 Added the rotate parameter
2.3.1 Added the flip parameter
2.1 Added support for masks
2.0.5 Added the fname parameter

#UDGARRAY

In HTML mode, the #UDGARRAY macro expands to an element for the image of an array of UDGs (8x8
blocks of pixels).

#UDGARRAYwidth[,attr,scale,step,inc,flip,rotate,mask];SPEC1[;SPEC2;...][{CROP}](fname)

• width is the width of the image (in UDGs)

• attr is the default attribute byte of each UDG (default: 56)

• scale is the scale of the image (default: 2)

• step is the default interval between successive bytes of each UDG (default: 1)

• inc is added to each UDG byte before constructing the image (default: 0)

• flip is 1 to flip the array of UDGs horizontally, 2 to flip it vertically, 3 to flip it both ways, or 0 to leave it as it
is (default: 0)

• rotate is 1 to rotate the array of UDGs 90 degrees clockwise, 2 to rotate it 180 degrees, 3 to rotate it 90
degrees anticlockwise, or 0 to leave it as it is (default: 0)

• mask is the type of mask to apply (see Masks)

• CROP is the cropping specification (see Cropping)

• fname is the name of the image file; ‘.png‘ or ‘.gif ‘ will be appended (depending on the default image format
specified in the [ImageWriter] section of the ref file) if not present

SPEC1, SPEC2 etc. are UDG specifications for the sets of UDGs that make up the array. Each UDG specification has
the form:

addr[,attr,step,inc][:MASK]

• addr is the address range specification for the set of UDGs (see below)

• attr is the attribute byte of each UDG in the set (defaults to the value of attr for the UDG array)

• step is the interval between successive bytes of each UDG in the set (defaults to the value of step for the
UDG array)

8.5. Skool macros 85

SkoolKit Documentation, Release 6.0

• inc is added to each byte of every UDG in the set before constructing the image (defaults to the value of inc
for the UDG array)

• MASK is the mask specification

The mask specification (MASK) takes the form:

addr[,step]

• addr is the address range specification for the set of mask UDGs (see below)

• step is the interval between successive bytes of each mask UDG in the set (defaults to the value of step for
the set of UDGs)

Address range specifications (addr) may be given in one of the following forms:

• a single address (e.g. 39144)

• a simple address range (e.g. 33008-33015)

• an address range with a step (e.g. 32768-33792-256)

• an address range with a horizontal and a vertical step (e.g. 63476-63525-1-16; this form specifies the step
between the base addresses of adjacent UDGs in each row as 1, and the step between the base addresses of
adjacent UDGs in each column as 16)

Any of these forms of address ranges can be repeated by appending xN, where N is the desired number of repetitions.
For example:

• 39648x3 is equivalent to 39648;39648;39648

• 32768-32769x2 is equivalent to 32768;32769;32768;32769

As many UDG specifications as required may be supplied, separated by semicolons; the UDGs will be arranged in a
rectangular array with the given width.

Note that, like the main parameters of a #UDGARRAY macro (up to but not including the first semicolon), if any of the
following parts of the parameter string is expressed using arithmetic operations or skool macros, then that part must
be enclosed in parentheses:

• any of the 1-5 parts of a UDG address range specification (separated by - and x)

• the part of a UDG specification after the comma that follows the address range

• any of the 1-5 parts of a mask address range specification (separated by - and x)

• the part of a mask specification after the comma that follows the address range

If an image with the given filename (fname) doesn’t already exist, it will be created. If fname starts with a ‘/’, the
filename is taken to be relative to the root of the HTML disassembly; otherwise the filename is taken to be relative to
the directory defined by the UDGImagePath parameter in the [Paths] section of the ref file.

For example:

; Base sprite
;
; #HTML[#UDGARRAY4;32768-32888-8(base_sprite.png)]

In HTML mode, this instance of the #UDGARRAY macro expands to an element for the image of the 4x4 sprite
formed by the 16 UDGs with base addresses 32768, 32776, 32784 and so on up to 32888; the image file will be named
base_sprite.png.

86 Chapter 8. Technical reference

SkoolKit Documentation, Release 6.0

Version Changes
5.1 Added support for arithmetic expressions and skool macros in the numeric parameters
4.2 Added the ability to specify alt text for the element
4.0 Added the mask parameter and support for AND-OR masking; added support for keyword arguments
3.6 Added support for creating an animated image from an arbitrary sequence of frames
3.1.1 Added support for UDG address ranges with horizontal and vertical steps
3.0 Added image-cropping capabilities
2.4 Added the rotate parameter
2.3.1 Added the flip parameter
2.2.5 Added support for masks
2.0.5 New

Alt text

The value of the alt attribute in the element created by an image macro can be specified by appending a |
character and the required text to the filename. For example:

#SCR(screenshot1|Screenshot 1)

This #SCR macro creates an image named screenshot1.png with alt text ‘Screenshot 1’.

Animation

The image macros may be used to create the frames of an animated image. To create a frame, the fname parameter
must have one of the following forms:

• name* - writes an image file with this name, and also creates a frame with the same name

• name1*name2 - writes an image file named name1, and also creates a frame named name2

• *name - writes no image file, but creates a frame with this name

Then a special form of the #UDGARRAY macro creates the animated image from a set of frames:

#UDGARRAY*FRAME1[;FRAME2;...](fname)

FRAME1, FRAME2 etc. are frame specifications; each one has the form:

name[,delay]

• name is the name of the frame

• delay is the delay between this frame and the next in 1/100ths of a second; it also sets the default delay for
any frames that follow (default: 32)

For example:

; #UDGTABLE {
; #FONT:(hello)$3D00(hello*) |
; #FONT:(there)$3D00(there*) |
; #FONT:(peeps)$3D00(peeps*) |
; #UDGARRAY*hello,50;there;peeps(hello_there_peeps.gif)
; } TABLE#

The #FONT macros create the required frames (and write images of them); the #UDGARRAY macro combines the
three frames into a single animated image, with a delay of 0.5s between each frame.

8.5. Skool macros 87

SkoolKit Documentation, Release 6.0

Cropping

Each image macro accepts a cropping specification (CROP) which takes the form:

x,y,width,height

• x is the x-coordinate of the leftmost pixel column of the constructed image to include in the final image (default:
0); if greater than 0, the image will be cropped on the left

• y is the y-coordinate of the topmost pixel row of the constructed image to include in the final image (default:
0); if greater than 0, the image will be cropped on the top

• width is the width of the final image in pixels (default: width of the constructed image)

• height is the height of the final image in pixels (default: height of the constructed image)

For example:

#UDG40000,scale=2{2,2,12,12}

This #UDG macro creates an image of the UDG at 40000, at scale 2, with the top two rows and bottom two rows of
pixels removed, and the leftmost two columns and rightmost two columns of pixels removed.

Masks

The #UDG and #UDGARRAY macros accept a mask parameter that determines what kind of mask to apply to each
UDG. The supported values are:

• 0 - no mask

• 1 - OR-AND mask (this is the default)

• 2 - AND-OR mask

Given a ‘background’ bit (B), a UDG bit (U), and a mask bit (M), the OR-AND mask works as follows:

• OR the UDG bit (U) onto the background bit (B)

• AND the mask bit (M) onto the result

U M Result
0 0 0 (paper)
0 1 B (transparent)
1 0 0 (paper)
1 1 1 (ink)

The AND-OR mask works as follows:

• AND the mask bit (M) onto the background bit (B)

• OR the UDG bit (U) onto the result

U M Result
0 0 0 (paper)
0 1 B (transparent)
1 0 1 (ink)
1 1 1 (ink)

By default, transparent bits in masked images are rendered in bright green (#00fe00); this colour can be changed by
modifying the TRANSPARENT parameter in the [Colours] section. To make the transparent bits in masked images
actually transparent, set GIFTransparency=1 or PNGAlpha=0 in the [ImageWriter] section.

88 Chapter 8. Technical reference

SkoolKit Documentation, Release 6.0

Snapshot macros

The #POKES, #POPS and #PUSHS macros (described in the following sections) may be used to manipulate the
memory snapshot that is built from the DEFB, DEFM, DEFS and DEFW statements in the skool file. Each macro
expands to an empty string.

#POKES

The #POKES macro POKEs values into the current memory snapshot.

#POKESaddr,byte[,length,step][;addr,byte[,length,step];...]

• addr is the address to POKE

• byte is the value to POKE addr with

• length is the number of addresses to POKE (default: 1)

• step is the address increment to use after each POKE (if length>1; default: 1)

For example:

The UDG looks like this:

#UDG32768(udg_orig)

But it's supposed to look like this:

#PUSHS
#POKES32772,254;32775,136
#UDG32768(udg_fixed)
#POPS

This instance of the #POKES macro does POKE 32772,254 and POKE 32775,136, which fixes a graphic glitch
in the UDG at 32768.

See also #PEEK.

Version Changes
5.1 Added support for arithmetic expressions and skool macros in the numeric parameters
3.1 Added support for ASM mode
2.3.1 Added support for multiple addresses

#POPS

The #POPS macro removes the current memory snapshot and replaces it with the one that was previously saved by a
#PUSHS macro.

#POPS

Version Changes
3.1 Added support for ASM mode

#PUSHS

The #PUSHS macro saves the current memory snapshot, and replaces it with an identical copy with a given name.

8.5. Skool macros 89

SkoolKit Documentation, Release 6.0

#PUSHS[name]

• name is the snapshot name (defaults to an empty string)

The snapshot name must be limited to the characters ‘$’, ‘#’, 0-9, A-Z and a-z; it must not start with a capital letter.
The name can be retrieved by using the get_snapshot_name() method on HtmlWriter.

Version Changes
3.1 Added support for ASM mode

Defining macros with @replace

By using the @replace directive, it is possible to define new macros based on existing ones without writing any Python
code. Some examples are given below.

#asm

There is the #HTML macro for inserting content in HTML mode only, but there is no corresponding macro for inserting
content in ASM mode only. The following @replace directive defines an #asm macro to fill that gap:

@replace=/#asm(\(.*\))/#IF({asm})\1

For example:

#asm(This text appears only in ASM mode.)

#tile

Suppose the game you’re disassembling arranges tiles in groups of nine bytes: the attribute byte first, followed by the
eight graphic bytes. If there is a tile at 32768, then:

#UDG(32769,#PEEK32768)

will create an image of it. If you want to create several tile images, this syntax can get cumbersome; it would be easier
if you could supply just the address of the attribute byte. The following @replace directive defines a #tile macro
that creates a tile image given an attribute byte address:

@replace=/#tile\i/#UDG(\1+1,#PEEK\1)

Now you can create an image of the tile at 32768 like this:

#tile32768

#tiles

If you have several nine-byte tiles arranged one after the other, you might want to create images of all of them in a
single row of a #UDGTABLE. The following @replace directive defines a #tiles macro for this purpose:

@replace=/#tiles\i,\i/#FOR(\1,\1+9*(\2-1),9);;n;#UDG(n+1,#PEEKn); | ;;

Now you can create a #UDGTABLE of images of a series of 10 tiles starting at 32768 like this:

90 Chapter 8. Technical reference

SkoolKit Documentation, Release 6.0

#UDGTABLE { #tiles32768,10 } TABLE#

Ref files

If you want to configure or augment an HTML disassembly, you will need one or more ref files. A ref file can be used
to (for example):

• add a ‘Bugs’ page on which bugs are documented

• add a ‘Trivia’ page on which interesting facts are documented

• add a ‘Pokes’ page on which useful POKEs are listed

• add a ‘Changelog’ page

• add a ‘Glossary’ page

• add a ‘Graphic glitches’ page

• add any other kind of custom page

• change the title of the disassembly

• define the layout of the disassembly index page

• define the link text and titles for the various pages in the disassembly

• define the location of the files and directories in the disassembly

• define the colours used when creating images

A ref file must be formatted into sections separated by section names inside square brackets, like this:

[SectionName]

The contents of each section that may be found in a ref file are described below.

[Colours]

The Colours section contains colour definitions that will be used when creating images. Each line has the form:

name=R,G,B

or:

name=#RGB

where:

• name is the colour name

• R,G,B is a decimal RGB triplet

• #RGB is a hexadecimal RGB triplet (in the usual 6-digit form, or in the short 3-digit form)

Recognised colour names and their default RGB values are:

• TRANSPARENT: 0,254,0 (#00fe00)

• BLACK: 0,0,0 (#000000)

8.6. Ref files 91

SkoolKit Documentation, Release 6.0

• BLUE: 0,0,197 (#0000c5)

• RED: 197,0,0 (#c50000)

• MAGENTA: 197,0,197 (#c500c5)

• GREEN: 0,198,0 (#00c600)

• CYAN: 0,198,197 (#00c6c5)

• YELLOW: 197,198,0 (#c5c600)

• WHITE: 205,198,205 (#cdc6cd)

• BRIGHT_BLUE: 0,0,255 (#0000ff)

• BRIGHT_RED: 255,0,0 (#ff0000)

• BRIGHT_MAGENTA: 255,0,255 (#ff00ff)

• BRIGHT_GREEN: 0,255,0 (#00ff00)

• BRIGHT_CYAN: 0,255,255 (#00ffff)

• BRIGHT_YELLOW: 255,255,0 (#ffff00)

• BRIGHT_WHITE: 255,255,255 (#ffffff)

Version Changes
3.4 Added support for hexadecimal RGB triplets
2.0.5 New

[Config]

The Config section contains configuration parameters in the format:

name=value

Recognised parameters are:

• GameDir - the root directory of the game’s HTML disassembly; if not specified, the base name of the skool or
ref file given on the skool2html.py command line will be used

• HtmlWriterClass - the name of the Python class to use for writing the HTML disassembly of the game
(default: skoolkit.skoolhtml.HtmlWriter); if the class is in a module that is not in the module search
path (e.g. a standalone module that is not part of an installed package), the module’s location may be specified
thus: /path/to/moduledir:module.classname

• RefFiles - a semicolon-separated list of extra ref files to use (in addition to the one named on the
skool2html.py command line, and any others with the same filename prefix)

• SkoolFile - the name of the main skool file to use if not given on the skool2html.py command line; if not
specified, the skool file with the same base name as the ref file will be used

For information on how to create your own Python class for writing an HTML disassembly, see the documentation on
extending SkoolKit.

92 Chapter 8. Technical reference

SkoolKit Documentation, Release 6.0

Ver-
sion

Changes

5.0 Added the RefFiles parameter
3.3.1 Added support to the HtmlWriterClass parameter for specifying a module outside the module

search path
2.2.3 Added the HtmlWriterClass parameter
2.0 New

[Game]

The Game section contains configuration parameters that control certain aspects of the HTML output. The parameters
are in the format:

name=value

Recognised parameters are:

• AddressAnchor - the format of the anchors attached to instructions on disassembly pages and entries on
memory map pages (default: {address})

• AsmSinglePageTemplate - the name of the HTML template used to build the disassembly on a single
page, as opposed to a separate page for each routine and data block (default: None); set this to ‘AsmAllInOne’
to use the AsmAllInOne template

• Copyright - the copyright message that appears in the footer of every page (default: ‘’)

• Created - the message indicating the software used to create the disassembly that appears in the footer of
every page (default: ‘Created using SkoolKit #VERSION.’)

• Font - the base name of the font file to use (default: None); multiple font files can be declared by separating
their names with semicolons

• Game - the name of the game, which appears in the title of every page, and also in the header of every page (if
no logo is defined); if not specified, the base name of the skool file is used

• GameStatusBufferIncludes - a comma-separated list of addresses of entries to include on the ‘Game
status buffer’ page in addition to those that are marked with a g (see the skool file format reference)

• InputRegisterTableHeader - the text displayed in the header of input register tables on routine disas-
sembly pages (default: ‘Input’)

• JavaScript - the base name of the JavaScript file to include in every page (default: None); multiple JavaScript
files can be declared by separating their names with semicolons

• LinkInternalOperands - 1 to hyperlink instruction operands that refer to an address in the same entry as
the instruction, or 0 to leave them unlinked (default: 0)

• LinkOperands - a comma-separated list of instruction types whose operands will be hyperlinked when possi-
ble (default: CALL,DEFW,DJNZ,JP,JR); add LD to the list to enable the address operands of LD instructions
to be hyperlinked as well

• Logo - the text/HTML that will serve as the game logo in the header of every page (typically a skool macro that
creates a suitable image); if not specified, LogoImage is used

• LogoImage - the path to the game logo image, which appears in the header of every page; if the specified file
does not exist, the name of the game is used in place of an image

• OutputRegisterTableHeader - the text displayed in the header of output register tables on routine dis-
assembly pages (default: ‘Output’)

8.6. Ref files 93

SkoolKit Documentation, Release 6.0

• Release - the message indicating the release name and version number of the disassembly that appears in the
footer of every page (default: ‘’)

• StyleSheet - the base name of the CSS file to use (default: skoolkit.css); multiple CSS files can be declared
by separating their names with semicolons

• TitlePrefix - the prefix to use before the game name or logo in the header of the main index page (default:
‘The complete’)

• TitleSuffix - the suffix to use after the game name or logo in the header of the main index page (default:
‘RAM disassembly’)

Every parameter in this section may contain skool macros.

The AddressAnchor parameter contains a standard Python format string that specifies the format of the an-
chors attached to instructions on disassembly pages and entries on memory map pages. The default format string
is {address}, which produces decimal addresses (e.g. #65280). To produce 4-digit, lower case hexadecimal
addresses instead (e.g. #ff00), change AddressAnchor to {address:04x}. Or to produce 4-digit, lower
case hexadecimal addresses if the --hex option is used with skool2html.py, and decimal addresses otherwise:
{address#IF({base}==16)(:04x)}.

Note that an address anchor that starts with an upper case letter (e.g. #FF00) will be interpreted as a skool macro, and
so any format string that could produce such an anchor should be avoided.

Ver-
sion

Changes

6.0 Every parameter (not just Logo) may contain skool macros
5.3 Added the AsmSinglePageTemplate parameter
4.3 Added the AddressAnchor parameter
4.1 Added the LinkInternalOperands parameter
4.0 Set default values for the InputRegisterTableHeader and OutputRegisterTableHeader

parameters; added the Copyright, Created and Release parameters (which used to live in the
[Info] section in SkoolKit 3)

3.7 Added the JavaScript parameter
3.5 Added the Font, LogoImage and StyleSheet parameters (all of which used to live in the [Paths]

section, LogoImage by the name Logo)
3.4 Added the LinkOperands parameter
3.1.2 Added the InputRegisterTableHeader and OutputRegisterTableHeader parameters
2.0.5 Added the Logo parameter
2.0.3 Added the GameStatusBufferIncludes parameter

[ImageWriter]

The ImageWriter section contains configuration parameters that control SkoolKit’s image creation library. The
parameters are in the format:

name=value

Recognised parameters are:

• DefaultAnimationFormat - the default format for animated images: gif (the default) or png

• DefaultFormat - the default image format: png (the default) or gif

• GIFEnableAnimation - 1 to create animated GIFs for images that contain flashing cells, or 0 to create plain
(unanimated) GIFs for such images (default: 1)

94 Chapter 8. Technical reference

SkoolKit Documentation, Release 6.0

• GIFTransparency - 1 to make the TRANSPARENT colour (see [Colours]) in GIF images transparent, or 0
to make it opaque (default: 0)

• PNGAlpha - the alpha value to use for the TRANSPARENT colour (see [Colours]) in PNG images; valid values
are in the range 0-255, where 0 means fully transparent, and 255 means fully opaque (default: 255)

• PNGCompressionLevel - the compression level to use for PNG image data; valid values are in the range
0-9, where 0 means no compression, 1 is the lowest compression level, and 9 is the highest (default: 9)

• PNGEnableAnimation - 1 to create animated PNGs (in APNG format) for images that contain flashing
cells, or 0 to create plain (unanimated) PNG files for such images (default: 1)

The image-creating skool macros will create a file in the default image format if the filename is unspecified, or its
suffix is omitted, or its suffix is neither .png nor .gif. For example, if DefaultFormat is png, then:

#FONT32768,26

will create an image file named font.png. To create a GIF instead (regardless of the default image format):

#FONT32768,26(font.gif)

For images that contain flashing cells, animated GIFs are recommended over animated PNGs in APNG format, because
they are more widely supported in web browsers.

Ver-
sion

Changes

6.0 DefaultAnimationFormat defaults to gif
5.1 Added the DefaultAnimationFormat parameter
3.0.1 Added the DefaultFormat, GIFEnableAnimation, GIFTransparency, PNGAlpha and

PNGEnableAnimation parameters
3.0 New

[Index]

The Index section contains a list of link group IDs in the order in which the link groups will appear on the disas-
sembly index page. The link groups themselves - with the exception of OtherCode - are defined in [Index:*:*]
sections (see below); OtherCode is a special built-in link group that contains links to the index pages of secondary
disassemblies defined by [OtherCode:*] sections.

To see the default Index section, run the following command:

$ skool2html.py -r Index$

Version Changes
2.0.5 New

[Index:*:*]

Each Index:*:* section defines a link group (a group of links on the disassembly home page). The section names
and contents take the form:

[Index:groupID:text]
Page1ID
Page2ID
...

where:

8.6. Ref files 95

SkoolKit Documentation, Release 6.0

• groupID is the link group ID (as may be declared in the [Index] section)

• text is the text of the link group header

• Page1ID, Page2ID etc. are the IDs of the pages that will appear in the link group

To see the default link groups and their contents, run the following command:

$ skool2html.py -r Index:

Version Changes
2.0.5 New

[Links]

The Links section defines the link text for the various pages in the HTML disassembly (as displayed on the disas-
sembly index page). Each line has the form:

PageID=text

where:

• PageID is the ID of the page

• text is the link text

Recognised page IDs are:

• AsmSinglePage - the disassembly page (when a single-page template is specified by the
AsmSinglePageTemplate parameter in the [Game] section)

• Bugs - the ‘Bugs’ page

• Changelog - the ‘Changelog’ page

• DataMap - the ‘Data’ memory map page

• Facts - the ‘Trivia’ page

• GameStatusBuffer - the ‘Game status buffer’ page

• Glossary - the ‘Glossary’ page

• GraphicGlitches - the ‘Graphic glitches’ page

• MemoryMap - the ‘Everything’ memory map page (default: ‘Everything’)

• MessagesMap - the ‘Messages’ memory map page

• Pokes - the ‘Pokes’ page

• RoutinesMap - the ‘Routines’ memory map page

• UnusedMap - the ‘Unused addresses’ memory map page

The default link text for a page is the same as the header defined in the [PageHeaders] section, except where indicated
above.

The link text for a page defined by a [MemoryMap:*], [OtherCode:*] or [Page:*] section also defaults to the page
header text, but can be overridden in this section.

If the link text starts with some text in square brackets, that text alone is used as the link text, and the remaining text is
displayed alongside the hyperlink. For example:

96 Chapter 8. Technical reference

SkoolKit Documentation, Release 6.0

MemoryMap=[Everything] (routines, data, text and unused addresses)

This declares that the link text for the ‘Everything’ memory map page will be ‘Everything’, and ‘(routines, data, text
and unused addresses)’ will be displayed alongside it.

Version Changes
5.3 Added the AsmSinglePage page ID
2.5 Added the UnusedMap page ID
2.2.5 Added the Changelog page ID
2.0.5 New

[MemoryMap:*]

Each MemoryMap:* section defines the properties of a memory map page. The section names take the form:

[MemoryMap:PageID]

where PageID is the unique ID of the memory map page.

Each MemoryMap:* section contains parameters in the form:

name=value

Recognised parameters and their default values are:

• EntryDescriptions - 1 to display entry descriptions, or 0 not to (default: 0)

• EntryTypes - the types of entries to show in the map (by default, every type is shown); entry types are
identified as follows:

– b - DEFB blocks

– c - routines

– g - game status buffer entries

– G - entries whose address appears in the GameStatusBufferIncludes parameter in the [Game]
section

– s - blocks containing bytes that are all the same value

– t - messages

– u - unused addresses

– w - DEFW blocks

• Intro - the text (which may contain HTML markup) displayed at the top of the memory map page (default:
‘’)

• LengthColumn - 1 to display the ‘Length’ column, or 0 not to (default: 0)

• PageByteColumns - 1 to display ‘Page’ and ‘Byte’ columns, or 0 not to (default: 0)

• Write - 1 to write the memory map page, or 0 not to (default: 1)

Every parameter in this section may contain skool macros.

To see the default memory map pages and their properties, run the following command:

$ skool2html.py -r MemoryMap

8.6. Ref files 97

SkoolKit Documentation, Release 6.0

A custom memory map page can be defined by creating a MemoryMap:* section for it. By default, the page will be
written to maps/PageID.html; to change this, add a line to the [Paths] section. The title, page header and link text for
the custom memory map page can be defined in the [Titles], [PageHeaders] and [Links] sections.

Every memory map page is built using the HTML template whose name matches the page ID, if one exists; otherwise,
the stock MemoryMap template is used.

Ver-
sion

Changes

6.0 Every parameter (not just Intro) may contain skool macros
4.0 Added the EntryDescriptions and LengthColumn parameters, and support for the G identifier

in the EntryTypes parameter
2.5 New

[OtherCode:*]

An OtherCode:* section defines a secondary disassembly that will appear under ‘Other code’ on the main disas-
sembly home page. The section name takes the form:

[OtherCode:CodeID]

where CodeID is a unique ID for the secondary disassembly; it must be limited to the characters ‘$’, ‘#’, 0-9, A-Z
and a-z. The unique ID may be used by the #R macro when referring to routines or data blocks in the secondary
disassembly from another disassembly.

An OtherCode:* section may either be empty or contain a single parameter named Source in the form:

Source=fname

where fname is the path to the skool file from which to generate the secondary disassembly. If the Source parameter
is not provided, its value defaults to CodeID.skool.

When a secondary disassembly named CodeID is defined, the following page and directory IDs become available for
use in the [Paths], [Titles], [PageHeaders] and [Links] sections:

• CodeID-Index - the ID of the index page

• CodeID-Asm-* - the IDs of the disassembly pages (* is one of bcgstuw, depending on the entry type)

• CodeID-CodePath - the ID of the directory in which the disassembly pages are written

• CodeID-AsmSinglePage - the ID of the disassembly page (when a single-page template is specified by the
AsmSinglePageTemplate parameter in the [Game] section)

By default, the index page is written to CodeID/CodeID.html, and the disassembly pages are written in a directory
named CodeID; if a single-page template is used, the disassembly page is written to CodeID/asm.html.

Note that the index page is a memory map page, and as such can be configured by creating a [MemoryMap:*] section
(MemoryMap:CodeID-Index) for it.

Version Changes
5.0 Made the Source parameter optional
2.0 New

[Page:*]

A Page:* section either declares a page that already exists, or defines a custom page in the HTML disassembly. The
section name takes the form:

98 Chapter 8. Technical reference

SkoolKit Documentation, Release 6.0

[Page:PageID]

where PageID is a unique ID for the page. The unique ID may be used in an [Index:*:*] section to create a link to
the page in the disassembly index.

A Page:* section contains parameters in the form:

name=value

Recognised parameters are:

• Content - the path (directory and filename) of a page that already exists; when this parameter is supplied, no
others are required

• JavaScript - the base name of the JavaScript file to use in addition to any declared by the JavaScript
parameter in the [Game] section (default: None); multiple JavaScript files can be declared by separating their
names with semicolons

• PageContent - the HTML source of the body of the page; the #INCLUDE macro may be used here to include
the contents of a separate ref file section

• SectionPrefix - the prefix of the names of the ref file sections from which to build the entries on a box page

• SectionType - how to parse and render box page entry sections (when SectionPrefix is defined): as
single-line list items with indentation (ListItems), as multi-line list items prefixed by ‘-‘ (BulletPoints),
or as paragraphs (the default)

Every parameter in this section may contain skool macros.

Note that the Content, SectionPrefix and PageContent parameters are mutually exclusive (and that is their
order of precedence); one of them must be present.

By default, the custom page is written to a file named PageID.html in the root directory of the disassembly; to change
this, add a line to the [Paths] section. The title, page header and link text for the custom page default to ‘PageID’, but
can be overridden in the [Titles], [PageHeaders] and [Links] sections.

Every custom page is built using the HTML template whose name matches the page ID, if one exists; otherwise, either
the Reference template is used (when SectionPrefix is defined), or the Page template is used.

Ver-
sion

Changes

6.0 Added support for SectionType=BulletPoints; every parameter (not just PageContent) may
contain skool macros

5.4 Added the SectionType parameter
5.3 Added the SectionPrefix parameter
3.5 The JavaScript parameter specifies the JavaScript file(s) to use
2.1 New

[PageHeaders]

The PageHeaders section defines the header text for every page in the HTML disassembly. Each line has the form:

PageID=header

where:

• PageID is the ID of the page

• header is the header text

8.6. Ref files 99

SkoolKit Documentation, Release 6.0

Recognised page IDs are:

• Asm-b - disassembly pages for ‘b’ blocks (default: ‘Data’)

• Asm-c - disassembly pages for ‘c’ blocks (default: ‘Routines’)

• Asm-g - disassembly pages for ‘g’ blocks (default: ‘Game status buffer’)

• Asm-s - disassembly pages for ‘s’ blocks (default: ‘Unused’)

• Asm-t - disassembly pages for ‘t’ blocks (default: ‘Messages’)

• Asm-u - disassembly pages for ‘u’ blocks (default: ‘Unused’)

• Asm-w - disassembly pages for ‘w’ blocks (default: ‘Data’)

• AsmSinglePage - the disassembly page (when a single-page template is specified by the
AsmSinglePageTemplate parameter in the [Game] section)

• Bugs - the ‘Bugs’ page

• Changelog - the ‘Changelog’ page

• DataMap - the ‘Data’ memory map page

• Facts - the ‘Trivia’ page

• GameStatusBuffer - the ‘Game status buffer’ page

• Glossary - the ‘Glossary’ page

• GraphicGlitches - the ‘Graphic glitches’ page

• MemoryMap - the ‘Everything’ memory map page

• MessagesMap - the ‘Messages’ memory map page

• Pokes - the ‘Pokes’ page

• RoutinesMap - the ‘Routines’ memory map page

• UnusedMap - the ‘Unused addresses’ memory map page

Every parameter in this section may contain skool macros.

The default header text for a page is the same as the title defined in the [Titles] section, except where indicated above.

The header text for a page defined by a [MemoryMap:*], [OtherCode:*] or [Page:*] section also defaults to the title,
but can be overridden in this section.

Note that the header of the disassembly index page (GameIndex) is not defined in this section; it is composed from
the values of the TitlePrefix and TitleSuffix parameters in the [Game] section.

Version Changes
6.0 The default header for Asm-t pages is ‘Messages’; page headers may contain skool macros
5.3 Added the AsmSinglePage page ID
4.0 New

[Paths]

The Paths section defines the locations of the files and directories in the HTML disassembly. Each line has the form:

ID=path

where:

100 Chapter 8. Technical reference

SkoolKit Documentation, Release 6.0

• ID is the ID of the file or directory

• path is the path of the file or directory relative to the root directory of the disassembly

Recognised file IDs and their default paths are:

• AsmSinglePage - the disassembly page (when a single-page template is specified by the
AsmSinglePageTemplate parameter in the [Game] section; default: asm.html)

• Bugs - the ‘Bugs’ page (default: reference/bugs.html)

• Changelog - the ‘Changelog’ page (default: reference/changelog.html)

• CodeFiles - the format of the disassembly page filenames (default: {address}.html)

• DataMap - the ‘Data’ memory map page (default: maps/data.html)

• Facts - the ‘Trivia’ page (default: reference/facts.html)

• GameIndex - the home page (default: index.html)

• GameStatusBuffer - the ‘Game status buffer’ page (default: buffers/gbuffer.html)

• Glossary - the ‘Glossary’ page (default: reference/glossary.html)

• GraphicGlitches - the ‘Graphic glitches’ page (default: graphics/glitches.html)

• MemoryMap - the ‘Everything’ memory map page (default: maps/all.html)

• MessagesMap - the ‘Messages’ memory map page (default: maps/messages.html)

• Pokes - the ‘Pokes’ page (default: reference/pokes.html)

• RoutinesMap - the ‘Routines’ memory map page (default: maps/routines.html)

• UDGFilename - the format of the default filename for images created by the #UDG macro (default:
udg{addr}_{attr}x{scale}); this is a standard Python format string that recognises the macro parame-
ters addr, attr and scale

• UnusedMap - the ‘Unused addresses’ memory map page (default: maps/unused.html)

Recognised directory IDs and their default paths are:

• CodePath - the directory in which the disassembly pages are written (default: asm)

• FontImagePath - the directory in which font images (created by the #FONT macro) are placed (default:
images/font)

• FontPath - the directory in which font files specified by the Font parameter in the [Game] section are placed
(default: .)

• JavaScriptPath - the directory in which JavaScript files specified by the JavaScript parameter in the
[Game] section and [Page:*] sections are placed (default: .)

• ScreenshotImagePath - the directory in which screenshot images (created by the #SCR macro) are placed
(default: images/scr)

• StyleSheetPath - the directory in which CSS files specified by the StyleSheet parameter in the [Game]
section are placed (default: .)

• UDGImagePath - the directory in which UDG images (created by the #UDG or #UDGARRAY macro) are
placed (default: images/udgs)

Every parameter in this section may contain skool macros.

8.6. Ref files 101

SkoolKit Documentation, Release 6.0

The CodeFiles parameter contains a standard Python format string that specifies the format of a disassembly
page filename based on the address of the routine or data block. The default format string is {address}.
html, which produces decimal addresses (e.g. 65280.html). To produce 4-digit, upper case hexadecimal ad-
dresses instead (e.g. FF00.html), change CodeFiles to {address:04X}.html. Or to produce 4-digit, up-
per case hexadecimal addresses if the --hex option is used with skool2html.py, and decimal addresses otherwise:
{address#IF({base}==16)(:04X)}.html.

Ver-
sion

Changes

6.0 Paths may contain skool macros; added the UDGFilename parameter (which used to live in the
[Game] section)

5.3 Added the AsmSinglePage file ID
4.3 Added the CodeFiles file ID
3.1.1 Added the FontPath directory ID
2.5 Added the UnusedMap file ID
2.2.5 Added the Changelog file ID
2.1.1 Added the CodePath directory ID
2.0.5 Added the FontImagePath directory ID
2.0 New

[Resources]

The Resources section lists files that will be copied into the disassembly build directory when skool2html.py is run.
Each line has the form:

fname=destDir

where:

• fname is the name of the file to copy

• destDir is the destination directory, relative to the root directory of the disassembly; the directory will be
created if it doesn’t already exist

The files to be copied must be present in skool2html.py‘s search path in order for it to find them; to see the search path,
run skool2html.py -s.

If your disassembly requires pre-built images or other resources that SkoolKit does not build, listing them in this
section ensures that they will be copied into place whenever the disassembly is built.

Version Changes
3.6 New

[Template:*]

Each Template:* section defines a template used to build an HTML page (or part of one).

To see the contents of the default templates, run the following command:

$ skool2html.py -r Template:

For more information, see HTML templates.

Version Changes
4.0 New

102 Chapter 8. Technical reference

SkoolKit Documentation, Release 6.0

[Titles]

The Titles section defines the title (i.e. text used to compose the <title> element) for every page in the HTML
disassembly. Each line has the form:

PageID=title

where:

• PageID is the ID of the page

• title is the page title

Recognised page IDs and their default titles are:

• Asm-b - disassembly pages for ‘b’ blocks (default: ‘Data at’)

• Asm-c - disassembly pages for ‘c’ blocks (default: ‘Routine at’)

• Asm-g - disassembly pages for ‘g’ blocks (default: ‘Game status buffer entry at’)

• Asm-s - disassembly pages for ‘s’ blocks (default: ‘Unused RAM at’)

• Asm-t - disassembly pages for ‘t’ blocks (default: ‘Text at’)

• Asm-u - disassembly pages for ‘u’ blocks (default: ‘Unused RAM at’)

• Asm-w - disassembly pages for ‘w’ blocks (default: ‘Data at’)

• AsmSinglePage - the disassembly page (when a single-page template is specified by the
AsmSinglePageTemplate parameter in the [Game] section; default: ‘Disassembly’)

• Bugs - the ‘Bugs’ page (default: ‘Bugs’)

• Changelog - the ‘Changelog’ page (default: ‘Changelog’)

• DataMap - the ‘Data’ memory map page (default: ‘Data’)

• Facts - the ‘Trivia’ page (default: ‘Trivia’)

• GameIndex - the disassembly index page (default: ‘Index’)

• GameStatusBuffer - the ‘Game status buffer’ page (default: ‘Game status buffer’)

• Glossary - the ‘Glossary’ page (default: ‘Glossary’)

• GraphicGlitches - the ‘Graphic glitches’ page (default: ‘Graphic glitches’)

• MemoryMap - the ‘Everything’ memory map page (default: ‘Memory map’)

• MessagesMap - the ‘Messages’ memory map page (default: ‘Messages’)

• Pokes - the ‘Pokes’ page (default: ‘Pokes’)

• RoutinesMap - the ‘Routines’ memory map page (default: ‘Routines’)

• UnusedMap - the ‘Unused addresses’ memory map page (default: ‘Unused addresses’)

Every parameter in this section may contain skool macros.

The title of a page defined by a [MemoryMap:*], [OtherCode:*] or [Page:*] section defaults to the page ID, but can
be overridden in this section.

8.6. Ref files 103

SkoolKit Documentation, Release 6.0

Version Changes
6.0 The default title for Asm-t pages is ‘Text at’; titles may contain skool macros
5.3 Added the AsmSinglePage page ID
4.0 Added the Asm-* page IDs
2.5 Added the UnusedMap page ID
2.2.5 Added the Changelog page ID
2.0.5 New

Box pages

A ‘box page’ is an HTML page that contains entries (blocks of arbitrary text) distinguished by alternating back-
ground colours, and a table of contents (links to each entry). It is defined by a [Page:*] section that contains a
SectionPrefix parameter, which determines the prefix of the ref file sections from which the entries are built.

SkoolKit defines some box pages by default. Their names and the ref file sections that can be used to define their
entries are as follows:

• Bugs - [Bug:title] or [Bug:anchor:title]

• Changelog - [Changelog:title] or [Changelog:anchor:title]

• Facts - [Fact:title] or [Fact:anchor:title]

• Glossary - [Glossary:title] or [Glossary:anchor:title]

• GraphicGlitches - [GraphicGlitch:title] or [GraphicGlitch:anchor:title]

• Pokes - [Poke:title] or [Poke:anchor:title]

To see the contents of the default [Page:*] sections, run the following command:

$ skool2html.py -r Page:

If anchor is omitted from an entry section name, it defaults to the title converted to lower case with parentheses and
whitespace characters replaced by underscores.

By default, a box page entry section is parsed as a sequence of paragraphs separated by blank lines. For example:

[Bug:anchor:title]
First paragraph.

Second paragraph.

...

However, if the SectionType parameter in the [Page:*] section is set to ListItems, each entry section is parsed
as a sequence of single-line list items with indentation. For example:

[Changelog:title]
Intro text.

First top-level item.
First subitem.
Second subitem.
First subsubitem.

Second top-level item.
...

104 Chapter 8. Technical reference

SkoolKit Documentation, Release 6.0

The intro text and the first top-level item must be separated by a blank line. Lower-level items are created by using
indentation, as shown. Blank lines between items are optional and are ignored. If the intro text is a single hyphen (-),
it is not included in the final HTML rendering.

If your list items are long, you might prefer to set the SectionType parameter to BulletPoints; in that case,
each entry section is parsed as a sequence of multi-line list items prefixed by ‘-‘. For example:

[Changes:title]
Intro text.

- First top-level item,
split over two lines.
- First subitem, also
split over two lines.

- Second subitem, on one line this time.
- First subsubitem,

this time split
over three lines.

- Second top-level item.
...

An entry section’s anchor, title and contents may contain HTML markup and skool macros.

Ver-
sion

Changes

6.0 Added support for parsing an entry section as a sequence of multi-line list items prefixed by ‘-‘
(SectionType=BulletPoints); the anchor and title of an entry section name may contain
skool macros

5.4 The anchor part of an entry section name is optional

Ref file comments

A comment may be added to a ref file by starting a line with a semicolon. For example:

; This is a comment

If a non-comment line in a ref file section needs to start with a semicolon, it can be escaped by doubling it:

[PageContent:Custom]
<code>
;; This is not a ref file comment
</code>

The content of this section will be rendered thus:

<code>
; This is not a ref file comment
</code>

Square brackets

If a ref file section needs to contain a line that looks like a section header (i.e. like [SectionName]), then to prevent
that line from being parsed as a section header it can be escaped by doubling the opening square bracket:

8.6. Ref files 105

SkoolKit Documentation, Release 6.0

[PageContent:Custom]
<code>
[[This is not a section header]
</code>

The content of this section will be rendered thus:

<code>
[This is not a section header]
</code>

In fact, any line that starts with two opening square brackets will be rendered with the first one removed.

HTML templates

Every page in an HTML disassembly is built from a single full-page template and several subtemplates defined by
[Template:*] sections in the ref file.

A template may contain ‘replacement fields’ - identifiers enclosed by braces ({ and }) - that are replaced by appropriate
content (typically derived from the skool file or a ref file section) when the template is formatted. The following
‘universal’ identifiers are available in every template:

• Game - a dictionary of the parameters in the [Game] section

• SkoolKit - a dictionary of parameters relevant to the page currently being built

The parameters in the SkoolKit dictionary are:

• index_href - the relative path to the disassembly index page

• page_header - the page header text (as defined in the [PageHeaders] section)

• page_id - the page ID (e.g. GameIndex, MemoryMap)

• title - the title of the page (as defined in the [Titles] section)

The parameters in a dictionary are accessed using the [param] notation; for example, wherever
{Game[Copyright]} appears in a template, it is replaced by the value of the Copyright parameter in the
[Game] section when the template is formatted.

In addition to the universal identifiers, the following page-level identifiers are available in every full-page template:

• m_javascript - replaced by any number of copies of the javascript subtemplate

• m_stylesheet - replaced by one or more copies of the stylesheet subtemplate

• t_footer - replaced by a copy of the footer subtemplate

Asm

The Asm template is the full-page template that is used to build disassembly pages.

The following identifiers are available (in addition to the universal and page-level identifiers):

• disassembly - replaced by sequences of copies of the asm_instruction subtemplate, punctuated by copies of
the asm_comment subtemplate

• entry - a dictionary of parameters corresponding to the current memory map entry (see below)

• next_entry - a dictionary of parameters corresponding to the next memory map entry (see below)

106 Chapter 8. Technical reference

SkoolKit Documentation, Release 6.0

• prev_entry - a dictionary of parameters corresponding to the previous memory map entry (see below)

• registers_input - replaced by any number of copies of the asm_register subtemplate

• registers_output - replaced by any number of copies of the asm_register subtemplate

The parameters in the prev_entry, entry and next_entry dictionaries are:

• address - the address of the entry (may be in decimal or hexadecimal format, depending on how it appears in
the skool file, and the options passed to skool2html.py)

• annotated - ‘1’ if any instructions in the entry have a non-empty comment field, ‘0’ otherwise

• byte - the LSB of the entry address

• description - the entry description

• exists - ‘1’ if the entry exists, ‘0’ otherwise

• href - the relative path to the disassembly page for the entry (useful only for prev_entry and
next_entry)

• label - the ASM label of the first instruction in the entry

• labels - ‘1’ if any instructions in the entry have an ASM label, ‘0’ otherwise

• location - the address of the entry as a decimal number

• map_href - the relative path to the entry on the ‘Memory Map’ page

• page - the MSB of the entry address

• size - the size of the entry in bytes

• title - the title of the entry

• type - the block type of the entry (‘b’, ‘c’, ‘g’, ‘s’, ‘t’, ‘u’ or ‘w’)

The entry dictionary also contains the following parameters:

• input - ‘1’ if there are input register values defined, ‘0’ otherwise

• output - ‘1’ if there are output register values defined, ‘0’ otherwise

To see the default Asm template, run the following command:

$ skool2html.py -r Template:Asm$

AsmAllInOne

The AsmAllInOne template is a full-page template that may be used to build a disassembly on a single page (by
setting the AsmSinglePageTemplate parameter in the [Game] section).

The following identifier is available (in addition to the universal and page-level identifiers):

• m_asm_entry - replaced by one or more copies of the asm_entry subtemplate

To see the default AsmAllInOne template, run the following command:

$ skool2html.py -r Template:AsmAllInOne

New in version 5.3.

8.7. HTML templates 107

SkoolKit Documentation, Release 6.0

GameIndex

The GameIndex template is the full-page template that is used to build the disassembly index page.

The following identifier is available (in addition to the universal and page-level identifiers):

• m_index_section - replaced by any number of copies of the index_section subtemplate

To see the default GameIndex template, run the following command:

$ skool2html.py -r Template:GameIndex

MemoryMap

The MemoryMap template is the full-page template that is used to build memory map pages and the ‘Game status
buffer’ page.

The following identifiers are available (in addition to the universal and page-level identifiers):

• MemoryMap - a dictionary of the parameters in the corresponding [MemoryMap:*] section

• m_map_entry - replaced by one or more copies of the map_entry subtemplate

To see the default MemoryMap template, run the following command:

$ skool2html.py -r Template:MemoryMap

Page

The Page template is the full-page template that is used to build custom non-box pages defined by [Page:*] sections.

The following identifier is available (in addition to the universal and page-level identifiers):

• content - replaced by the value of the PageContent parameter in the corresponding [Page:*] section

To see the default Page template, run the following command:

$ skool2html.py -r Template:Page

Reference

The Reference template is the full-page template that is used to build box pages.

The following identifiers are available (in addition to the universal and page-level identifiers):

• entries - replaced by one or more copies of the list_entry subtemplate (when the page’s SectionType is
BulletPoints or ListItems), or the reference_entry subtemplate

• m_contents_list_item - replaced by one or more copies of the contents_list_item subtemplate

To see the default Reference template, run the following command:

$ skool2html.py -r Template:Reference

108 Chapter 8. Technical reference

SkoolKit Documentation, Release 6.0

anchor

The anchor template is the subtemplate used to format a page anchor (by default, a element with an id
attribute).

The following identifier is available (in addition to the universal identifiers):

• anchor - the value of the id attribute

To see the default anchor template, run the following command:

$ skool2html.py -r Template:anchor

asm_comment

The asm_comment template is the subtemplate used by the Asm full-page template and the asm_entry subtemplate
to format block start comments, mid-block comments and block end comments.

The following identifiers are available (in addition to the universal identifiers):

• entry - a dictionary of parameters corresponding to the current memory map entry (see Asm)

• m_paragraph - replaced by one or more copies of the paragraph subtemplate

• t_anchor - replaced by a copy of the anchor subtemplate (when formatting a block start comment or a mid-
block comment), or by an empty string (when formatting a block end comment)

To see the default asm_comment template, run the following command:

$ skool2html.py -r Template:asm_comment

asm_entry

The asm_entry template is the subtemplate used by the AsmAllInOne full-page template to format the disassembly
of a memory map entry.

The following identifiers are available (in addition to the universal identifiers):

• disassembly - replaced by sequences of copies of the asm_instruction subtemplate, punctuated by copies of
the asm_comment subtemplate

• entry - a dictionary of parameters corresponding to the memory map entry; the parameters in this dictionary
are the same as those in the entry dictionary in the Asm template

• registers_input - replaced by any number of copies of the asm_register subtemplate

• registers_output - replaced by any number of copies of the asm_register subtemplate

To see the default asm_entry template, run the following command:

$ skool2html.py -r Template:asm_entry

New in version 5.3.

8.7. HTML templates 109

SkoolKit Documentation, Release 6.0

asm_instruction

The asm_instruction template is the subtemplate used by the Asm full-page template and the asm_entry subtem-
plate to format an instruction (including its label, address, operation and comment).

The following identifiers are available (in addition to the universal identifiers):

• address - the address of the instruction (may be in decimal or hexadecimal format, depending on how it
appears in the skool file, and the options passed to skool2html.py)

• annotated - ‘1’ if the instruction has a comment field, ‘0’ otherwise

• called - ‘2’ if the instruction is an entry point, ‘1’ otherwise

• comment - the text of the instruction’s comment field

• comment_rowspan - the number of instructions to which the comment field applies

• entry - a dictionary of parameters corresponding to the memory map entry that contains the instruction (see
Asm)

• label - the instruction’s ASM label

• operation - the assembly language operation (e.g. ‘LD A,B’), with operand hyperlinked if appropriate

• t_anchor - replaced by a copy of the anchor subtemplate

To see the default asm_instruction template, run the following command:

$ skool2html.py -r Template:asm_instruction

asm_register

The asm_register template is the subtemplate used by the Asm full-page template and the asm_entry subtemplate
to format each row in a table of input register values or output register values.

The following identifiers are available (in addition to the universal identifiers):

• description - the register’s description (as it appears in the register section for the current entry in the skool
file)

• entry - a dictionary of parameters corresponding to the current memory map entry (see Asm)

• name - the register’s name (e.g. ‘HL’)

To see the default asm_register template, run the following command:

$ skool2html.py -r Template:asm_register

contents_list_item

The contents_list_item template is the subtemplate used by the Reference full-page template to format each
item in the contents list on a box page.

The following identifiers are available (in addition to the universal identifiers):

• href - the URL to the entry on the page

• title - the entry title

To see the default contents_list_item template, run the following command:

110 Chapter 8. Technical reference

SkoolKit Documentation, Release 6.0

$ skool2html.py -r Template:contents_list_item

footer

The footer template is the subtemplate used by the full-page templates to format the <footer> element of a page.

To see the default footer template, run the following command:

$ skool2html.py -r Template:footer

New in version 5.0.

img

The img template is the subtemplate used to format elements.

The following identifiers are available (in addition to the universal identifiers):

• alt - the ‘alt’ text for the image

• src - the relative path to the image file

To see the default img template, run the following command:

$ skool2html.py -r Template:img

index_section

The index_section template is the subtemplate used by the GameIndex full-page template to format each group
of links on the disassembly index page.

The following identifiers are available (in addition to the universal identifiers):

• header - the header text for the group of links (as defined in the name of the [Index:*:*] section)

• m_index_section_item - replaced by one or more copies of the index_section_item subtemplate

To see the default index_section template, run the following command:

$ skool2html.py -r Template:index_section$

index_section_item

The index_section_item template is the subtemplate used by the index_section subtemplate to format each link
in a link group on the disassembly index page.

The following identifiers are available (in addition to the universal identifiers):

• href - the relative path to the page being linked to

• link_text - the link text for the page (as defined in the [Links] section)

• other_text - the supplementary text displayed alongside the link (as defined in the [Links] section)

To see the default index_section_item template, run the following command:

8.7. HTML templates 111

SkoolKit Documentation, Release 6.0

$ skool2html.py -r Template:index_section_item

javascript

The javascript template is the subtemplate used by the full-page templates to format each <script> element in
the head of a page.

The following identifier is available (in addition to the universal identifiers):

• src - the relative path to the JavaScript file

To see the default javascript template, run the following command:

$ skool2html.py -r Template:javascript

link

The link template is the subtemplate used to format the hyperlinks created by the #LINK and #R macros, and the
hyperlinks in instruction operands on disassembly pages.

The following identifiers are available (in addition to the universal identifiers):

• href - the relative path to the page being linked to

• link_text - the link text for the page

To see the default link template, run the following command:

$ skool2html.py -r Template:link

list

The list template is used by the #LIST macro to format a list.

The following identifiers are available (in addition to the universal identifiers):

• class - the CSS class name for the list

• m_list_item - replaced by any number of copies of the list_item subtemplate

To see the default list template, run the following command:

$ skool2html.py -r Template:list$

New in version 4.2.

list_entry

The list_entry is the subtemplate used by the Reference full-page template to format each entry on a box page
whose SectionType is BulletPoints or ListItems.

The following identifiers are available (in addition to the universal identifiers):

• description - the entry intro text

• num - ‘1’ or ‘2’, depending on the order of the entry on the page

112 Chapter 8. Technical reference

SkoolKit Documentation, Release 6.0

• t_anchor - replaced by a copy of the anchor subtemplate (with the entry title as the anchor name)

• t_list_items - replaced by a copy of the list_items subtemplate

• title - the entry title

To see the default list_entry template, run the following command:

$ skool2html.py -r Template:list_entry

Changed in version 6.0: The name of this template changed from changelog_entry to list_entry; accord-
ingly, the name of the t_changelog_item_list identifier changed to t_list_items.

list_item

The list_item template is the subtemplate used by the list template and the list_items subtemplate to format each
item in the list.

The following identifier is available (in addition to the universal identifiers):

• item - replaced by the text of the list item

To see the default list_item template, run the following command:

$ skool2html.py -r Template:list_item$

New in version 4.2.

list_items

The list_items template is the subtemplate used by the list_entry subtemplate to format a list of items in an entry
on a box page whose SectionType is BulletPoints or ListItems, and also by the list_item subtemplate to
format a list of subitems or subsubitems etc.

The following identifiers are available (in addition to the universal identifiers):

• indent - the indentation level of the item list: ‘’ (blank string) for the list of top-level items, ‘1’ for a list of
subitems, ‘2’ for a list of subsubitems etc.

• m_list_item - replaced by one or more copies of the list_item subtemplate

To see the default list_items template, run the following command:

$ skool2html.py -r Template:list_items

Changed in version 6.0: The name of this template changed from changelog_item_list to list_items;
accordingly, the name of the m_changelog_item identifier changed to m_list_item.

map_entry

The map_entry template is the subtemplate used by the MemoryMap full-page template to format each entry on the
memory map pages and the ‘Game status buffer’ page.

The following identifiers are available (in addition to the universal identifiers):

• MemoryMap - a dictionary of parameters from the corresponding [MemoryMap:*] section

• entry - a dictionary of parameters corresponding to the current memory map entry

8.7. HTML templates 113

SkoolKit Documentation, Release 6.0

The parameters in the entry dictionary are:

• address - the address of the entry (may be in decimal or hexadecimal format, depending on how it appears in
the skool file, and the options passed to skool2html.py)

• byte - the LSB of the entry address

• description - the entry description

• exists - ‘1’

• href - the relative path to the disassembly page for the entry

• label - the ASM label of the first instruction in the entry

• labels - ‘1’ if any instructions in the entry have an ASM label, ‘0’ otherwise

• location - the address of the entry as a decimal number

• page - the MSB of the entry address

• size - the size of the entry in bytes

• title - the title of the entry

• type - the block type of the entry (‘b’, ‘c’, ‘g’, ‘s’, ‘t’, ‘u’ or ‘w’)

To see the default map_entry template, run the following command:

$ skool2html.py -r Template:map_entry

paragraph

The paragraph template is the subtemplate used to format each paragraph in the following items:

• memory map entry descriptions (on disassembly pages and memory map pages)

• block start comments, mid-block comments and block end comments on disassembly pages

• entries on a box page

The following identifier is available (in addition to the universal identifiers):

• paragraph - the text of the paragraph

To see the default paragraph template, run the following command:

$ skool2html.py -r Template:paragraph

reference_entry

The reference_entry template is the subtemplate used by the Reference full-page template to format each entry
on a box page that has a default SectionType.

The following identifiers are available (in addition to the universal identifiers):

• contents - replaced by the pre-formatted contents of the relevant entry

• num - ‘1’ or ‘2’, depending on the order of the entry on the page

• title - the entry title

To see the default reference_entry template, run the following command:

114 Chapter 8. Technical reference

SkoolKit Documentation, Release 6.0

$ skool2html.py -r Template:reference_entry

reg

The reg template is the subtemplate used by the #REG macro to format a register name.

The following identifier is available (in addition to the universal identifiers):

• reg - the register name (e.g. ‘HL’)

To see the default reg template, run the following command:

$ skool2html.py -r Template:reg

stylesheet

The stylesheet template is the subtemplate used by the full-page templates to format each <link> element for a
CSS file in the head of a page.

The following identifier is available (in addition to the universal identifiers):

• href - the relative path to the CSS file

To see the default stylesheet template, run the following command:

$ skool2html.py -r Template:stylesheet

table

The table template is used by the #TABLE macro to format a table.

The following identifiers are available (in addition to the universal identifiers):

• class - the CSS class name for the table

• m_table_row - replaced by any number of copies of the table_row subtemplate

To see the default table template, run the following command:

$ skool2html.py -r Template:table$

New in version 4.2.

table_cell

The table_cell template is the subtemplate used by the table_row template to format each non-header cell in the
table row.

The following identifiers are available (in addition to the universal identifiers):

• class - the CSS class name for the cell

• colspan - the number of columns spanned by the cell

• contents - the contents of the cell

• rowspan - the number of rows spanned by the cell

8.7. HTML templates 115

SkoolKit Documentation, Release 6.0

To see the default table_cell template, run the following command:

$ skool2html.py -r Template:table_cell

New in version 4.2.

table_header_cell

The table_header_cell template is the subtemplate used by the table_row template to format each header cell
in the table row.

The following identifiers are available (in addition to the universal identifiers):

• colspan - the number of columns spanned by the cell

• contents - the contents of the cell

• rowspan - the number of rows spanned by the cell

To see the default table_header_cell template, run the following command:

$ skool2html.py -r Template:table_header_cell

New in version 4.2.

table_row

The table_row template is the subtemplate used by the table template to format each row in the table.

The following identifier is available (in addition to the universal identifiers):

• cells - replaced by one or more copies of the table_cell or table_header_cell subtemplate

To see the default table_row template, run the following command:

$ skool2html.py -r Template:table_row

New in version 4.2.

Page-specific templates

When SkoolKit builds an HTML page, it uses the template whose name matches the page ID (PageID) if it exists, or
one of the stock page-level templates otherwise. For example, when building the RoutinesMap memory map page,
SkoolKit uses the RoutinesMap template if it exists, or the stock MemoryMap template otherwise.

Page type Preferred template Stock template
Home (index) GameIndex GameIndex
Other code index CodeID-Index MemoryMap
Routine/data block [CodeID-]Asm-* Asm
Disassembly (single page) [CodeID-]AsmSinglePage AsmAllInOne
Memory map PageID MemoryMap
Box page PageID Reference
Custom page (non-box) PageID Page

When SkoolKit builds an element of an HTML page whose format is defined by a subtemplate, it uses the subtemplate
whose name starts with PageID- if it exists, or one of the stock subtemplates otherwise. For example, when building

116 Chapter 8. Technical reference

SkoolKit Documentation, Release 6.0

the footer of the Changelog page, SkoolKit uses the Changelog-footer template if it exists, or the stock footer
template otherwise.

Element type Preferred template Stock
subtemplate

Registers table [CodeID-]Asm-*-asm_registerasm_register
Routine/data block comment [CodeID-]Asm-*-asm_comment asm_comment
Instruction [CodeID-]Asm-*-asm_instructionasm_instruction
Single-page disassembly routine/data block [CodeID-]AsmSinglePage-asm_entryasm_entry
Box page entry (paragraphs) PageID-entry reference_entry
Box page entry (list items) PageID-entry list_entry
Box page entry list PageID-item_list list_items
Box page entry list item PageID-list_item list_item
Box page contents list item PageID-contents_list_item con-

tents_list_item
Paragraph on a routine/data block page, box page or
memory map page

PageID-paragraph paragraph

Entry on a memory map page PageID-map_entry map_entry
<link> element for a CSS file PageID-stylesheet stylesheet
<script> element PageID-javascript javascript
 element PageID-img img
Hyperlink PageID-link link
Page anchor PageID-anchor anchor
Page footer PageID-footer footer
Register name rendered by the #REG macro PageID-reg reg

List created by the #LIST macro PageID-list list
PageID-list_item list_item

Table created by the #TABLE macro

PageID-table table
PageID-table_row table_row
PageID-table_header_cell ta-

ble_header_cell
PageID-table_cell table_cell

Wherever Asm-* appears in the tables above, it means one of Asm-b, Asm-c, Asm-g, Asm-s, Asm-t, Asm-u or
Asm-w, depending on the type of code or data block.

ASM modes and directives

A skool file may contain directives that are processed during the parsing phase. Exactly how a directive is processed
(and whether it is executed) depends on the ‘substitution mode’ and ‘bugfix mode’ in which the skool file is being
parsed.

Substitution modes

There are three substitution modes: @isub, @ssub, and @rsub. These modes are described in the following sub-
sections.

@isub mode

In @isub mode, @isub directives are executed, but @ssub, and @rsub directives are not. The main purpose of
@isub mode is to make the minimum number of instruction substitutions necessary to produce an ASM file that

8.8. ASM modes and directives 117

SkoolKit Documentation, Release 6.0

assembles.

For example:

@isub=LD A,(32512)
25396 LD A,(m)

This @isub directive ensures that LD A,(m) is replaced by the valid instruction LD A,(32512) when rendering
in ASM mode.

@isub mode is invoked by default when running skool2asm.py.

@ssub mode

In @ssub mode, @isub and @ssub directives are executed, but @rsub directives are not. The main purpose of
@ssub mode is to replace LSBs, MSBs and full addresses in the operands of instructions with labels, to make the
code amenable to some degree of relocation, but without actually removing or inserting any code.

For example:

@ssub=LD (27015+1),A

*27012 LD (27016),A ; Change the instruction below from SET 0,B to RES 0,B
; or vice versa

27015 SET 0,B

This @ssub directive replaces LD (27016),A with LD (27015+1),A; the 27015 will be replaced by the label
for that address before rendering. (27016 cannot be replaced by a label, since it is not the address of an instruction.)

@ssub mode is invoked by passing the -s option to skool2asm.py.

@rsub mode

In @rsub mode, @isub, @ssub and @rsub directives are executed. The main purpose of @rsub mode is to make
code unconditionally relocatable, even if that requires the removal of existing code or the insertion of new code.

For example:

23997 LD HL,32766
@ssub=LD (HL),24002%256
24000 LD (HL),194

@rsub+begin
INC L
LD (HL),24002/256

@rsub+end
24002 XOR A

This @rsub block directive inserts two instructions that ensure that the address stored at 32766 will have the correct
MSB as well as the correct LSB, regardless of where the code originally at 24002 now lives.

@rsub mode is invoked by passing the -r option to skool2asm.py. @rsub mode also implies @ofix mode.

Bugfix modes

There are three bugfix modes: @ofix, @bfix and @rfix. These modes are described in the following subsections.

118 Chapter 8. Technical reference

SkoolKit Documentation, Release 6.0

@ofix mode

In @ofix mode, @ofix directives are executed, but @bfix and @rfix directives are not. The main purpose of
@ofix mode is to fix instructions that have faulty operands.

For example:

@ofix-begin
27872 CALL 27633 ; This should be CALL 27634

@ofix+else
CALL 27634

@ofix+end

These @ofix block directives fix the faulty operand of the CALL instruction.

@ofix mode is invoked by passing the -f 1 option to skool2asm.py.

@bfix mode

In @bfix mode, @ofix and @bfix directives are executed, but @rfix directives are not. The main purpose of
@bfix mode is to fix bugs by replacing instructions, but without changing the start address of any routines, routine
entry points, or data blocks.

For example:

@bfix-begin
32205 JR Z,32232 ; This should be JR NZ,32232

@bfix+else
JR NZ,32232 ;

@bfix+end

@bfix mode is invoked by passing the -f 2 option to skool2asm.py.

@rfix mode

In @rfix mode, @ofix, @bfix and @rfix directives are executed. The purpose of @rfix mode is to fix bugs that
cannot be fixed without moving code around (to make space for the fix).

For example:

28432 DEC HL
@rfix+begin

LD A,H
OR L

@rfix+end
28433 JP Z,29712

These @rfix block directives insert some instructions to fix the faulty check on whether HL holds 0.

@rfix mode is invoked by passing the -f 3 option to skool2asm.py. @rfix mode implies @rsub mode.

ASM directives

The ASM directives recognised by SkoolKit are described in the following subsections.

8.8. ASM modes and directives 119

SkoolKit Documentation, Release 6.0

@assemble

The @assemble directive controls whether assembly language instructions are converted into byte values for the
purpose of populating the memory snapshot.

@assemble=N

• N is 1 to start converting at the next instruction, or 0 to stop

For example:

; The eight bytes of code in this routine are also used as UDG data.
; .
; #HTML(#UDG44919)
@assemble=1
c44919 LD DE,46572 ;
44922 CP 200 ;
44924 JP 45429 ;

@assemble=0

The @assemble=1 directive is required to define the bytes for addresses 44919-44926. If it were not present, the
memory snapshot would contain zeroes at those addresses, and the image created by the #UDG macro would be blank.

Note that DEFB, DEFM, DEFS and DEFW statements are always converted into byte values and inserted into the
memory snapshot; the @assemble directive is only required for assembly language instructions.

Version Changes
5.0 New

@bfix

The @bfix directive makes an instruction substitution in @bfix mode.

@bfix=INSTRUCTION

• INSTRUCTION is the replacement instruction

For example:

@bfix=DEFM "Phosphorus"
t57532 DEFM "Phosphorous"

@bfix block directives

The @bfix block directives define a block of lines that will be inserted or removed in @bfix mode.

The syntax for defining a block that will be inserted in @bfix mode (but left out otherwise) is:

@bfix+begin
... ; Lines to be inserted
@bfix+end

The syntax for defining a block that will be removed in @bfix mode (but left in otherwise) is:

@bfix-begin
... ; Lines to be removed
@bfix-end

120 Chapter 8. Technical reference

SkoolKit Documentation, Release 6.0

Typically, though, it is desirable to define a block that will be removed in @bfix mode right next to the block that
will be inserted in its place. That may be done thus:

@bfix-begin
... ; Instructions to be removed
@bfix+else
... ; Instructions to be inserted
@bfix+end

which is equivalent to:

@bfix-begin
... ; Instructions to be removed
@bfix-end
@bfix+begin
... ; Instructions to be inserted
@bfix+end

For example:

@bfix-begin
32205 JR Z,32232 ; This should be JR NZ,32232

@bfix+else
JR NZ,32232 ;

@bfix+end

@end

The @end directive may be used to indicate where to stop parsing the skool file for the purpose of generating ASM
output. Everything after the @end directive is ignored by skool2asm.py.

See also @start.

Version Changes
2.2.2 New

@equ

The @equ directive defines an EQU directive that will appear in the ASM output.

@equ=label=value

• label is the label

• value is the value assigned to the label

For example:

@equ=ATTRS=22528
c32768 LD HL,22528

This will produce an EQU directive (ATTRS EQU 22528) in the ASM output, and replace the operand of the in-
struction at 32768 with a label: LD HL,ATTRS.

Version Changes
5.4 New

8.8. ASM modes and directives 121

SkoolKit Documentation, Release 6.0

@ignoreua

The @ignoreua directive suppresses any warnings that would otherwise be reported concerning addresses not con-
verted to labels in the comment that follows; the comment may be an entry title, an entry description, a register
description section, a block start comment, a mid-block comment, a block end comment, or an instruction-level com-
ment.

To apply the directive to an entry title:

@ignoreua
; Prepare data at 32768
c32768 LD A,(HL)

If the @ignoreua directive were not present, a warning would be printed (during the rendering phase) about the
entry title containing an address (32768) that has not been converted to a label.

To apply the directive to an entry description:

; Prepare data in page 128
;
@ignoreua
; This routine operates on the data at 32768.
c49152 LD A,(HL)

If the @ignoreua directive were not present, a warning would be printed (during the rendering phase) about the
entry description containing an address (32768) that has not been converted to a label.

To apply the directive to a register description section:

; Prepare data in page 128
;
; This routine operates on the data in page 128.
;
@ignoreua
; HL 32768
c49152 LD A,(HL)

If the @ignoreua directive were not present, a warning would be printed (during the rendering phase) about the
register description containing an address (32768) that has not been converted to a label.

To apply the directive to a block start comment:

; Prepare data in page 128
;
; This routine operates on the data in page 128.
;
; HL 128*256
;
@ignoreua
; First pick up the byte at 32768.
c49152 LD A,(HL)

If the @ignoreua directive were not present, a warning would be printed (during the rendering phase) about the start
comment containing an address (32768) that has not been converted to a label.

To apply the directive to a mid-block comment:

28913 LD L,A
@ignoreua

122 Chapter 8. Technical reference

SkoolKit Documentation, Release 6.0

; #REGhl now holds either 32522 or 32600.
28914 LD B,(HL)

If the @ignoreua directive were not present, warnings would be printed (during the rendering phase) about the
comment containing addresses (32522, 32600) that have not been converted to labels.

To apply the directive to a block end comment:

44159 JP 63152
@ignoreua
; This routine continues at 63152.

If the @ignoreua directive were not present, warnings would be printed (during the rendering phase) about the
comment containing an address (63152) that has not been converted to a label.

To apply the directive to an instruction-level comment:

@ignoreua
60159 LD C,A ; #REGbc now holds 62818

If the @ignoreua directive were not present, a warning would be printed (during the rendering phase) about the
comment containing an address (62818) that has not been converted to a label.

Version Changes
4.2 Added support for register description sections
2.4.1 Added support for entry titles, entry descriptions, mid-block comments and block end comments

@isub

The @isub directive makes an instruction substitution in @isub mode.

@isub=INSTRUCTION

• INSTRUCTION is the replacement instruction

For example:

@isub=LD A,(32512)
25396 LD A,(m)

This @isub directive ensures that LD A,(m) is replaced by the valid instruction LD A,(32512) when rendering
in ASM mode.

@isub block directives

The @isub block directives define a block of lines that will be inserted or removed in @isub mode.

The syntax is equivalent to that for the @bfix block directives.

@keep

The @keep directive prevents the substitution of a label for the operand in the next instruction (but only when the
instruction has not been replaced using an @isub or @ssub directive).

For example:

8.8. ASM modes and directives 123

SkoolKit Documentation, Release 6.0

@keep
28328 LD BC,24576 ; #REGb=96, #REGc=0

If the @keep directive were not present, the operand (24576) of the LD BC instruction would be replaced with the
label of the routine at 24576 (if there is a routine at that address); however, the operand is meant to be a pure data
value, not a variable or routine address.

@label

The @label directive sets the label for the next instruction.

@label=LABEL

• LABEL is the label to apply

For example:

@label=ENDGAME
c24576 XOR A

This sets the label for the routine at 24576 to ENDGAME.

@nolabel

The @nolabel directive prevents the next instruction from having a label automatically generated.

For example:

@label=TOGGLE
c48998 LD HL,32769
@bfix+begin
@label=LOOP
@bfix+end
49001 LD A,(HL)

@bfix+begin
@nolabel
@bfix+end

*49002 XOR L
49003 LD (HL),A
49004 INC L

@bfix-begin
49005 JR NZ,49002

@bfix+else
49005 JR NZ,49001

@bfix+end

The @nolabel directive here prevents the instruction at 49002 from being labelled in @bfix mode (because no label
is required; instead, the previous instruction at 49001 will be labelled).

The output in @bfix mode will be:

TOGGLE:
LD HL,32769

LOOP:
LD A,(HL)
XOR L

124 Chapter 8. Technical reference

SkoolKit Documentation, Release 6.0

LD (HL),A
INC L
JR NZ,LOOP

And the output when not in @bfix mode will be:

TOGGLE:
LD HL,32769
LD A,(HL)

TOGGLE_0:
XOR L
LD (HL),A
INC L
JR NZ,TOGGLE_0

@nowarn

The @nowarn directive suppresses any warnings that would otherwise be reported for the next instruction concerning:

• a LD operand being replaced with a routine label (if the instruction has not been replaced using @isub or
@ssub)

• an operand not being replaced with a label (because the operand address has no label)

For example:

@nowarn
25560 LD BC,25404 ; Point #REGbc at the routine at #R25404

If this @nowarn directive were not present, a warning would be printed (during the parsing phase) about the operand
(25404) being replaced with a routine label (which would be inappropriate if 25404 were intended to be a pure data
value).

For another example:

@ofix-begin
@nowarn
27872 CALL 27633 ; This should be CALL #R27634

@ofix+else
CALL 27634 ;

@ofix+end

If this @nowarn directive were not present, a warning would be printed (during the parsing phase, if not in @ofix
mode) about the operand (27633) not being replaced with a label (usually you would want the operand of a CALL
instruction to be replaced with a label, but not in this case).

@ofix

The @ofix directive makes an instruction substitution in @ofix mode.

@ofix=INSTRUCTION

• INSTRUCTION is the replacement instruction (with a corrected operand)

For example:

8.8. ASM modes and directives 125

SkoolKit Documentation, Release 6.0

@ofix=JR NZ,26067
25989 JR NZ,26068

This @ofix directive replaces the operand of the JR NZ instruction with 26067.

@ofix block directives

The @ofix block directives define a block of lines that will be inserted or removed in @ofix mode.

The syntax is equivalent to that for the @bfix block directives.

@org

The @org directive inserts an ORG assembler directive.

@org=ADDRESS

• ADDRESS is the ORG address

@rem

The @rem directive may be used to make an illuminating comment about a nearby section or other ASM directive in
a skool file. The directive is ignored by the parser.

@rem=COMMENT

• COMMENT is a suitably illuminating comment

For example:

@rem=The next section of data MUST start at 64000
@org=64000

Version Changes
2.4 The = is required

@replace

The @replace directive replaces strings that match a regular expression in skool file annotations and ref file section
names and contents.

@replace=/pattern/repl

• pattern is the regular expression

• repl is the replacement string

For example:

@replace=/#copy/#CHR(169)

This @replace directive replaces all instances of #copy with #CHR(169).

If / appears anywhere in pattern or repl, then an alternative separator should be used; for example:

126 Chapter 8. Technical reference

SkoolKit Documentation, Release 6.0

@replace=|n/a|not applicable

As a convenience for dealing with decimal and hexadecimal numbers, wherever \i appears in pattern, it is replaced
by a regular expression group that matches a decimal number or a hexadecimal number preceded by $. For example:

@replace=/#udg\i,\i/#UDG(\1,#PEEK\2)

This @replace directive would replace #udg$a001,40960 with #UDG($a001,#PEEK40960).

Note that string replacements specified by @replace directives are made before skool macros are expanded, and in
the order in which the directives appear in the skool file. For example, if we have:

@replace=/#foo\i/#bar\1
@replace=/#bar\i/#EVAL\1,16

then #foo31 would be replaced by #EVAL31,16, but if these directives were reversed:

@replace=/#bar\i/#EVAL\1,16
@replace=/#foo\i/#bar\1

then #foo31 would be replaced by #bar31.

See also Defining macros with @replace.

Version Changes
6.0 Replaces strings in ref file section names
5.1 New

@rfix

The @rfix directive makes an instruction substitution in @rfix mode.

@rfix=INSTRUCTION

• INSTRUCTION is the replacement instruction

For example:

@rfix=LD HL,0
27519 LD L,0

Version Changes
5.2 New

@rfix block directives

The @rfix block directives define a block of lines that will be inserted or removed in @rfix mode.

The syntax is equivalent to that for the @bfix block directives.

@rsub

The @rsub directive makes an instruction substitution in @rsub mode.

8.8. ASM modes and directives 127

SkoolKit Documentation, Release 6.0

@rsub=INSTRUCTION

• INSTRUCTION is the replacement instruction

For example:

@rsub=LD BC,0
30143 LD C,0 ; Reset #REGbc to 0

@rsub block directives

The @rsub block directives define a block of lines that will be inserted or removed in @rsub mode.

The syntax is equivalent to that for the @bfix block directives.

@set

The @set directive sets a property on the ASM writer.

@set-name=value

• name is the property name

• value is the property value

@set directives must be placed somewhere after the @start directive, and before the @end directive (if there is one).

Recognised property names and their default values are:

• bullet - the bullet character(s) to use for list items specified in a #LIST macro (default: *)

• comment-width-min - the minimum width of the instruction comment field (default: 10)

• crlf - 1 to use CR+LF to terminate lines, or 0 to use the system default (default: 0)

• handle-unsupported-macros - how to handle an unsupported macro: 1 to expand it to an empty string,
or 0 to exit with an error (default: 0)

• indent - the number of spaces by which to indent instructions (default: 2)

• instruction-width - the width of the instruction field (default: 23)

• label-colons - 1 to append a colon to labels, or 0 to leave labels unadorned (default: 1)

• line-width - the maximum width of each line (default: 79)

• tab - 1 to use a tab character to indent instructions, or 0 to use spaces (default: 0)

• warnings - 1 to print any warnings that are produced while writing ASM output (after parsing the skool file),
or 0 to suppress them (default: 1)

• wrap-column-width-min - the minimum width of a wrappable table column (default: 10)

For example:

@set-bullet=+

This @set directive sets the bullet character to ‘+’.

128 Chapter 8. Technical reference

SkoolKit Documentation, Release 6.0

Ver-
sion

Changes

3.4 Added the handle-unsupported-macros and wrap-column-width-min properties
3.3.1 Added the comment-width-min, indent, instruction-width, label-colons, line-width and warnings

properties
3.2 New

@ssub

The @ssub directive makes an instruction substitution in @ssub mode.

@ssub=INSTRUCTION

• INSTRUCTION is the replacement instruction

For example:

@ssub=LD (27015+1),A

*27012 LD (27016),A ; Change the instruction below from SET 0,B to RES 0,B
; or vice versa

27015 SET 0,B

This @ssub directive replaces LD (27016),A with LD (27015+1),A; the 27015 will be replaced by the label
for that address before rendering. (27016 cannot be replaced by a label, since it is not the address of an instruction.)

@ssub block directives

The @ssub block directives define a block of lines that will be inserted or removed in @ssub mode.

The syntax is equivalent to that for the @bfix block directives.

Version Changes
4.4 New

@start

The @start directive indicates where to start parsing the skool file for the purpose of generating ASM output.
Everything before the @start directive is ignored by skool2asm.py.

See also @end.

@writer

The @writer directive specifies the name of the Python class to use to generate ASM output. It must be placed
somewhere after the @start directive, and before the @end directive (if there is one).

@writer=package.module.classname

or:

@writer=/path/to/moduledir:module.classname

8.8. ASM modes and directives 129

SkoolKit Documentation, Release 6.0

The second of these forms may be used to specify a class in a module that is outside the module search path (e.g. a
standalone module that is not part of an installed package).

The default ASM writer class is skoolkit.skoolasm.AsmWriter. For information on how to create your own Python
class for generating ASM output, see the documentation on extending SkoolKit.

Version Changes
3.3.1 Added support for specifying a module outside the module search path
3.1 New

130 Chapter 8. Technical reference

CHAPTER 9

Developer reference

Extending SkoolKit

Extension modules

While creating a disassembly of a game, you may find that SkoolKit’s suite of skool macros is inadequate for certain
tasks. For example, the game might have large tile-based sprites that you want to create images of for the HTML
disassembly, and composing long #UDGARRAY macros for them or defining a new sprite-building macro with the
@replace directive (see Defining macros with @replace) would be too tedious or impractical. Or you might want to
insert a timestamp somewhere in the ASM disassembly so that you (or others) can keep track of when your ASM files
were written.

One way to solve these problems is to add custom methods that could be called by a #CALL macro. But where
to add the methods? SkoolKit’s core HTML writer and ASM writer classes are skoolkit.skoolhtml.HtmlWriter and
skoolkit.skoolasm.AsmWriter, so you could add the methods to those classes. But a better way is to subclass Html-
Writer and AsmWriter in a separate extension module, and add the methods there; then that extension module can be
easily used with different versions of SkoolKit, and shared with other people.

A minimal extension module would look like this:

from skoolkit.skoolhtml import HtmlWriter
from skoolkit.skoolasm import AsmWriter

class GameHtmlWriter(HtmlWriter):
pass

class GameAsmWriter(AsmWriter):
pass

The next step is to get SkoolKit to use the extension module for your game. First, place the extension module (let’s
call it game.py) in the skoolkit package directory; to locate this directory, run skool2html.py with the -p option:

$ skool2html.py -p
/usr/lib/python3/dist-packages/skoolkit

131

SkoolKit Documentation, Release 6.0

(The package directory may be different on your system.) With game.py in place, add the following line to the [Config]
section of your disassembly’s ref file:

HtmlWriterClass=skoolkit.game.GameHtmlWriter

If you don’t have a ref file yet, create one (ideally named game.ref, assuming the skool file is game.skool); if the ref
file doesn’t have a [Config] section yet, add one.

Now whenever skool2html.py is run on your skool file (or ref file), SkoolKit will use the GameHtmlWriter class instead
of the core HtmlWriter class.

To get skool2asm.py to use GameAsmWriter instead of the core AsmWriter class when it’s run on your skool file, add
the following @writer ASM directive somewhere after the @start directive, and before the @end directive (if there
is one):

@writer=skoolkit.game.GameAsmWriter

The skoolkit package directory is a reasonable place for an extension module, but it could be placed in another package,
or somewhere else as a standalone module. For example, if you wanted to keep a standalone extension module named
game.py in ~/.skoolkit, you should set the HtmlWriterClass parameter thus:

HtmlWriterClass=~/.skoolkit:game.GameHtmlWriter

and the @writer directive thus:

@writer=~/.skoolkit:game.GameAsmWriter

The HTML writer or ASM writer class can also be specified on the command line by using the -W/--writer option
of skool2html.py or skool2asm.py. For example:

$ skool2html.py -W ~/.skoolkit:game.GameHtmlWriter game.skool

Specifying the writer class this way will override any HtmlWriterClass parameter in the ref file or @writer
directive in the skool file.

Note that if the writer class is specified with a blank module path (e.g. :game.GameHtmlWriter), SkoolKit will
search for the module in both the current working directory and the directory containing the skool file or ref file named
on the command line.

#CALL methods

Implementing a method that can be called by a #CALL macro is done by adding the method to the HtmlWriter or
AsmWriter subclass in the extension module.

One thing to be aware of when adding a #CALL method to a subclass of HtmlWriter is that the method must accept
an extra parameter in addition to those passed from the #CALL macro itself: cwd. This parameter is set to the current
working directory of the file from which the #CALL macro is executed, which may be useful if the method needs to
provide a hyperlink to some other part of the disassembly (as in the case where an image is being created).

Let’s say your sprite-image-creating method will accept two parameters (in addition to cwd): sprite_id (the sprite
identifier) and fname (the image filename). The method (let’s call it sprite) would look something like this:

from skoolkit.skoolhtml import HtmlWriter

class GameHtmlWriter(HtmlWriter):
def sprite(self, cwd, sprite_id, fname):

img_path = self.image_path(fname)

132 Chapter 9. Developer reference

SkoolKit Documentation, Release 6.0

if self.need_image(img_path):
udgs = self.build_sprite(sprite_id)
self.write_image(img_path, udgs)

return self.img_element(cwd, img_path)

With this method (and an appropriate implementation of the build_sprite method) in place, it’s possible to use a #CALL
macro like this:

#UDGTABLE
{ #CALL:sprite(3,jumping) }
{ Sprite 3 (jumping) }
TABLE#

Adding a #CALL method to the AsmWriter subclass is equally simple. The timestamp-creating method (let’s call it
timestamp) would look something like this:

import time
from skoolkit.skoolasm import AsmWriter

class GameAsmWriter(AsmWriter):
def timestamp(self):

return time.strftime("%a %d %b %Y %H:%M:%S %Z")

With this method in place, it’s possible to use a #CALL macro like this:

; This ASM file was generated on #CALL:timestamp()

Note that if the return value of a #CALL method contains skool macros, then they will be expanded.

Skool macros

Another way to add a custom method is to implement it as a skool macro. The main differences between a skool macro
and a #CALL method are:

• a #CALL macro’s parameters are automatically evaluated and passed to the #CALL method; a skool macro’s
parameters must be parsed and evaluated manually (typically by using one or more of the macro-parsing utility
functions)

• every optional parameter in a skool macro can be assigned a default value if omitted; in a #CALL method, only
the optional arguments at the end can be assigned default values if omitted, whereas any others are set to None

• numeric parameters in a #CALL macro are automatically converted to numbers before being passed to the
#CALL method; no automatic conversion is done on the parameters of a skool macro

In summary: a #CALL method is generally simpler to implement than a skool macro, but skool macros are more
flexible.

Implementing a skool macro is done by adding a method named expand_macroname to the HtmlWriter or AsmWriter
subclass in the extension module. So, to implement a #SPRITE or #TIMESTAMP macro, we would add a method
named expand_sprite or expand_timestamp.

A skool macro method must accept either two or three parameters, depending on whether it is implemented on a
subclass of AsmWriter or HtmlWriter:

• text - the text that contains the skool macro

• index - the index of the character after the last character of the macro name (that is, where to start looking for
the macro’s parameters)

9.1. Extending SkoolKit 133

SkoolKit Documentation, Release 6.0

• cwd - the current working directory of the file from which the macro is being executed; this parameter must be
supported by skool macro methods on an HtmlWriter subclass

A skool macro method must return a 2-tuple of the form (end, string), where end is the index of the character
after the last character of the macro’s parameter string, and string is the HTML or text to which the macro will be
expanded. Note that if string itself contains skool macros, then they will be expanded.

The expand_sprite method on GameHtmlWriter may therefore look something like this:

from skoolkit.graphics import Frame
from skoolkit.skoolhtml import HtmlWriter
from skoolkit.skoolmacro import parse_image_macro

class GameHtmlWriter(HtmlWriter):
#SPRITEid[{x,y,width,height}](fname)
def expand_sprite(self, text, index, cwd):

end, crop_rect, fname, frame, alt, (sprite_id,) = parse_image_macro(text,
→˓index, names=['id'])

udgs = self.build_sprite(sprite_id)
frames = [Frame(udgs, 2, 0, *crop_rect, name=frame)]
return end, self.handle_image(frames, fname, cwd, alt)

With this method (and an appropriate implementation of the build_sprite method) in place, the #SPRITE macro might
be used like this:

#UDGTABLE
{ #SPRITE3(jumping) }
{ Sprite 3 (jumping) }
TABLE#

The expand_timestamp method on GameAsmWriter would look something like this:

import time
from skoolkit.skoolasm import AsmWriter

class GameAsmWriter(AsmWriter):
def expand_timestamp(self, text, index):

return index, time.strftime("%a %d %b %Y %H:%M:%S %Z")

Parsing skool macros

The skoolkit.skoolmacro module provides some utility functions that may be used to parse the parameters of a skool
macro.

skoolkit.skoolmacro.parse_ints(text, index=0, num=0, defaults=(), names=(), fields=None)
Parse a sequence of comma-separated integer parameters, optionally enclosed in parentheses. If parentheses are
used, the parameters may be expressed using arithmetic operators and skool macros. See Numeric parameters
for more details.

Parameters

• text – The text to parse.

• index – The index at which to start parsing.

• num – The maximum number of parameters to parse; this is set to the number of elements
in names if that list is not empty.

• defaults – The default values of the optional parameters.

134 Chapter 9. Developer reference

SkoolKit Documentation, Release 6.0

• names – The names of the parameters; if not empty, keyword arguments are parsed. Pa-
rameter names are restricted to lower case letters (a-z).

• fields – A dictionary of replacement field names and values. The fields named in this
dictionary are replaced by their values wherever they appear in the parameter string.

Returns

A list of the form [end, value1, value2...], where:

• end is the index at which parsing terminated

• value1, value2 etc. are the parameter values

Changed in version 4.0: Added the names parameter and support for keyword arguments; index defaults to 0.

Changed in version 5.1: Added support for parameters expressed using arithmetic operators and skool macros.

Changed in version 6.0: Added the fields parameter.

skoolkit.skoolmacro.parse_strings(text, index=0, num=0, defaults=())
Parse a sequence of comma-separated string parameters. The sequence must be enclosed in parentheses, square
brackets or braces. If the sequence itself contains commas or unmatched brackets, then an alternative delimiter
and separator may be used; see String parameters for more details.

Parameters

• text – The text to parse.

• index – The index at which to start parsing.

• num – The maximum number of parameters to parse; if 0, all parameters are parsed.

• defaults – The default values of the optional parameters.

Returns

A tuple of the form (end, result), where:

• end is the index at which parsing terminated

• result is either the single parameter itself (when num is 1), or a list of the parameters

New in version 5.1.

skoolkit.skoolmacro.parse_brackets(text, index=0, default=None, opening=’(‘, closing=’)’)
Parse a single string parameter enclosed either in parentheses or by an arbitrary pair of delimiters.

Parameters

• text – The text to parse.

• index – The index at which to start parsing.

• default – The default value if no string parameter is found.

• opening – The opening delimiter.

• closing – The closing delimiter.

Returns

A tuple of the form (end, param), where:

• end is the index at which parsing terminated

• param is the string parameter (or default if none is found)

New in version 5.1.

9.1. Extending SkoolKit 135

SkoolKit Documentation, Release 6.0

skoolkit.skoolmacro.parse_image_macro(text, index=0, defaults=(), names=(), fname=’‘)
Parse a string of the form:

[params][{x,y,width,height}][(fname[*frame][|alt])]

The parameter string params may contain comma-separated integer values, and may optionally be enclosed in
parentheses. Parentheses are required if any parameter is expressed using arithmetic operations or skool macros.

Parameters

• text – The text to parse.

• index – The index at which to start parsing.

• defaults – The default values of the optional parameters.

• names – The names of the parameters.

• fname – The default base name of the image file.

Returns

A tuple of the form (end, crop_rect, fname, frame, alt, values), where:

• end is the index at which parsing terminated

• crop_rect is (x, y, width, height)

• fname is the base name of the image file

• frame is the frame name (None if no frame is specified)

• alt is the alt text (None if no alt text is specified)

• values is a list of the parameter values

New in version 5.1.

Parsing ref files

HtmlWriter provides some convenience methods for extracting text and data from ref files. These methods are de-
scribed below.

HtmlWriter.get_section(section_name, paragraphs=False, lines=False, trim=True)
Return the contents of a ref file section.

Parameters

• section_name – The section name.

• paragraphs – If True, return the contents as a list of paragraphs.

• lines – If True, return the contents (or each paragraph) as a list of lines; otherwise return
the contents (or each paragraph) as a single string.

• trim – If True, remove leading whitespace from each line.

Changed in version 5.3: Added the trim parameter.

HtmlWriter.get_sections(section_type, paragraphs=False, lines=False, trim=True)
Return a list of 2-tuples of the form (suffix, contents) or 3-tuples of the form (infix, suffix,
contents) derived from ref file sections whose names start with section_type followed by a colon. suffix
is the part of the section name that follows either the first colon (when there is only one) or the second colon
(when there is more than one); infix is the part of the section name between the first and second colons (when
there is more than one).

136 Chapter 9. Developer reference

SkoolKit Documentation, Release 6.0

Parameters

• section_type – The section name prefix.

• paragraphs – If True, return the contents of each section as a list of paragraphs.

• lines – If True, return the contents (or each paragraph) of each section as a list of lines;
otherwise return the contents (or each paragraph) as a single string.

• trim – If True, remove leading whitespace from each line.

Changed in version 5.3: Added the trim parameter.

HtmlWriter.get_dictionary(section_name)
Return a dictionary built from the contents of a ref file section. Each line in the section should be of the form
X=Y.

HtmlWriter.get_dictionaries(section_type)
Return a list of 2-tuples of the form (suffix, dict) derived from ref file sections whose names start with
section_type followed by a colon. suffix is the part of the section name that follows the first colon, and dict
is a dictionary built from the contents of that section; each line in the section should be of the form X=Y.

Memory snapshots

The snapshot attribute on HtmlWriter and AsmWriter is a 65536-element list that represents the 64K of the Spectrum’s
memory; it is populated when the skool file is being parsed.

HtmlWriter also provides some methods for saving and restoring memory snapshots, which can be useful for tem-
porarily changing graphic data or the contents of data tables. These methods are described below.

HtmlWriter.push_snapshot(name=’‘)
Save the current memory snapshot for later retrieval (by pop_snapshot()), and put a copy in its place.

Parameters name – An optional name for the snapshot.

HtmlWriter.pop_snapshot()
Discard the current memory snapshot and replace it with the one that was most recently saved (by
push_snapshot()).

HtmlWriter.get_snapshot_name()
Return the name of the current memory snapshot.

Graphics

If you are going to implement custom image-creating #CALL methods or skool macros, you will need to make use of
the skoolkit.graphics.Udg class.

The Udg class represents an 8x8 graphic (8 bytes) with a single attribute byte, and an optional mask.

class skoolkit.graphics.Udg(attr, data, mask=None)
Initialise the UDG.

Parameters

• attr – The attribute byte.

• data – The graphic data (sequence of 8 bytes).

• mask – The mask data (sequence of 8 bytes).

Changed in version 5.4: The Udg class moved from skoolkit.skoolhtml to skoolkit.graphics.

9.1. Extending SkoolKit 137

SkoolKit Documentation, Release 6.0

A simple #INVERSE macro that creates an inverse image of a UDG might be implemented like this:

from skoolkit.graphics import Udg
from skoolkit.skoolhtml import HtmlWriter
from skoolkit.skoolmacro import parse_ints

class GameHtmlWriter(HtmlWriter):
#INVERSEaddress,attr
def expand_inverse(self, text, index, cwd):

end, address, attr = parse_ints(text, index, 2)
img_path = self.image_path('inverse{}_{}'.format(address, attr))
if self.need_image(img_path):

udg_data = [b ^ 255 for b in self.snapshot[address:address + 8]]
udg = Udg(attr, udg_data)
self.write_image(img_path, [[udg]])

return end, self.img_element(cwd, img_path)

The Udg class provides two methods for manipulating an 8x8 graphic: flip and rotate.

Udg.flip(flip=1)
Flip the UDG.

Parameters flip – 1 to flip horizontally, 2 to flip vertically, or 3 to flip horizontally and vertically.

Udg.rotate(rotate=1)
Rotate the UDG 90 degrees clockwise.

Parameters rotate – The number of rotations to perform.

If you are going to implement #CALL methods or skool macros that create animated images, you will need to make
use of the skoolkit.graphics.Frame class.

The Frame class represents a single frame of an animated image.

class skoolkit.graphics.Frame(udgs, scale=1, mask=0, x=0, y=0, width=None, height=None, de-
lay=32, name=’‘)

Create a frame of an animated image.

Parameters

• udgs – The two-dimensional array of tiles (instances of Udg) from which to build the
frame, or a function that returns the array of tiles.

• scale – The scale of the frame.

• mask – The type of mask to apply to the tiles in the frame: 0 (no mask), 1 (OR-AND mask),
or 2 (AND-OR mask).

• x – The x-coordinate of the top-left pixel to include in the frame.

• y – The y-coordinate of the top-left pixel to include in the frame.

• width – The width of the frame; if None, the maximum width (derived from x and the
width of the array of tiles) is used.

• height – The height of the frame; if None, the maximum height (derived from y and the
height of the array of tiles) is used.

• delay – The delay between this frame and the next in 1/100ths of a second.

• name – The name of this frame.

New in version 3.6.

Changed in version 4.0: The mask parameter specifies the type of mask to apply (see Masks).

138 Chapter 9. Developer reference

SkoolKit Documentation, Release 6.0

Changed in version 5.1: The udgs parameter can be a function that returns the array of tiles; added the name
parameter.

Changed in version 5.4: The Frame class moved from skoolkit.skoolhtml to skoolkit.graphics.

HtmlWriter provides the following image-related convenience methods.

HtmlWriter.image_path(fname, path_id=’UDGImagePath’, frames=())
Return the full path of an image file relative to the root directory of the disassembly. If fname does not end with
‘.png’ or ‘.gif’, an appropriate suffix will be appended (depending on the default image format). If fname starts
with a ‘/’, it will be removed and the remainder returned (in which case path_id is ignored). If fname is blank,
None is returned.

Parameters

• fname – The name of the image file.

• path_id – The ID of the target directory (as defined in the [Paths] section of the ref file).

• frames – The list of frames (instances of Frame) that define the image. If supplied, it is
used to determine whether the image is animated, and select the appropriate filename suffix
accordingly.

Changed in version 5.1: Added the frames parameter.

HtmlWriter.need_image(image_path)
Return whether an image file needs to be created. This will be true only if the file doesn’t already exist, or all
images are being rebuilt. Well-behaved image-creating methods will call this to check whether an image file
needs to be written, and thus avoid building an image when it is not necessary.

Parameters image_path – The full path of the image file relative to the root directory of the
disassembly.

HtmlWriter.write_image(image_path, udgs, crop_rect=(), scale=2, mask=0)
Create an image and write it to a file.

Parameters

• image_path – The full path of the file to which to write the image (relative to the root
directory of the disassembly).

• udgs – The two-dimensional array of tiles (instances of Udg) from which to build the
image.

• crop_rect – The cropping rectangle, (x, y, width, height), where x and y are
the x- and y-coordinates of the top-left pixel to include in the final image, and width and
height are the width and height of the final image.

• scale – The scale of the image.

• mask – The type of mask to apply to the tiles: 0 (no mask), 1 (OR-AND mask), or 2
(AND-OR mask).

Changed in version 4.0: The mask parameter specifies the type of mask to apply (see Masks).

HtmlWriter.img_element(cwd, image_path, alt=None)
Return an element for an image file.

Parameters

• cwd – The current working directory (from which the relative path of the image file will be
computed).

• image_path – The full path of the image file relative to the root directory of the disas-
sembly.

9.1. Extending SkoolKit 139

SkoolKit Documentation, Release 6.0

• alt – The alt text to use for the image; if None, the base name of the image file (with the
‘.png’ or ‘.gif’ suffix removed) will be used.

HtmlWriter.write_animated_image(image_path, frames)
Create an image and write it to a file.

Parameters

• image_path – The full path of the file to which to write the image (relative to the root
directory of the disassembly).

• frames – A list of the frames (instances of Frame) from which to build the image.

New in version 3.6.

HtmlWriter.handle_image(frames, fname=’‘, cwd=None, alt=None, path_id=’UDGImagePath’)
Register a named frame for an image, and write an image file if required. This is a convenience method that calls
image_path(), need_image(), write_animated_image() and img_element() as appropriate.

Parameters

• frames – The list of frames (instances of Frame) from which to build the image.

• fname – The name of the image file.

• cwd – The current working directory (from which the relative path of the image file will be
computed).

• alt – The alt text to use for the image.

• path_id – The ID of the target directory (as defined in the [Paths] section of the ref file).

Returns The element, or an empty string if no image is created.

New in version 5.1.

HtmlWriter.screenshot(x=0, y=0, w=32, h=24, df_addr=16384, af_addr=22528)
Return a two-dimensional array of tiles (instances of Udg) built from the display file and attribute file of the
current memory snapshot.

Parameters

• x – The x-coordinate of the top-left tile to include (0-31).

• y – The y-coordinate of the top-left tile to include (0-23).

• w – The width of the array (in tiles).

• h – The height of the array (in tiles).

• df_addr – The display file address to use.

• af_addr – The attribute file address to use.

skoolkit.graphics.flip_udgs(udgs, flip=1)
Flip a 2D array of UDGs (instances of Udg).

Parameters

• udgs – The array of UDGs.

• flip – 1 to flip horizontally, 2 to flip vertically, or 3 to flip horizontally and vertically.

skoolkit.graphics.rotate_udgs(udgs, rotate=1)
Rotate a 2D array of UDGs (instances of Udg) 90 degrees clockwise.

Parameters

140 Chapter 9. Developer reference

SkoolKit Documentation, Release 6.0

• udgs – The array of UDGs.

• rotate – The number of rotations to perform.

HtmlWriter initialisation

If your HtmlWriter subclass needs to perform some initialisation tasks, such as creating instance variables, or parsing
ref file sections, the place to do that is the init() method.

HtmlWriter.init()
Perform post-initialisation operations. This method is called after __init__() has completed. By default the
method does nothing, but subclasses may override it.

For example:

from skoolkit.skoolhtml import HtmlWriter

class GameHtmlWriter(HtmlWriter):
def init(self):

Get character names from the ref file
self.characters = self.get_dictionary('Characters')

9.1. Extending SkoolKit 141

SkoolKit Documentation, Release 6.0

142 Chapter 9. Developer reference

Index

F
flip() (skoolkit.graphics.Udg method), 138
flip_udgs() (in module skoolkit.graphics), 140
Frame (class in skoolkit.graphics), 138

G
get_dictionaries() (skoolkit.skoolhtml.HtmlWriter

method), 137
get_dictionary() (skoolkit.skoolhtml.HtmlWriter

method), 137
get_section() (skoolkit.skoolhtml.HtmlWriter method),

136
get_sections() (skoolkit.skoolhtml.HtmlWriter method),

136
get_snapshot_name() (skoolkit.skoolhtml.HtmlWriter

method), 137

H
handle_image() (skoolkit.skoolhtml.HtmlWriter method),

140

I
image_path() (skoolkit.skoolhtml.HtmlWriter method),

139
img_element() (skoolkit.skoolhtml.HtmlWriter method),

139
init() (skoolkit.skoolhtml.HtmlWriter method), 141

N
need_image() (skoolkit.skoolhtml.HtmlWriter method),

139

P
parse_brackets() (in module skoolkit.skoolmacro), 135
parse_image_macro() (in module skoolkit.skoolmacro),

135
parse_ints() (in module skoolkit.skoolmacro), 134
parse_strings() (in module skoolkit.skoolmacro), 135

pop_snapshot() (skoolkit.skoolhtml.HtmlWriter method),
137

push_snapshot() (skoolkit.skoolhtml.HtmlWriter
method), 137

R
rotate() (skoolkit.graphics.Udg method), 138
rotate_udgs() (in module skoolkit.graphics), 140

S
screenshot() (skoolkit.skoolhtml.HtmlWriter method),

140

U
Udg (class in skoolkit.graphics), 137

W
write_animated_image() (skoolkit.skoolhtml.HtmlWriter

method), 140
write_image() (skoolkit.skoolhtml.HtmlWriter method),

139

143

	What is SkoolKit?
	Installing and using SkoolKit
	Disassembly DIY
	Commands
	Supported assemblers
	Migrating from SkoolKit 5
	Changelog
	Technical reference
	Developer reference

