project-template Documentation
Release 0.1.0b

Christian Schulze

Apr 25,2018

Contents

API Documentation 3
1.1 Problem Transformation Methods e 3
1.2 Ensemble Methods L e e e e e 3
1.3 Multi-label Data Sets e e e e 3
Multi-label Classification Examples 5
2.1 Ensemble Classifier Chain Example L o oL, 5
2.2 Ensemble Label Powerset Example 6
2.3 Classifier Chain Example e 7
2.4 Ensemble Binary Relevance Example o 8
2.5 Probabilistic Classifier Chain Example e 9
User Guide 11
3.1 Multi-label Data Sets o . e e e e e e e e e 11
3.2 Problem Transformation oL e e e e e e e 11
3.3 Ensemble Methods L e e e 12
Indices and tables 15

project-template Documentation, Release 0.1.0b

This project implements a number of multi-label classification (MLC) problem transformation methods, multi-label
ensembles as well as adapted algorithms with scikit-learn compatible estimators.

Note that skml is in an early stage, and if you observe any unexpected behavior or have questions, please create an
issue.

Please refer to the User Guide for an overview or background information. The Multi-label Classification Examples
section holds simple examples to common problems.

Contents 1

https://github.com/christiansch/skml/issues

project-template Documentation, Release 0.1.0b

2 Contents

CHAPTER 1

API| Documentation

1.1 Problem Transformation Methods

Problem transformation methods reduce the problem of multi-label classification into a number of easier
problems, for example binary or multi-class classification.

1.2 Ensemble Methods

Ensemble methods provide multi-label classification compatible ensemble methods, where a number of
estimators (or classifiers) are used to gather a number of predictions, and then obtain votes by majority
vote or averaging. This is expected to achieve better results, as the diversity of classifiers (optimally)
works as an error correction to the other classifiers.

1.3 Multi-label Data Sets

This sub-module provides loading of data sets and down sampling of the label space.

skml.datasets.load_dataset (name)
Loads a multi-label classification dataset.

Parameters
name [string] Name of the dataset. Currently only ‘yeast’ is available.

skml.datasets.sample_down_label_space (y, k, method="most-frequent’)
Samples down label space, such that the returned label space retains order of the original labels, but
removes labels which do not meet certain criteria (see method).

Parameters

y [(sparse) array-like, shape = [n_samples,], [n_samples, n_classes]] Multi-label tar-
gets

project-template Documentation, Release 0.1.0b

k [number] Number of returned labels, has to be smaller than the number of distinct
labels in y

method [string, default = ‘most-frequent’] Method to sample the label space down.
Currently supported is only by top k most frequent labels.

4 Chapter 1. API Documentation

CHAPTER 2

Multi-label Classification Examples

Introductory examples.

2.1 Ensemble Classifier Chain Example

An example of skml.ensemble.EnsembleClassifierChain

from sklearn.metrics import hamming_ loss

from sklearn.metrics import accuracy_score

from sklearn.metrics import fl_score

from sklearn.metrics import precision_score

from sklearn.metrics import recall_score

from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
import numpy as np

from skml.ensemble import EnsembleClassifierChain
from skml.datasets import load_dataset

X, v = load_dataset ('yeast")
X_train, X_test, y_train, y_test = train_test_split (X, vy)

ensemble = EnsembleClassifierChain (RandomForestClassifier())
ensemble. fit (X, vy)
y_pred = ensemble.predict (X)

print ("hamming loss: ")
print (hamming_loss(y, y_pred))

print ("accuracy:")
print (accuracy_score(y, y_pred))

(continues on next page)

project-template Documentation, Release 0.1.0b

(continued from previous page)

print ("fl score:")
print ("micro")

print (£
(
(

print ("precision:")
print ("micro")

print (p
(
(

print ("macro")

(
(
print (recall_score(y,
(
print (recall_score(y,

y_pred,

1_score(y, y_pred, average='micro'))
print ("macro")
print (f1_score(y, y_pred, average='macro'))

average='micro'))

average='macro'))

recision_score(y, y_pred,
print ("macro")
print (precision_score(y, y_pred,
print ("recall:")
print ("micro")
y_pred, average='micro'))

average='macro'))

Total running time of the script: (0 minutes 0.000 seconds)

2.2 Ensemble Label Powerset Example

An example of skml.problem_transformation.LabelPowerset

sklearn.metrics
sklearn.metrics
sklearn.metrics
sklearn.metrics
sklearn.metrics
from sklearn.
from sklearn.
import numpy

from
from
from
from
from

import
import
import
import
import

hamming_loss
fl_score

recall_score

as np

from skml.datasets import load_dataset

X, v = load_dataset ('yeast")
X_train, X_test, y_train, y_test =
clf = LabelPowerset (LogisticRegression())

clf.fit (X_test, y_test)
y_pred = clf.predict (X_test)

print ("hamming loss: ")

print (hamming_loss (y_test, y_pred))

print ("accuracy:")

print (accuracy_score(y_test, y_pred))
print ("fl score:")

print ("micro")

print y_pred,

print ("macro")
print (f1_score (y_test,

(
(
(fl_score(y_test,
(
(

y_pred,

accuracy_score
precision_score

model_selection import train_test_split
linear model import LogisticRegression

from skml.problem transformation import LabelPowerset

train_test_split (X, vy)

average='micro'))

average='macro'))

(continues on next page)

Chapter 2. Multi-label Classification Examples

project-template Documentation, Release 0.1.0b

(continued from previous page)

print ("precision:")

print ("micro")

print (precision_score (y_test, y_pred, average='micro'))
print ("macro")

print (precision_score (y_test, y_pred, average='macro'))

print ("recall:")

print ("micro")

print (recall_score(y_test, y_pred, average='micro'))
print ("macro")

print (recall_score(y_test, y_pred, average='macro'))

Total running time of the script: (0 minutes 0.000 seconds)

2.3 Classifier Chain Example

An example of skml.problem_transformation.ClassifierChain

from sklearn.metrics import hamming_ loss

from sklearn.metrics import accuracy_score

from sklearn.metrics import fl_score

from sklearn.metrics import precision_score

from sklearn.metrics import recall_score

from sklearn.model_selection import train_test_split
from sklearn.linear model import LogisticRegression
import numpy as np

from skml.problem transformation import ClassifierChain
from skml.datasets import load_dataset

X, y = load_dataset ('yeast')
X_train, X_test, y_train, y_test = train_test_split (X, v)

cc = ClassifierChain(LogisticRegression())

cc.fit (X_train, y_train)
y_pred = cc.predict (X_test)

print ("hamming loss: ")
print (hamming_loss (y_test, y_pred))

print ("accuracy:")
print (accuracy_score (y_test, y_pred))

print ("f1l score:")
print ("micro")

(
(
print (f1_score(y_test, y_pred, average='micro'))
print ("macro")

(

print (f1_score(y_test, y_pred, average='macro'))

print ("precision:")
print ("micro")

(continues on next page)

2.3. Classifier Chain Example 7

project-template Documentation, Release 0.1.0b

(continued from previous page)

print (precision_score (y_test, y_pred, average='micro'))
print ("macro")
print (precision_score(y_test, y_pred, average='macro'))

print ("recall:")

print ("micro")

print (recall_score(y_test, y_pred, average='micro'))
print ("macro")

print (recall_score(y_test, y_pred, average='macro'))

Total running time of the script: (0 minutes 0.000 seconds)

2.4 Ensemble Binary Relevance Example

An example of skml.problem transformation.BinaryRelevance

from _ future import print_function

from sklearn.metrics import hamming_loss

from sklearn.metrics import accuracy_score

from sklearn.metrics import fl_score

from sklearn.metrics import precision_score

from sklearn.metrics import recall_score

from sklearn.model_selection import train_test_split
from sklearn.linear model import LogisticRegression
import numpy as np

from skml.problem transformation import BinaryRelevance
from skml.datasets import load_dataset

X, v = load_dataset ('yeast")
X_train, X_test, y_train, y_test = train_test_split (X, vy)

clf = BinaryRelevance (LogisticRegression())
clf.fit(X_train, y_train)
y_pred = clf.predict (X_test)

print ("hamming loss: ")
print (hamming_loss (y_test, y_pred))

print ("accuracy:")
print (accuracy_score (y_test, y_pred))

print ("fl score:")

print ("micro")

print (f1_score(y_test, y_pred, average='micro'))
print ("macro")

print (f1_score(y_test, y_pred, average='macro'))

print ("precision:")

print ("micro")

print (precision_score (y_test, y_pred, average='micro'))
print ("macro")

(continues on next page)

Chapter 2. Multi-label Classification Examples

project-template Documentation, Release 0.1.0b

(continued from previous page)

print (precision_score (y_test, y_pred, average='macro'))

print ("recall:")

print ("micro")

print (recall_score(y_test, y_pred, average='micro'))
print ("macro")

print (recall_score(y_test, y_pred, average='macro'))

Total running time of the script: (0 minutes 0.000 seconds)

2.5 Probabilistic Classifier Chain Example

An example of skml.problem_transformation.ProbabilisticClassifierChain

from sklearn.metrics import hamming_loss

from sklearn.metrics import accuracy_score

from sklearn.metrics import fl_score

from sklearn.metrics import precision_score

from sklearn.metrics import recall_score

from sklearn.model_selection import train_test_split
from sklearn.linear model import LogisticRegression
import numpy as np

from skml.problem transformation import ProbabilisticClassifierChain
from skml.datasets import load_dataset

X, v = load_dataset ('yeast")
sample down the label space to make the example faster.
yvou shouldn't do this on your own data though!

y = yl:, :6]
X_train, X_test, y_train, y_test = train_test_split (X, vy)

pcc = ProbabilisticClassifierChain (LogisticRegression())
pcc.fit (X_train, y_train)
y_pred = pcc.predict (X_test)

print ("hamming loss: ")
print (hamming_loss (y_test, y_pred))

print ("accuracy:")
print (accuracy_score (y_test, y_pred))

print ("f1l score:")

print ("micro")

print (f1_score(y_test, y_pred, average='micro'))
print ("macro")

print (f1_score(y_test, y_pred, average='macro'))

print ("precision:")
print ("micro")
print (precision_score (y_test, y_pred, average='micro'))

(continues on next page)

2.5. Probabilistic Classifier Chain Example 9

project-template Documentation, Release 0.1.0b

(continued from previous page)

print ("macro")
print (precision_score (y_test, y_pred,

print ("recall:")
print ("micro")

print ("macro")

(
(
print (recall_score(y_test, y_pred, average='micro'))
(
(

print (recall_score(y_test, y_pred, average='macro'))

average='macro'))

Total running time of the script: (0 minutes 0.000 seconds)

10

Chapter 2. Multi-label Classification Examples

CHAPTER 3

User Guide

3.1 Multi-label Data Sets

The skml.datasets component provides popular multi-label classification datasets, as well as meth-
ods to reduce the label space size by different means.

3.2 Problem Transformation

The skml.problem_transformation module implements so called meta-estimators to solve
multi-label classification problems by transforming them into a number of easier problems, i.e. binary
classification problems.

3.2.1 Binary Relevance

Binary Relevance (skml.problem transformation.BinaryRelevance) transforms a prob-
lem of multi-classification with |£]| labels into a problem of |£| binary classification problems, hence
trains |£| classifiers that decide label-wise, if the example that is currently being observed should have
the label or not. (Dubbed PT-4 in the cited paper.)

Note, that binary relevance is not capable of modeling label interdependence.

References: I

3.2.2 Label Powerset

Label Powerset (skml.problem_transformation.LabelPowerset) transforms a multi-class
classification problem into one multi-class problem, where all possible label combinations are used as
classes. So each possible combination of labels is turned into one class. If the underlying multi-label

11

project-template Documentation, Release 0.1.0b

problem operates on the label space £ with |£| labels, label powerset will train [2¢| classifiers, where
each one decides if the label combination should be assigned to an example.

Note, that while label powerset can model label interdependence, the computational feasibility can be
reduced for a large number of labels, as the number of trained classifiers grows exponentially. (Dubbed
PT-5 in the cited paper.)

References: I

3.2.3 Classifier Chains

Classifier chains (skml.problem_transformation.ClassifierChain) improve the binary
relevance (skml.problem_transformation.BinaryRelevance) method to use label interde-
pendence as well. For each label a classifier is trained. Besides the first classifier in the chain, each
subsequent classifier is trained on a modified input vector, where the previous predicted labels are incor-
porated. Thus, a chain of classifiers is predicted, and each classifier in the chain gets also the previous
class predictions as an input.

Note, that the performance of a single chain depends heavily on the order of the classifiers in the chain.

References: I

3.2.4 Probabilistic Classifier Chains

Probabilistic Classifier Chains (skml.problem_transformation.
ProbabilisticClassifierChain) -also known as PCC- are an extension to the classic
Classifier Chains (skml.problem_transformation.ClassifierChain) and can be seen as a
discrete greedy approximation of probabilistic classifier chains with probabilities valued zero/one [3].

For each label a classifier is trained as in CC, however probabilistic classifiers are used. In fact [3], when
used with non-probabilistic classifiers, CC is recovered from the posterior probability distribution Py (x).

Note, that PCC performs best, when a loss function that models label interdendence (such as Subset 0/1
loss) is used, and the labels in the data set are in fact interdependent. For more information on this, see

[3].

The training is equivalent to CC, the inference (prediction) however is more complex.
For a detailed description of the inference, see skml.problem_ transformation.
ProbabilisticClassifierChains directly, have a look at the source code, or refer to the

paper [3].

References: I

3.3 Ensemble Methods

The skml .ensemble module implements ensembles to be used for multi-label classification.

12 Chapter 3. User Guide

project-template Documentation, Release 0.1.0b

3.3.1 Ensemble Classifier Chains

Ensemble of classifier chains (ECC) trains an ensemble of bagged classifier chains. Each chain is trained
on a randomly sampled subset of the training data (with replacement, also known as bagging).

References: I

3.3. Ensemble Methods 13

project-template Documentation, Release 0.1.0b

14 Chapter 3. User Guide

CHAPTER 4

Indices and tables

* genindex

15

project-template Documentation, Release 0.1.0b

16 Chapter 4. Indices and tables

Index

L

load_dataset() (in module skml.datasets), 3

S

sample_down_label_space() (in module skml.datasets), 3

17

	API Documentation
	Problem Transformation Methods
	Ensemble Methods
	Multi-label Data Sets

	Multi-label Classification Examples
	Ensemble Classifier Chain Example
	Ensemble Label Powerset Example
	Classifier Chain Example
	Ensemble Binary Relevance Example
	Probabilistic Classifier Chain Example

	User Guide
	Multi-label Data Sets
	Problem Transformation
	Ensemble Methods

	Indices and tables

