

Welcome to skml’s documentation!

This project implements a number of multi-label classification (MLC) problem
transformation methods, multi-label ensembles as well as adapted algorithms
with scikit-learn compatible estimators.

Note that skml is in an early stage, and if you observe any unexpected behavior
or have questions, please create an
issue [https://github.com/christiansch/skml/issues].

Please refer to the User Guide for an overview or background information.
The Multi-label Classification Examples section holds simple examples to common problems.

	API Documentation
	Problem Transformation Methods

	Ensemble Methods

	Multi-label Data Sets

	Multi-label Classification Examples

	User Guide
	Multi-label Data Sets

	Problem Transformation

	Ensemble Methods

Indices and tables

	Index

API Documentation

	Problem Transformation Methods

	Ensemble Methods

	Multi-label Data Sets

Problem Transformation Methods

Problem transformation methods reduce the problem of multi-label classification
into a number of easier problems, for example binary or multi-class
classification.

Ensemble Methods

Ensemble methods provide multi-label classification compatible ensemble methods,
where a number of estimators (or classifiers) are used to gather a number of
predictions, and then obtain votes by majority vote or averaging. This is
expected to achieve better results, as the diversity of classifiers (optimally)
works as an error correction to the other classifiers.

Multi-label Data Sets

This sub-module provides loading of data sets and down sampling of the
label space.

	
skml.datasets.load_dataset(name)

	Loads a multi-label classification dataset.

	Parameters

	
	namestring

	Name of the dataset. Currently only ‘yeast’ is available.

	
skml.datasets.sample_down_label_space(y, k, method='most-frequent')

	Samples down label space, such that the returned label
space retains order of the original labels, but
removes labels which do not meet certain criteria
(see method).

	Parameters

	
	y(sparse) array-like, shape = [n_samples,], [n_samples, n_classes]

	Multi-label targets

	knumber

	Number of returned labels, has to be smaller than the number of
distinct labels in y

	methodstring, default = ‘most-frequent’

	Method to sample the label space down. Currently supported
is only by top k most frequent labels.

Multi-label Classification Examples

Introductory examples.

[image: ../_images/sphx_glr_example_ecc_thumb.png]
Ensemble Classifier Chain Example

[image: ../_images/sphx_glr_example_lp_thumb.png]
Ensemble Label Powerset Example

[image: ../_images/sphx_glr_example_cc_thumb.png]
Classifier Chain Example

[image: ../_images/sphx_glr_example_br_thumb.png]
Ensemble Binary Relevance Example

[image: ../_images/sphx_glr_example_pcc_thumb.png]
Probabilistic Classifier Chain Example

Download all examples in Python source code: auto_examples_python.zip

Download all examples in Jupyter notebooks: auto_examples_jupyter.zip

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

Ensemble Classifier Chain Example

An example of skml.ensemble.EnsembleClassifierChain

from sklearn.metrics import hamming_loss
from sklearn.metrics import accuracy_score
from sklearn.metrics import f1_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
import numpy as np

from skml.ensemble import EnsembleClassifierChain
from skml.datasets import load_dataset

X, y = load_dataset('yeast')
X_train, X_test, y_train, y_test = train_test_split(X, y)

ensemble = EnsembleClassifierChain(RandomForestClassifier())
ensemble.fit(X, y)
y_pred = ensemble.predict(X)

print("hamming loss: ")
print(hamming_loss(y, y_pred))

print("accuracy:")
print(accuracy_score(y, y_pred))

print("f1 score:")
print("micro")
print(f1_score(y, y_pred, average='micro'))
print("macro")
print(f1_score(y, y_pred, average='macro'))

print("precision:")
print("micro")
print(precision_score(y, y_pred, average='micro'))
print("macro")
print(precision_score(y, y_pred, average='macro'))

print("recall:")
print("micro")
print(recall_score(y, y_pred, average='micro'))
print("macro")
print(recall_score(y, y_pred, average='macro'))

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: example_ecc.py

Download Jupyter notebook: example_ecc.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

Ensemble Label Powerset Example

An example of skml.problem_transformation.LabelPowerset

from sklearn.metrics import hamming_loss
from sklearn.metrics import accuracy_score
from sklearn.metrics import f1_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
import numpy as np

from skml.problem_transformation import LabelPowerset
from skml.datasets import load_dataset

X, y = load_dataset('yeast')
X_train, X_test, y_train, y_test = train_test_split(X, y)

clf = LabelPowerset(LogisticRegression())
clf.fit(X_test, y_test)
y_pred = clf.predict(X_test)

print("hamming loss: ")
print(hamming_loss(y_test, y_pred))

print("accuracy:")
print(accuracy_score(y_test, y_pred))

print("f1 score:")
print("micro")
print(f1_score(y_test, y_pred, average='micro'))
print("macro")
print(f1_score(y_test, y_pred, average='macro'))

print("precision:")
print("micro")
print(precision_score(y_test, y_pred, average='micro'))
print("macro")
print(precision_score(y_test, y_pred, average='macro'))

print("recall:")
print("micro")
print(recall_score(y_test, y_pred, average='micro'))
print("macro")
print(recall_score(y_test, y_pred, average='macro'))

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: example_lp.py

Download Jupyter notebook: example_lp.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

Classifier Chain Example

An example of skml.problem_transformation.ClassifierChain

from sklearn.metrics import hamming_loss
from sklearn.metrics import accuracy_score
from sklearn.metrics import f1_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
import numpy as np

from skml.problem_transformation import ClassifierChain
from skml.datasets import load_dataset

X, y = load_dataset('yeast')
X_train, X_test, y_train, y_test = train_test_split(X, y)

cc = ClassifierChain(LogisticRegression())
cc.fit(X_train, y_train)
y_pred = cc.predict(X_test)

print("hamming loss: ")
print(hamming_loss(y_test, y_pred))

print("accuracy:")
print(accuracy_score(y_test, y_pred))

print("f1 score:")
print("micro")
print(f1_score(y_test, y_pred, average='micro'))
print("macro")
print(f1_score(y_test, y_pred, average='macro'))

print("precision:")
print("micro")
print(precision_score(y_test, y_pred, average='micro'))
print("macro")
print(precision_score(y_test, y_pred, average='macro'))

print("recall:")
print("micro")
print(recall_score(y_test, y_pred, average='micro'))
print("macro")
print(recall_score(y_test, y_pred, average='macro'))

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: example_cc.py

Download Jupyter notebook: example_cc.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

Ensemble Binary Relevance Example

An example of skml.problem_transformation.BinaryRelevance

from __future__ import print_function

from sklearn.metrics import hamming_loss
from sklearn.metrics import accuracy_score
from sklearn.metrics import f1_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
import numpy as np

from skml.problem_transformation import BinaryRelevance
from skml.datasets import load_dataset

X, y = load_dataset('yeast')
X_train, X_test, y_train, y_test = train_test_split(X, y)

clf = BinaryRelevance(LogisticRegression())
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)

print("hamming loss: ")
print(hamming_loss(y_test, y_pred))

print("accuracy:")
print(accuracy_score(y_test, y_pred))

print("f1 score:")
print("micro")
print(f1_score(y_test, y_pred, average='micro'))
print("macro")
print(f1_score(y_test, y_pred, average='macro'))

print("precision:")
print("micro")
print(precision_score(y_test, y_pred, average='micro'))
print("macro")
print(precision_score(y_test, y_pred, average='macro'))

print("recall:")
print("micro")
print(recall_score(y_test, y_pred, average='micro'))
print("macro")
print(recall_score(y_test, y_pred, average='macro'))

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: example_br.py

Download Jupyter notebook: example_br.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

Probabilistic Classifier Chain Example

An example of skml.problem_transformation.ProbabilisticClassifierChain

from sklearn.metrics import hamming_loss
from sklearn.metrics import accuracy_score
from sklearn.metrics import f1_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
import numpy as np

from skml.problem_transformation import ProbabilisticClassifierChain
from skml.datasets import load_dataset

X, y = load_dataset('yeast')
sample down the label space to make the example faster.
you shouldn't do this on your own data though!
y = y[:, :6]

X_train, X_test, y_train, y_test = train_test_split(X, y)

pcc = ProbabilisticClassifierChain(LogisticRegression())
pcc.fit(X_train, y_train)
y_pred = pcc.predict(X_test)

print("hamming loss: ")
print(hamming_loss(y_test, y_pred))

print("accuracy:")
print(accuracy_score(y_test, y_pred))

print("f1 score:")
print("micro")
print(f1_score(y_test, y_pred, average='micro'))
print("macro")
print(f1_score(y_test, y_pred, average='macro'))

print("precision:")
print("micro")
print(precision_score(y_test, y_pred, average='micro'))
print("macro")
print(precision_score(y_test, y_pred, average='macro'))

print("recall:")
print("micro")
print(recall_score(y_test, y_pred, average='micro'))
print("macro")
print(recall_score(y_test, y_pred, average='macro'))

Total running time of the script: (0 minutes 0.000 seconds)

Download Python source code: example_pcc.py

Download Jupyter notebook: example_pcc.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.readthedocs.io]

User Guide

	Multi-label Data Sets

	Problem Transformation
	Binary Relevance

	Label Powerset

	Classifier Chains

	Probabilistic Classifier Chains

	Ensemble Methods
	Ensemble Classifier Chains

Multi-label Data Sets

The skml.datasets component provides popular multi-label classification
datasets, as well as methods to reduce the label space size by different means.

Problem Transformation

The skml.problem_transformation module implements so called
meta-estimators to solve multi-label classification problems by transforming
them into a number of easier problems, i.e. binary classification problems.

Binary Relevance

Binary Relevance (skml.problem_transformation.BinaryRelevance)
transforms a problem of multi-classification with [image: |\mathcal{L}|] labels
into a problem of [image: |\mathcal{L}|] binary classification problems, hence
trains [image: |\mathcal{L}|] classifiers that decide label-wise, if the example
that is currently being observed should have the label or not. (Dubbed PT-4 in
the cited paper.)

Note, that binary relevance is not capable of modeling label interdependence.

References:

	1

	“Multi-Label Classification: An Overview.”
Tsoumakas, Grigorios and Ioannis Katakis. in IJDWM 3 (2007): 1-13.

Label Powerset

Label Powerset (skml.problem_transformation.LabelPowerset) transforms
a multi-class classification problem into one multi-class problem, where all
possible label combinations are used as classes. So each possible combination
of labels is turned into one class. If the underlying multi-label problem
operates on the label space [image: \mathcal{L}] with [image: |\mathcal{L}|]
labels, label powerset will train [image: |2^{\mathcal{L}}|] classifiers, where
each one decides if the label combination should be assigned to an example.

Note, that while label powerset can model label interdependence, the
computational feasibility can be reduced for a large number of labels, as the
number of trained classifiers grows exponentially. (Dubbed PT-5 in the cited
paper.)

References:

	1

	“Multi-Label Classification: An Overview.”
Tsoumakas, Grigorios and Ioannis Katakis. in IJDWM 3 (2007): 1-13.

Classifier Chains

Classifier chains (skml.problem_transformation.ClassifierChain)
improve the binary relevance
(skml.problem_transformation.BinaryRelevance) method to use label
interdependence as well. For each label a classifier is trained. Besides the
first classifier in the chain, each subsequent classifier is trained on a
modified input vector, where the previous predicted labels are incorporated.
Thus, a chain of classifiers is predicted, and each classifier in the chain
gets also the previous class predictions as an input.

Note, that the performance of a single chain depends heavily on the order of
the classifiers in the chain.

References:

	2

	“Classifier chains for multi-label classification”,
Read, J., Pfahringer, B., Holmes, G. & Frank, E. (2009).
In Proceedings of European conference on Machine Learning and
Knowledge Discovery in Databases 2009 (ECML PKDD 2009), Part II,
LNAI 5782(pp. 254-269). Berlin: Springer.

Probabilistic Classifier Chains

Probabilistic Classifier Chains
(skml.problem_transformation.ProbabilisticClassifierChain)
–also known as PCC–
are an extension to the classic Classifier Chains
(skml.problem_transformation.ClassifierChain)
and can be seen as a discrete greedy approximation of probabilistic classifier chains
with probabilities valued zero/one [3].

For each label a classifier is trained as in CC, however probabilistic classifiers
are used. In fact [3], when used with non-probabilistic classifiers, CC is recovered
from the posterior probability distribution [image: \mathbf{P}_\mathbf{y}(\mathbf{x})].

Note, that PCC performs best, when a loss function that models label
interdendence (such as Subset 0/1 loss) is used, and the labels in the
data set are in fact interdependent. For more information on this,
see [3].

The training is equivalent to CC, the inference (prediction) however is
more complex. For a detailed description of the inference, see
skml.problem_transformation.ProbabilisticClassifierChains directly,
have a look at the source code, or refer to the paper [3].

References:

	3

	“Bayes Optimal Multilabel Classification via Probabilistic Classifier Chains”,
K. Dembczynski, W. Cheng, E. Hüllermeier (2010). ICML 2010

Ensemble Methods

The skml.ensemble module implements ensembles to be used for multi-label
classification.

Ensemble Classifier Chains

Ensemble of classifier chains (ECC) trains an ensemble of bagged
classifier chains. Each chain is trained on a randomly sampled subset
of the training data (with replacement, also known as bagging).

References:

	1

	“Classifier chains for multi-label classification”,
Read, J., Pfahringer, B., Holmes, G. & Frank, E. (2009).
In Proceedings of European conference on Machine Learning and
Knowledge Discovery in Databases 2009 (ECML PKDD 2009), Part II,
LNAI 5782(pp. 254-269). Berlin: Springer.

Index

 L
 | S

L

 	
 	load_dataset() (in module skml.datasets)

S

 	
 	sample_down_label_space() (in module skml.datasets)

 _static/up-pressed.png

_images/math/65dd185e01cea71ae44ec421281a77a697a972d0.png
L]

_images/math/86a4d465693a9ee0aabfb73335d2991bc07f8d5a.png

_images/sphx_glr_example_lp_thumb.png

_static/up.png

_images/sphx_glr_example_pcc_thumb.png

_static/ajax-loader.gif

_images/math/adf62cb1fab7bcac17127884a43943688c6d9713.png

_images/math/fbafa98177a4e80f5b20c54216c5fa7ed736f5f0.png

_static/broken_example.png

_static/comment-bright.png

_images/sphx_glr_example_br_thumb.png

_images/sphx_glr_example_cc_thumb.png

_images/sphx_glr_example_ecc_thumb.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Welcome to skml’s documentation!

 		
 API Documentation

 		
 Problem Transformation Methods

 		
 Ensemble Methods

 		
 Multi-label Data Sets

 		
 Multi-label Classification Examples

 		
 User Guide

 		
 Multi-label Data Sets

 		
 Problem Transformation

 		
 Binary Relevance

 		
 Label Powerset

 		
 Classifier Chains

 		
 Probabilistic Classifier Chains

 		
 Ensemble Methods

 		
 Ensemble Classifier Chains

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/minus.png

_static/no_image.png

_static/file.png

_static/plus.png

