
skbold Documentation
Release 0.1

Lukas Snoek

Dec 20, 2018

Getting started

1 Installation & dependencies 3

2 Data organization 5

3 Mvp-objects 7
3.1 MvpWithin . 7
3.2 MvpBetween . 8

4 MvpResults: model evaluation and feature visualization 11

5 Feature selection/extraction 13

6 An example workflow: MvpWithin 15

7 An example workflow: MvpBetween 17

8 skbold.core package 21

9 skbold.exp_model package 29

10 skbold.feature_extraction package 33

11 skbold.feature_selection package 37

12 skbold.pipelines package 39

13 skbold.postproc package 41

14 skbold.preproc package 45

15 skbold.utils package 49

Python Module Index 53

i

ii

skbold Documentation, Release 0.1

The Python package skbold offers a set of tools and utilities for machine learning analyses of functional MRI
(BOLD-fMRI) data. Instead of (largely) reinventing the wheel, this package builds upon an existing machine learn-
ing framework in Python: scikit-learn. The modules of skbold are applicable in several ‘stages’ of typical pattern
analyses (see image below), including pattern estimation, data representation, pattern preprocessing, feature selec-
tion/extraction, and model evaluation/feature visualization.

The documentation of skbold is split up into three sections:

• Getting started

• Examples

• API

Getting started 1

https://travis-ci.org/lukassnoek/skbold
http://skbold.readthedocs.io/en/latest/?badge=latest
https://coveralls.io/github/lukassnoek/skbold?branch=develop
https://www.python.org/download/releases/2.7
https://www.python.org/downloads/release/python-350
http://scikit-learn.org/

skbold Documentation, Release 0.1

2 Getting started

CHAPTER 1

Installation & dependencies

Although the package is very much in development, it can be installed using pip:

$ pip install skbold

However, the pip-version is likely behind compared to the code on Github, so to get the most up to date version, use
git:

$ pip install git+https://github.com/lukassnoek/skbold.git@master

Skbold is largely Python-only (both Python2.7 and Python3) and is built around the “PyData” stack, including:

• Numpy

• Scipy

• Pandas

• Scikit-learn

And it uses the awesome nibabel package for reading/writing nifti-files. Also, skbold uses FSL (primarily the FLIRT
and applywarp functions) to transform files from functional (native) to standard (here: MNI152 2mm) space. These
FSL-calls are embedded in the convert2epi and convert2mni functions, so avoid this functionality if you don’t
have a working FSL installation.

3

http://nipy.org/nibabel/
https://fsl.fmrib.ox.ac.uk

skbold Documentation, Release 0.1

4 Chapter 1. Installation & dependencies

CHAPTER 2

Data organization

Skbold is quite flexible in how to work with data organized in different ways. However, to optimally use the Mvp
classes (especially the MvpBetween class), it’s best to organize your data hierarchically. For example, suppose you
have a .feat-directory with first-level pattern estimates of two two runs (‘run-1’, ‘run-2’) for 3 subjects (‘sub-01’,
‘sub-02’, ‘sub-03’). A nice organization would be as follows:

project_dir
sub-01

run-1
some_task.feat

run-2
some_task.feat

sub-02
run-1

some_task.feat
run-2

some_task.feat
sub-03

run-1
some_task.feat

run-2
some_task.feat

This organization makes it easy for Mvp objects to find, load in, and organize patterns from these .feat-directories, as
will become more clear in the examples-section on Mvp objects.

5

skbold Documentation, Release 0.1

6 Chapter 2. Data organization

CHAPTER 3

Mvp-objects

One of skbold’s main features is the data-structure Mvp (an abbreviation of MultiVoxel Pattern). This custom object
allows for an efficient way to store and access data and metadata necessary for multivoxel analyses of fMRI data. A
nice feature of this Mvp objects is that they can easily load data (i.e., sets of nifti-files) from disk and automatically
organize it in a format that is used in ML-analyses (i.e., a sample-by-feature matrix).

So, at the core, an Mvp-object is simply a collection of data - a 2D array of samples by features - and fMRI-specific
metadata necessary to perform customized preprocessing and feature engineering. However, machine learning anal-
yses, or more generally any type of multivoxel-type analysis (i.e. MVPA), can be done in two basic ways, which
provide the basis of the two ‘flavors’ of Mvp-objects: MvpWithin and MvpBetween, as explained in more detail
below.

3.1 MvpWithin

One way is to perform analyses within subjects. This means that a model is fit on each subjects’ data separately. Data,
in this context, often refers to single-trial data, in which each trial comprises a sample in our data-matrix and the
values per voxel constitute our features. This type of analysis is alternatively called single-trial decoding, and is often
performed as an alternative to (whole-brain) univariate analysis.

7

skbold Documentation, Release 0.1

Ultimately, this type of analysis aims to predict some kind of attribute of the trials (for example condition/class mem-
bership in classification analyses or some continuous feature in regression analyses), which skbold calls y, based on
a model trained on the samples-by-features matrix, which skbold calls X. After obtaining model performance scores
(such as accuracy, F1-score, or R-squared) for each subject, a group-level random effects (RFX) analysis can be done
on these scores. Skbold does not offer any functionality in terms of group-level analyses; we advise researchers to
look into the prevalance inference method of Allefeld and colleagues.

3.2 MvpBetween

With the increase in large-sample neuroimaging datasets, another type of MVPA starts to become feasible, which we’ll
call between subject analyses. In this type of analysis, single subjects constitute the data’s samples and a corresponding
single multivoxel pattern constitutes the data’s features. The type of multivoxel pattern, or ‘feature-set’, can be any
set of voxel values. For example, features from a single first-level contrast (note: this should be a condition average
contrast, as opposed to single-trial contrasts in MvpWithin!) can be used. But voxel patterns from VBM, TBSS
(DTI), and dual-regression maps can equally well be used. Crucially, this package allows for the possibility to stack
feature-sets such that models can be fit on features from multiple data-types simultaneously.

8 Chapter 3. Mvp-objects

http://www.sciencedirect.com/science/article/pii/S1053811916303470

skbold Documentation, Release 0.1

3.2. MvpBetween 9

skbold Documentation, Release 0.1

10 Chapter 3. Mvp-objects

CHAPTER 4

MvpResults: model evaluation and feature visualization

Given that an appropriate Mvp-object exists, it is really easy to implement a machine learning analysis using standard
scikit-learn modules. However, as fMRI datasets are often relatively small, K-fold cross-validation is often performed
to keep the training-set as large as possible. Additionally, it might be informative to visualize which features are used
and are most important in your model. (But, note that feature mapping should not be the main objective of decoding
analyses!) Doing this - model evaluation and feature visualization across multiple folds - complicates the process of
implementing machine learning pipelines on fMRI data.

The MvpResults object offers a solution to the above complications. Simply pass your scikit-learn pipeline to
MvpResults after every fold and it automatically calculates a set of model evaluation metrics (accuracy, precision,
recall, etc.) and keeps track of which features are used and how ‘important’ these features are (in terms of the value of
their weights).

11

skbold Documentation, Release 0.1

12 Chapter 4. MvpResults: model evaluation and feature visualization

CHAPTER 5

Feature selection/extraction

The feature_selection and feature_extraction modules in skbold contain a set of scikit-learn type
transformers that can perform various types of feature selection and extraction specific to multivoxel fMRI-data. For
example, the RoiIndexer-transformer takes a (partially masked) whole-brain pattern and indexes it with a specific
region-of-interest defined in a nifti-file. The transformer API conforms to scikit-learn transformers, and as such,
(almost all of them) can be used in scikit-learn pipelines.

To get a better idea of the package’s functionality - including the use of Mvp-objects, transformers, and MvpResults -
a typical analysis workflow using skbold is described below.

For some example usages of the Mvp-objects and how to incorporate them in a scikit-learn-based ML-pipeline,
check the examples below:

13

skbold Documentation, Release 0.1

14 Chapter 5. Feature selection/extraction

CHAPTER 6

An example workflow: MvpWithin

Suppose you have data from an fMRI-experiment for a set of subjects who were presented with images which were
either emotional or neutral in terms of their content. You’ve modelled them using a single-trial GLM (i.e. each
trial is modelled as a separate event/regressor) and calculated their corresponding contrasts against baseline. The
resulting FEAT-directory then contains a directory (‘stats’) with contrast-estimates (COPEs) for each trial. Now, using
MvpWithin, it is easy to extract a sample by features matrix and some meta-data associated with it, as shown below.

from skbold.core import MvpWithin

feat_dir = '~/project/sub001.feat'
mask_file = '~/GrayMatterMask.nii.gz' # mask all non-gray matter!
read_labels = True # parse labels (targets) from design.con file!
remove_contrast = ['nuisance_regressor_x'] # do not load nuisance regressor!
ref_space = 'epi' # extract patterns in functional space (alternatively: 'mni')
statistic = 'tstat' # use the tstat*.nii.gz files (in *.feat/stats) as patterns
remove_zeros = True # remove voxels which are zero in each trial

mvp = MvpWithin(source=feat_dir, read_labels=read_labels,
remove_contrast=remove_contrast, ref_space=ref_space,
statistic=statistic, remove_zeros=remove_zeros,
mask=mask_file)

mvp.create() # extracts and stores (meta)data from FEAT-directory!
mvp.write(path='~/', name='mvp_sub001') # saves to disk!

Now, we have an Mvp-object on which machine learning pipeline can be applied:

import joblib
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.pipeline import Pipeline
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import accuracy_score, f1_score
from skbold.feature_selection import fisher_criterion_score, SelectAboveCutoff
from skbold.feature_extraction import RoiIndexer

(continues on next page)

15

skbold Documentation, Release 0.1

(continued from previous page)

from skbold.postproc import MvpResults

mvp = joblib.load('~/mvp_sub001.jl')
roiindex = RoiIndexer(mvp=mvp,

mask='Amygdala',
atlas_name='HarvardOxford-Subcortical',
lateralized=False) # loads in bilateral mask

Extract amygdala patterns from whole-brain
mvp.X = roiindex.fit().transform(mvp.X)

Define pipeline
pipe = Pipeline([

('scaler', StandardScaler()),
('anova', SelectAboveCutoff(fisher_criterion_score, cutoff=5)),
('svm', SVC(kernel='linear'))

])

cv = StratifiedKFold(y=mvp.y, n_splits=5)

Initialization of MvpResults; 'forward' indicates that it keeps track of
the forward model corresponding to the weights of the backward model
(see Haufe et al., 2014, Neuroimage)
mvp_results = MvpResults(mvp=mvp, n_iter=len(cv), feature_scoring='forward',

f1=f1_score, accuracy=accuracy_score)

for train_idx, test_idx in cv.split(mvp.X, mvp.y):

train, test = mvp.X[train_idx, :], mvp.X[test_idx, :]
train_y, test_y = mvp.y[train_idx], mvp.y[train_idx]

pipe.fit(train, train_y)
pred = pipe.predict(test)

mvp_results.update(test_idx, pred, pipeline=pipe) # update after each fold!

mvp_results.compute_scores() # compute!
mvp_results.write(out_path) # write file with metrics and niftis with feature-scores!

16 Chapter 6. An example workflow: MvpWithin

CHAPTER 7

An example workflow: MvpBetween

Suppose you have MRI data from a large set of subjects (let’s say >50), including (task-based) functional MRI, struc-
tural MRI (T1-weighted images, DTI), and behavioral data (e.g. questionnaires, behavioral tasks). Such a dataset
would qualify for a between subject decoding analysis using the MvpBetween object. To use the MvpBetween func-
tionality effectively, it is important that the data is organized sensibly. An example is given below.

17

skbold Documentation, Release 0.1

In this example, each subject has three different data-sources: two FEAT- directories (with functional contrasts) and
one VBM-file. Let’s say that we’d like to use all of these sources of information together to predict some behavioral
variable, neuroticism for example (as measured with e.g. the NEO-FFI). The most important argument passed to
MvpBetween is source. This variable, a dictionary, should contain the data-types you want to extract and their
corresponding paths (with wildcards at the place of subject-specific parts):

import os
from skbold import roidata_path
gm_mask = os.path.join(roidata_path, 'GrayMatter.nii.gz')

source = dict(
Contrast_t1cope1={'path': '~/Project_dir/sub*/Task1.feat/cope1.nii.gz'},
Contrast_t2cope2={'path': '~/Project_dir/sub*/Task2.feat/cope2.nii.gz'},
VBM={'path': '~/Project_dir/sub*/vbm.nii.gz', 'mask': gm_mask}

)

Now, to initialize the MvpBetween object, we need some more info:

from skbold.core import MvpBetween

subject_idf='sub-0??' # this is needed to extract the subject names to
cross-reference across data-sources

subject_list=None # can be a list of subject-names to include
(continues on next page)

18 Chapter 7. An example workflow: MvpBetween

skbold Documentation, Release 0.1

(continued from previous page)

mvp = MvpBetween(source=source, subject_idf=subject_idf, mask=None,
subject_list=None)

like with MvpWithin, you can simply call create() to start the extraction!
mvp.create()

and write to disk using write()
mvp.write(path='~/', name='mvp_between') # saves to disk!

This is basically all you need to create a MvpBetween object! It is very similar to MvpWithin in terms of attributes (in-
cluding X, y, and various meta-data attributes). In fact, MvpResults works exactly in the same way for MvpWithin and
MvpBetween! The major difference is that MvpResults keeps track of the feature-information for each feature-set sep-
arately and writes out a summarizing nifti-file for each feature-set. Transformers also work the same for MvpBetween
objects/data, with the exception of the cluster-threshold transformer.

19

skbold Documentation, Release 0.1

20 Chapter 7. An example workflow: MvpBetween

CHAPTER 8

skbold.core package

The core subpackage contains skbold’s most important data-structure: the Mvp. This class forms the basis of
the ‘multivoxel-patterns’ (i.e. mvp) that are used throughout the package. Subclasses of Mvp (MvpWithin and
MvpBetween) are also defined in this core module.

The MvpWithin object is meant as a data-structure that contains a set of multivoxel fMRI patterns of single trials, for
a single subject, hence the ‘within’ part (i.e. within-subjects). Currently, it has a single public method, create(),
loading a set of contrasts from a FSL-firstlevel directory (i.e. a .feat-directory). Thus, importantly, it assumes that the
single-trial patterns are already modelled, on a single-trial basis, using some kind of GLM. These trialwise patterns
are then horizontally stacked to create a 2D samples by features matrix, which is set to the X attribute of MvpWithin.

The MvpBetween object is meant as a data-structure that contains a set of multivoxel fMRI patterns of single con-
ditions, for a set of subjects. It is, so to say, a ‘between-subjects’ multivoxel pattern, in which subjects are ‘samples’.
In contrast to MvpWithin, contrasts that will be loaded are less restricted in terms of their format; the only requisite is
that they are nifti files. Notably, the MvpBetween format allows to vertically stack different kind of ‘feature-sets’ in a
single MvpBetween object. For example, it is possible to, for a given set of subjects, stack a functional contrast (e.g.
a high-load minus low-load functional contrast) with another functional contrast (e.g. a conflict minus no-conflict
functional contrast) in order to use features from both sets to predict a certain psychometric or behavioral variable
of the corresponding subjects (such as, e.g., intelligence). Also, the MvpBetween format allows to load (and stack!)
VBM, TBSS, resting-state (to extract connectivity measures), and dual-regression data. More information can be
found below in the API. A use case can be found on the main page of ReadTheDocs.

Also, functional-to-standard (i.e. convert2mni) and standard-to-functional (i.e. convert2epi) warp-functions
for niftis are defined here, because they have caused circular import errors in the past.

class Mvp(X=None, y=None, mask=None, mask_thres=0)
Bases: object

Mvp (multiVoxel Pattern) class. Creates an object, specialized for storing fMRI data that will be analyzed using
machine learning or RSA-like analyses, that stores both the data (X: an array of samples by features, y: numeric
labels corresponding to X’s classes/conditions) and the corresponding meta-data (e.g. nifti header, mask info,
etc.).

Parameters

• X (ndarray) – A 2D numpy-array with rows indicating samples and columns indicating
features.

21

http://skbold.readthedocs.io

skbold Documentation, Release 0.1

• y (list or ndarray) – Array/list with labels/targets corresponding to samples in X.

• mask (str) – Absolute path to nifti-file that will mask (index) the patterns.

• mask_thres (int or float) – Minimum value for mask (in cases of probabilistic
masks).

Variables

• mask_shape (tuple) – Shape of mask that patterns will be indexed with.

• nifti_header (Nifti1Header object) – Nifti-header from corresponding mask.

• affine (ndarray) – Affine corresponding to nifti-mask.

• voxel_idx (ndarray) – Array with integer-indices indicating which voxels are used in
the patterns relative to whole-brain space. In other words, it allows to map back the patterns
to a whole-brain orientation.

• X (ndarray) – The actual patterns (2D: samples X features)

• y (list or ndarray) – Array/list with labels/targets corresponding to samples in X.

Notes

This class is mainly meant to serve as a parent-class for MvpWithin and MvpBetween, but it can alternatively
be used as an object to store a ‘custom’ multivariate-pattern set with meta-data.

update_mask(mask, threshold=0)

write(path=None, name=’mvp’, backend=’joblib’)
Writes the Mvp-object to disk.

Parameters

• path (str) – Absolute path where the file will be written to.

• name (str) – Name of to-be-written file.

• backend (str) – Which format will be used to save the files. Default is ‘joblib’, which
conveniently saves the Mvp-object as one file. Alternatively, and if the Mvp-object is too
large to be save with joblib, a data-header format will be used, in which the data (X) will
be saved using Numpy and the meta-data (everythin except X) will be saved using joblib.

convert2epi(file2transform, reg_dir, out_dir=None, interpolation=’trilinear’, suffix=’epi’, over-
write=False)

Transforms a nifti from mni152 (2mm) to EPI (native) format. Assuming that reg_dir is a directory with
transformation-files (warps) including standard2example_func warps, this function uses nipype’s fsl interface to
flirt a nifti to EPI format.

Parameters

• file2transform (str or list) – Absolute path(s) to nifti file(s) that needs to be
transformed

• reg_dir (str) – Absolute path to registration directory with warps

• out_dir (str) – Absolute path to desired out directory. Default is same directory as the
to-be transformed file.

• interpolation (str) – Interpolation used by flirt. Default is ‘trilinear’.

• suffix (str) – What to suffix the transformed file with (default : ‘epi’)

• overwrite (bool) – Whether to overwrite existing transformed files

22 Chapter 8. skbold.core package

skbold Documentation, Release 0.1

Returns out_all – Absolute path(s) to newly transformed file(s).

Return type list

convert2mni(file2transform, reg_dir, out_dir=None, interpolation=’trilinear’, suffix=None, over-
write=False, apply_warp=True)

Transforms a nifti to mni152 (2mm) format. Assuming that reg_dir is a directory with transformation-files
(warps) including example_func2standard warps, this function uses nipype’s fsl interface to flirt a nifti to mni
format.

Parameters

• file2transform (str or list) – Absolute path to nifti file(s) that needs to be trans-
formed

• reg_dir (str) – Absolute path to registration directory with warps

• out_dir (str) – Absolute path to desired out directory. Default is same directory as the
to-be transformed file.

• interpolation (str) – Interpolation used by flirt. Default is ‘trilinear’.

• suffix (str) – What to append to name when converted (default : basename
file2transform).

• overwrite (bool) – Whether to overwrite already existing transformed file(s)

• apply_warp (bool) – Whether to use the non-linear warp transform (if available).

Returns out_all – Absolute path(s) to newly transformed file(s).

Return type list

class MvpBetween(source, subject_idf=’sub0???’, remove_zeros=True, X=None, y=None, mask=None,
mask_thres=0, subject_list=None)

Bases: skbold.core.mvp.Mvp

Extracts and stores multivoxel pattern information across subjects. The MvpBetween class allows for the extrac-
tion and storage of multivoxel (MRI) pattern information across subjects. The MvpBetween class can handle
various types of information, including functional contrasts, 3D (subject-specific) and 4D (subjects stacked)
VBM and TBSS data, dual-regression data, and functional-connectivity data from resting-state scans (experi-
mental).

Parameters

• source (dict) – Dictionary with types of data as keys and data-specific dictionaries as
values. Keys can be ‘Contrast_*’ (indicating a 3D functional contrast), ‘4D_anat’ (for 4D
anatomical - VBM/TBSS - files), ‘VBM’, ‘TBSS’, and ‘dual_reg’ (a subject-spedific 4D file
with components as fourth dimension).

The dictionary passed as values must include, for each data-type, a path with wildcards to
the corresponding (subject-specific) data-file. Other, optional, key-value pairs per data-type
can be assigned, including ‘mask’: ‘path’, to use data-type-specific masks.

An example:

>>> source = {}
>>> path_emo = '~/data/sub0*/*.feat/stats/tstat1.nii.gz'
>>> source['Contrast_emo'] = {'path': path_emo}
>>> vbm_mask = '~/vbm_mask.nii.gz'
>>> path_vbm = '~/data/sub0*/*vbm.nii.gz'
>>> source['VBM'] = {'path': path_vbm, 'mask': vbm_mask}

23

skbold Documentation, Release 0.1

• subject_idf (str) – Subject-identifier. This identifier is used to extract subject-names
from the globbed directories in the ‘path’ keys in source, so that it is known which pat-
tern belongs to which subject. This way, MvpBetween can check which subjects contain
complete data!

• X (ndarray) – Not necessary to pass MvpWithin, but needs to be defined as it is needed
in the super-constructor.

• y (ndarray or list) – Labels or targets corresponding to the samples in X.

• mask (str) – Absolute path to nifti-file that will be used as a common mask. Note: this
will only be applied if its shape corresponds to the to-be-indexed data. Otherwise, no mask
is applied. Also, this mask is ‘overridden’ if source[data_type] contains a ‘mask’ key, which
implies that this particular data-type has a custom mask.

• mask_threshold (int or float) – Minimum value to binarize the mask when it’s
probabilistic.

Variables

• mask_shape (tuple) – Shape of mask that patterns will be indexed with.

• nifti_header (list of Nifti1Header objects) – Nifti-headers from original
data-types.

• affine (list of ndarray) – Affines corresponding to nifti-masks of each data-type.

• X (ndarray) – The actual patterns (2D: samples X features)

• y (list or ndarray) – Array/list with labels/targets corresponding to samples in X.

• common_subjects (list) – List of subject-names that have complete data specified in
source.

• featureset_id (ndarray) – Array with integers of size X.shape[1] (i.e. the amount
of features in X). Each unique integer, starting at 0, refers to a different feature-set.

• voxel_idx (ndarray) – Array with integers of size X.shape[1]. Per feature-set, these
voxel- indices allow the features to be mapped back to whole-brain space. For example, to
map back the features in X from feature set 1 to MNI152 (2mm) space, do:

>>> mni_vol = np.zeros((91, 109, 91))
>>> tmp_idx = mvp.featureset_id == 0
>>> mni_vol[mvp.featureset_id[tmp_idx]] = mvp.X[0, tmp_idx]

• data_shape (list of tuples) – Original (whole-brain) shape of the loaded data,
per data-type.

• data_name (list of str) – List of names of data-types.

add_y(file_path, col_name, sep=’\t’, index_col=0, normalize=False, remove=None, en-
sure_balanced=False, nan_strategy=’remove’, **kwargs)

Sets y attribute to an outcome-variable (target).

Parameters

• file_path (str) – Absolute path to spreadsheet-like file including the outcome var.

• col_name (str) – Column name in spreadsheet containing the outcome variable

• sep (str) – Separator to parse the spreadsheet-like file.

• index_col (int) – Which column to use as index (should correspond to subject-name).

• normalize (bool) – Whether to normalize (0 mean, unit std) the outcome variable.

24 Chapter 8. skbold.core package

skbold Documentation, Release 0.1

• remove (int or float or str) – Removes instances in which y == remove from
MvpBetween object.

• ensure_balanced (bool) – Whether to ensure balanced classes (if True, done by
undersampling the majority class).

• nan_strategy (str) – Strategy on how to deal with NaNs. Default: ‘remove’. Also,
a specific string, int, or float can be specified when you want to impute a specific value.
Other options, see: sklearn.preprocessing.Imputer.

• **kwargs – Arbitrary keyword arguments passed to pandas read_csv.

apply_binarization_params(param_file, ensure_balanced=False)
Applies binarization-parameters to y.

binarize_y(params, save_path=None, ensure_balanced=False)
Binarizes mvp’s y-attribute using a specified method.

Parameters

• params (dict) – The outcome variable (y) will be binarized along the key-value pairs
in the params-argument. Options:

>>> params = {'type': 'percentile', 'high': 75, 'low': 25}
>>> params = {'type': 'zscore', 'std': 1}
>>> params = {'type': 'constant', 'cutoff': 10}
>>> params = {'type': 'median'}

• save_path (str) – If not None (default), this should be an absolute path referring to
where the binarization-params should be saved.

• ensure_balanced (bool) – Whether to ensure balanced classes (if True, done by
undersampling the majority class).

create()
Extracts and stores data as specified in source.

Raises ValueError – If data-type is not one of [‘VBM’, ‘TBSS’, ‘4D_anat*’, ‘dual_reg’,
‘Contrast*’]

run_searchlight(out_dir, name=’sl_results’, n_folds=10, radius=5, mask=None, estimator=None,
**kwargs)

Runs a searchlight on the mvp object.

Parameters

• out_dir (str) – Path to which to save the searchlight results

• name (str) – Name for the searchlight-results-file (nifti)

• n_folds (int) – The amount of folds in sklearn’s StratifiedKFold.

• radius (int/list) – Radius for the searchlight. If list, it iterates over radii.

• mask (str) – Path to mask to apply to mvp. If nothing is listed, it will use the masks
applied when the mvp was created.

• estimator (sklearn estimator or pipeline) – Estimator to use in the clas-
sification process.

• **kwargs – Other keyword arguments for initializing nilearn’s searchlight object (see
nilearn.github.io/decoding/searchlight.html).

split(file_path, col_name, target, sep=’\t’, index_col=0, nan_strategy=’train’, **kwargs)
Splits an MvpBetween object based on some external index.

25

skbold Documentation, Release 0.1

Parameters

• file_path (str) – Absolute path to spreadsheet-like file including the outcome var.

• col_name (str) – Column name in spreadsheet containing the outcome variable

• target (str or int or float) – Target to which the data in col_name needs to
be compared to, in order to create an index.

• sep (str) – Separator to parse the spreadsheet-like file.

• index_col (int) – Which column to use as index (should correspond to subject-name).

• nan_strategy (str) – Which value to impute if the labeling is absent. Default: ‘train’.

• **kwargs – Arbitrary keyword arguments passed to pandas read_csv.

update_sample(idx)
Updates the data matrix and associated attributes.

write_4D(path=None, return_nimg=False)
Writes a 4D nifti (subs = 4th dimension) of X.

Parameters

• path (str) – Absolute path to save nifti to.

• return_nimg (bool) – Whether to actually return the Nifti1-image object.

class MvpWithin(source, read_labels=True, remove_contrast=[], invert_selection=None,
ref_space=’epi’, statistic=’tstat’, remove_zeros=True, X=None, y=None, mask=None,
mask_threshold=0)

Bases: skbold.core.mvp.Mvp

Extracts and stores subject-specific single-trial multivoxel-patterns The MvpWithin class allows for the extrac-
tion of subject-specific single-trial, multivoxel fMRI patterns from a FSL feat-directory.

Parameters

• source (str) – An absolute path to a subject-specific first-level FEAT directory.

• read_labels (bool) – Whether to read the labels/targets (i.e. y) from the contrast
names defined in the design.con file.

• remove_contrast (list) – Given that all contrasts (COPEs) are loaded from the
FEAT-directory, this argument can be used to remove irrelevant contrasts (e.g. contrasts
of nuisance predictors). Entries in remove_contrast do not have to literal; they may be a
substring of the full name of the contrast.

• invert_selection (bool) – Sometimes, instead of loading in all contrasts and ex-
cluding some, you might want to load only a single or a couple contrasts, and exclude all
other. By setting invert_selection to True, it treats the remove_contrast variable as a list of
contrasts to include.

• ref_space (str) – Indicates in which ‘space’ the patterns will be stored. The default is
‘epi’, indicating that the patterns will be loaded and stored in subject-specific (native) func-
tional space. The other option is ‘mni’, which indicates that MvpWithin will first transform
contrasts to MNI152 (2mm) space before it loads them. This option assumes that a ‘reg’
directory is present in the .feat-directory, including warp-files from functional to mni space
(i.e. example_func2standara.nii.gz).

• statistic (str) – Which statistic (beta = (CO)PE, tstat, zstat, etc.) from FEAT directo-
ries to use as patterns.

26 Chapter 8. skbold.core package

skbold Documentation, Release 0.1

• remove_zeros (bool) – Whether to remove features (i.e. voxels) which are 0 across all
trials (due to, e.g., being located outside the brain).

• X (ndarray) – Not necessary to pass MvpWithin, but needs to be defined as it is needed
in the super-constructor.

• y (ndarray or list) – Labels or targets corresponding to the samples in X. This can
be used when read_labels is set to False.

• mask (str) – Absolute path to nifti-file that will be used as mask.

• mask_threshold (int or float) – Minimum value to binarize the mask when it’s
probabilistic.

Variables

• mask_shape (tuple) – Shape of mask that patterns will be indexed with.

• nifti_header (Nifti1Header object) – Nifti-header from corresponding mask.

• affine (ndarray) – Affine corresponding to nifti-mask.

• voxel_idx (ndarray) – Array with integer-indices indicating which voxels are used in
the patterns relative to whole-brain space. In other words, it allows to map back the patterns
to a whole-brain orientation.

• X (ndarray) – The actual patterns (2D: samples X features)

• y (list or ndarray) – Array/list with labels/targets corresponding to samples in X.

• contrast_labels (list) – List of names corresponding to the y-values.

create()
Extracts (meta-)data from FEAT-directory given appropriate settings during initialization.

Raises

• ValueError – If the ‘source’-directory doesn’t exist.

• ValueError – If the number of loaded contrasts does not equal the number of extracted
labels.

27

skbold Documentation, Release 0.1

28 Chapter 8. skbold.core package

CHAPTER 9

skbold.exp_model package

The exp_model subpackage contains some (pre)processing functions and classes that help in preparing to fit a first-
level GLM on fMRI data across multiple subjects.

The PresentationLogfileCrawler (and its function-equivalent ‘parse_presentation_logfile’) can be used to parse Pre-
sentation-logfile, which are often used at the University of Amsterdam.

Also, there is an experimental Eprime-logfile converter, which converts the Eprime .txt-file to a tsv-file format.

parse_presentation_logfile(in_file, con_names, con_codes, con_duration=None, write_tsv=True,
write_code=False, pulsecode=30)

Function-interface for PresentationLogfileCrawler. Can be used to create a Nipype node.

Parameters

• in_file (str or list) – Absolute path to logfile (can be a list of paths).

• con_names (list) – List with names for each condition

• con_codes (list) – List with codes for conditions. Can be a single integer or string (in
the latter case, it may be a substring) or a list with possible values.

• con_design (list or str) – Which ‘design’ to assume for events (if ‘multivar’, all
events - regardless of condition - are treated as a separate condition/regressor; if ‘univar’,
all events from a single condition are treated as a single condition). Default: ‘univar’ for all
conditions.

• con_duration (list) – If the duration cannot be parsed from the logfile, you can spec-
ify them here manually (per condition).

• pulsecode (int) – Code with which the first (or any) pulse is logged.

class PresentationLogfileCrawler(in_file, con_names, con_codes, con_duration=None, pulsec-
ode=30, write_tsv=True, verbose=True, write_code=False)

Bases: object

Logfile crawler for Presentation (Neurobs) files; cleans logfile, calculates event onsets and durations, and (op-
tionally) writes out .bfsl files per condition.

Parameters

29

https://www.neurobs.com
https://www.neurobs.com
https://www.pstnet.com/eprime.cfm

skbold Documentation, Release 0.1

• in_file (str or list) – Absolute path to logfile (can be a list of paths).

• con_names (list) – List with names for each condition

• con_codes (list) – List with codes for conditions. Can be a single integer or string (in
the latter case, it may be a substring) or a list with possible values.

• con_design (list or str) – Which ‘design’ to assume for events (if ‘multivar’, all
events - regardless of condition - are treated as a separate condition/regressor; if ‘univar’,
all events from a single condition are treated as a single condition). Default: ‘univar’ for all
conditions.

• con_duration (list) – If the duration cannot be parsed from the logfile, you can spec-
ify them here manually (per condition).

• pulsecode (int) – Code with which the first (or any) pulse is logged.

• write_bfsl (bool) – Whether to write out a .bfsl file per condition.

• verbose (bool) – Print out intermediary output.

Variables df (Dataframe) – Dataframe with cleaned and parsed logfile.

parse()
Parses logfile, writes bfsl (optional), and return subject-info.

Returns subject_info_list – Bunch object to be used in Nipype pipelines.

Return type Nilearn bunch object

class Eprime2tsv(in_file)
Bases: object

Converts Eprime txt-files to tsv.

Parameters in_file (str) – Absolute path to Eprime txt-file.

Variables df (Dataframe) – Pandas dataframe with parsed and cleaned txt-file

convert(out_dir=None)
Converts txt-file to tsv.

Parameters out_dir (str) – Absolute path to desired directory to save tsv to (default: current
directory).

class FsfCrawler(data_dir, run_idf=None, template=’mvpa’, preprocess=True, register=True,
mvpa_type=’trial_wise’, output_dir=None, subject_idf=’sub’, event_file_ext=’txt’,
sort_by_onset=False, prewhiten=True, n_cores=1, **feat_options)

Bases: object

Given an fsf-template, this crawler creates subject-specific fsf-FEAT files assuming that appropriate .bfsl files
exist.

Parameters

• data_dir (str) – Absolute path to directory with BIDS-formatted data.

• run_idf (str) – Identifier for run to apply template fsf to.

• template (str) – Absolute path to template fsf-file. Default is ‘mvpa’, which models
each event as a separate regressor (and contrast against baseline).

• preprocess (bool) – Whether to apply preprocessing (as specified in template) or
whether to only run statistics/GLM.

• register (bool) – Whether to calculate registration (func -> highres, highres -> stan-
dard)

30 Chapter 9. skbold.exp_model package

skbold Documentation, Release 0.1

• mvpa_type (str) – Whether to estimate patterns per trial (mvpa_type=’trial_wise’) or to
estimate patterns per condition (or per run, mvpa_type=’run_wise’)

• output_dir (str) – Path to desired output dir of first-levels.

• subject_idf (str) – Identifier for subject-directories.

• event_file_ext (str) – Extension for event-file; if ‘bfsl/txt’ (default, for legacy rea-
sons), then assumes single event-file per predictor. If ‘tsv’ (cf. BIDS), then assumes a single
tsv-file with all predictors.

• sort_by_onset (bool) – Whether to sort predictors by onset (first trial = first predictor),
or, when False, sort by condition (all trials condition A, all trials condition B, etc.).

• n_cores (int) – How many CPU cores should be used for the batch-analysis.

• feat_options (key-word arguments) – Which preprocessing options to set (only
relevant if template=’mvpa’ or if you want to deviate from template). Examples:

mc=‘1’ (apply motion correction), st=‘1’ (apply regular-up slice-time correction),
bet_yn=‘1’ (do brain extraction of func-file), smooth=‘5.0’ (smooth with 5 mm
FWHM), temphp_yn=‘1’ (do HP-filtering), paradigm_hp=‘100’ (set HP-filter to 100
seconds), prewhiten_yn=‘1’ (do prewhitening), motionevs=‘1’ (add motion-params as
nuisance regressors)

crawl()
Crawls subject-directories and spits out subject-specific fsf.

31

skbold Documentation, Release 0.1

32 Chapter 9. skbold.exp_model package

CHAPTER 10

skbold.feature_extraction package

This module contains some feature-extraction methods/transformers.

class PatternAverager(method=’mean’)
Bases: sklearn.base.BaseEstimator, sklearn.base.TransformerMixin

Reduces the set of features to its average.

Parameters method (str) – method of averaging (either ‘mean’ or ‘median’)

fit(X=None, y=None)
Does nothing, but included to be used in sklearn’s Pipeline.

transform(X)
Transforms patterns to its average.

Parameters X (ndarray) – Numeric (float) array of shape = [n_samples, n_features]

Returns X_new – Transformed ndarray of shape = [n_samples, 1]

Return type ndarray

class AverageRegionTransformer(atlas=’HarvardOxford-All’, mask_threshold=0, mvp=None,
reg_dir=None, orig_mask=None, data_shape=None,
ref_space=None, affine=None, **kwargs)

Bases: sklearn.base.BaseEstimator, sklearn.base.TransformerMixin

Transforms a whole-brain voxel pattern into a region-average pattern Computes the average from different re-
gions from a given parcellation and returns those as features for X.

Parameters

• atlas (str) – Atlas to extract ROIs from. Available: ‘HarvardOxford-Cortical’,
‘HarvardOxford-Subcortical’, ‘HarvardOxford-All’ (combination of cortical/subcortical),
‘Talairach’ (not tested), ‘JHU-labels’, ‘JHU-tracts’, ‘Yeo2011’.

• mvp (Mvp-object (see core.mvp)) – Mvp object that provides some metadata
about previous masks

33

skbold Documentation, Release 0.1

• mask_threshold (int (default: 0)) – Minimum threshold for probabilistic
masks (such as Harvard-Oxford)

• reg_dir (str) – Path to directory with registration info (warps/transforms).

• **kwargs (key-word arguments) – Other arguments that can be passed to
skbold.utils.load_roi_mask.

fit(X=None, y=None)
Does nothing, but included to be used in sklearn’s Pipeline.

transform(X, y=None)
Transforms features from X (voxels) to region-average features.

Parameters

• X (ndarray) – Numeric (float) array of shape = [n_samples, n_features]

• y (Optional[List[str] or numpy ndarray[str]]) – List of ndarray with
strings indicating label-names

Returns X_new – array with transformed data of shape = [n_samples, n_features] in which
features are region-average values.

Return type ndarray

class PCAfilter(n_components=5, reject=None)
Bases: sklearn.base.BaseEstimator, sklearn.base.TransformerMixin

Filters out a (set of) PCA component(s) and transforms it back to original representation.

Parameters

• n_components (int) – number of components to retain.

• reject (list) – Indices of components which should be additionally removed.

Variables pca (scikit-learn PCA object) – Fitted PCA object.

fit(X, y=None, *args)
Fits PcaFilter.

Parameters

• X (ndarray) – Numeric (float) array of shape = [n_samples, n_features]

• y (List of str) – List or ndarray with floats corresponding to labels

transform(X)
Transforms a pattern (X) by the inverse PCA transform with removed components.

Parameters X (ndarray) – Numeric (float) array of shape = [n_samples, n_features]

Returns X – Transformed array of shape = [n_samples, n_features] given the PCA calculated
during fit().

Return type ndarray

class ClusterThreshold(mvp, min_score, selector=<function f_classif>, min_cluster_size=20)
Bases: sklearn.base.BaseEstimator, sklearn.base.TransformerMixin

Implements a cluster-based feature selection method. This feature selection method performs a univariate feature
selection method to yield a set of voxels which are then cluster-thresholded using a minimum (contiguous)
cluster size. These clusters are then averaged to yield a set of cluster-average features. This method is described
in detail in my master’s thesis: github.com/lukassnoek/MSc_thesis.

Parameters

34 Chapter 10. skbold.feature_extraction package

skbold Documentation, Release 0.1

• transformer (scikit-learn style transformer class) – transformer
class used to perform some kind of univariate feature selection.

• mvp (Mvp-object (see core.mvp)) – Necessary to provide mask metadata (index,
shape).

• min_cluster_size (int) – minimum cluster size to be set for cluster-thresholding

fit(X, y, *args)
Fits ClusterThreshold transformer.

Parameters

• X (ndarray) – Numeric (float) array of shape = [n_samples, n_features]

• y (List[str] or numpy ndarray[str]) – List of ndarray with floats corre-
sponding to labels

transform(X)
Transforms a pattern (X) given the indices calculated during fit().

Parameters X (ndarray) – Numeric (float) array of shape = [n_samples, n_features]

Returns X_cl – Transformed array of shape = [n_samples, n_clusters] given the indices calcu-
lated during fit().

Return type ndarray

35

skbold Documentation, Release 0.1

36 Chapter 10. skbold.feature_extraction package

CHAPTER 11

skbold.feature_selection package

The transformer subpackage provides several scikit-learn style transformers that perform feature selection and/or ex-
traction of multivoxel fMRI patterns. Most of them are specifically constructed with fMRI data in mind, and thus often
need an Mvp object during initialization to extract necessary metadata. All comply with the scikit-learn API, using
fit() and transform() methods.

class GenericUnivariateSelect(score_func=<function f_classif>, mode=’percentile’, param=1e-
05)

Bases: sklearn.feature_selection.univariate_selection._BaseFilter

Univariate feature selector with configurable strategy.

Updated version from scikit-learn: http://scikit-learn.org/‘.

Parameters

• score_func (callable) – Function taking two arrays X and y, and returning a pair of
arrays (scores, pvalues). For modes ‘percentile’ or ‘kbest’ it can return a single array scores.

• mode ({'percentile', 'k_best', 'fpr', 'fdr', 'fwe', 'cutoff'})
– Feature selection mode.

• param (float or int depending on the feature selection mode) –
Parameter of the corresponding mode.

Variables

• scores (array-like, shape=(n_features,)) – Scores of features.

• pvalues (array-like, shape=(n_features,)) – p-values of feature scores,
None if score_func returned scores only.

class SelectAboveCutoff(cutoff, score_func=<function f_classif>)
Bases: sklearn.feature_selection.univariate_selection._BaseFilter

Filter: Select features with a score above some cutoff.

Parameters

• cutoff (int/float) – Cutoff for feature-scores to be selected.

37

http://scikit-learn.org/

skbold Documentation, Release 0.1

• score_func (callable) – Function that takes a 2D array X (samples x features) and
returns a score reflecting a univariate difference (higher is better).

fisher_criterion_score(X, y, norm=’l1’, balance=False)
Calculates fisher score.

See [1]_ for more info.

References

[1] P. E. H. R. O. Duda and D. G. Stork. Pattern Classification. Wiley-Interscience Publication, 2001.

Parameters

• X ({array-like, sparse matrix} shape = (n_samples,
n_features)) – The set of regressors that will be tested sequentially.

• y (array of shape(n_samples)) – The data matrix

• norm (str) – Whether to use the l1-norm or l2-norm.

Returns scores_ – Fisher criterion scores for each feature.

Return type array, shape=(n_features,)

class IncrementalFeatureCombiner(scores, cutoff)
Bases: sklearn.base.BaseEstimator, sklearn.base.TransformerMixin

Indexes a set of features with a number of (sorted) features.

Parameters

• scores (ndarray) – Array of shape = n_features, or [n_features, n_class] in case of
soft/hard voting in, e.g., a roi_stacking_classifier (see classifiers.roi_stacking_classifier).

• cutoff (int or float) – If int, it refers the absolute number of features included,
sorted from high to low (w.r.t. scores). If float, it selects a proportion of features.

fit(X, y=None)
Fits IncrementalFeatureCombiner transformer.

Parameters X (ndarray) – Numeric (float) array of shape = [n_samples, n_features]

transform(X, y=None)
Transforms a pattern (X) given the indices calculated during fit().

Parameters X (ndarray) – Numeric (float) array of shape = [n_samples, n_features]

Returns X – Transformed array of shape = [n_samples, n_features] given the indices calculated
during fit().

Return type ndarray

38 Chapter 11. skbold.feature_selection package

CHAPTER 12

skbold.pipelines package

The pipelines module contains some standard MVPA pipelines using the scikit-learn style Pipeline objects.

create_ftest_kbest_svm(kernel=’linear’, k=100, **kwargs)
Creates an svm-pipeline with f-test feature selection.

Uses SelectKBest from scikit-learn.feature_selection.

Parameters

• kernel (str) – Kernel for SVM (default: ‘linear’)

• k (int) – How many voxels to select (from the k best)

• **kwargs – Arbitrary keyword arguments for SVC() initialization.

Returns ftest_svm – Pipeline with f-test feature selection and svm.

Return type scikit-learn Pipeline object

create_ftest_percentile_svm(kernel=’linear’, perc=10, **kwargs)
Creates an svm-pipeline with f-test feature selection.

Uses SelectPercentile from scikit-learn.feature_selection.

Parameters

• kernel (str) – Kernel for SVM (default: ‘linear’)

• perc (int or float) – Percentage of voxels to select

• **kwargs – Arbitrary keyword arguments for SVC() initialization.

Returns ftest_svm – Pipeline with f-test feature selection and svm.

Return type scikit-learn Pipeline object

create_pca_svm(kernel=’linear’, n_comp=10, whiten=False, **kwargs)
Creates an svm-pipeline with f-test feature selection.

Parameters

• kernel (str) – Kernel for SVM (default: ‘linear’)

39

skbold Documentation, Release 0.1

• n_comp (int) – How many PCA-components to select

• whiten (bool) – Whether to use whitening in PCA

• **kwargs – Arbitrary keyword arguments for SVC() initialization.

Returns pca_svm – Pipeline with PCA feature extraction and svm.

Return type scikit-learn Pipeline object

40 Chapter 12. skbold.pipelines package

CHAPTER 13

skbold.postproc package

The postproc subpackage contains all off skbold’s ‘postprocessing’ tools. Most prominently, it contains the MvpRe-
sults objects (both MvpResultsClassification and MvpResultsRegression) which can be used in analyses to keep track
of model performance across iterations/folds (in cross-validation). Additionally, it allows for keeping track of feature-
scores (e.g. f-values from the univariate feature selection procedure) or model weights (e.g. SVM-coefficients). These
coefficients can kept track of as raw weights [1]_ or as ‘forward-transformed’ weights [2]_.

The postproc subpackage additionally contains the function ‘extract_roi_info’, which allows to calculate the amount
of voxels (and other statistics) per ROI in a single statistical brain map and output a csv-file.

The cluster_size_threshold function allows you to set voxels to zero which do not belong to a cluster of a given
extent/size. This is NOT a statistical procedure (like GRF thresholding), but merely a tool for visualization purposes.

References

R., and Turner, R. (2014). Prioritizing spatial accuracy in high-resolution fMRI data using multivariate feature weight
mapping. Front. Neurosci., http://dx.doi.org/10.3389/fnins.2014.00066.

Blankertz, B., and Biessmann, F. et al. (2014). On the interpretation of weight vectors of linear models in multivariate
neuroimaging. Neuroimage, 87, 96-110.

extract_roi_info(statfile, stat_name=None, roi_type=’unilateral’, per_cluster=True, clus-
ter_engine=’scipy’, min_clust_size=20, stat_threshold=None, mask_threshold=20,
save_indices=True, verbose=True)

Extracts information per ROI for a given statistics-file. Reads in a thresholded (!) statistics-file (such as a
thresholded z- or t-stat from a FSL first-level directory) and calculates for a set of ROIs the number of significant
voxels included and its maximum value (+ coordinates). Saves a csv-file in the same directory as the statistics-
file. Assumes that the statistics file is in MNI152 2mm space.

Parameters

• statfile (str) – Absolute path to statistics-file (nifti) that needs to be evaluated.

• stat_name (str) – Name for the contrast/stat-file that is being analyzed.

41

http://dx.doi.org/10.3389/fnins.2014.00066

skbold Documentation, Release 0.1

• roi_type (str) – Whether to use unilateral or bilateral masks (thus far, only Harvard-
Oxford atlas masks are supported.)

• per_cluster (bool) – Whether to evaluate the statistics-file as a whole
(per_cluster=False) or per cluster separately (per_cluster=True).

• cluster_engine (str) – Which ‘engine’ to use for clustering; can be ‘scipy’ (default),
using scipy.ndimage.measurements.label, or ‘fsl’ (using FSL’s cluster commmand).

• min_clust_size (int) – Minimum cluster size (i.e. clusters with fewer voxels than
this number are discarded; also, ROIs containing fewer voxels than this will not be listed on
the CSV.

• stat_threshold (int or float) – If the stat-file contains uncorrected data,
stat_threshold can be used to set a lower bound.

• mask_threshold (bool) – Threshold for probabilistics masks, such as the Harvard-
Oxford masks. Default of 25 is chosen as this minimizes overlap between adjacent masks
while still covering most of the entire brain.

• save_indices (bool) – Whether to save the indices (coordinates) of peaks of clusters.

• verbose (bool) – Whether to print some output regarding the parsing process.

Returns df – Dataframe corresponding to the written csv-file.

Return type Dataframe

class MvpResults(mvp, n_iter, type_model=’classification’, feature_scoring=None, confmat=False, ver-
bose=False, **metrics)

Bases: object

Class to keep track of model evaluation metrics and feature scores. See the ReadTheDocs homepage for more
information on its API and use.

Parameters

• mvp (mvp-object) – Necessary to extract some metadata from.

• n_iter (int) – Number of folds that will be kept track of.

• type_model (str) – Either ‘classification’ or ‘regression’

• feature_scoring (str) – Which method to use to calculate feature-scores with. Can
be: 1) ‘fwm’: feature weight mapping [1]_ - keep track of raw voxel-weights (coefficients)
2) ‘forward’: transform raw voxel-weights to corresponding forward- model [2]_.

• confmat (bool) – Whether to keep track of the confusion-matrix across folds (only rele-
vant for type_model=’classification’)

• verbose (bool) – Whether to print extra output.

• **metrics (keyword-arguments) – Keyword arguments of the form: name_metric:
metric_function; any metric from scikit-learn works (or other metrics, as long as they have
two input args, y_true and y_pred).

References

compute_scores(multiclass=’ovr’, maps_to_tstat=True)
Computes scores across folds.

load_model(path, param=None)
Load model or pipeline from disk.

42 Chapter 13. skbold.postproc package

http://skbold.readthedocs.io

skbold Documentation, Release 0.1

Parameters

• path (str) – Absolute path to model.

• param (str) – Which, if any, specific param needs to be loaded.

save_model(model, out_path)
Method to serialize model(s) to disk.

Parameters model (pipeline or scikit-learn object.) – Model to be saved.

update(test_idx, y_pred, pipeline=None)
Updates with information from current fold.

Parameters

• test_idx (ndarray) – Indices of current test-trials.

• y_pred (ndarray) – Predictions of current test-trials.

• pipeline (scikit-learn Pipeline object) – pipeline from which relevant
scores/coefficients will be extracted.

write(out_path, confmat=True, to_tstat=True, multiclass=’ovr’)
Writes results to disk.

Parameters

• out_path (str) – Where to save the results to

• feature_viz (bool) – Whether to write out (and optionally return) feature-
visualization information

• confmat (bool) – Whether to write out (and optionally return) the confusion-matrix
(across folds).

• to_tstat (bool) – Whether to convert averaged feature-scores to t-tstats (by dividing
them by sqrt(score.std(axis=0)).

class MvpAverageResults(mvp_results_list, identifiers=None)
Bases: object

Averages results from MVPA analyses on, for example, different subjects or different ROIs.

Parameters

• mvp_results_list (list) – List with MvpResults objects (after updating across
folds)

• identifiers (list of str) – List of identifiers (e.g. subject-name) that correspond
to the different MvpResults objects

compute_statistics(metric=’accuracy’, h0=0.5)
Computes statistics across MvpResults objects

Parameters

• metric (str) – Which metric should be used in the MvpResults dataframes

• h0 (float) – The null-hypothesis in terms of model performance (e.g. accuracy equals
1 / n_classes)

write(path, name=’average_results’)

cluster_size_threshold(data, thresh=None, min_size=20, save=False)
Removes clusters smaller than a prespecified number in a stat-file.

43

skbold Documentation, Release 0.1

Parameters

• data (numpy-array or str) – 3D Numpy-array with statistic-value or a string to a
path pointing to a nifti-file with statistic values.

• thresh (int, float) – Initial threshold to binarize the image and extract clusters.

• min_size (int) – Minimum size (i.e. amount of voxels) of cluster. Any cluster with
fewer voxels than this amount is set to zero (‘removed’).

• save (bool) – If data is a file-path, this parameter determines whether the cluster- cor-
rected file is saved to disk again.

class PrevalenceInference(obs, perms, P2=100000, gamma0=0.5, alpha=0.05)
Bases: object

Class that performs PrevalenceInference based on the paper by Allefeld, Gorgen, & Haynes (2016), NeuroIm-
age.

Parameters

• obs (numpy ndarray) – A 2D array of shape [N (subjects) x K (voxels)], or a 1D array
of shape [N, 1].

• perms (numpy ndarray) – A 3D array of shape [N (subjects) x K (voxels) x P1 (first
level permutations)], or a 2D array of shape [N x P1]

• P2 (int) – Number of second level permutations to run

• gamma0 (float) – What prevalence inference null (gamma < gamma0) to test

• alpha (float) – Significance level for hypothesis testing

Examples

>>> from skbold.postproc import PrevalenceInference
>>> import numpy as np
>>> N, K, P1 = 20, (40, 40, 38), 15
>>> obs = np.random.normal(loc=0.55, scale=0.05, size=(N, np.prod(K)))
>>> perms = np.random.normal(loc=0.5, scale=0.05, size=(N, np.prod(K), P1))
>>> pvi = PrevalenceInference(obs=obs, perms=perms, P2=100000, gamma0=05,

alpha=0.05)
>>> pvi.run()
Running with parameters:

N = 20
K = 60800
P1 = 15
P2 = 100000

__init__(obs, perms, P2=100000, gamma0=0.5, alpha=0.05)
Initializes PrevalenceInference object.

run()
Runs actual prevalence inference algorithm.

write(path)
Writes results from Prevalence Inference procedure to disk.

Parameters path (str) – Where to write the results to disk

44 Chapter 13. skbold.postproc package

CHAPTER 14

skbold.preproc package

class LabelFactorizer(grouping)
Bases: sklearn.base.BaseEstimator, sklearn.base.TransformerMixin

Transforms labels according to a given factorial grouping.

Factorizes/encodes labels based on part of the string label. For example, the label-vector [‘A_1’, ‘A_2’, ‘B_1’,
‘B_2’] can be grouped based on letter (A/B) or number (1/2).

Parameters grouping (List of str) – List with identifiers for condition names as strings

Variables new_labels (list) – List with new labels.

fit(y=None, X=None)
Does nothing, but included to be used in sklearn’s Pipeline.

get_new_labels()
Returns new labels based on factorization.

transform(y, X=None)
Transforms label-vector given a grouping.

Parameters

• y (List/ndarray of str) – List of ndarray with strings indicating label-names

• X (ndarray) – Numeric (float) array of shape = [n_samples, n_features]

Returns

• y_new (ndarray) – array with transformed y-labels

• X_new (ndarray) – array with transformed data of shape = [n_samples, n_features] given
new factorial grouping/design.

class MajorityUndersampler(verbose=False)
Bases: sklearn.base.BaseEstimator, sklearn.base.TransformerMixin

Undersamples the majority-class(es) by selecting random samples.

Parameters verbose (bool) – Whether to print downsamples number of samples.

45

skbold Documentation, Release 0.1

__init__(verbose=False)
Initializes MajorityUndersampler object.

fit(X=None, y=None)
Does nothing, but included for scikit-learn pipelines.

transform(X, y)
Downsamples majority-class(es).

Parameters X (ndarray) – Numeric (float) array of shape = [n_samples, n_features]

Returns X – Transformed array of shape = [n_samples, n_features] given the indices calculated
during fit().

Return type ndarray

class LabelBinarizer(params)
Bases: sklearn.base.BaseEstimator, sklearn.base.TransformerMixin

__init__(params)
Initializes LabelBinarizer object.

fit(X=None, y=None)
Does nothing, but included for scikit-learn pipelines.

transform(X, y)
Binarizes y-attribute.

Parameters X (ndarray) – Numeric (float) array of shape = [n_samples, n_features]

Returns X – Transformed array of shape = [n_samples, n_features] given the indices calculated
during fit().

Return type ndarray

class ConfoundRegressor(confound, X, cross_validate=True, precise=False, stack_intercept=True)
Bases: sklearn.base.BaseEstimator, sklearn.base.TransformerMixin

Fits a confound onto each feature in X and returns their residuals.

__init__(confound, X, cross_validate=True, precise=False, stack_intercept=True)
Regresses out a variable (confound) from each feature in X.

Parameters

• confound (numpy array) – Array of length (n_samples, n_confounds) to regress out
of each feature; May have multiple columns for multiple confounds.

• X (numpy array) – Array of length (n_samples, n_features), from which the confound
will be regressed. This is used to determine how the confound-models should be cross-
validated (which is necessary to use in in scikit-learn Pipelines).

• cross_validate (bool) – Whether to cross-validate the confound-parameters
(y~confound) estimated from the train-set to the test set (cross_validate=True) or whether
to fit the confound regressor separately on the test-set (cross_validate=False). Setting this
parameter to True is equivalent to “foldwise confound regression” (FwCR) as described in
our paper (https://www.biorxiv.org/content/early/2018/03/28/290684). Setting this param-
eter to False, however, is NOT equivalent to “whole dataset confound regression” (WDCR)
as it does not apply confound regression to the full dataset, but simply refits the confound
model on the test-set. We recommend setting this parameter to True.

• precise (bool) – Transformer-objects in scikit-learn only allow to pass the data (X)
and optionally the target (y) to the fit and transform methods. However, we need to index
the confound accordingly as well. To do so, we compare the X during initialization (self.X)

46 Chapter 14. skbold.preproc package

https://www.biorxiv.org/content/early/2018/03/28/290684

skbold Documentation, Release 0.1

with the X passed to fit/transform. As such, we can infer which samples are passed to the
methods and index the confound accordingly. When setting precise to True, the arrays
are compared feature-wise, which is accurate, but relatively slow. When setting precise to
False, it will infer the index by looking at the sum of all the features, which is less accurate,
but much faster. For dense data, this should work just fine. Also, to aid the accuracy, we
remove the features which are constant (0) across samples.

• stack_intercept (bool) – Whether to stack an intercept to the confound (default is
True)

Variables weights (numpy array) – Array with weights for the confound(s).

fit(X, y=None)
Fits the confound-regressor to X.

Parameters

• X (numpy array) – An array of shape (n_samples, n_features), which should corre-
spond to your train-set only!

• y (None) – Included for compatibility; does nothing.

transform(X)
Regresses out confound from X.

Parameters X (numpy array) – An array of shape (n_samples, n_features), which should
correspond to your train-set only!

Returns X_new – ndarray with confound-regressed features

Return type ndarray

47

skbold Documentation, Release 0.1

48 Chapter 14. skbold.preproc package

CHAPTER 15

skbold.utils package

The utils subpackage contains some extra utilities for machine learning pipelines on fMRI data. For example, the
CrossvalSplitter creates balanced train/test-sets given a (set of) confound(s). Also, the load_roi_mask function allows
for loading ROIs from the Harvard-Oxford (sub)cortical atlas. This function is also integrated in the RoiIndexer
transformer.from

Lastly, the ArrayPermuter, RowIndexer, and SelectFeatureset transformers can be used in, for example. permutation
analyses.

sort_numbered_list(stat_list)
Sorts a list containing numbers.

Sorts list with paths to statistic files (e.g. COPEs, VARCOPES), which are often sorted wrong (due to single
and double digits). This function extracts the numbers from the stat files and sorts the original list accordingly.

Parameters stat_list (list or str) – list with absolute paths to files

Returns sorted_list – sorted stat_list

Return type list of str

class CrossvalSplitter(data, train_size, vars, cb_between_splits=False, binarize=None, in-
clude=None, exclude=None, interactions=True, sep=’t’, index_col=0, ig-
nore=None, iterations=1000)

Bases: object

plot_results(out_dir)

save(out_dir, save_plots=True)

split(verbose=False)

parse_roi_labels(atlas_type=’Talairach’, lateralized=False, debug=False)
Parses xml-files belonging to FSL atlases.

Parameters

• atlas_type (str) – String identifying which atlas needs to be parsed.

49

skbold Documentation, Release 0.1

• lateralized (bool) – Whether to use the lateralized version of the atlas (only applica-
ble to HarvardOxford masks)

Returns info_dict – Dictionary with indices and coordinates (values) per ROI (keys).

Return type dict

print_mask_options(atlas_name=’HarvardOxford-Cortical’)
Prints the options for ROIs given a certain atlas.

Parameters atlas_name (str) – Name of the atlas. Availabel: ‘HarvardOxford-Cortical’,
‘HarvardOxford-Subcortical’, ‘Yeo2011’.

class ArrayPermuter
Bases: sklearn.base.BaseEstimator, sklearn.base.TransformerMixin

Permutes (shuffles) rows of matrix.

__init__()
Initializes ArrayPermuter object.

fit(X=None, y=None)
Does nothing, but included to be used in sklearn’s Pipeline.

transform(X)
Permutes rows of data input.

Parameters X (ndarray) – Numeric (float) array of shape = [n_samples, n_features]

Returns X_new – ndarray with permuted rows

Return type ndarray

class RowIndexer(mvp, train_idx)
Bases: object

Selects a subset of rows from an Mvp object.

Notes

NOT a scikit-learn style transformer.

Parameters

• idx (ndarray) – Array with indices.

• mvp (mvp-object) – Mvp-object to drawn metadata from.

transform()

Returns

• mvp (mvp-object) – Indexed mvp-object.

• X_not_selected (ndarray) – Data which has not been selected.

• y_not_selected (ndarray) – Labels which have not been selected.

class SelectFeatureset(mvp, featureset_idx)
Bases: sklearn.base.BaseEstimator, sklearn.base.TransformerMixin

Selects only columns of a certain featureset. CANNOT be used in a scikit-learn pipeline!

Parameters

• mvp (mvp-object) – Used to extract meta-data.

50 Chapter 15. skbold.utils package

skbold Documentation, Release 0.1

• featureset_idx (ndarray) – Array with indices which map to unique feature-set
voxels.

fit()
Does nothing, but included due to scikit-learn API.

transform(X=None)
Transforms mvp.

51

skbold Documentation, Release 0.1

52 Chapter 15. skbold.utils package

Python Module Index

s
skbold.core, 21
skbold.exp_model, 29
skbold.feature_extraction, 33
skbold.feature_selection, 37
skbold.pipelines, 39
skbold.postproc, 41
skbold.preproc, 45
skbold.utils, 49

53

skbold Documentation, Release 0.1

54 Python Module Index

Index

Symbols
__init__() (ArrayPermuter method), 50
__init__() (ConfoundRegressor method), 46
__init__() (LabelBinarizer method), 46
__init__() (MajorityUndersampler method), 45
__init__() (PrevalenceInference method), 44

A
add_y() (MvpBetween method), 24
apply_binarization_params() (MvpBetween method), 25
ArrayPermuter (class in skbold.utils), 50
AverageRegionTransformer (class in

skbold.feature_extraction), 33

B
binarize_y() (MvpBetween method), 25

C
cluster_size_threshold() (in module skbold.postproc), 43
ClusterThreshold (class in skbold.feature_extraction), 34
compute_scores() (MvpResults method), 42
compute_statistics() (MvpAverageResults method), 43
ConfoundRegressor (class in skbold.preproc), 46
convert() (Eprime2tsv method), 30
convert2epi() (in module skbold.core), 22
convert2mni() (in module skbold.core), 23
crawl() (FsfCrawler method), 31
create() (MvpBetween method), 25
create() (MvpWithin method), 27
create_ftest_kbest_svm() (in module skbold.pipelines),

39
create_ftest_percentile_svm() (in module

skbold.pipelines), 39
create_pca_svm() (in module skbold.pipelines), 39
CrossvalSplitter (class in skbold.utils), 49

E
Eprime2tsv (class in skbold.exp_model), 30
extract_roi_info() (in module skbold.postproc), 41

F
fisher_criterion_score() (in module

skbold.feature_selection), 38
fit() (ArrayPermuter method), 50
fit() (AverageRegionTransformer method), 34
fit() (ClusterThreshold method), 35
fit() (ConfoundRegressor method), 47
fit() (IncrementalFeatureCombiner method), 38
fit() (LabelBinarizer method), 46
fit() (LabelFactorizer method), 45
fit() (MajorityUndersampler method), 46
fit() (PatternAverager method), 33
fit() (PCAfilter method), 34
fit() (SelectFeatureset method), 51
FsfCrawler (class in skbold.exp_model), 30

G
GenericUnivariateSelect (class in

skbold.feature_selection), 37
get_new_labels() (LabelFactorizer method), 45

I
IncrementalFeatureCombiner (class in

skbold.feature_selection), 38

L
LabelBinarizer (class in skbold.preproc), 46
LabelFactorizer (class in skbold.preproc), 45
load_model() (MvpResults method), 42

M
MajorityUndersampler (class in skbold.preproc), 45
Mvp (class in skbold.core), 21
MvpAverageResults (class in skbold.postproc), 43
MvpBetween (class in skbold.core), 23
MvpResults (class in skbold.postproc), 42
MvpWithin (class in skbold.core), 26

55

skbold Documentation, Release 0.1

P
parse() (PresentationLogfileCrawler method), 30
parse_presentation_logfile() (in module

skbold.exp_model), 29
parse_roi_labels() (in module skbold.utils), 49
PatternAverager (class in skbold.feature_extraction), 33
PCAfilter (class in skbold.feature_extraction), 34
plot_results() (CrossvalSplitter method), 49
PresentationLogfileCrawler (class in skbold.exp_model),

29
PrevalenceInference (class in skbold.postproc), 44
print_mask_options() (in module skbold.utils), 50

R
RowIndexer (class in skbold.utils), 50
run() (PrevalenceInference method), 44
run_searchlight() (MvpBetween method), 25

S
save() (CrossvalSplitter method), 49
save_model() (MvpResults method), 43
SelectAboveCutoff (class in skbold.feature_selection), 37
SelectFeatureset (class in skbold.utils), 50
skbold.core (module), 21
skbold.exp_model (module), 29
skbold.feature_extraction (module), 33
skbold.feature_selection (module), 37
skbold.pipelines (module), 39
skbold.postproc (module), 41
skbold.preproc (module), 45
skbold.utils (module), 49
sort_numbered_list() (in module skbold.utils), 49
split() (CrossvalSplitter method), 49
split() (MvpBetween method), 25

T
transform() (ArrayPermuter method), 50
transform() (AverageRegionTransformer method), 34
transform() (ClusterThreshold method), 35
transform() (ConfoundRegressor method), 47
transform() (IncrementalFeatureCombiner method), 38
transform() (LabelBinarizer method), 46
transform() (LabelFactorizer method), 45
transform() (MajorityUndersampler method), 46
transform() (PatternAverager method), 33
transform() (PCAfilter method), 34
transform() (RowIndexer method), 50
transform() (SelectFeatureset method), 51

U
update() (MvpResults method), 43
update_mask() (Mvp method), 22
update_sample() (MvpBetween method), 26

W
write() (Mvp method), 22
write() (MvpAverageResults method), 43
write() (MvpResults method), 43
write() (PrevalenceInference method), 44
write_4D() (MvpBetween method), 26

56 Index

	Installation & dependencies
	Data organization
	Mvp-objects
	MvpWithin
	MvpBetween

	MvpResults: model evaluation and feature visualization
	Feature selection/extraction
	An example workflow: MvpWithin
	An example workflow: MvpBetween
	skbold.core package
	skbold.exp_model package
	skbold.feature_extraction package
	skbold.feature_selection package
	skbold.pipelines package
	skbold.postproc package
	skbold.preproc package
	skbold.utils package
	Python Module Index

