
RoverCore-S Documentation
Release 1.0.0

Khalil A. Estell

Aug 31, 2017

Contents

1 Quick Links 1
1.1 Getting Started . 1

1.1.1 Getting Started . 1
1.1.1.1 Prerequisites . 1
1.1.1.2 Installation . 2
1.1.1.3 Building and Loading Hello World Application 2
1.1.1.4 Building and Loading FreeRTOS Project . 3

1.1.2 Understanding The Framework Layout . 3
1.1.2.1 File Hierarchy . 3
1.1.2.2 Folder: firmware . 3
1.1.2.3 Folder: firmware/default . 3
1.1.2.4 Folder: firmware/default/bin . 4
1.1.2.5 Folder: firmware/default/application 4
1.1.2.6 Folder: firmware/default/application/<application>/_can_dbc 4
1.1.2.7 Folder: firmware/default/application/<application>/

L5_Application . 4
1.1.2.8 Folder: firmware/default/lib . 4
1.1.2.9 Folder: firmware/default/L%d_%s . 4
1.1.2.10 Folder: firmware/default/obj . 4

1.2 Guides . 5
1.2.1 Debugging with OpenOCD and GDB . 5

1.2.1.1 Step 0: Installing OpenOCD . 5
1.2.1.2 Step 1: Rebuild Application with Debug flag . 5
1.2.1.3 Step 2: Solder JTAG Headers to SJOne . 5
1.2.1.4 Step 3: Connecting BusBlasterv3 to SJOne . 5
1.2.1.5 Step 4: Run OpenOCD . 5
1.2.1.6 Step 5: Run GDB . 6

1.2.2 Unit Testing with CGreen . 7
1.2.2.1 Unit Testing Tools . 7

1.2.3 Telemetry: Embedded Runtime Monitoring and Tuning . 7
1.2.3.1 Setting up Telemetry . 7
1.2.3.2 Using Telemetry . 7

1.2.4 Press Next To Get Started . 8
1.3 About . 8
1.4 Copyrights . 9

i

2 Press Next To Get Started 11

ii

CHAPTER 1

Quick Links

Get Started Guides API
Reference

Hardware Reference

Getting Started

Getting Started

Prerequisites

Need a running version of Ubuntu 14.04 LTS or above. Ubuntu in a virtual machine such as VirtualBox or VMPlayer
will work as well.

Note: The it is possible to get SJSU-Dev-Linux to work completely on Windows and Mac OSX if you have all of
the necessary PATH dependencies installed, but that is not covered here. You will need to manually install all of the
necessary components in the installer script.

1

https://kammce.github.io/SJSU-DEV-Linux/docs/api/html/index.html
http://www.socialledge.com/sjsu/index.php?title=SJ_One_Board
https://kammce.github.io/SJSU-DEV-Linux/docs/api/html/index.html
https://kammce.github.io/SJSU-DEV-Linux/docs/api/html/index.html
http://www.socialledge.com/sjsu/index.php?title=SJ_One_Board

RoverCore-S Documentation, Release 1.0.0

Installation

Step 1 Clone the repository

git clone --recursive https://github.com/kammce/SJSU-DEV-Linux.git

Step 2 Change directory into SJSU-Dev-Linux

cd SJSU-DEV-Linux

Step 3 Run setup script.

./setup

Warning: Do not run this script using SUDO. The script will ask you for sudo permissions once it runs.

Note: This will install gtkterm, mono-complete, and gcc-arm-embedded packages

Building and Loading Hello World Application

Step 1 From the root of the repository

cd firmware/default

Step 2 Run build script. A HEX file bin/HelloWorld/HelloWorld.hex and subsequent folders should
have been created after this script finishes.

./build HelloWorld

Note: use the --help argument to get additional information on how to use the build script.

Step 3 To load the hex file into your SJOne file you will use the hyperload.py file. Run the following:

./hyperload.py /dev/ttyUSB0 bin/HelloWorld/HelloWorld.hex

The first argument is the path to the serial device. The second argument is the hexfile to load into the SJOne
board.

Step 4 To view serial output, run GTKTerm by using the following command:

gtkterm -p /dev/ttyUSB0 -s 38400

How to use GTKTerm

1. Set CR LF Auto to true by going to the Main Menu > Configuration > CR LF Auto and
click on it.

2. Press F8 (Clears RTS signal), then press F7 (Clears DTR signal) to start SJOne.

3. You should see the board counting up on the 7-Segment display and in binary on the LEDs.

Step 5 Done!!

2 Chapter 1. Quick Links

RoverCore-S Documentation, Release 1.0.0

Building and Loading FreeRTOS Project

Instructions are the same as HelloWorld, but you need to change the run the build script’s last argument to FreeRTOS
rather than HelloWorld.

Understanding The Framework Layout

File Hierarchy

firmware
- default

- applications
| - FreeRTOS
| | - _can_dbc
| | - L5_Application
| | - examples
| | - periodic_scheduler
| | - source
| | - cmd_handlers
| - HelloWorld
| - _can_dbc
| - L5_Application
| - examples
| - periodic_scheduler
| - source
| - cmd_handlers
- bin
| - FreeRTOS
| - HelloWorld
- lib
| - _can_dbc
| - L0_LowLevel
| - L1_FreeRTOS
| - L2_Drivers
| - L3_Utils
| - L4_IO
| - newlib
- obj

- lib
- FreeRTOS
- HelloWorld

Folder: firmware

This folder is meant to hold projects. default is, understandable, the default project setup.

Folder: firmware/default

Important: This is how you start a new project.

1.1. Getting Started 3

RoverCore-S Documentation, Release 1.0.0

If you want to change, modify, or update files in the :code:lib folder, then it is RECOMMENDED for you to make
a new project by copying and renaming the default folder to something else. Example: renaming the new folder to
cmpe146 to hold all of your course work that could result in changing the lib files.

Making new projects is helpful, because, the default folder is the one that is modified when there is a new feature
added to the repository. To keep your changes, make a new folder.

Note: If you would like to contribute to this project, then editing the lib files in the default folder is permitted.

Folder: firmware/default/bin

This folder holds the executables that can be loaded into the SJOne board .hex as well as a disassembly file .lst,
linker file .map and the Executable and Linkable Format .elf file.

Folder: firmware/default/application

This folder holds all of the applications for a given project. Applications use the same base libraries but have different
files for using them. Majority of code should be written here.

Important: This is how you start a new application.

To start a new application, copy the FreeRTOS or HelloWorld (depending on what you want to do) folder and rename
it to the name of your application.

Folder: firmware/default/application/<application>/_can_dbc

The _can_dbc folder holds the CAN message description files and header generator.

Folder: firmware/default/application/<application>/L5_Application

The L5_Application folder holds the main.cpp file and other application layer files.

Folder: firmware/default/lib

This folder holds the core firmware files for the project, such as abstractions for using GPIO, I2C, UART, Interrupts,
etc.

Folder: firmware/default/L%d_%s

The folders that start with L<some number>_<some folder name> are kind of self explanatory as to what they hold.
For example, L1_FreeRTOS holds files pertaining to FreeRTOS and the FreeRTOS port files. L2_Drivers are
device drivers and so on and so forth.

Folder: firmware/default/obj

This folder holds object files created during the compilation stage of building. They are then all linked together to
create an .elf file afterwards.

4 Chapter 1. Quick Links

RoverCore-S Documentation, Release 1.0.0

Guides

Debugging with OpenOCD and GDB

This tutorial will use HelloWorld as an example. But this will work for any application you build.

Step 0: Installing OpenOCD

OpenOCD was installed when you ran the initial ./setup script.

Step 1: Rebuild Application with Debug flag

Run:

./build spotless

./build -d HelloWorld

Note: ./build spotless will delete all of the files in the obj and bin folder. This is necessary because some
files in the lib folder need to be updated with the new -d (debug) flag.

Step 2: Solder JTAG Headers to SJOne

Do as the title says if you haven’t already.

Step 3: Connecting BusBlasterv3 to SJOne

Connect jumpers from the GND, TRST, TDI, TMS, TCK, and TDO pins on the BusBlasterv3 to the SJOne’s JTAG
headers.

Danger: DOUBLE AND TRIPLE CHECK THAT YOUR CONNECTIONS! The SJOne costs $80 and the
BusBaster costs $35! Thats $115 down the drain if your burn them out!

Step 4: Run OpenOCD

Run:

If you used make install
openocd -f ./tools/OpenOCD/sjone.cfg

Tip: Successful output is the following:

Info : clock speed 100 kHz
Info : JTAG tap: lpc17xx.cpu tap/device found: 0x4ba00477 (mfg: 0x23b (ARM Ltd.),
→˓part: 0xba00, ver: 0x4)
Info : lpc17xx.cpu: hardware has 6 breakpoints, 4 watchpoints

1.2. Guides 5

RoverCore-S Documentation, Release 1.0.0

Error: If you see the following message:

Error: JTAG-DP STICKY ERROR
Info : DAP transaction stalled (WAIT) - slowing down
Error: Timeout during WAIT recovery
Error: Debug regions are unpowered, an unexpected reset might have happened

Then the SJOne board is being held in a RESET state. To fix this, either by power cycling the SJOne board or by
deassert the RTS and DTR signals through GTKTerm.

Error: If you see your terminal get spammed with this:

Error: JTAG-DP STICKY ERROR
Error: Invalid ACK (7) in DAP response
Error: JTAG-DP STICKY ERROR
Error: Could not initialize the debug port

Then its a good chance that one of your pins is not connected.

Step 5: Run GDB

Open another terminal and run the following command in the firmware/default/ folder.

arm-none-eabi-gdb -ex "target remote :3333" bin/HelloWorld/HelloWorld.elf

Tip: You can run arm-none-eabi-gdb without arguments and use the following gdb commands file bin/
HelloWorld/HelloWorld.elf then target remote :3333 in the gdb command line interface to get the
same effect as the above command.

At this point the SJOne board has been halted. You should be able to add breakpoints to the program at this point and
step through the code.

At this point you will not see any source code. Do the following in the gdb command line interface:

>>> break main
>>> continue

Tip: Don’t use the typical run command to “start” the code. It is already... kinda started. Also, run does not exist
when using target remote :3333 to OpenOCD. It exists with target extended-remote :3333, but
causes issues... just don’t use it OK.

At this point you should see the source code of your main.cpp show up. Now you can step through your code and
set breakpoints using step, next, finish and continue, break, etc.

For a gdb cheat sheet, see this PDF:

http://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

6 Chapter 1. Quick Links

http://darkdust.net/files/GDB%20Cheat%20Sheet.pdf

RoverCore-S Documentation, Release 1.0.0

Error: If your board keeps restarting, this is due to the Watchdog not getting fed. Although, this shouldn’t happen
if you ran step 0 correctly. If you do a build spotless and build your project again with the -d flag, and this still does
not work, then as a last resort, go into the lpc_sys.c file and comment out the enable_watch_dog() function
call.

Unit Testing with CGreen

Unit Testing Tools

To unit test we use CGreen.

Warning: This section is not complete

Telemetry: Embedded Runtime Monitoring and Tuning

Wikipedia:

Telemetry is an automated communications process by which measurements and other data are collected
at remote or inaccessible points and transmitted to receiving equipment for monitoring.

Telemetry is another means of testing your firmware. Unit test are useful for testing your code’s logic and making
sure the behavior of your code operates as intended. A debugger allows you step through your code one line at a time,
inspecting variables to see when adverse behavior arises in your firmware. Telemetry, more or less, is a means of
feeding back information to the user about the current state of the firmware during runtime.

Setting up Telemetry

Telemetry was setup when you ran the initial ./setup script.

Using Telemetry

Step 1 Run ./start script. It should open up a webpage in your browser.

You should see the following:

1.2. Guides 7

RoverCore-S Documentation, Release 1.0.0

Step 2 Connect your SJOne Board to your computer.

Step 3 Press the Refresh Devices button to check your system for serial devices.

Step 4 Press the Connect button to connect to the serial device. At this point, you should see the serial output of the
SJOne board being written to the Serial Output textarea. If Telemetry is running on the SJOne, then a table will
be generated in the Telemetry Feedback area.

Press Next To Get Started

About

Warning: This section is not complete

8 Chapter 1. Quick Links

RoverCore-S Documentation, Release 1.0.0

Copyrights

Warning: This section is not complete

1.4. Copyrights 9

RoverCore-S Documentation, Release 1.0.0

10 Chapter 1. Quick Links

CHAPTER 2

Press Next To Get Started

11

	Quick Links
	Getting Started
	Getting Started
	Prerequisites
	Installation
	Building and Loading Hello World Application
	Building and Loading FreeRTOS Project

	Understanding The Framework Layout
	File Hierarchy
	Folder: firmware
	Folder: firmware/default
	Folder: firmware/default/bin
	Folder: firmware/default/application
	Folder: firmware/default/application/<application>/_can_dbc
	Folder: firmware/default/application/<application>/L5_Application
	Folder: firmware/default/lib
	Folder: firmware/default/L%d_%s
	Folder: firmware/default/obj

	Guides
	Debugging with OpenOCD and GDB
	Step 0: Installing OpenOCD
	Step 1: Rebuild Application with Debug flag
	Step 2: Solder JTAG Headers to SJOne
	Step 3: Connecting BusBlasterv3 to SJOne
	Step 4: Run OpenOCD
	Step 5: Run GDB

	Unit Testing with CGreen
	Unit Testing Tools

	Telemetry: Embedded Runtime Monitoring and Tuning
	Setting up Telemetry
	Using Telemetry

	Press Next To Get Started

	About
	Copyrights

	Press Next To Get Started

