

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	sitetools 1.0 documentation

sitetools - WesternX’s Python Setup

Tools for setting up WesternX’s Python execution environment at runtime.
Generally useful for extending one (real or pseudo) virtualenv [https://pypi.python.org/pypi/virtualenv] with another
for development in a facility with large shared repositories.

This will take a few automatic actions at Python startup (in order):

	The standard library logging [https://docs.python.org/2/library/logging.html] will be setup.

	All directories and virtualenvs listed within KS_SITES
will be added to sys.path [http://docs.python.org/release/2.7.4/library/sys.html#sys.path], in a similar manner as site-packages (via
sitetools.sites.add_site_dir()).

	Variables previously frozen via sitetools.environ.freeze() will be restored.

4. Monkey-patch os.chflags() [http://docs.python.org/release/2.7.4/library/os.html#os.chflags] to not error on our NFS (by ignoring the
error) for Python2.6.

Warning

Be extremely careful while modifying this package and test it very
thoroughly, since being able to locate any other packages is dependent on it
running successfully.

Additionally, there are a set of scripts to assist in local development.

Contents

	Development Scripts
	The dev-install Command

	The dev-status Command

	The dev Command Wrapper

	Pseudo Site-Packages
	Environment Variables

	API Reference

	Environment Variables
	Actual Variables

	API Reference

	Logging
	Debugging via Logging

	Environment Variables

 Copyright 2013, Mike Boers.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	sitetools 1.0 documentation

Development Scripts

The dev-install Command

A dev-install command exists to assist in the installation of tools for local development. It will first assert that a virtualenv_ exists in your home, clone the tool, and finally install it into your virtualenv.

The first time you run dev-install (or dev) on a platform, you will be prompted to create your venv:

$ dev true
Could not find existing development virtualenv.
A virtualenv can be created in these locations:
 1) ~/dev/venv-osx/bin/python
 2) ~/key_tools/venv-osx/bin/python
Which one do you want to create? (1): 1
New python executable in /home/mboers/dev/venv-osx/bin/python
Installing setuptools, pip...done.

Now you can install tools:

$ dev-install --list
< big list of tools and their repos >

$ dev-install sgfs
< snip >
Successfully installed sgfs
Cleaning up...

The dev-status Command

A dev-status command exists to help you figure out how your local tools relate to those in production:

$ dev-status
 WARNING: You are behind by 6 commits.
==> sgsession
 Working directory is dirty.
==> sgfs
 Up to date.

Here we can see that my copy of key_base is behind by 6 commits, I have uncommitted work on sgsession, and my sgfs is up to date.

We can have dev-status bring everything up to date for us:

$ dev-status -nu
==> key_base
Updating 05eb284..fc9c4f8
Fast-forward
 Up to date.
==> sgsession
 Working directory is dirty.
==> sgfs
 Up to date.

The dev Command Wrapper

A dev command exists that will run any other command from within an automatically constructed development environment. Effectively, any Python imports will use your local packages, and any executables will be sourced from your local paths. Any packages or executables not found locally will fall back on the production tools.

It does this by searching for development tools in KS_DEV_SITES, and appends those that exist to KS_SITES. It also looks across the standard PATH for directories that fall within the production environment, and prepends the development versions of those paths.

Lets look at some examples. I can bring up a Python shell in the development environment:

$ dev python
Python 2.6.6 (r266:84292, Nov 1 2010, 12:40:26)
[GCC 4.2.1 (Apple Inc. build 5646)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import ks
>>> ks
<module 'ks' from '/home/mboers/dev/key_base/python/ks.py'>

Notice how the ks package was located in my home directory. I can also launch the development version of the toolbox:

$ dev which toolbox
/home/mboers/dev/key_base/2d/bin/toolbox
$ dev toolbox

To drop into a development shell:

$ dev bash
$ which toolbox
/home/mboers/dev/key_base/2d/bin/toolbox

You can also use other developer’s environments!

$ dev -u mreid which toolbox
/home/mreid/dev/key_base/2d/bin/toolbox

See dev --help for all of the options.

 Copyright 2013, Mike Boers.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	sitetools 1.0 documentation

Pseudo Site-Packages

This module is mostly a re-implementation of site.addsitedir() [http://docs.python.org/release/2.7.4/library/site.html#site.addsitedir],
with slight modifications:

	We add the given directory to the sys.path [http://docs.python.org/release/2.7.4/library/sys.html#sys.path].

	We search for *.pth files within that directory and process them
(nearly) the same as site.addsitedir() [http://docs.python.org/release/2.7.4/library/site.html#site.addsitedir] does; the differences are:

	we replace “{extended_platform_spec}” with a platform specifier;

	we ignore the commands embedded in easy-install.pth files.

	We look for __site__.pth files within each top-level directory and
process them as well. This allows for a tool to self-describe its
paths and contain that metadata within its own repository, and therefore
be usable without being “installed”.

We reimplemented this because:

	Our NFS was throwing some wierd errors with site.addsitedir() [http://docs.python.org/release/2.7.4/library/site.html#site.addsitedir] (due to ._* files).

	We wanted self-describing repositories.

	We needed a way to link in different build for different platforms.

Environment Variables

	
KS_SITES

	A colon-delimited list of sites to add as pseudo site-packages (see python_setup).

If the “site” is a directory, it will be processed as if it were a site-packages directory.

If the “site” is a file named python, it will search for the corresponding site-packages directory.

If the current environment (equivalent to sys.executable [http://docs.python.org/release/2.7.4/library/sys.html#sys.executable]) is
found in this list then it will be used as a centering point for the
other sites listed. Anything before the current environment will be prepended
to sys.path, and anything after the current environment will be appended.

	
KS_DEV_SITES

	A colon-delimited list of sites to look for when using the
dev command. Any ~ found may refer to any requested
user’s home.

If unset, defaults to ~/dev:~/dev/venv/bin/python.

API Reference

	
class sitetools.sites.SysPathInserter(index=None)

	Class to insert a series of paths into sys.path [http://docs.python.org/release/2.7.4/library/sys.html#sys.path] incrementally.

	
add(path)

	Add the given path to the decided place in sys.path

	
sitetools.sites.add_site_dir(dir_name, before=None, _path=None)

	Add a pseudo site-packages directory to sys.path [http://docs.python.org/release/2.7.4/library/sys.html#sys.path].

	Parameters:	
	dir_name (str [http://docs.python.org/release/2.7.4/library/functions.html#str]) – The directory to add.

	before (str [http://docs.python.org/release/2.7.4/library/functions.html#str]) – A directory on sys.path [http://docs.python.org/release/2.7.4/library/sys.html#sys.path] that new paths should be

inserted before.

Looks for .pth files at the top-level and __site__.pth files within
top-level directories.

	
sitetools.sites.add_site_list(dir_list)

	Add a list of pseudo site-packages to sys.path [http://docs.python.org/release/2.7.4/library/sys.html#sys.path].

This centers the list on sys.path around the current environment.
I.e. if this environment is in the list, then directories before it in the
list will be prepended to sys.path, and directories after it will
be appended to sys.path.

 Copyright 2013, Mike Boers.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	sitetools 1.0 documentation

Environment Variables

Since our development environment is controlled completely by passing
environment variables from one process to its children, in generaly allow all
variables to flow freely. There are, however, a few circumstances in which we
need to inhibit this flow.

Maya and Nuke, for example, add to the PYTHONHOME [http://docs.python.org/release/2.7.4/using/cmdline.html#envvar-PYTHONHOME], and our
launchers add to KS_SITES (for PyQt, etc.). These changes must
not propigate to other processes.

These tools allow us to manage those variables which should not propigate.
Upon Python startup, these tools will reset any variables which have been flagged.

Actual Variables

	
KS_ENVIRON_DIFF

	A set of variables to update (or delete) from Python’s os.environ [http://docs.python.org/release/2.7.4/library/os.html#os.environ]
at startup. This is used to force variables that are nessesary for startup
to not propigate into the next executable.

Warning

Do not use this directly, as the format is subject to change
without notice. Instead, use sitecustomize.environ.freeze().

API Reference

	
sitetools.environ.freeze(environ, names, label=None)

	Flag the given names to reset to their current value in the next Python.

	Parameters:	
	environ (dict [http://docs.python.org/release/2.7.4/library/stdtypes.html#dict]) – The environment that will be passed to the next Python.

	names – A list of variable names that should be reset to their current
value (as in environ) when the next sub-Python starts.

	label (str [http://docs.python.org/release/2.7.4/library/functions.html#str]) – A name for this environment freeze; the default of None
will be unfrozen at startup.

This is useful to reset environment variables that are set by wrapper
scripts that are nessesary to bootstrap the process, but we do not want to
carry into any subprocess. E.g. LD_LIBRARY_PATH.

This may be called multiple times for the same label as it updates any
existing freezes.

Usage:

import os
from subprocess import call

from sitecustomize.environ import freeze

env = dict(os.environ)
env['DEMO'] = 'one'
freeze(env, ['DEMO'])
env['DEMO'] = 'two'

call(['python', '-c', 'import os; print os.environ["DEMO"]'], env=env)
Prints: one

	
sitetools.environ.unfreeze(label, pop=False, environ=None)

	Reset the environment to its state before it was frozen by freeze().

	Parameters:	
	label (str [http://docs.python.org/release/2.7.4/library/functions.html#str]) – The name for the frozen environment.

	pop (bool [http://docs.python.org/release/2.7.4/library/functions.html#bool]) – Destroy the freeze after use; only allow unfreeze once.

	environ (dict [http://docs.python.org/release/2.7.4/library/stdtypes.html#dict]) – The environment to work on; defaults to os.environ.

	Returns:	A context manager to re-freeze the environment on exit.

Usage:

unfreeze('nuke')

or

with unfreeze('maya'):
 # do something

 Copyright 2013, Mike Boers.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	sitetools 1.0 documentation

Logging

Python’s stdlib logging [http://docs.python.org/2/library/logging.html] is
setup as part of the sitecustomize initialization sequence. By default,
anything INFO and above will be logged to a location as determined by
PYTHONLOGFILE.

Debugging via Logging

It is highly recommended that you use DEBUG level logging instead of print statements, since they will not show up to the end users unless it is requested, and then key locations which need debugging output will already have it without having to re-determine where the trouble parts are. It is recommended to use the following pattern at the top of your files:

import logging
log = logging.getLogger(__name__)

Do stuff.

log.debug('Something crazy is happening...')

You can then get those debug logs dumped to your terminal by using the dev wrapper in verbose mode:

$ dev -v python -m my.awesome.module
2013-04-07 13:48:08,416 DEBUG my.awesome.module: Something crazy is happening...

Environment Variables

	
KS_PYTHON_LOG_FILE

	A format string for determining where to save logging logs. Defaults
(in the WesternX environment) to:

/Volumes/VFX/logs/{date}/{login}@{ip}/{time}.{pid}.log

Keys available include: date, time, login, ip, and pid.

	
KS_LOG_LEVELS

	A space-or-comma-delimited list of logger names and minimum record levels. E.g.:

$ export KS_LOG_LEVELS=:WARNING,mayatools:DEBUG

would set the general logging threshold to logging.WARNING, but anything
within mayatools to logging.DEBUG.

In an emergency this can effectively disable the logging system by setting:

$ export KS_LOG_LEVELS=:100

which is too high for any (built-in) log levels.

 Copyright 2013, Mike Boers.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	sitetools 1.0 documentation

 Python Module Index

 s

 			

 		
 s	

 	[image: -]
 	
 sitetools	

 	
 	
 sitetools.environ	

 	
 	
 sitetools.logging	

 	
 	
 sitetools.sites	

 Copyright 2013, Mike Boers.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	sitetools 1.0 documentation

Index

 A
 | E
 | F
 | K
 | P
 | S
 | U

A

 	

 	add() (sitetools.sites.SysPathInserter method)

 	add_site_dir() (in module sitetools.sites)

 	

 	add_site_list() (in module sitetools.sites)

E

 	

 	
 environment variable

 	

 	KS_DEV_SITES, [1]

 	KS_ENVIRON_DIFF

 	KS_LOG_LEVELS

 	KS_PYTHON_LOG_FILE

 	KS_SITES, [1], [2], [3]

 	PYTHONLOGFILE

 	python:PYTHONHOME

F

 	

 	freeze() (in module sitetools.environ)

K

 	

 	KS_DEV_SITES

 	

 	KS_SITES, [1], [2]

P

 	

 	python:PYTHONHOME

 	

 	PYTHONLOGFILE

S

 	

 	sitetools.environ (module)

 	sitetools.logging (module)

 	

 	sitetools.sites (module)

 	SysPathInserter (class in sitetools.sites)

U

 	

 	unfreeze() (in module sitetools.environ)

 Copyright 2013, Mike Boers.
 Created using Sphinx 1.3.1.

 _static/comment-close.png

_static/file.png

_static/minus.png

_static/westernx_small_logo.png

_static/comment-bright.png

_static/comment.png

_static/ajax-loader.gif

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		sitetools 1.0 documentation »

 All modules for which code is available

		sitetools.environ

		sitetools.sites

 © Copyright 2013, Mike Boers.
 Created using Sphinx 1.3.1.

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		sitetools 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Mike Boers.
 Created using Sphinx 1.3.1.

_static/plus.png

_static/up-pressed.png

_static/up.png

_static/down.png

