
SiSock Documentation
Release 0.2.13+1.g8bd5ec6.dirty

Simons Collaboration

Nov 14, 2019

Contents

1 User’s Guide 3
1.1 Live Monitoring Setup Guide . 3
1.2 Components . 21
1.3 DataNodeServers . 23

2 Developer’s Guide 29
2.1 g3 File Scanner . 29

3 API Reference 33
3.1 API . 33

4 Indices and tables 37

Python Module Index 39

Index 41

i

ii

SiSock Documentation, Release 0.2.13+1.g8bd5ec6.dirty

sisock is a python library and collection of components for serving quicklook data over websockets, designed initially
for the Simons Observatory. The goal is to define an API for implementing a DataNodeServer, which returns
the desired data, whether from memory or from disk. Data is passed through a crossbar server using the WebSockets
protocol.

sisock plays a key role in the Simons Observatory housekeeping live monitor, which is based on the open source
analytics and monitoring platform Grafana. A simple webserver sits between sisock and Grafana, allowing Grafana to
query the sisock DataNodeServers.

Contents 1

SiSock Documentation, Release 0.2.13+1.g8bd5ec6.dirty

2 Contents

CHAPTER 1

User’s Guide

Start here for information about the design and use of sisock.

1.1 Live Monitoring Setup Guide

This guide will walk you through the complete setup and basic operation of the Simons Observatory live housekeeping
monitor. By the end of this guide you will be able to command your hardware systems using OCS, record their data
to disk in the so3g file format, and monitor their output in real time using a Grafana dashboard.

1.1.1 Dependencies

The system is designed to be distributed across many computers, however it can also all be run on a single computer.
This modular architecture means the software and hardware requirements are quite flexible. Below are the minimum
hardware and software requirements for getting the live monitor running on a single computer.

Software Requirements

Installation will be covered in the next section, but these are the required software dependencies:

• Docker - Containerization software used for deploying several SO written packages.

• Docker Compose - CLI tool for running multi-container Docker applications.

• OCS - The observatory control system, for running clients locally.

Hardware Requirements

You will need a Linux computer running Ubuntu 18.04. Other Operating Systems can be used, but will not be sup-
ported.

3

https://docs.docker.com/v17.09/engine/installation/linux/docker-ce/ubuntu/
https://docs.docker.com/compose/install/
https://github.com/simonsobs/ocs

SiSock Documentation, Release 0.2.13+1.g8bd5ec6.dirty

Note: Docker stores its images in the root filesystem by default. If the computer you are using has a small / partition
you might run into space constraints. In this case you should get in touch with Brian for advice on how best to proceed.

Networking Requirements

This Linux machine will need to go on the same network as whatever hardware you’re controlling with OCS. Live
monitoring remotely (i.e. not sitting directly at the computer) is facilitated if your IT department allows it to have a
public IP address, and if you are able to setup a secure webserver. Doing so, however, is beyond the scope of this
guide.

Warning: If you do have a public IP and traffic is allowed to all ports, you are strongly recommended to enable
a firewall as described in Configuring a Firewall. Care should also be taken, when exposing ports in Docker, to
expose your services, especially the crossbar server, to only your localhost (i.e. 127.0.0.1). This is the default in
all templates provided by the SO DAQ group.

Note: If you do not have a public IP, but do have access to a gateway to your private network, then port forwarding
can be used to view the live monitor remotely, as described in Port Forwarding to View Remotely.

1.1.2 Software Installation

This page provides brief instructions, or links to external resources where appropriate, for installation of software
related to the live monitor.

Installing Docker

Docker is used to run many of the components in the live monitor. While the system can be run without Docker, it is
the recommended deployment option. To install, please follow the installation documentation on the Docker website.

Note: The docker daemon requires root privileges. We recommend you run using sudo.

Warning: While it is possible to run docker commands from a user in the docker group, users in this group are
considered equivalent to the root user.

When complete, the docker daemon should be running, you can check this by running sudo systemctl status
docker and looking for output similar to the following:

$ sudo systemctl status docker
docker.service - Docker Application Container Engine
Loaded: loaded (/lib/systemd/system/docker.service; disabled; vendor preset:

→˓enabled)
Active: active (running) since Tue 2018-10-30 10:57:48 EDT; 2 days ago

Docs: https://docs.docker.com
Main PID: 1472 (dockerd)

4 Chapter 1. User’s Guide

https://docs.docker.com/v17.09/engine/installation/linux/docker-ce/ubuntu/

SiSock Documentation, Release 0.2.13+1.g8bd5ec6.dirty

If you see it is not active, run sudo systemctl start docker. To ensure it runs after a computer reboot you
should also run sudo systemctl enable docker.

Installing Docker Compose

Docker Compose facilitates running multi-container applications. This will allow us to pull and run all the containers
we need in a single command. To install see the Docker Compose documentation.

When complete you should be able to run:

$ docker-compose --version
docker-compose version 1.22.0, build 1719ceb

Note: The version shown here might not reflect the latest version available.

Installing OCS

Install OCS with the following:

$ git clone https://github.com/simonsobs/ocs.git
$ cd ocs/
$ pip3 install -r requirements.txt
$ python3 setup.py install

Note: If you want to install locally, not globally, throw the –user flag on both the pip3 and setup.py commands.

Warning: The master branch is not guaranteed to be stable, you might want to checkout a particular version tag
before installation depending on which other software you are working with. See the latest tags.

These directions are presented in the OCS repo, which likely has the most up to date version. If you need to update
OCS, be sure to stash any changes you’ve made before pulling updates from the repo.

1.1.3 Environment Setup

All the required software should now be installed. The next step is to properly configure the environment. Scripts to
help with parts of this setup are provided in the ocs-site-config repository. In this repository is a directory for each SO
site, currently this means one for each test institution (i.e. yale, penn, ucsd). Start by cloning this repository, and if
your site does not have a directory, copy the templates directory to create one.:

$ git clone https://github.com/simonsobs/ocs-site-configs.git
$ cp -r templates/ yale/

Setup Scripts

There are many steps to perform in setting up a new system. In an attempt to streamline these setup steps we have
provided several setup scripts. These need to each be run once on your system. In the future they will likely be
combined into a single script, but for now we deal with the individual parts.

1.1. Live Monitoring Setup Guide 5

https://docs.docker.com/compose/install/
https://github.com/simonsobs/ocs/tags
https://github.com/simonsobs/ocs
https://github.com/simonsobs/ocs-site-configs

SiSock Documentation, Release 0.2.13+1.g8bd5ec6.dirty

TLS Certificate Generation

The crossbar server can handle secure connections using TLS certificates. The live monitor uses this secure connection
capability, and as a result we need to generate a set of self-signed TLS certificates. To do this we just need to run the
setup_tls.py script. Simply enter your new directory and run it (swap yale for your institution):

$ cd yale/
$./setup_tls.py

This will generate the required certificates and put them in a directory called .crossbar/ (which already existed in
the copied template directory).

Warning: Make sure your .crossbar/config.json file exists. Missing the dot directory when copying
files from the template is a common mistake. A missing crossbar configuration will cause the entire system not to
work.

Docker Environment Setup

If this is your first time using Docker then we need to do some first time setup. In the site-config templates/
directory (and thus in your copy of it for your institution) there should be a script called init-docker-env.sh.
Running this creates a storage volume for Grafana so that any configuration we do survives when we remove the
container. To setup the Docker environment run the script:

$ sudo ./init-docker-env.sh

Manual Setup Steps

These steps haven’t been included in any scripts yet, and must be performed manually. These only need to be per-
formed once per system.

OCS User/Group and Data Directory Creation

The OCS aggregator agent runs as a user called ocs, with a UID of 9000. We will setup the same ocs user on the host
system, as well as an ocs group. The data written by the aggregator will belong to this user and group:

$ groupadd -g 9000 ocs
$ useradd -u 9000 -g 9000 ocs

Next we need to create the data directory which the aggregator will write files to. This can be any directory, however
we suggest using /data, and will use this in our example:

$ mkdir /data
$ chown 9000:9000 /data

Finally, we should add the current user account to the ocs group, replace user with your current user:

$ sudo usermod -a -G ocs user

6 Chapter 1. User’s Guide

SiSock Documentation, Release 0.2.13+1.g8bd5ec6.dirty

OCS Config Setup

The OCS configuration file is named after a given site, i.e. yale.yaml. In order for OCS to know where to find your
configuration file we need to do two things.

First, add the following to your .bashrc file:

export OCS_CONFIG_DIR='/path/to/ocs-site-configs/<your-institution-directory>/'

Next, within your site config directory, symlink your configuration file to default.yaml:

$ ln -s yale.yaml default.yaml

Note: If you’re proceeding in the same terminal don’t forget to source your .bashrc file.

Login to Docker Registry

The Docker images which we will need to run the live monitor are hosted on a private Docker registry at Yale. Until
things are hosted publicly we need to login to the private. (The password can be found on the SO wiki.) To do so run:

$ sudo docker login grumpy.physics.yale.edu
Username: simonsobs
Password:

You will see output along the lines of:

WARNING! Your password will be stored unencrypted in /home/user/.docker/config.json.
Configure a credential helper to remove this warning. See
https://docs.docker.com/engine/reference/commandline/login/#credentials-store

Login Succeeded

You will now be able to pull images from the registry.

The system is now ready to configure. In the next section we will discuss both the docker-compose and ocs configura-
tion files.

1.1.4 Configuration

Next we need to configure both the docker-compose and ocs environments, each with their own configuration files.
These files will differ for each site depending on your hardware setup. Below we cover a simple configuration for
each. Later we discuss more advanced configuration.

docker-compose.yaml

Docker is used extensively in deploying several parts of the live monitor. Docker Compose is used to manage all the
containers required to run the live monitor software. The Docker Compose configuration file defines the containers
that we will control.

The ocs site configs templates provide a simple template docker-compose.yaml file which configures some of the
essential container.

1.1. Live Monitoring Setup Guide 7

http://simonsobservatory.wikidot.com/tech:daq:credentials

SiSock Documentation, Release 0.2.13+1.g8bd5ec6.dirty

Note: The filename is important here, as the docker-compose.yaml path is the default one parsed by the docker-
compose tool. A configuration file can be specified with the -f flag.

Note: If you are interested in developing containers related to sisock, you might be interested in checking out the
“dev-mode” template.

The template configuration does not contain all available containers. Details about more containers can either be found
in the sisock documentation or in the socs and ocs documentation.

The template docker-compose.yaml file, looks something like this:

version: '2'
volumes:

grafana-storage:
external: true

services:
--
Grafana for the live monitor.
--
grafana:
image: grafana/grafana:5.4.0
restart: always
ports:

- "127.0.0.1:3000:3000"
environment:

- GF_INSTALL_PLUGINS=grafana-simple-json-datasource, natel-plotly-panel
volumes:

- grafana-storage:/var/lib/grafana

--
sisock Components
--
sisock-crossbar:
image: grumpy.physics.yale.edu/sisock-crossbar:latest
ports:

- "127.0.0.1:8001:8001" # expose for OCS
volumes:

- ./.crossbar:/app/.crossbar
environment:

- PYTHONUNBUFFERED=1

sisock-http:
image: grumpy.physics.yale.edu/sisock-http:latest
depends_on:

- "sisock-crossbar"
volumes:

- ./.crossbar:/app/.crossbar:ro

weather:
image: grumpy.physics.yale.edu/sisock-weather-server:latest
depends_on:

- "sisock-crossbar"
- "sisock-http"

volumes:

(continues on next page)

8 Chapter 1. User’s Guide

https://grumpy.physics.yale.edu/docs/sisock/

SiSock Documentation, Release 0.2.13+1.g8bd5ec6.dirty

(continued from previous page)

- ./.crossbar:/app/.crossbar:ro

--
sisock Data Servers
--
LSA23JD:
image: grumpy.physics.yale.edu/sisock-thermometry-server:latest
environment:

TARGET: LSA23JD # match to instance-id of agent to monitor
NAME: 'LSA23JD' # will appear in sisock a front of field name
DESCRIPTION: "LS372 in the Bluefors control cabinet."

depends_on:
- "sisock-crossbar"
- "sisock-http"

--
OCS Agents
--
ocs-registry:
image: grumpy.physics.yale.edu/ocs-registry-agent:latest
hostname: ocs-docker
volumes:

- ${OCS_CONFIG_DIR}:/config:ro
depends_on:

- "sisock-crossbar"

ocs-aggregator:
image: grumpy.physics.yale.edu/ocs-aggregator-agent:latest
hostname: ocs-docker
user: "9000"
volumes:

- ${OCS_CONFIG_DIR}:/config:ro
- "/data:/data"

depends_on:
- "sisock-crossbar"

Warning: Bind mounts are a system unique property. This is especially true for ones which use absolute paths.
If they exist in any reference configuration file, they will need to be updated for your system.

Understanding what is going on in this configuration file is key to getting a system that is working smoothly. The
Docker Compose reference explains the format of the file, for details on syntax you are encouraged to check the
official documentation.

In the remainder of this section we will go over our example. We first define the use of an external docker volume,
grafana-storage, which we created using the init-docker-env.sh script.

Every block below services: defines a Docker container. Let’s look at one example container configuration. This
example does not represent something we would want to actually use, but contains configuration lines relevant to many
other container configurations:

g3-reader:
image: grumpy.physics.yale.edu/sisock-g3-reader-server:latest
restart: always
hostname: ocs-docker
user: "9000"

(continues on next page)

1.1. Live Monitoring Setup Guide 9

https://docs.docker.com/compose/compose-file/compose-file-v2/

SiSock Documentation, Release 0.2.13+1.g8bd5ec6.dirty

(continued from previous page)

ports:
- "127.0.0.1:8001:8001" # expose for OCS

volumes:
- /data:/data:ro
- ./.crossbar:/app/.crossbar

environment:
MAX_POINTS: 1000
SQL_HOST: "database"
SQL_USER: "development"
SQL_PASSWD: "development"
SQL_DB: "files"

depends_on:
- "sisock-crossbar"
- "sisock-http"
- "database"

The top line, g3-reader, defines the name of the service to docker-compose. These must be unique. image defines
the docker image used for the container. A container can be thought of as a copy of an image. The container is
what actually runs when you startup your docker service. restart allows you to define when a container can be
automatically restarted, in this instance, always. hostname defines the hostname internal to the container. This is
used in the OCS container configurations in conjunction with the ocs-site-configs file. user defines the user used
inside the container. This is only used on the aggregator agent configuration.

ports defines the ports exposed from the container to the host. This is used on containers like the crossbar container
and the grafana container. volumes defines mounted docker volumes and bind mounts to the host system. The
syntax here is /host/system/path:/container/system/path. Alternatively the host system path can be
a named docker container, like the one used for grafana. environment defines environment variables inside the
container. This is used for configuring behaviors inside the containers. depends_on means Docker Compose will
wait for the listed containers to start before starting this container. This does not mean the services will be ready, but
the container will be started.

Note: Environment variables can be used within a docker-compose configuration file. This is done for the
OCS_CONFIG_DIR mount for the OCS agents in the default template. For more information see the docker compose
documentation.

For more details on configurations for individual containers, see the service documentation pages, for instance in the
sisock documentation or in the respective ocs agent pages.

OCS

OCS has a separate configuration file which defines connection parameters for the crossbar server, as well as the
Agents that will run on each host, whether they are on the host system, or in a Docker container. This configuration
file allows default startup parameters to be defined for each Agent.

We will look at a simple example and describe how deploying Agents in containers should be handled. For more
details on the OCS site configuration file see OCS Site Configuration. Here is an example config:

Site configuration for a fake observatory.
hub:

wamp_server: ws://localhost:8001/ws
wamp_http: http://localhost:8001/call
wamp_realm: test_realm

(continues on next page)

10 Chapter 1. User’s Guide

https://docs.docker.com/compose/environment-variables/
https://docs.docker.com/compose/environment-variables/
https://grumpy.physics.yale.edu/docs/sisock/
https://ocs.readthedocs.io/en/latest/site_config.html#ocs-site-config-file

SiSock Documentation, Release 0.2.13+1.g8bd5ec6.dirty

(continued from previous page)

address_root: observatory
registry_address: observatory.registry

hosts:

ocs-docker: {

'agent-instances': [
Core OCS Agents
{'agent-class': 'RegistryAgent',
'instance-id': 'registry',
'arguments': []},

{'agent-class': 'AggregatorAgent',
'instance-id': 'aggregator',
'arguments': [['--initial-state', 'record'],

['--time-per-file', '3600'],
['--data-dir', '/data/']]},

Lakeshore agent examples
{'agent-class': 'Lakeshore372Agent',
'instance-id': 'LSA22YE',
'arguments': [['--serial-number', 'LSA22YE'],

['--ip-address', '10.10.10.4']]},

{'agent-class': 'Lakeshore240Agent',
'instance-id': 'LSA22Z2',
'arguments': [['--serial-number', 'LSA22Z2'],

['--num-channels', 8]]},
]

}

The hub section defines the connection parameters for the crossbar server. This entire section will likely remain
unchanged, unless you are running a site with multiple computers, in which case other computers will need to either
run their own crossbar server, or point to an already configured one.

Under hosts we have defined a single host, ocs-docker. This configuration example shows an example where every
OCS Agent is running within a Docker container. The hostname ocs-docker must match that given to your docker
containers in the docker-compose.yaml file. We recommend naming the docker hosts based on your local
hostname, however the configuration shown here will also work on a simple site layout.

Note: To determine your host name, open a terminal and enter hostname.

Each item under a given host describes the OCS Agents which can be run. For example look at the first 372 Agent:

{'agent-class': 'Lakeshore372Agent',
'instance-id': 'LSA22YE',
'arguments': [['--serial-number', 'LSA22YE'],

['--ip-address', '10.10.10.4']]},

The agent-class is given by the actual Agent which will be running. This must match the name defined in the
Agent’s code. The instance-id is a unique name given to this agent instance. Here we use the Lakeshore 372
serial number, LSA22YE. This will need to be noted for later use in the live monitoring. Finally the arguments are used
to pass default arguments to the Agent at startup, which contains the serial number again as well as the IP address of
the 372.

1.1. Live Monitoring Setup Guide 11

SiSock Documentation, Release 0.2.13+1.g8bd5ec6.dirty

1.1.5 Running Docker

Our dependencies are met, the environment setup, and the configuration files configured; Now we’re ready to run
Docker. From your institution configuration directory (where the docker-compose.yml file is), run:

$ sudo -E docker-compose up -d

Note: The -d flag daemonizes the containers. If you remove it the output from every container will be attached to
your terminal. This can be useful for debugging.

Note: The -E flag on sudo preserves the existing environment variables. This is needed as we use the
OCS_CONFIG_DIR variable within the docker-compose file.

You can confirm the running state of the containers with the docker ps command:

$ bjk49@grumpy:~$ sudo docker ps
CONTAINER ID IMAGE
→˓ COMMAND CREATED STATUS PORTS
→˓ NAMES
f325b0a95384 grumpy.physics.yale.edu/ocs-lakeshore240-agent:latest
→˓ "python3 -u LS240_ag..." 47 hours ago Up 47 hours
→˓ prod_ocs-LSA22ZC_1_2cc23a32f274
e27946e2806f grumpy.physics.yale.edu/ocs-lakeshore240-agent:latest
→˓ "python3 -u LS240_ag..." 47 hours ago Up 47 hours
→˓ prod_ocs-LSA22Z2_1_e8ae8bdfcbe1
123c43ade64c grumpy.physics.yale.edu/ocs-lakeshore240-agent:latest
→˓ "python3 -u LS240_ag..." 47 hours ago Up 47 hours
→˓ prod_ocs-LSA24R5_1_81cb5b556c75
d0484abc5e22 grumpy.physics.yale.edu/ocs-lakeshore372-agent:latest
→˓ "python3 -u LS372_ag..." 2 days ago Up 2 days
→˓ prod_ocs-LSA22YE_1_345860de361e
fb1274ec0983 grumpy.physics.yale.edu/ocs-lakeshore372-agent:latest
→˓ "python3 -u LS372_ag..." 2 days ago Up 2 days
→˓ prod_ocs-LSA22YG_1_eccac22afb71
c4994af324f7 grumpy.physics.yale.edu/sisock-weather-server:v0.2.11
→˓ "python3 -u server_e..." 2 days ago Up 2 days
→˓ prod_weather_1_b7f76f317d75
fed155bfcfad grumpy.physics.yale.edu/sisock-g3-reader-server:v0.2.11-1-
→˓g1ff12ac "python3 -u g3_reade..." 2 days ago Up 2 days
→˓ prod_g3-reader_1_9e7e53ec96b0
70288c5d6ce6 grumpy.physics.yale.edu/sisock-thermometry-server:v0.2.11
→˓ "python3 -u thermome..." 2 days ago Up 2 days
→˓ prod_LSA22YG_1_cd64f9656cfe
dd4906561ed1 grumpy.physics.yale.edu/sisock-thermometry-server:v0.2.11
→˓ "python3 -u thermome..." 2 days ago Up 2 days
→˓ prod_LSA23JD_1_9a57b3fa29df
5956786cd5b4 grumpy.physics.yale.edu/sisock-thermometry-server:v0.2.11
→˓ "python3 -u thermome..." 2 days ago Up 2 days
→˓ prod_LSA22YE_1_b5f1673d913f
810258e8893c grumpy.physics.yale.edu/sisock-thermometry-server:v0.2.11
→˓ "python3 -u thermome..." 2 days ago Up 2 days
→˓ prod_LSA22Z2_1_e6316efdbb2d
d8db9af9a1de grumpy.physics.yale.edu/sisock-thermometry-server:v0.2.11
→˓ "python3 -u thermome..." 2 days ago Up 2 days
→˓ prod_LSA24R5_1_19e6469ef97b (continues on next page)

12 Chapter 1. User’s Guide

SiSock Documentation, Release 0.2.13+1.g8bd5ec6.dirty

(continued from previous page)

91ecab00bd26 grumpy.physics.yale.edu/sisock-thermometry-server:v0.2.11
→˓ "python3 -u thermome..." 2 days ago Up 2 days
→˓ prod_LSA22ZC_1_e1436bd60b9b
d92bcdf8468a grumpy.physics.yale.edu/sisock-http:v0.2.11
→˓ "python3 -u grafana_..." 2 days ago Up 2 days
→˓ prod_sisock-http_1_aeeb14fced5e
2a782c1aa9c4 eee74fd50cf5
→˓ "python3 -u registry..." 2 days ago Up 2 days
→˓ prod_ocs-registry_1_ecacce7345b6
7e8e3d7372ca grumpy.physics.yale.edu/ocs-aggregator-agent:latest
→˓ "python3 -u aggregat..." 2 days ago Up 47 hours
→˓ prod_ocs-aggregator_1_5ed8fe90f913
8e7129ab199d grumpy.physics.yale.edu/sisock-crossbar:v0.2.11
→˓ "crossbar start" 2 days ago Up 2 days 127.0.0.1:8001->
→˓8001/tcp prod_sisock-crossbar_1_7b0eb9ec21ff
a98066cc4569 grumpy.physics.yale.edu/sisock-g3-file-scanner:v0.2.11-1-g1ff12ac
→˓ "python3 -u scan.py" 6 days ago Up 6 days
→˓ prod_g3-file-scanner_1_99d392723812
ddd6f1a63821 grafana/grafana:5.4.0
→˓ "/run.sh" 6 days ago Up 6 days 127.0.0.1:3000->
→˓3000/tcp prod_grafana_1_817207e03f75
cc0ef28deef0 e07bb20373d8
→˓ "docker-entrypoint.s..." 6 days ago Up 6 days 3306/tcp
→˓ prod_database_1_a7c15d7039b9

This example shows all the containers running at Yale at the time of this writing.

Note: Since all the OCS Agents are configured to run in containers (which is our recommendation for running your
system), there is no additional startup of OCS Agents. Previously these were either started individually by calling the
agent script in a terminal, or using the ocsbow tool.

If your system is still setup to use these methods you can move to the Docker configuration by adding the required
Agents to your docker-compose configuration and moving the Agent configurations in the ocs config file to a docker
host block.

Using Docker

Many users may not be familiar with using Docker. Here are some useful tips for interacting with docker.

Viewing Logs

Each container has its own logs to which the output from the program running inside the container is written. The logs
can be viewed with:

$ sudo docker logs <container name>

If you want to follow the logs (much like you would tail -f a file) you can run:

$ sudo docker logs -f <container name>

1.1. Live Monitoring Setup Guide 13

SiSock Documentation, Release 0.2.13+1.g8bd5ec6.dirty

Updating Containers

If you have made changes to the docker compose configuration you need to update your containers by running the up
command again:

$ sudo -E docker-compose up -d

This will rebuild any containers that have either been updated or depend on one which has updated.

To update a single service only you can run:

$ docker-compose stop <service name>
$ docker-compose up <service name>

Where you need to replace <service name> with the name of the service you have configured in your docker-
compose configuration file.

Restarting Containers

If need to just restart a container, and haven’t made any changes to your docker-compose configuration file you can do
so with:

$ sudo docker-compose restart <container name>

Shutting Down All Containers

All the containers started with Compose can be stopped with:

$ sudo docker-compose down

1.1.6 Running OCS Clients

All the OCS Agents should now be running in Docker containers. To command them we run an OCS Client. Examples
of OCS Clients can be found in the ocs/clients directory. As an example, we can start data acquisition on a Lakeshore
using ocs/clients/start_new_therm.py:

$ python3 start_new_therm.py --target=LSA23JD
2019-01-10T11:53:52-0500 transport connected
2019-01-10T11:53:52-0500 session joined: SessionDetails(realm=<test_realm>,
→˓session=1042697241527250, authid=<GJJU-4YG3-3UCG-CSMJ-TQTW-PWSM>, authrole=<server>,
→˓ authmethod=anonymous, authprovider=static, authextra=None, resumed=None,
→˓resumable=None, resume_token=None)
2019-01-10T11:53:52-0500 Entered control
2019-01-10T11:53:52-0500 Registering tasks
2019-01-10T11:53:52-0500 Starting Aggregator
2019-01-10T11:53:52-0500 Starting Data Acquisition

Once you have started data collection, the data is being acquired by the Lakeshore Agent and published over the
crossbar server to the Aggregator Agent. There it is being written to disk at the location you have configured (/data
in our example). The data is also passed to the live monitor, where it can be displayed in Grafana. We still discuss
configuring Grafana in the next section.

14 Chapter 1. User’s Guide

https://github.com/simonsobs/ocs/tree/master/clients

SiSock Documentation, Release 0.2.13+1.g8bd5ec6.dirty

1.1.7 Using Grafana

Our environment is configured, OCS Agents are running, and we have commanded them to acquire some data. We are
now ready to configure Grafana. The configuration is not challenging, however dashboard configuration can be time
consuming. We start with the first time setup steps.

Set a Password

When you first navigate to http://localhost:3000 in your web browser you will see the following page:

The default username/password are admin/admin. Once you enter this it will prompt you to set a new admin password.
Select something secure, especially if your computer has a public IP address.

Note: Grafana can be a great way to check the housekeeping data at your site from anywhere you can access a web
browser. For a more user friendly and secure connection you should setup a web server to proxy the connection to the
Grafana container. This, however, is currently beyond the scope of this guide.

Configuring the Data Source

After setting the password you will end up on this page:

Click on the highlighted “Add data source” icon. (This is also accessible under the gear in the side menu as “Data
Sources”.) You should then see this:

1.1. Live Monitoring Setup Guide 15

https://grafana.com/
http://localhost:3000

SiSock Documentation, Release 0.2.13+1.g8bd5ec6.dirty

These are all the supported sources from which Grafana can pull data. We will use the SimpleJson source. Clicking
on that icon will get you here:

You can fill in what you want for a name, or keep the default. Make sure the “Default” checkbox is checked,
as this will be our default data source when creating a new Dashboard. Finally, the URL must be http://
sisock-http:5000. This is the name for the HTTP server we set in the docker-compose.yml file with
the default port we assigned it.

When you click “Save & Test” a green alert box should show up, saying “Data source is working”, like this:

If the Data Source is not working you will see an HTTP Error Bad Gateway in red:

16 Chapter 1. User’s Guide

SiSock Documentation, Release 0.2.13+1.g8bd5ec6.dirty

If this occurs it could be several things.

• Check the URL is correct

• Make sure you select the SimpleJson data source Type

• Check the sisock-http container is running

Configuring a Dashboard

Now that we have configured the Data Source we can create our first Dashboard. If you press back on the previous
screen you will end up on the Data Sources menu. From any page you should have access to the sidebar on the left
hand side of your browser. You may need to move your mouse near the edge of the screen to have it show up. Scroll
over the top ‘+’ sign and select “Create Dashboard”, as shown here:

You will then see a menu like this:

In this menu we are selecting what type of Panel to add to our Dashboard. We will add a Graph. When we first add
the Graph it will be blank:

1.1. Live Monitoring Setup Guide 17

SiSock Documentation, Release 0.2.13+1.g8bd5ec6.dirty

Click on the “Panel Title”, and in the drop down menu, click “Edit”. This will expand the plot to the full width of the
page and present a set of tabbed menus below it.

We start on the “Metrics” tab. Here is where we add the fields we wish to plot. The drop down menu that says “select
metric” will contain fields populated by the sisock data servers. Select an item in this list, for instructional purposes
we will select the “apex_archive::apex_radiometer” metric, which is from an example data server which contains a
small sample of data to verify the live monitor is working properly. Data should appear in the plot if you are running
the example weather data server container and have selected the date range between July 13, 2017 and July 28, 2017.

You can configure the time interval and update intervals by clicking on the time in the upper right, it most likely by
default says “Last 6 hours”:

Note: The update intervals can be further customized by editing the dashboard. This can be done by clicking on the
gear icon near the time settings. Keep in mind though that the more data you load the less you want to be rapidly
querying the backend for displaying it. Performance may be impacted if you query large datasets rapidly.

Viewing the Live Monitor

Now we should start to see data in our live monitor.

18 Chapter 1. User’s Guide

SiSock Documentation, Release 0.2.13+1.g8bd5ec6.dirty

Warning: If no data is showing up, you may have to select the metrics drop down menu again when first starting
up. This is a known bug. Selecting the metric drop down should get data showing again. This is likely only a
problem after you have a configured panel and restart the live monitor containers.

Here are some examples of what fully configured panels may look like:

Fig. 1: The diode calibration setup at Penn. Six diodes are readout on a single Lakeshore 240. The top plot shows the
calibrated diode, reporting temperature in Kelvin. While the bottom plot shows the 5 uncalibrated diodes. The Top
element is a SingleStat panel which shows the current temperature of the 4K plate via the calibrated diode.

Fig. 2: A demo Lakeshore 372 readout at Yale. The Lakeshore switches over 15 channels, reading each out for a few
seconds before moving onto the next. Here the first eight channels are shown on the left plot, and the last seven shown
on the right plot. There are 15 single stat panels below the plots showing the current values for each given channel.

1.1.8 Other Info

Grafana

The grafana-storage volume that we initialized will allow for persistent storage in the event the container is
rebuilt. Dashboards can also be backed up by exporting them to a .json file.

Warning: This should be a one time setup, however, if you destroy the grafana-storage volume you will lose your
configuration. We encourage you to export your favorite dashboards for backup.

Backing up Panels

Networking

1.1. Live Monitoring Setup Guide 19

SiSock Documentation, Release 0.2.13+1.g8bd5ec6.dirty

Configuring a Firewall

Note: This problem is solved in part by the explicit exposure of the crossbar server port to localhost in our
docker-compose.yml file in the line ports: "127.0.0.1:3000:3000". This ensures port 3000 is only
available to the localhost. If this is not done (i.e. “ports: 3000:3000”) Docker will manipulate the iptables to make
port 3000 available anywhere, so if your computer is publicly facing anyone online can (and will) try to connect. This
will be evident in your crossbar container’s logs.

That said, the firewall setup is not totally necessary, though still is good practice, so I will leave this information here.

If you have convinced your university IT department to allow you to have a Linux machine on the public network
we should take some precautions to secure the crossbar server, which currently for OCS does not have a secure
authentication mechanism, from the outside world. The simplest way of doing so is by setting up a firewall.

Ubuntu should come with (or have easily installable) a simple front end for iptables called ufw (Uncomplicated Fire-
wall). This is disabled by default. Before configuring you should consider any software running on the machine which
may require an open port. We will configure it to have ports 22 and 3000 open, for ssh and Grafana, respectively.

ufw should be disabled by default:

$ sudo ufw status
Status: inactive

You can get a list of applications which ufw knows about with:

$ sudo ufw app list
Available applications:

CUPS
OpenSSH

We can then allow the ssh port with:

$ sudo ufw allow OpenSSH
Rules updated
Rules updated (v6)

This opens port 22. And finally, we can allow Grafana’s port 3000:

$ sudo ufw allow 3000
Rules updated
Rules updated (v6)

Lastly we have to enable ufw:

$ sudo ufw enable
Command may disrupt existing ssh connections. Proceed with operation (y|n)? y
Firewall is active and enabled on system startup

You should then see that the firewall is active:

$ sudo ufw status
Status: active

To Action From
-- ------ ----
OpenSSH ALLOW Anywhere

(continues on next page)

20 Chapter 1. User’s Guide

SiSock Documentation, Release 0.2.13+1.g8bd5ec6.dirty

(continued from previous page)

3000 ALLOW Anywhere
OpenSSH (v6) ALLOW Anywhere (v6)
3000 (v6) ALLOW Anywhere (v6)

Port Forwarding to View Remotely

If the computer you are running Grafana on is not exposed to the internet you can still access the web interface if you
forward port 3000 to your computer.

You will need a way to ssh to the computer you are running on, so hopefully there is a gateway machine. To make this
easier you should add some lines to your .ssh/config:

Host gateway
HostName gateway.ip.address.or.url
User username

Host grafana
HostName ip.address.of.grafana.computer.on.its.network
User username
ProxyCommand ssh gateway -W %h:%p

Here you should replace “gateway” and “grafana” with whatever you want, but note the two locations for “gateway”,
namely the second in the ProxyCommand. This will then allow you to ssh through the gateway to “grafana” with a
single command.

You can then forward the appropriate ports by running:

$ ssh -N -L 3000:localhost:3000 <grafana computer>

You should now be able to access the grafana interface on your computer by navigating your browser to
localhost:3000.

1.2 Components

There are currently three components that make up a functioning sisock stack (in the context of live montioring,
anyway). There’s the crossbar server, the intermediate web server, and then all the DataNodeServers. This page
documents how to get containers of these components and configure them in your docker-config.yml.

Components

• sisock-crossbar

– Configuration

• sisock-http

– Configuration

• g3-file-scanner

– Configuration

• Common Configuration

1.2. Components 21

SiSock Documentation, Release 0.2.13+1.g8bd5ec6.dirty

1.2.1 sisock-crossbar

The crossbar server, an implementation of a WAMP router, serves as the communication channel between all the
various components, as well as to parts of the Observatory Control System (OCS). This is provided by an image at
grumpy.physics.yale.edu/sisock-crossbar.

Alongside this server runs the sisock Hub, which keeps track of all the running DataNodeSevers.

Configuration

Option Description
con-
tainer_name

sisock_crossbar - a currently hardcoded value in sisock, used for DNS resolution within Docker

ports Exposes the crossbar container on localhost at port 8001, used for OCS communication. The
127.0.0.1 is critical if the computer you are running on is exposed to the internet.

volumes We need the TLS certs bind mounted.
PYTHON-
BUFFERED

Force stdin, stdout, and stderr to be unbuffered. For logging in Docker.

sisock-crossbar:
image: grumpy.physics.yale.edu/sisock-crossbar:0.1.0
container_name: sisock_crossbar # required for proper name resolution in sisock code
ports:
- "127.0.0.1:8001:8001" # expose for OCS

volumes:
- ./.crossbar:/app/.crossbar

environment:
- PYTHONUNBUFFERED=1

1.2.2 sisock-http

Between Grafana and sisock sits an web server. This serves as a data source for Grafana, translating the queries from
Grafana into data and field requests in sisock. The result is data from a DataNodeServer is passed through the
crossbar server to the sisock-http server and then to Grafana over http, displaying in your browser.

Configuration

The image is provided at grumpy.physics.yale.edu/sisock-http, and depends on the crossbar server
running to function. Since it communicates over the secure port on crossbar we need the TLS certificates mounted.
The HTTP server defaultly runs on port 5000, but you can change this with the environment variable ‘PORT’, as
shown in the example. There is also a ‘LOGLEVEL’ environment variable which can be used to set the log level. This
is useful for debugging. txaio is used for logging.

sisock-http:
image: grumpy.physics.yale.edu/sisock-http:0.1.0
depends_on:
- "sisock-crossbar"

environment:
PORT: "5001"
LOGLEVEL: "info"

volumes:
- ./.crossbar:/app/.crossbar:ro

22 Chapter 1. User’s Guide

SiSock Documentation, Release 0.2.13+1.g8bd5ec6.dirty

1.2.3 g3-file-scanner

This component will scan a directory for .g3 files, opening them and storing information about them required for the
g3-reader DataNodeServer in a MySQL database. It scans at a given interval, defined as an environment variable. It
also requires connection parameters for the SQL database, and a top level directory to scan.

Configuration

The image is provided at grumpy.physics.yale.edu/sisock-g3-file-scanner, and only depends on
the database we store file information in.

g3-file-scanner:
image: grumpy.physics.yale.edu/sisock-g3-file-scanner:0.2.0
volumes:
- /home/koopman/data/yale:/data:ro # has to match the mount in g3-reader

environment:
SQL_HOST: "database"
SQL_USER: "development"
SQL_PASSWD: "development"
SQL_DB: "files"
DATA_DIRECTORY: '/data/'
SCAN_INTERVAL: 3600 # seconds

depends_on:
- "database"

1.2.4 Common Configuration

There are some environment variables which are common among all sisock components. These mostly relate to
connection settings for the crossbar server. The defaults will work for a simple, single node, setup. However, moving
to multiple nodes, in most cases, will require setting some of these.

Option Description
WAMP_USER The username configured for connecting to the crossbar server. This is the “role” in the

crossbar config.
WAMP_SECRET The associated secret for the WAMP_USER.
CROSSBAR_HOST IP or domain name for the crossbar server.
CROSS-
BAR_TLS_PORT

The port configured for secure connection to the crossbar server. In default SO configu-
rations this is 8080.

CROSS-
BAR_OCS_PORT

The port configured for open connection to the crossbar server. In default SO configura-
tions this is 8001.

Warning: The default WAMP_SECRET is not secure. If you are deploying your crossbar server in a public
manner, you should not use the default secret.

1.3 DataNodeServers

sisock components are made up of individual DataNodeServers which know how to retrieve a specific set of data.
Each DataNodeServer (abbreviated DaNS, so as to avoid the commonly known DNS acryonym) runs within its own

1.3. DataNodeServers 23

SiSock Documentation, Release 0.2.13+1.g8bd5ec6.dirty

Docker container. To use a DaNS you simply add a copy of its configuration to your docker-compose.yml file
and edit it accordingly. Below you will find details for how to configure each DaNS.

Note: A quick note about versions for the Docker images. The version number, as of this writing, corresponds to
the tagged version of sisock. You can view the tags on Github under releases. It is perhaps most safe, from a stability
standpoint, to use a specific version number (i.e. 0.1.0), rather than “latest”, which changes its underlying version
number as new releases are made. The version number in these examples might not reflect the latest release, so you
should check the releases page.

DataNodeServers

• example-weather

– Configuration

• example-sensors

– Configuration

• apex-weather

– Configuration

• data-feed

– Configuration

• ucsc-radiometer

– Configuration

• g3-reader

– Configuration

1.3.1 example-weather

An example DataNodeServer for demonstrating reading data from disk. A good choice to include for debugging
your live monitor.

This container includes a small set of raw text files that contain weather data from the APEX telescope. The dataset
runs from 2017-07-13 to 2017-07-27, so be sure to set your date range accordingly.

Configuration

The image is called sisock-weather-server, and should have the general dependencies. It also communicates
over the secure port with the crossbar server, and so needs the bind mounted .crossbar directory.

weather:
image: grumpy.physics.yale.edu/sisock-weather-server:latest
depends_on:
- "sisock-crossbar"
- "sisock-http"

volumes:
- ./.crossbar:/app/.crossbar:ro

24 Chapter 1. User’s Guide

https://github.com/simonsobs/sisock/releases
https://github.com/simonsobs/sisock/releases

SiSock Documentation, Release 0.2.13+1.g8bd5ec6.dirty

1.3.2 example-sensors

An example DataNodeServer for demonstrating the use of live data. The data is generated within the container
through use of the lm-sensors program, which is already installed in the container. This returns the tempearture of
your computer’s CPU cores.

Warning: There are some known problems getting this to run on some systems. It should work on an Ubuntu
18.04 box, but if you’re having trouble and really want to get it running get in touch with someone from the DAQ
group.

This is a fun early demo, but probably won’t be useful to many users.

Configuration

The image is called sisock-sensors-server, and should have the general dependencies. It also communicates
over the secure port with the crossbar server, and so needs the bind mounted .crossbar directory.

sensors:
image: grumpy.physics.yale.edu/sisock-sensors-server:latest
depends_on:
- "sisock-crossbar"
- "sisock-http"

volumes:
- ./.crossbar:/app/.crossbar:ro

1.3.3 apex-weather

A DataNodeServer based on the example-weather server, which reads weather data from the APEX telescope
as archived by the ACT team. Used in production at the ACT site.

Configuration

The image is called sisock-apex-weather-server, and should have the general dependencies. It also com-
municates over the secure port with the crossbar server, and so needs the bind mounted .crossbar directory. In
addition, you will need to mount the location that the data is stored on the host system.

There is an environment variable, MAX_POINTS, that can be used to configure the maximum number of points the
server will return, this is useful for looking at large time ranges, where fine resolution is not needed.

apex-weather:
image: grumpy.physics.yale.edu/sisock-apex-weather-server:latest
volumes:
- ./.crossbar:/app/.crossbar:ro
- /var/www/apex_weather:/data:ro

environment:
MAX_POINTS: 1000

depends_on:
- "sisock_crossbar"
- "sisock_grafana_http"

1.3. DataNodeServers 25

SiSock Documentation, Release 0.2.13+1.g8bd5ec6.dirty

1.3.4 data-feed

A DataNodeServer which is able to subscribe to, cache, and serve live data from an OCS agent which publishes
to an OCS Feed. This DataNodeServer communicates with the crossbar server on an unencrypted port so as to
enable subscription to the OCS data feeds.

Data published by OCS Agents is cached in memory for up to an hour. Any data with a timestamp older than an hour
is removed from the cache.

Configuration

The image is called sisock-data-feed-server, and should have the general dependencies.

There are several environment variables which need to be set uniquely per instance of the server:

Variable Description
TARGET Used for data feed subscription, must match the “instance-id” for the Agent as configured

in your site-config file.
FEED Used for data feed subscription. This must match the name of the ocs Feed which the ocs

Agent publishes to.
NAME Used to uniquely identify the server in Grafana, appears in sisock in front of the field name.
DESCRIPTION Description for the device, is used by Grafana.
CROSSBAR_HOST Address for the crossbar server
CROSS-
BAR_TLS_PORT

Port for TLS communication to the crossbar server

The “TARGET” and “FEED” variables are used to construct the full crossbar address which is used for the subscrip-
tion. This address ultimately looks like “observatory.TARGET.feeds.FEED”. Failure to match to an address which
has data published to it will result in no data being cached.

The “CROSSBAR_HOST” and “CROSSBAR_TLS_PORT” variables are useful when setting up a multi-node system.
If hosted on the same computer the host is typically ‘sisock-crossbar’, else it will be the IP of the computer hosting it.
The TLS port, unless changed in the crossbar configuration, should be 8080.

bluefors:
image: grumpy.physics.yale.edu/sisock-data-feed-server:latest
environment:

TARGET: bluefors # match to instance-id of agent to monitor, used for data feed
→˓subscription

NAME: 'bluefors' # will appear in sisock a front of field name
DESCRIPTION: "bluefors logs"
FEED: "bluefors"

logging:
options:
max-size: "20m"
max-file: "10"

depends_on:
- "sisock-crossbar"
- "sisock-http"

1.3.5 ucsc-radiometer

A DataNodeServer based on the example-weather server, which reads weather data from the UCSC radiome-
ter located on Cerro Toco. Used in production at the ACT site.

26 Chapter 1. User’s Guide

SiSock Documentation, Release 0.2.13+1.g8bd5ec6.dirty

Configuration

The image is called sisock-radiometer-server, and should have the general dependencies. It also communi-
cates over the secure port with the crossbar server, and so needs the bind mounted .crossbar directory. In addition,
you will need to mount the location that the data is stored on the host system.

There is an environment variable, MAX_POINTS, that can be used to configure the maximum number of points the
server will return, this is useful for looking at large time ranges, where fine resolution is not needed.

ucsc-radiometer:
image: grumpy.physics.yale.edu/sisock-radiometer-server:latest
volumes:
- ./.crossbar:/app/.crossbar:ro
- /var/www/Skymonitor:/data:ro

environment:
MAX_POINTS: 1000

depends_on:
- "sisock-crossbar"
- "sisock-http"

1.3.6 g3-reader

A DataNodeServer which reads data from g3 files stored on disk. This operates with the help of a MySQL
database, which runs in a separate container. This database stores information about the g3 files, such as the filename,
path, feed name, available fields and their associated start and end times. This enables the g3-reader DataNodeServer
to determine which fields are available via a query to the database and to determine which files to open to retrieve the
requested data.

The server will cache any data opened from a .g3 file. The data cache takes the form of a dictionary with the full path
to the file as a key. The value is a dictionary with structure related to the structure within the .g3 file. The design of
the cache allows loaded files to be popped out of the dictionary to prevent the cache from growing too large (though
currently a good cache clearing scheme is not implemented).

Configuration

The image is called sisock-g3-reader-server, and should have the general dependencies. It also communi-
cates over the secure port with the crossbar server, and so needs the bind mounted .crossbar directory. In addition,
you will need to mount the location that the data is stored on the host system.

There is an environment variable, MAX_POINTS, that can be used to configure the maximum number of points the
server will return, this is useful for looking at large time ranges, where fine resolution is not needed.

Additionally, there are environment variables for the SQL connection, which will need to match those given to a
mariadb instance. Both configurations will look like:

g3-reader:
image: grumpy.physics.yale.edu/sisock-g3-reader-server:latest
volumes:
- /home/koopman/data/yale:/data:ro
- ./.crossbar:/app/.crossbar

environment:
MAX_POINTS: 1000
SQL_HOST: "database"
SQL_USER: "development"
SQL_PASSWD: "development"

(continues on next page)

1.3. DataNodeServers 27

SiSock Documentation, Release 0.2.13+1.g8bd5ec6.dirty

(continued from previous page)

SQL_DB: "files"
depends_on:
- "sisock-crossbar"
- "sisock-http"
- "database"

database:
image: mariadb:10.3
environment:
MYSQL_DATABASE: files
MYSQL_USER: development
MYSQL_PASSWORD: development
MYSQL_RANDOM_ROOT_PASSWORD: 'yes'

volumes:
- database-storage-dev:/var/lib/mysql

28 Chapter 1. User’s Guide

CHAPTER 2

Developer’s Guide

If you are interested in the details of how individual components work, look here.

2.1 g3 File Scanner

Reading back housekeeping data from g3 files written to disk is a key feature required of the housekeeping monitor.
This task is performed in two parts. The first is to scan the files. Each g3 file is read and metadata about what is
stored in the files is recorded into a MySQL database. The component that performs this first task is called the g3-file-
scanner. The second, is the opening and caching of the data in specific g3 files which are requested. This is the data
server, g3-reader. This page describes the inner workings of the g3-file-scanner.

Contents

• Overview

• SQL Database Design

2.1.1 Overview

The g3-file-scanner (referred to here as the “file scanner”) will scan a given directory for files with a .g3 extension,
open them, and record metadata about them required for the g3-reader data server in a MySQL database. The scan
occurs on a regular interval, set by the user as an environment variable.

Note: The first scan of a large dataset will take some time, depending on how much data you have.

29

SiSock Documentation, Release 0.2.13+1.g8bd5ec6.dirty

2.1.2 SQL Database Design

The SQL database is split into two tables, the “feeds” table and the “fields” table. “feeds” stores the filename and path
to the file along with the prov_id and description from within the g3 file. The description will be used to assemble a
unique sisock field name. Additionally, the “feeds” table keeps track of whether a scan has completed on the given file
(with the scanned column), and assigns each file a unique id.

A description and example of the “feeds” table is shown here:

MariaDB [files]> describe feeds;
+-------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+--------------+------+-----+---------+-------+
id	int(11)	NO	PRI	NULL	
filename	varchar(255)	YES	MUL	NULL	
path	varchar(255)	YES		NULL	
prov_id	int(11)	YES		NULL	
description	varchar(255)	YES		NULL	
scanned	tinyint(1)	NO		0	
+-------------+--------------+------+-----+---------+-------+
6 rows in set (0.010 sec)

MariaDB [files]> select * from feeds limit 3;
+----+------------------------+-------------+---------+---------------------+---------
→˓+
| id | filename | path | prov_id | description |
→˓scanned |
+----+------------------------+-------------+---------+---------------------+---------
→˓+
| 1 | 2019-03-18-16-52-46.g3 | /data/15529 | 0 | observatory.LSA22ZC | 1
→˓|
| 2 | 2019-03-18-16-52-46.g3 | /data/15529 | 1 | observatory.LSA23JD | 1
→˓|
| 3 | 2019-03-18-16-52-46.g3 | /data/15529 | 3 | observatory.LSA22YG | 1
→˓|
+----+------------------------+-------------+---------+---------------------+---------
→˓+
3 rows in set (0.001 sec)

The “fields” table has a row for each ocs field within a file (i.e. “Channel 1”, “Channel 2”, channels for a given
Lakeshore device), the start and end times for the field, and the correspoding ‘id’ in the feeds id, stored here as
“feed_id”.

A description and example of the “fields” table is shown here:

MariaDB [files]> describe fields;
+---------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+--------------+------+-----+---------+-------+
feed_id	int(11)	NO	MUL	NULL	
field	varchar(255)	YES		NULL	
start	datetime(6)	YES		NULL	
end	datetime(6)	YES		NULL	
+---------+--------------+------+-----+---------+-------+
4 rows in set (0.001 sec)

MariaDB [files]> select * from fields limit 3;
+---------+-----------+----------------------------+----------------------------+

(continues on next page)

30 Chapter 2. Developer’s Guide

SiSock Documentation, Release 0.2.13+1.g8bd5ec6.dirty

(continued from previous page)

| feed_id | field | start | end |
+---------+-----------+----------------------------+----------------------------+
1	Channel 1	2019-03-18 16:51:55.762230	2019-03-18 17:01:56.772258
1	Channel 2	2019-03-18 16:51:55.762230	2019-03-18 17:01:56.772258
1	Channel 3	2019-03-18 16:51:55.762230	2019-03-18 17:01:56.772258
+---------+-----------+----------------------------+----------------------------+
3 rows in set (0.001 sec)

The “description” table is a simple, single column, table containing the combined ocs field and ocs descriptions
distinctly across all .g3 files. This is used as the field list that the g3-reader will return.

A description and example of the “description” table is shown here:

MariaDB [files]> describe description;
+-------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------------+--------------+------+-----+---------+-------+
| description | varchar(255) | NO | PRI | NULL | |
+-------------+--------------+------+-----+---------+-------+
1 row in set (0.001 sec)

MariaDB [files]> select * from description limit 3;
+----------------------------------+
| description |
+----------------------------------+
| observatory.LSA22YE.channel_01_r |
| observatory.LSA22YE.channel_01_t |
| observatory.LSA22YE.channel_02_r |
+----------------------------------+
3 rows in set (0.000 sec)

2.1. g3 File Scanner 31

SiSock Documentation, Release 0.2.13+1.g8bd5ec6.dirty

32 Chapter 2. Developer’s Guide

CHAPTER 3

API Reference

If you are looking for information on a specific function, class or method, this part of the documentation is for you.

3.1 API

This page contains the auto-generated documentation for the sisock package.

3.1.1 sisock.base module

Sisock: serve Simons data over secure sockets (sisock)

Classes

sisock.base.DataNodeServer([config]) Parent class for all data node servers.

Functions

sisock.base.uri(s) Compose a full URI for pub/sub or RPC calls.
sisock.base.sisock_to_unix_time(t) Convert a sisock timestamp to a UNIX timestamp.

Constants

WAMP_USER Username for servers/hub to connect to WAMP router.

WAMP_SECRET Password for servers/hub to connect to WAMP router.

WAMP_URI Address of WAMP router.

REALM Realm in WAMP router to connect to.

33

SiSock Documentation, Release 0.2.13+1.g8bd5ec6.dirty

BASE_URI The lowest level URI for all pub/sub topics and RPC registrations.

class sisock.base.DataNodeServer(config=None)
Bases: autobahn.twisted.wamp.ApplicationSession

Parent class for all data node servers.

Variables

• name (string) – Each data node server inheriting this class must set its own name. The
hub will reject duplicate names.

• description (string) – Each data node server inheriting this class must provide its
own, human- readable description for consumers.

after_onJoin(details)
This method is called after onJoin() has finished.

This method can be overridden by child classes that need to run more code after the parent onJoin method
has run.

Parameters details (autobahn.wamp.types.SessionDetails) – Details about the
session, as passed to onJoin.

description = None

get_data(field, start, end, min_stride=None)
Request data.

This method can overridden by child classes if a get_data runs in the main reactor thread, otherwise it’s
the get_data_blocking method that needs to be overridden

Parameters

• field (list of strings) – The list of fields you want data from.

• start (float) – The start time for the data: if positive, interpret as a UNIX time; if 0
or negative, begin start seconds ago.

• end (float) – The end time for the data, using the same format as start.

• min_stride (float or None) – If not None then, if necessary, downsample data such
that successive samples are separated by at least min_stride seconds.

Returns

On success, a dictionary is returned with two entries.

• data [A dictionary with one entry per field:]

– field_name : array containing the timestream of data.

• timeline [A dictionary with one entry per timeline:]

– timeline_name : An dictionary with the following entries.

– t : an array containing the timestamps

– finalized_until : the timestamp prior to which the presently requested data are guar-
anteed not to change; None may be returned if all requested data are finalized

If data are not available during the whole length requested, all available data will be returend;
if no data are available for a field, or the field does not exist, its timestream will be an empty
array. Timelines will only be included if there is at least one field to which it corresponds
with available data. If no data are available for any of the fields, all arrays will be empty.

34 Chapter 3. API Reference

SiSock Documentation, Release 0.2.13+1.g8bd5ec6.dirty

If the amount of data exceeds the data node server’s pipeline allowance, False will be
returned.

Return type dictionary

get_fields(start, end)
Get a list of available fields and associated timelines available within a time interval.

Any field that has at least one available sample in the interval [start, stop) must be included in the reply;
however, be aware that the data server is allowed to include fields with zero samples available in the
interval.

This method should be overridden by child classes if the fields are obtained in a non-blocking way (run-
ning in the reactor thread).

Parameters

• start (float) – The start time for the field list. If positive, interpret as a UNIX
time; if 0 or negative, get field list t seconds ago.

• end (float) – The end time for the field list, using the same format as start.

Returns

Two dictionaries of dictionaries, as defined below.

• field [the field name is the key, and the value is:]

– description : information about the field; can be None.

– timeline : the name of the timeline this field follows.

– type : one of “number”, “string”, “bool”

– units : the physical units; can be None

• timeline [the field name is the key, and the value is:]

– interval : the average interval, in seconds, between readings; if the readings are
aperiodic, None.

– field : a list of field names associated with this timeline

The field dictionary can be empty, indicating that no fields are available during the re-
quested interval.

Return type dictionary

name = None

onChallenge(challenge)
Fired when the WAMP router requests authentication.

Parameters challenge (autobahn.wamp.types.Challenge) – The authentication
request to be responded to.

Returns signature – The authentication response.

Return type string

onConnect()
Fired when session first connects to WAMP router.

onJoin(details)
Fired when the session joins WAMP (after successful authentication).

After registering procedures, the hub is requested to add this data node server.

3.1. API 35

SiSock Documentation, Release 0.2.13+1.g8bd5ec6.dirty

Parameters details (autobahn.wamp.types.SessionDetails) – Details about
the session.

sisock.base.sisock_to_unix_time(t)
Convert a sisock timestamp to a UNIX timestamp.

Parameters t (float) – A sisock timestamp.

Returns unix_time – If t is positive, return t. If t is zero or negative, return 𝑡𝑖𝑚𝑒.𝑡𝑖𝑚𝑒()− 𝑡.

Return type float

sisock.base.uri(s)
Compose a full URI for pub/sub or RPC calls.

Parameters s (The final part of the URI to compose.) –

Returns uri – The string returned is “%s.%s” % (BASE_URI, s).

Return type string

36 Chapter 3. API Reference

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

37

SiSock Documentation, Release 0.2.13+1.g8bd5ec6.dirty

38 Chapter 4. Indices and tables

Python Module Index

s
sisock.base, 33

39

SiSock Documentation, Release 0.2.13+1.g8bd5ec6.dirty

40 Python Module Index

Index

A
after_onJoin() (sisock.base.DataNodeServer

method), 34

D
DataNodeServer (class in sisock.base), 34
description (sisock.base.DataNodeServer attribute),

34

G
get_data() (sisock.base.DataNodeServer method), 34
get_fields() (sisock.base.DataNodeServer method),

35

N
name (sisock.base.DataNodeServer attribute), 35

O
onChallenge() (sisock.base.DataNodeServer

method), 35
onConnect() (sisock.base.DataNodeServer method),

35
onJoin() (sisock.base.DataNodeServer method), 35

S
sisock.base (module), 33
sisock_to_unix_time() (in module sisock.base),

36

U
uri() (in module sisock.base), 36

41

	User’s Guide
	Live Monitoring Setup Guide
	Components
	DataNodeServers

	Developer’s Guide
	g3 File Scanner

	API Reference
	API

	Indices and tables
	Python Module Index
	Index

