

 simuPOP documentation

 Welcome! This is
 the documentation for simuPOP
 , last updated Feb 08, 2019.

 	
 simuPOP User's Guide

 Teach you how to use simuPOP using tons of examples

		
 simuPOP Reference Manual

 Reference to all classes, functions and utility modules

Front Matter

Abstract

simuPOP is a general-purpose individual-based forward-time population genetics
simulation environment. Unlike coalescent-based programs, simuPOP evolves
populations forward in time, subject to arbitrary number of genetic and
environmental forces such as mutation, recombination, migration and
Population/subpopulation size changes. In contrast to competing applications
that use command-line options or configuration files to direct the execution of
a limited number of predefined evolutionary scenarios, users of simuPOP’s
scripting interface could make use of many of its unique features, such as
customized chromosome types, arbitrary nonrandom mating schemes, virtual
subpopulations, information fields and Python operators, to construct and study
almost arbitrarily complex evolutionary scenarios.

simuPOP is provided as a number of Python modules, which consist of a large
number of Python objects and functions, including population, mating schemes,
operators (objects that manipulate populations) and simulators to coordinate the
evolutionary processes. It is the users’ responsibility to write a Python script
to glue these pieces together and form a simulation. At a more user-friendly
level, an increasing number of functions and scripts contributed by simuPOP
users is available in the online simuPOP cookbook. They provide useful functions
for different applications (e.g. load and manipulate HapMap samples, import and
export files from another application) and allow users who are unfamiliar with
simuPOP to perform a large number of simulations ranging from basic population
genetics models to generating datasets under complex evolutionary scenarios.

This user’s guide shows you how to install and use simuPOP using a large number
of examples. It describes all important concepts and features of simuPOP and
demonstrates how to use them in a simuPOP script. Although the new Python 3.x
releases are incompatible with Python 2.x, examples in this book are written in
a style that is compatible with both versions of Python. For a complete and
detailed description about all simuPOP functions and classes, please refer to
the simuPOP Reference Manual. All resources, including a pdf version of this
guide and a mailing list can be found at the simuPOP homepage
http://simupop.sourceforge.net.

How to cite simuPOP:

Bo Peng and Marek Kimmal (2005) simuPOP: a forward-time population genetics
simulation environment. bioinformatics, 21 (18): 3686-3687

Bo Peng and Christopher Amos (2008) Forward-time simulations of nonrandom mating
populations using simuPOP. bioinformatics, 24 (11) 1408-1409.

Introduction

	What is simuPOP?

	An overview of simuPOP concepts

	Features

	License, Distribution and Installation

	How to read this user’s guide

	Other help sources

What is simuPOP?

simuPOP is a general-purpose individual-based forward-time population genetics
simulation environment based on Python, a dynamic object-oriented programming
language that has been widely used in biological studies. More specifically,

	simuPOP is a population genetics simulator that simulates the evolution of
populations. It uses a discrete generation model although overlapping
generations could be simulated using nonrandom mating schemes.

	simuPOP explicitly models populations with individuals who have their own
genotype, sex, and auxiliary information such as age. The evolution of a
population is modeled by populating an offspring population from parents in the
parental population.

	Unlike coalescent-based programs, simuPOP evolves populations forward in
time, subject to arbitrary number of genetic and environmental forces such as
mutation, recombination, migration and Population/subpopulation size changes.

	simuPOP is a general-purpose simulator that is designed to simulate
arbitrary evolutionary processes. In contrast to competing applications that use
command-line options or configuration files to direct the execution of a limited
number of predefined evolutionary scenarios, users of simuPOP’s scripting
interface could make use of many of its unique features, such as customized
chromosome types, arbitrary nonrandom mating schemes, virtual subpopulations,
information fields and Python operators, to construct and study almost
arbitrarily complex evolutionary scenarios. In addition, because simuPOP
provides a large number of functions to manipulate populations, it can be used
as an data manipulatation and analysis tool.

simuPOP is provided as a number of Python modules, which consist of a large
number of Python objects and functions, including Population, mating schemes,
operators (objects that manipulate populations) and simulators to coordinate the
evolutionary processes. It is the users’ responsibility to write a Python script
to glue these pieces together and form a simulation. At a more user-friendly
level, an increasing number of functions and scripts contributed by simuPOP
users is available in the online simuPOP cookbook
(http://simupop.sourceforge.net/cookbook). They provide useful functions for
different applications (e.g. load and manipulate HapMap samples, import and
export files from another application) and allow users who are unfamiliar with
simuPOP to perform a large number of simulations ranging from basic population
genetics models to generating datasets under complex evolutionary scenarios.

An overview of simuPOP concepts

A simuPOP population consists of individuals of the same genotype
structure, which includes properties such as number of homologous sets of
chromosomes (ploidy), number of chromosomes, and names and locations of markers
on each chromosome. In addition to basic information such as genotypes and sex,
individuals can have arbitray auxillary values as information fields.
Individuals in a population can be divided into subpopulations that can be
further grouped into virtual subpopulations according to individual
properties such as sex, affection status, or arbitrary auxiliary information
such as age. Whereas subpopulations define boundaries of individuals that
restrict the flow of individuals and their genotypes (mating happens within
subpopulations), virtual subpopulations are groups of individuals who share the
same properties, with membership of individuals change easily with change of
individual properties.

Figure: A life cycle of an evolutionary process

[image: Users/bpeng1/simuPOP/simuPOP/doc/figures/evolve.png]

Illustration of the discrete-generation evolutionary model used by simuPOP.

Operators are Python objects that act on a population. They can be applied
to a population before or after mating during a life cycle of an evolutionary
process (Figure fig_life_cycle), or to parents and
offspring during the production of each offspring. Arbitrary numbers of
operators can be applied to an evolving population.

A simuPOP mating scheme is responsible for choosing parent or parents from a
parental (virtual) subpopulation and for populating an offspring subpopulation.
simuPOP provides a number of pre-defined homogeneous mating schemes, such as
random, monogamous or polygamous mating, selfing, and haplodiploid mating in
hymenoptera. More complicated nonrandom mating schemes such as mating in age-
structured populations can be constructed using heterogeneous mating
schemes, which applies multiple homogeneous mating schemes to different
(virtual) subpopulations.

simuPOP evolves a population generation by generation, following the
evolutionary cycle depicted in Figure fig_life_cycle.
Briefly speaking, a number of operators such as a KAlleleMutator
are applied to a population before a mating scheme repeatedly chooses a parent
or parents to produce offspring. During-mating operators such as
Recombinator can be applied by a mating scheme to transmit parental
genotype to offspring. After an offspring population is populated, other
operators can be applied, for example, to calculate and output population
statistics. The offspring population will then become the parental population of
the next evolutionary cycle. Many simuPOP operators can be applied in different
stages so the type of an operator is determined by the stage at which it is
applied. Several populations, or replicates of a single population, could form a
simulator and evolve together.

Example: A simple example

>>> import simuPOP as sim
>>> pop = sim.Population(size=1000, loci=2)
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(genotype=[1, 2, 2, 1])
...],
... matingScheme=sim.RandomMating(ops=sim.Recombinator(rates=0.01)),
... postOps=[
... sim.Stat(LD=[0, 1], step=10),
... sim.PyEval(r"'%.2f\n' % LD[0][1]", step=10),
...],
... gen=100
...)
0.25
0.23
0.20
0.20
0.18
0.15
0.12
0.10
0.10
0.11
100

now exiting runScriptInteractively...

Download simpleExample.py

Some of these concepts are demonstrated in Example simple_example, where a standard diploid Wright-Fisher model with
recombination is simulated. The first line imports the standard simuPOP module.
The second line creates a diploid population with 1000 individuals, each having
one chromosome with two loci. The evolve() function evolves the population
using a random mating scheme and four operators.

Operators InitSex and InitGenotype are applied at the
beginning of the evolutionary process. Operator InitSex initializes
individual sex randomly and InitGenotype initializes all individuals
with the same genotype 12/21. The populations are then evolved for 100
generations. A random mating scheme is used to generate offspring. Instead of
using the default Mendelian genotype transmitter, a Recombinator
(during-mating operator) is used to recombine parental chromosomes with the
given recombination rate 0.01 during the generation of offspring. The other
operators are applied to the offspring generation (post-mating) at every 10
generations (parameter step). Operator Stat calculates linkage
disequilibrium between the first and second loci. The results of this operator
are stored in a local variable space of the Population. The last operator
PyEval outputs calculated linkage disequilibrium values with a trailing
new line. The result represents the decay of linkage disequilibrium of this
population at 10 generation intervals. The return value of the evolve
function, which is the number of evolved generations, is also printed.

Features

simuPOP offers a long list of features, many of which are unique among all
forward-time population genetics simulation programs. The most distinguishing
features include:

	simuPOP provides three types of modules that use 1, 8 or 32/64 bits to store
an allele. The binary module (1 bit) is suitable for simulating a large number
of SNP markers, and the long module (32 or 64 bits depending on platform) is
suitable for simulating some population genetics models such as the infinite
allele mutation model.

	[NEW in simuPOP 1.0.7] simuPOP provides modules to store a large number of
rare variants in a compressed manner (the mutant module), and to store origin of
each allele so that it is easy to track allelic lineage during evolution.

	The core of simuPOP is implemented in C++ which is heavily optimized for
large-scale simulations. simuPOP can be executed in multiple threads with
boosted performance on modern multi-core CPUs.

	In addition to autosomes and sex chromosomes, simuPOP supports arbitrary
types of chromosomes through customizable genotype transmitters. Random maternal
transmission of mitochondrial DNAs is supported as a special case of this
feature.

	An arbitrary number of float numbers, called information fields, can be
attached to individuals of a population. For example, information field
father_idx and mother_idx can be used to track an individual’s parents,
and pack_year can be used to simulate an environmental factor associated
with smoking.

	simuPOP does not impose a limit on the number of homologous sets of
chromosomes, the size of the genome or populations. The size of your simulation
is only limited by the physical memory of your computer.

	During an evolutionary process, a population can hold more than one most-
recent generation. Pedigrees can be sampled from such multi-generation
populations.

	An operator can be native (implemented in C++) or hybrid (Python-assisted). A
hybrid operator calls a user-provided Python function to implement arbitrary
genetic effects. For example, a hybrid mutator passes to-be-mutated alleles to a
function and mutates these alleles according to the returned values.

	simuPOP provides more than 60 operators that cover all important aspects of
genetic studies. These include mutation (e.g. k-allele, stepwise, generalized
stepwise and context-sensitive mutation models), migration (arbitrary, can
create new subpopulation), recombination and gene conversion (uniform or
nonuniform), selection (single-locus, additive, multiplicative or hybrid multi-
locus models, support selection of both parents and offspring), penetrance
(single, multi-locus or hybrid), ascertainment (casecontrol, affected sibpairs,
random, nuclear and large Pedigrees), statistics calculation (including but not
limited to allele, genotype, haplotype, heterozygote number and frequency;
linkage disequilibrium measures, Hardy-Weinberg test), pedigree tracing,
visualization (using R or other Python modules) and load/save in simuPOP’s
native format and many external formats such as Linkage.

	Mating schemes can work on virtual subpopulations of a subpopulation. For
example, positive assortative mating can be implemented by mating individuals
with similar properties such as ancestry and overlapping generations could be
simulated by copying individuals acorss generations. The number of offspring per
mating event can be fixed or can follow a statistical distribution.

A number of forward-time simulation programs are available. If we exclude early
forward-time simulation applications developed primarily for teaching purposes,
notable forward-time simulation programs include easyPOP, FPG, Nemo and
quantiNemo, genoSIM and genomeSIMLA, FreGene, GenomePop, ForwSim,
and ForSim. These programs are designed with specific applications and
specific evolutionary scenarios in mind, and excel in what they are designed
for. For some applications, these programs may be easier to use than simuPOP.
For example, using a special look-ahead algorithm, ForwSim is among the
fastest programs to simulate a standard Wright-Fisher process, and should be
used if such a simulation is needed. However, these programs are not flexible
enough to be applied to problems outside of their designed application area. For
example, none of these programs can be used to study the evolution of a disease
predisposing mutant, a process that is of great importance in statistical
genetics and genetic epidemiology. Compared to such programs, simuPOP has the
following advantages:

	The scripting interface gives simuPOP the flexibility to create arbitrarily
complex evolutionary scenarios. For example, it is easy to use simuPOP to
explicitly introduce a disease predisposing mutant to an evolving population,
trace the allele frequency of them, and restart the simulation if they got lost
due to genetic drift.

	The Python interface allows users to define customized genetic effects in
Python. In contrast, other programs either do not allow customized effects or
force users to modify code at a lower (e.g. C++) level.

	simuPOP is the only application that embodies the concept of virtual
subpopulation that allows evolutions at a finer scale. This is required for
realistic simulations of complex evolutionary scenarios.

	simuPOP allows users to examine an evolutionary process very closely because
all simuPOP objects are Python objects that can be assessed using their member
functions. For example, users can keep track of genotype at particular loci
during evolution. In contrast, other programs work more or less like a black box
where only limited types of statistics can be outputted.

License, Distribution and Installation

simuPOP is distributed under a GPL license and is hosted athttp://simupop.sourceforge.net, the world’s largest development and download
repository of Open Source code and applications. simuPOP is available on any
platform where Python is available, and is currently tested under both 32 and 64
bit versions of Windows (Windows 2000 and later), Linux (Redhat and Ubuntu),
MacOS X and Sun Solaris systems. Different C++ compilers such as Microsoft
Visual C++, gcc and Intel icc are supported under different operating systems.
Standard installation packages are provided for Windows, Linux, and MacOS X
systems.

If a binary distribution is unavailable for a specific platform, it is usually
easy to compile simuPOP from source, following the standard ``python setup.py
install'' procedure. Please refer to the installation section of the
simupop website for instructions for specific platforms and compilers.

simuPOP is available for Python 2.4 and later, including the new Python 3.x
releases. Although Python 3 is incompatible with Python 2 in many ways, examples
in this guide are written in a style that is compatible with both versions of
Python. Some non-classic usages include the use of a//b instead of a/b
for floored division and list(range(3)) instead of range(3) for sequece
[0,1,2] In particular, we use

print("Population size is %d" % size)

instead of

print "Population size is %d" % size

to output strings because the former is valid in Python 2.x (print a tuple with
one element) and will generate the same output in Python 3.x. Of course, users
of simuPOP can choose to use other styles.

Thanks to the ‘glue language’ nature of Python, it is easy to inter-operate with
other applications within a simuPOP script. For example, users can call any R
function from Python/simuPOP for the purposes of visualization and statistical
analysis, using R and a Python module RPy. Because simuPOP utility
modules such as simuPOP.plotter and simuPOP.sampling makes use of
R and rpy (not rpy2) to plot figures, it is hihgly recommended
that you install R and RPy with simuPOP. In addition, although simuPOP uses
the standard Tkinter GUI toolkit when a graphical user interface is needed,
it can make use of a wxPython toolkit if it is available.

How to read this user’s guide

This user’s guide describes all simuPOP features using a lot of examples. The
first few chapters describes all classes in the simuPOP core. Chapter
cha_simuPOP_Operators describes almost all
simuPOP operators, divided largely by genetic models. Features listed in these
two chapters are generally implemented at the C++ level and are provided through
the simuPOP module. Chapter cha_Utility_Modules describes features that are provided by various simuPOP
utility modules. These modules provide extensions to the simuPOP core that
improves the usability and userfriendliness of simuPOP. The next chapter
(Chapter cha_A_real_example) demonstrates how to
write a script to solve a real-world simulation problem. Because some sections
describe advanced features that are only used in the construction of highly
complex simulations, or implementation details that concern only advanced users,
new simuPOP users can safely skip these sections. Sections that describe
advanced topics are marked by one or two asterisks (*) after the section
titles.

simuPOP is a comprehensive forward-time population genetics simulation
environment with many unique features. If you are new to simuPOP, you can go
through this guide quickly and understand what simuPOP is and what features it
provides. Then, you can read Chapter cha_A_real_example and learn how to apply simuPOP in real-world problems.
After you play with simuPOP for a while and start to write simple scripts, you
can study relevant sections in details. The simuPOP reference manual will
become more and more useful when the complexity of your scripts grows.

Before we dive into the details of simuPOP, it is helpful to know a few name
conventions that simuPOP tries to follow. Generally speaking,

	All class names use the CapWords convention (e.g. Population(),
InitSex()) .

	All standalone functions (e.g. loadPopulation() and initSex),
member functions (e.g. Population.mergeSubPops()) and parameter names
use the mixedCases style.

	Constants are written in all capital characters with underscores separating
words (e.g. CHROMOSOME_X, UNIFORM_DISTRIBUTION). Their names instead of
their actual values should be used because those values can change without
notice.

	simuPOP uses the abbreviated form of the following words in function and
parameter names:

pop (population), pops (populations), pos (position), info
(information), migr (migration), subPop (subpopulation and virtual
subpopulation), subPops (subpopulations and virtual subpopulations), rep
(replicates), gen (generation), ops (operators), expr (expression),
stmts (statements).

	simuPOP uses both singular and plural forms of parameters, according to the
following rules:

	
	If a parameter only accept a single input, singular names such as field,

	locus, value, and name are used.

	
	If a parameter accepts a list of values, plural names such as fields,

	loci, values and names are used. Such parameters usually accept
single inputs. For example, loci=1 can be used as a shortcut for
loci=[1] and infoFields='x' can be used as a shortcut for
infoFields=['x'].

The same rules also hold for function names. For example,
Population.addInfoFields() accept a list of information fields but
pop.addInfoFields('field') is also acceptable.

Other help sources

If you are new to Python, it is recommended that you borrow a Python book, or at
least go through the following online Python tutorials:

	The Python tutorial (http://docs.python.org/tut/tut.html)

	Other online tutorials listed at http://www.python.org/doc/

If you are new to simuPOP, please read this guide before you dive into the
simuPOP reference manual, which describes all the details of simuPOP but does
not show you how to use them. Both documents are available online at
http://simupop.sourceforge.net in both searchable HTML format and PDF
format.

A simuPOP online cookbook (http://simupop.sourceforge.net/cookbook) is
a wiki-based website where you can browse and download examples, functions and
scripts for various simulation scenarios, and upload your own code snippets for
the benefit of all simuPOP users. Please consider contributing to this cookbook
if you have written some scripts that might be useful to others.

If you cannot find the answer you need, or if you believe that you have
encountered a bug, or if you would like to request a feature, please subscribe
to the simuPOP mailinglist (simupop-list@lists.sourceforge.net) and send
your questions there.

Loading and running simuPOP

	Pythonic issues
	from simuPOP import * v.s. import simuPOP

	References and the clone()member function

	Zero-based indexes, absolute and relative indexes

	Ranges and iterators

	Empty, ALL_AVAIL and dynamic values for parameters loci, reps, ancGen and subPops

	User-defined functions and class WithArgs *

	Exception handling *

	Loading simuPOP modules
	Short, long, binary, mutant and lineage modules and their optimized versions

	Execution in multiple threads

	Graphical user interface

	Online help system

	Debug-related functions and operators *

	Random number generator *

Pythonic issues

from simuPOP import * v.s. import simuPOP

Generally speaking, it is recommended to use import simuPOP rather than
from simuPOP import * to import a simuPOP module. That is to say, instead of
using

from simuPOP import *
pop = Population(size=100, loci=[5])
simu = Simulator(pop, RandomMating())

it is recommended that you use simuPOP like

import simuPOP
pop = simuPOP.Population(size=100, loci=[5])
simu = simuPOP.Simulator(pop, simuPOP.RandomMating())

The major problem with from simuPOP import * is that it imports all simuPOP
symbols to the global namespace and increases the likelihood of name clashes.
For example, if you import a module myModule after simuPOP, which happens to
have a variable named MALE, the following code might lead to a TypeError
indicating your input for parameter sex is wrong.

from simuPOP import *
from myModule import *
pop = Population(size=100, loci=[5])
initSex(pop, sex=[MALE, FEMALE])

It can be even worse if the definition of MALE is changed to a different
value of the same type (e.g. to FEMALE) and your simulation might produce
erroranous result without a hint.

For the sake of brevity, all examples in this user’s guide use import simuPOP
as sim as an alternative form of the import simuPOP style. This saves some
keystrokes by referring simuPOP functions as sim.Population() instead of
simuPOP.Population(). Note that simuPOP has a number of submodules, which
are not imported by default. The recommended syntax to load these modules is:

import and use submodule simuPOP.utils
from simuPOP import utils
utils.simulateBackwardTrajectory(N=1000, endGen=100, endFreq=0.1)

References and the clone()member function

Assignment in Python only creates a new reference to an existing object. For
example,

pop = Population()
pop1 = pop

creates a reference pop1 to population pop. Modifying pop1 will
modify pop as well and the removal of pop will invalidate pop1. For
example, a reference to the first Population in a simulator is returned from
function func() in Example lst_Reference_to_Population. The subsequent use of this pop object may
crash simuPOP because the simulator simu is destroyed, along with all its
internal populations, after func() is finished, leaving pop referring to
an invalid object.

Example: Reference to a population in a
simulator

def func():
 simu = Simulator(Population(10), RandomMating(), rep=5)
 # return a reference to the first Population in the simulator
 return simu.population(0)

pop = func()
simuPOP will crash because pop refers to an invalid Population.
pop.popSize()

If you would like to have an independent copy of a population, you can use the
clone() member function. Example lst_Reference_to_Population would behave properly if the return statement
is replaced by

return simu.population(0).clone()

although in this specific case, extracting the first population from the
simulator using the extract function

return simu.extract(0)

would be more efficient.

The clone() function exists for all simuPOP classes (objects) such as
simulator, mating schemes and operators. simuPOP also supports the
standard Python shallow and deep copy operations so you can also make a cloned
copy of pop using the deepcopy function defined in the Python copy
module

import copy
pop1 = copy.deepcopy(pop)

Zero-based indexes, absolute and relative indexes

All arrays in simuPOP start at index 0. This conforms to Python and C++
indexes. To avoid confusion, I will refer the first locus as locus zero, the
second locus as locus one; the first individual in a population as Individual
zero, and so on.

Another two important concepts are the absolute index and relative index of
a locus. The former index ignores chromosome structure. For example, if there
are 5 and 7 loci on the first two chromosomes, the absolute indexes of the two
chromosomes are (0, 1, 2, 3, 4), (5, 6, 7, 8, 9, 10, 11) and the relative
indexes are (0, 1, 2, 3, 4), (0, 1, 2, 3, 4, 5, 6). Absolute indexes are more
frequently used because they avoid the trouble of having to use two numbers
(chrom, index) to refer to a locus. Two functions chromLocusPair(idx) and
absLocusIndex(chrom,index) are provided to convert between these two kinds
of indexes. An individual can also be referred by its absolute index and
relative index where relative index is the index in its subpopulation.
Related member functions are subPopIndPair(idx) and absIndIndex(idx,
subPop). Example absIndex demonstrates the use of these
functions.

Example: Conversion between absolute and relative indexes

>>> import simuPOP as sim
>>> pop = sim.Population(size=[10, 20], loci=[5, 7])
>>> print(pop.chromLocusPair(7))
(1, 2)
>>> print(pop.absLocusIndex(1, 1))
6
>>> print(pop.absIndIndex(2, 1))
12
>>> print(pop.subPopIndPair(25))
(1, 15)

now exiting runScriptInteractively...

Download absIndex.py

Ranges and iterators

Ranges in simuPOP also conform to Python ranges. That is to say, a range has the
form of [a,b)where abelongs to the range, and bdoes not. For
example, pop.chromBegin(1)refers to the index of the first locus on
chromosome 1 (actually exists), and pop.chromEnd(1)refers to the index of
the last locus on chromosome 1 plus 1, which might or might not be a valid
index.

A number of simuPOP functions return Python iterators that can be used to
iterate through an internal array of objects. For example,
Population.Individuals([subPop]) returns an iterator iterates through all
individuals, or all individuals in a (virtual) subpoulation.
Simulator.populations() can be used to iterate through all populations
in a simulator. Example iterator demonstrates the use of
ranges and iterators in simuPOP.

Example: Ranges and iterators

>>> import simuPOP as sim
>>> pop = sim.Population(size=2, loci=[5, 6])
>>> sim.initGenotype(pop, freq=[0.2, 0.3, 0.5])
>>> for ind in pop.individuals():
... for loc in range(pop.chromBegin(1), pop.chromEnd(1)):
... print(ind.allele(loc))
...
0
2
2
1
1
1
1
2
2
2
1
2

now exiting runScriptInteractively...

Download iterator.py

Empty, ALL_AVAIL and dynamic values for parameters loci, reps, ancGen and subPops

Parameters loci, reps and subPops are widely used in simuPOP to
specify which loci, replicates, ancestral generations, or (virtual) subpulations
a function or operator is applied to. These parameter accepts a list of indexes
such as [1, 2], names such as ['a', 'b'], and take single form inputs
(e.g. loci=1 is equivalent to loci=[1]). For example,

	Recombinator(loci=[]) recombine at no locus, and

	Recombinator(loci=1) recombine at locus 1

	Recombinator(loci=[1,2,4]) recombine at loci 1, 2, and 4

	Recombinator(loci=[('1', 20), ('1', 25)]) recombine at loci
with position 20 and25 on chromosome 1. This usage is only
available for parameter loci.

	Recombinator(loci=['a2', 'a4']) recombine at loci 'a2' and
'a4'.

The last method is easier to understand in some cases. Moreover, when you use
loci names instead of indexes in an operator, this operator can be applied to
populations with loci at different locations. For example

MaSelector(loci='a2', fitness=[1,1.01,1.02])

will be applied to locus a2 regardless the actual location of this locus in
the population to which this operator is applied.

However, in the majority of the cases, these parameters take a default value
ALL_AVAIL which applies the function or operator to all available loci,
replicates or subpopulations. That is to say, Recombinator() or
Recombinator(loci=ALL_AVAIL) will recombine at all applicable
loci, which will vary from population to population. Value UNSPECIFIED is
sometimes used as default parameter of these parameters, indicating that no
value has been specified. Similarly, subPops=[0, 'Male'] can be used to
refer a virtual subpopulation with name 'Male', regardless its virtual
subpopulation index.

Besides subPops=ALL_AVAIL, which means subPops=[0,1,2,3] for a
population with 4 subpopulations, ALL_AVAIL could also be used as
subPops=[(ALL_AVAIL, 1)] to specify a specific virtual subpopulation for all
subpopulations, or subPops=[(1, ALL_AVAIL)] or even subPops=[(ALL_AVAIL,
ALL_AVAIL)] to specify all virtual subpopulations in specified or all
subpopulations. This becomes handy when you, for example, would like to list all
male individuals in a population, regardless of number of subpopulations.

User-defined functions and class WithArgs *

Some simuPOP objects call user-defined functions to perform customized
operations. For example, a penetrance operator can call a user-defined function
with genotype at specified loci and use its return value to determine the
affection status of an individual.

simuPOP uses parameter names to determine which information should be passed to
such a function. For example, a PyOperator will pass a reference to
each offspring to a function defined with parameter off (e.g. func(off))
and references to offspring and his/her parents to a function defined with
parameters off, dad, and mom (e.g. func(off, dad, mom)). For
example, Example userFunc defines a function func(geno,
smoking) using parameters geno and smoking so operator
PyPenetrance will pass genotype at specified loci and value at
information field smoking to this function.

Example: Use of user-defined Python function in simuPOP

>>> import simuPOP as sim
>>> import random
>>> pop = sim.Population(1000, loci=1, infoFields='smoking')
>>> sim.initInfo(pop, lambda:random.randint(0,1), infoFields='smoking')
>>> sim.initGenotype(pop, freq=[0.3, 0.7])
>>>
>>> # a penetrance function that depends on smoking
>>> def func(geno, smoking):
... if smoking:
... return (geno[0]+geno[1])*0.4
... else:
... return (geno[0]+geno[1])*0.1
...
>>> sim.pyPenetrance(pop, loci=0, func=func)
>>> sim.stat(pop, numOfAffected=True)
>>> print(pop.dvars().numOfAffected)
352
>>>

now exiting runScriptInteractively...

Download userFunc.py

However, there are circumstances that you do not know the number or names of
parameters in advance so it is difficult to define such a function. For example,
your function may use an information field with programmed name
‘off’+str(numOffspring) where numOffspring is a parameter. In this
case, you can create a wrapper function object using WithArgs(func,
args) and list passed arguments in args (e.g. WithArgs(func,
args=['geno', 'off' + str(numOffspring)]). As long as simuPOP knows which
arguments to pass, your function can be defined in any format you want (e.g. use
*args parameters). Example WithArgs provides such an example.

Example: Specify arguments of user-provided function using function WithArgs

>>> import simuPOP as sim
>>> import random
>>> pop = sim.Population(1000, loci=1, infoFields=('x', 'y'))
>>> sim.initInfo(pop, lambda:random.randint(0,1), infoFields=('x', 'y'))
>>> sim.initGenotype(pop, freq=[0.3, 0.7])
>>>
>>> # a penetrance function that depends on unknown information fields
>>> def func(*fields):
... return 0.4*sum(fields)
...
>>> # function WithArgs tells PyPenetrance that func accepts fields x, y so that
>>> # it will pass values at fields x and y to func.
>>> sim.pyPenetrance(pop, loci=0, func=sim.WithArgs(func, pop.infoFields()))
>>> sim.stat(pop, numOfAffected=True)
>>> print(pop.dvars().numOfAffected)
427

now exiting runScriptInteractively...

Download WithArgs.py

Exception handling *

As shown in Examples lst_Use_of_standard_module and lst_Use_of_optimized_module, optimized modules raise less exceptions than
standard modules. More specifically, the standard modules check for invalid
inputs frequently and raise exceptions (e.g. out of bound loci indexes). In
constrast, the optimized modules only raise exceptions where proper values could
not be pre-determined (e.g. looking for an individual in a population with an
ID). Only exceptions that are raised in both types of modules are documented
in the simuPOP reference manual.

Generally speaking, you should avoid using exceptions to direct the logic of
your script (e.g. use a try ... except ... statement around a function to
find a valid input value). Because the optimized modules might not raise these
exceptions, such a script may crash or yield invalid results when an optimized
module is used. If you have to use such a structure, please check the reference
manual and see whether or not an exception will be raised in optimized modules.

Loading simuPOP modules

Short, long, binary, mutant and lineage modules and their optimized versions

There are ten flavors of the core simuPOP module: short, long, binary, mutant,
and lineage allele modules, and their optimized versions.

	The short allele modules use 8 bits to store each allele which limits the
possible allele states to 256. This is enough most of the times so this is the
default module of simuPOP.

	If you need to a large number of allele states to simulate, for example the
infinite allele model, you should use the long allele version of the modules,
which use 32 or 64 bits for each allele and can have or
 possible allele states depending on your platform.

	If you would like to simulate a large number of binary (SNP) markers, binary
libraries can save you a lot of RAM because they use 1 bit for each allele.

	If you are simulating long sequence regions with rare variants, you can use
the mutant module. This module uses compression technology that ignores wildtype
alleles and is not efficient if you need to traverse all alleles frequently. The
maximum allele state is 255 for this module. Because this module stores location
and value of each allele, it uses at least 64 + 8 bits for each allele on a 64
bit system. The complexity of the storage also prevents simultaneous write
access to genotypes so this module does not benefit much from running in multi-
thread mode.

	If you are interested in tracing the lineage of each allele (e.g. the ID of
individuals to whom the allele was introduced), you can use the lineage module
for which each allele is attached with information about its origin. The maximum
allele state is 255 for this module, and the cost of storing each allele is 8
(value) + 32 (lineage) bits.

Despite of differences in internal memory layout, all these modules have the
same interface, although some functions behave differently in terms of
functionality and performance.

Standard libraries have detailed debug and run-time validation mechanism to make
sure a simulation executes correctly. Whenever something unusual is detected,
simuPOP would terminate with detailed error messages. The cost of such run-time
validation varies from case to case but can be high under some extreme
circumstances. Because of this, optimized versions for all modules are provided.
They bypass most parameter checking and run-time validations and will simply
crash if things go wrong. It is recommended that you use standard libraries
whenever possible and only use the optimized version when performance is needed
and you are confident that your simulation is running as expected.

Examples lst_Use_of_standard_module and
lst_Use_of_optimized_module demonstrate the
differences between standard and optimized modules, by executing two invalid
commands. A standard module checks all input values and raises exceptions when
invalid inputs are detected. An interactive Python session would catch these
exceptions and print proper error messages. In constrast, an optimized module
returns erroneous results and or simply crashes when such inputs are given.

Example: Use of standard simuPOP modules

>>> import simuPOP as sim
>>> pop = sim.Population(10, loci=2)
>>> pop.locusPos(10)
Traceback (most recent call last):
 File "/var/folders/ys/gnzk0qbx5wbdgm531v82xxljv5yqy8/T/tmp6boewtoh", line 1, in <module>
 #begin_file log/standard.py
IndexError: genoStru.h: 557 absolute locus index (10) out of range of 0 ~ 1
>>> pop.individual(20).setAllele(1, 0)
Traceback (most recent call last):
 File "/var/folders/ys/gnzk0qbx5wbdgm531v82xxljv5yqy8/T/tmp6boewtoh", line 1, in <module>
 #begin_file log/standard.py
IndexError: population.h: 566 individual index (20) out of range of 0 ~ 9

now exiting runScriptInteractively...

Download standard.py

Example lst_Use_of_optimized_module also
demonstrates how to use the setOptions function in the simuOpt
module to control the choice of one of the six simuPOP modules. By specifying
one of the values short, long or binaryfor option alleleType, and
settingoptimized to True or False, the right flavor of module will
be chosen when simuPOP is loaded. In addition, option quiet can be used
suppress the banner message when simuPOP is loaded. An alternative method is to
set environmental variable SIMUALLELETYPE to short, long or
binary to use the standard short, long or binary module, and variable
SIMUOPTIMIZED to use the optimized modules. Command line options
--optimized can also be used.

Example: Use of optimized simuPOP modules

% python
>>> from simuOpt import setOptions
>>> setOptions(optimized=True, alleleType='long', quiet=True)
>>> import simuPOP as sim
>>> pop = sim.Population(10, loci=[2])
>>> pop.locusPos(10)
1.2731974748756028e-313
>>> pop.individual(20).setAllele(1, 0)
Segmentation fault

Execution in multiple threads

simuPOP is capable of executing in multiple threads but it by default only makes
use of one thread. If you have a multi-core CPU, it is often beneficial to set
the number of threads to 2 or more to take advantage of this feature. The
recommended number of threads is usually the number of cores of your CPU but you
might want to set it to a lower number to leave room for the execution of other
applications. The number of threads used in simuPOP can be controlled in the
following ways:

	If an environmental variable OMP_NUM_THREADS is set to a positive number,
simuPOP will be started with specified number of threads.

	Before simuPOP is imported, you can set the number of threads using function
simuOpt.setOptions(numThreads=x) where x can be a positive
number (number of threads) or 0, which is intepreted as the number of cores
available for your computer.

The number of threads a simuPOP session is used will be displayed in the banner
message when simuPOP is imported, and can be retrieved through
moduleInfo['threads'].

Although simuPOP can usually benefit from the use of multiple cores, certain
features of your script might prevent the execution of simuPOP in multiple
threads. For example, if your script uses a sex mode of GLOBAL_SEX_SEQUENCE
to set the sex of offspring according to the global sequence of sexes (e.g.
male, male, female), simuPOP will only use on thread to generate offspring
because it is not feasible to assign individual sex from a single source of list
across multiple threads.

Graphical user interface

A complete graphical user interface (GUI) for users to interactively construct
evolutionary processes is still in the planning stage. However, some simuPOP
classes and functions can make use of a GUI to improve user interaction. For
example, a parameter input dialog can be constructed automatically from a
parameter specification list, and be used to accept user input if class
simuOpt.Params is used to handle parameters. Other examples include a
progress bar simuPOP.utils.ProgressBar and a dialog used by function
simuPOP.utils.viewVars to display a large number of variables. The most
notable feature of the use of GUI in simuPOP is that all functionalities can
be achieved without a GUI. For examples, simuOpt.getParam will use a
terminal to accept user input interactively and
simuPOP.utils.ProgressBar will turn to a text-based progress bar in the
non-GUI mode.

The use of GUI can be controlled either globally or Individually. First, a
global GUI parameter could be set by environmental variable SIMUGUI,
function simuOpt.setOptions(gui) or a command line option
--gui of a simuPOP scripts. Allowed values include

	True: This is the system default value. A GUI is used whenever possible.
All GUI-capable functions support wxPython so a wxPython dialog will be
used if wxPython is available. Otherwise, tkInter based dialogs or text-
mode will be used.

	False: no GUI will be used. All functions will use text-based
implementation. Note that --gui=False is commonly used to run scripts in
batch mode.

	wxPython: Force the use of wxPython GUI toolkit.

	Tkinter: Force the use of Tkinter GUI toolkit.

Individual classes and functions that could make use a GUI usually have their
own gui parameters, which can be set to override global GUI settings. For
example, you could force the use of a text-based progress bar by using
ProgressBar(gui=False).

Online help system

Most of the help information contained in this document and the simuPOP
reference manual is available from command line. For example, after you install
and import the simuPOP module, you can use help(Population.addInfoField)to
view the help information of member function addInfoField of class
Population.

Example: Getting help using the texttt{help()} function

>>> import simuPOP as sim
>>> help(sim.Population.addInfoFields)
Help on built-in function Population_addInfoFields in module simuPOP._simuPOP_std:

Population_addInfoFields(...)
 Usage:

 x.addInfoFields(fields, init=0)

 Details:

 Add a list of information fields fields to a population and
 initialize their values to init. If an information field alreay
 exists, it will be re-initialized.

now exiting runScriptInteractively...

Download help.py

It is important that you understand that

	The constructor of a class is named __init__ in Python. That is to say,
you should use the following command to display the help information of the
constructor of class Population:

>>> help(Population.__init__)

	Some classes are derived from other classes and have access to member
functions of their base classes. For example, class Population and
Individual are both derived from class GenoStruTrait.
Therefore, you can use all GenoStruTrait member functions from these
classes.

In addition, the constructor of a derived class also calls the constructor of
its base class so you may have to refer to the base class for some parameter
definitions. For example, parameters begin, end, step, atetc are shared by
all operators, and are explained in details only in class BaseOperator.

Debug-related functions and operators *

Debug information can be useful when something looks suspicious. By turnning on
certain debug code, simuPOP will print out some internal information before and
during evolution. Functions turnOnDebug(code) and
turnOffDebug(code) could be used to turn on and off some debug
information.

For example, the following code might crash simuPOP:

>>> Population(1, loci=[100]).individual(0).genotype()

It is unclear why this simple command causes us trouble, instead of outputting
the genotype of the only Individual of this population. However, the reason is
clear if you turn on debug information:

Example: Turn on/off debug information

>>> turnOnDebug(DBG_POPULATION)
>>> Population(1, loci=100).individual(0).genotype()
Constructor of population is called
Destructor of population is called
Segmentation fault (core dumped)

Population(1, loci=[100]) creates a temporary object that is
destroyed right after the execution of the command. When Python tries to display
the genotype, it will refer to an invalid location. The correct method to print
the genotype is to create a persistent population object:

>>> pop = Population(1, loci=[100])
>>> pop.individual(0).genotype()

Another useful debug code is DBG_WARNING. When this code is set, it will
output warning messages for some common misuse of simuPOP. For example, it will
warn you that population object returned by function
Simulator.population() is a temporary object that will become invalid
once a simulator is changed. If you are new to simuPOP, it is recommended that
you use

import simuOpt
simuOpt.setOptions(optimized=False, debug='DBG_WARNING')

when you develop your script.

Besides functions turnOnDebug(code)and turnOffDebug(code), you can set environmental variable SIMUDEBUG=code where code
is a comma separated debug codes.``A list of valid debug code could be found
in function :func:`moduleInfo[‘debug’]`. Note that debug information is
only available in standard (non-optimized) modules.

The amount of output can be overwhelming in some cases which makes it necessary
to limit the debug information to certain generations, or triggered by certain
conditions. In addition, debugging information may interfere with your regular
output so you may want to direct such output to another destination, such as a
dedicated file.

Example debug demonstrates how to turn on debug information
conditionally and turn it off afterwards, using operator PyOperator. It
also demonstrates how to redirect debug output to a file but redefining system
standard error output. Note that “is None” is used to make sure the lamdba
functions return True so that the evolutionary process can continue after
the python operator.

Example: Turn on and off debug information during evolution.

>>> import simuPOP as sim
>>> # redirect system stderr
>>> import sys
>>> debugOutput = open('debug.txt', 'w')
>>> old_stderr = sys.stderr
>>> sys.stderr = debugOutput
>>> # start simulation
>>> simu = sim.Simulator(sim.Population(100, loci=1), rep=5)
>>> simu.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.1, 0.9])
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(alleleFreq=0),
... sim.IfElse('alleleNum[0][0] == 0',
... ifOps=[
... # the is None part makes the function return True
... sim.PyOperator(lambda : sim.turnOnDebug("DBG_MUTATOR") is None),
... sim.PointMutator(loci=0, allele=0, inds=0),
...],
... elseOps=sim.PyOperator(lambda : sim.turnOffDebug("DBG_MUTATOR") is None)),
...],
... gen = 100
...)
(100, 100, 100, 100, 100)
>>> # replace standard stdandard error
>>> sys.stderr = old_stderr
>>> debugOutput.close()
>>> print(''.join(open('debug.txt').readlines()[:5]))
Mutate locus 0 at ploidy 0 to allele 0 at generation 12
Mutate locus 0 at ploidy 0 to allele 0 at generation 13
Mutate locus 0 at ploidy 0 to allele 0 at generation 15
Mutate locus 0 at ploidy 0 to allele 0 at generation 16
Mutate locus 0 at ploidy 0 to allele 0 at generation 21

now exiting runScriptInteractively...

Download debug.py

Random number generator *

When simuPOP is loaded, it creates a default random number generator
(RNG) of type mt19937 for each thread. It uses a random seed for
the first RNG and uses seeds derived from the first seed to initialize RNGs for
other threads. The seed is drawn from a system random number generator that
guarantees random seeds for all instances of simuPOP even if they are
initialized at the same time. After simuPOP is loaded, you can reset this system
RNG with a different random number generator (c.f. moduleInfo['availableRNGs']) or use a specified seed using function , setRNG(name,
seed).

getRNG.seed() returns the seed of the simuPOP random number
generator. It can be used to replay your simulation if getRNG() is
your only source of random number generator. If you also use the Python
random module, it is a good practise to set its seed using
random.seed(getRNG().seed()). Example randomSeed
demonstrates how to use these functions to replay an evolutionary process.
simuPOP uses a single seed to initialize multiple random number generators used
for different threads (seeds for other threads are determined from the first
seed) so you only need to save the head seed (getRNG.seed())

Example: Use saved random seed to replay an evolutionary process

>>> import simuPOP as sim
>>> import random
>>> def simulate():
... pop = sim.Population(1000, loci=10, infoFields='age')
... pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5]),
... sim.InitInfo(lambda: random.randint(0, 10), infoFields='age')
...],
... matingScheme=sim.RandomMating(),
... finalOps=sim.Stat(alleleFreq=0),
... gen=100
...)
... return pop.dvars().alleleFreq[0][0]
...
>>> seed = sim.getRNG().seed()
>>> random.seed(seed)
>>> print('%.4f' % simulate())
0.5780
>>> # will yield different result
>>> print('%.4f' % simulate())
0.6355
>>> sim.setRNG(seed=seed)
>>> random.seed(seed)
>>> # will yield identical result because the same seeds are used
>>> print('%.4f' % simulate())
0.5780

now exiting runScriptInteractively...

Download randomSeed.py

Individuals and Populations

	Genotypic structure
	Haploid, diploid and haplodiploid populations

	Autosomes, sex chromosomes, mitochondrial, and other types of chromosomes *

	Information fields

	Individual
	Access individual genotype

	individual sex, affection status and information fields

	Population
	Access and change individual genotype

	Subpopulations

	Virtual subpopulations and virtual splitters *

	Advanced virtual subpopulation splitters **

	Access individuals and their properties

	Attach arbitrary auxillary information using information fields

	Keep track of ancestral generations

	Change genotypic structure of a population

	Remove or extract individuals and subpopulations from a population

	Store arbitrary population information as population variables

	Save and load a population

	Import and export datasets in unsupported formats *

Genotypic structure

Genotypic structure refers to structural information shared by all individuals
in a population, including number of homologous copies of chromosomes (c.f.
ploidy(), ploidyName()), chromosome types and names (c.f. numChrom(),
chromType(), chromName()), position and name of each locus (c.f.
numLoci(ch), locusPos(loc), locusName(loc)), and axillary
information attached to each individual (c.f. infoField(idx), infoFields()).
In addition to property access functions, a number of utility functions are
provided to, for example, look up the index of a locus by its name (c.f.
locusByName(), chromBegin(), chromLocusPair()).

In simuPOP, locus is a (named) position and alleles are just different numbers
at that position. A locus can be a gene, a nucleotide, or even a deletion,
depending on how you define alleles and mutations. For example,

	A codon can be simulated as a locus with 64 allelic states, or three locus
each with 4 allelic states. Alleles in the first case would be codons such as
AAC and a mutation event would mutate one codon to another (e.g. AAC ->
ACC). Alleles in the second case would be A, C, T or G, and
a mutation event would mutate one nucleotide to another (e.g. A -> G).

	You can use 0 and 1 (and the binary module of simuPOP) to simulate SNP
(single-nucleotide polymorphism) markers and ignore the exact meaning of 0 and
1, or use 0, 1, 2, 3 to simulate different nucleotide (A, C, T, or G) in these
markers. The mutation model in the second case would be more complex.

	For microsatellite markers, alleles are usually interpreted as the number of
tandem repeats. It would be difficult (though doable) to simulate the expansion
and contraction of genome caused by the mutation of microsatellite markers.

	The infinite site and infinite allele mutation models could be simulated using
either a continuous sequence of nucleotides with a simple 2-allele mutation
model, or a locus with a large number of possible allelic states. It is also
possible to simulate an empty region (without any locus) with loci introduced by
mutation events.

	If you consider deletion as a special allelic state, you can simulate gene
deletions without shrinking a chromosome. For example, a deletion mutation event
can set the allelic state of one or more loci to 0, which can no longer be
mutated.

	Alleles in different individuals could be interpretted differently. For
example, if you would like to simulate major chromosomal mutations such as
inversion, you could use a super set of markers for different types of
chromosomes and use an indicator (information field) to mark the type of
chromosome and which markers are valid. Using virtual subpopulations, these
individuals could be handled differently during mating.

	In an implementation of an infinite-sites model, Individual loci are used to
store mutation events. In this example (Example infiniteSites), 100 loci are allocated for each individual and they are used
to store mutation events (location of a mutation) that happens in a 10Mb region.
Whenever a mutation event happens, its location is stored as an allele of an
individual. At the end of the evolution, each individual has a list of mutation
events which can be readily translated to real alleles. Similar ideas could be
used to simulate the accumulation of recombination events.

In summary, the exact meaning of loci and their alleles are user defined. With
appropriate mutation model and mating scheme, it is even possible to simulate
phenotypic traits using this mechanism, although it is more natual to use
information fields for quatitative traits.

A genotypic structure can be retrieved from Individual and Population
objects. Because a population consists of individuals of the same type,
genotypic information can only be changed for all individuals at the population
level. populations in a simulator usually have the same genotypic structure
because they are created by as replicates, but their structure may change during
evolution. Example genostructure demonstrates how to
access genotypic structure functions at the population and individual levels.
Note that lociPos determines the order at which loci are arranged on a
chromosome. Loci positions and names will be rearranged if given lociPos is
unordered.

Example: Genotypic structure functions

>>> import simuPOP as sim
>>> pop = sim.Population(size=[2, 3], ploidy=2, loci=[5, 10],
... lociPos=list(range(0, 5)) + list(range(0, 20, 2)), chromNames=['Chr1', 'Chr2'],
... alleleNames=['A', 'C', 'T', 'G'])
>>> # access genotypic information from the sim.Population
>>> pop.ploidy()
2
>>> pop.ploidyName()
'diploid'
>>> pop.numChrom()
2
>>> pop.locusPos(2)
2.0
>>> pop.alleleName(1)
'C'
>>> # access from an individual
>>> ind = pop.individual(2)
>>> ind.numLoci(1)
10
>>> ind.chromName(0)
'Chr1'
>>> ind.locusName(1)
''
>>> # utility functions
>>> ind.chromBegin(1)
5
>>> ind.chromByName('Chr2')
1
>>> # loci pos can be unordered within each chromosome
>>> pop = sim.Population(loci=[2, 3], lociPos=[3, 1, 1, 3, 2],
... lociNames=['loc%d' % x for x in range(5)])
>>> pop.lociPos()
(1.0, 3.0, 1.0, 2.0, 3.0)
>>> pop.lociNames()
('loc1', 'loc0', 'loc2', 'loc4', 'loc3')

now exiting runScriptInteractively...

Download genoStru.py

Note

simuPOP does not assume any unit for loci positions. Depending on your
application, it can be basepair (bp), kilo-basepair (kb), mega base pair (mb) or
even using genetic-map distance such as centiMorgan. It is your responsibility
to interpret and use loci positions properly. For example, recombination rate
between two adjacent markers can be specified as the product between their
physical distance and a recombination intensity. The scale of this intensity
will vary by the unit assumed.

Note

Names of loci, alleles and subpopulations are optional. Empty names will be used
if they are not specified. Whereas locusName, subPopName and
alleleName always return a value (empty string or specified value) for any
locus, subpopulation or allele, respectively, lociNames, subPopNames and
alleleNames only return specified values, which can be empty lists.

Haploid, diploid and haplodiploid populations

simuPOP is most widely used to study human (diploid) populations. A large number
of mating schemes, operators and population statistics are designed around the
evolution of such a population. simuPOP also supports haploid and haplodiploid
populations although there are fewer choices of mating schemes and operators.
simuPOP can also support other types of populations such as triploid and
tetraploid populations, but these features are largely untested due to their
limited usage. It is expected that supports for these populations would be
enhanced over time with additional dedicated operators and functions.

For efficiency considerations, simuPOP saves the same numbers of homologous sets
of chromosomes even if some individuals have different numbers of homologous
sets in a population. For example, in a haplodiploid population, because male
individuals have only one set of chromosomes, their second homologous set of
chromosomes are unused, which are labeled as '_', as shown in Example
haplodiploid.

Example: An example of haplodiploid population

>>> import simuPOP as sim
>>> pop = sim.Population(size=[2,5], ploidy=sim.HAPLODIPLOID, loci=[3, 5])
>>> sim.initGenotype(pop, freq=[0.3, 0.7])
>>> sim.dump(pop)
Ploidy: 2 (haplodiploid)
Chromosomes:
1: (AUTOSOME, 3 loci)
 (1), (2), (3)
2: (AUTOSOME, 5 loci)
 (1), (2), (3), (4), (5)
population size: 7 (2 subpopulations with 2, 5 Individuals)
Number of ancestral populations: 0

SubPopulation 0 (), 2 Individuals:
 0: MU 111 00001 | ___ _____
 1: MU 111 01110 | ___ _____
SubPopulation 1 (), 5 Individuals:
 2: MU 111 11110 | ___ _____
 3: MU 101 11111 | ___ _____
 4: MU 110 11111 | ___ _____
 5: MU 101 11101 | ___ _____
 6: MU 110 11001 | ___ _____

now exiting runScriptInteractively...

Download haplodiploid.py

Autosomes, sex chromosomes, mitochondrial, and other types of chromosomes *

The default chromosome type is autosome, which is the normal chromosomes in
diploid, and in haploid populations. simuPOP supports four other types of
chromosomes, namely chromosome X, chromosome Y, mitochondrial, and*
customized* chromosome types. Sex chromosomes are only valid in haploid
populations where chromosomes X and Y are used to determine the sex of an
offspring. Mitochondrial DNAs can exists in haploid or diploid populations, and
are inherited maternally. Customized chromosomes rely on user defined functions
and operators to be passed from parents to offspring.

Example subPopName shows how to specify different chromosome
types, and how genotypes of these special chromosomes are arranged.

Example: Different chromosome types

>>> import simuPOP as sim
>>> pop = sim.Population(size=6, ploidy=2, loci=[3, 3, 3, 2, 2, 4, 4],
... chromTypes=[sim.AUTOSOME]*2 + [sim.CHROMOSOME_X, sim.CHROMOSOME_Y, sim.MITOCHONDRIAL]
... + [sim.CUSTOMIZED]*2)
>>> sim.initGenotype(pop, freq=[0.3, 0.7])
>>> sim.dump(pop, structure=False) # does not display genotypic structure information
SubPopulation 0 (), 6 Individuals:
 0: MU 111 000 011 __ 11 1111 1101 | 110 000 ___ 11 __ 1111 1011
 1: MU 111 111 101 __ 11 1110 1011 | 111 011 ___ 11 __ 1110 1011
 2: MU 110 101 011 __ 11 1011 0011 | 110 100 ___ 11 __ 1010 1111
 3: MU 010 011 111 __ 11 1111 1111 | 110 010 ___ 11 __ 1111 0111
 4: MU 101 000 111 __ 01 0111 0100 | 110 111 ___ 00 __ 0111 0001
 5: MU 111 010 111 __ 10 0111 1011 | 111 111 ___ 11 __ 0111 1011

now exiting runScriptInteractively...

Download chromType.py

The evolution of sex chromosomes follow the following rules

	There can be only one X chromosome and one Y chromosome. It is not allowed to
have only one kind of sex chromosome.

	The Y chromosome of female individuals are ignored. The second homologous copy
of the X chromosome and the first copy of the Y chromosome are ignored for male
individuals.

	During mating, female parent pass one of her X chromosome to her offspring,
male parent pass chromosome X or Y to his offspring. Recombination is allowed
for the X chromosomes of females, but not allowed for males.

	The sex of offspring is determined by the types of sex chromosomes he/she
inherits, XX for female, and XY for male.

The evolution of mitochonrial DNAs follow the following rules

	There can be only one copy of mitochondrial DNA, exists for both males and
females.

	In a non-haploid population where all chromosomes have multiple homologous
copies, only the first copy is used for mitochondrial DNA.

	mtDNAs are inherited maternally

Customized chromosomes are used to model more complex types of chromosomes. They
rely on customized operators for inheritence. For example, if you would like to
model multiple copies of mitochondrial DNAs (cytohets with multiple organellar
chromosomes) in a cell, and the process of genetic drift of somatic cytoplasmic
segregation of mtDNAs, you can use multiple customized chromosomes to model
multiple cytohets (see section subsec_Pre_defined_genotype_transmitters for an Example). Figure
fig_chromTypes depicts the possible chromosome structure
of two diploid parents, and how offspring chromosomes are formed. It uses two
customized chromosomes to model multiple copies of mitochondrial chromosomes
that are passed randomly from mother to offspring. The second homologous copy of
customized chromosomes are unused in this example.

Figure: Inheritance of different types of chromosomes in a diploid population

[image: Users/bpeng1/simuPOP/simuPOP/doc/figures/chromType.png]

individuals in this population have five chromosomes, one autosome (A), one X
chromosome (X), one Y chromosome (Y) and two customized chromosomes (C). The
customized chromosomes model multiple copies of mitochondrial chromosomes that
are passed randomly from mother to offspring. Y chromosomes for the female
parent, the second copy of chromosome X and the first copy of chromosome Y for
the male parent, and the second copy of customized chromosomes are unused (gray
chromosome regions). A male offspring inherits one copy of autosome from his
mother (with recombination), one copy of autosome from his father (with
recombination), an X chromosome from his mother (with recombination), a Y
chromosome from his father (without recombination), and two copies of the first
customized chromosome.

Information fields

Different kinds of simulations require different kinds of individuals.
individuals with only genotype information are sufficient to simulate the basic
Wright-Fisher model. Sex is needed to simulate such a model in diploid
populations with sex. individual fitness may be needed if selection is induced,
and age may be needed if the population is age-structured. In addition,
different types of quantitative traits or affection status may be needed to
study the impact of genotype on Individual phenotype. Because it is infeasible
to provide all such information to an individual, simuPOP keeps genotype, sex
(MALE or FEMALE) and affection status as built-in properties of an
individual, and all others as optional information fields (float numbers)
attached to each individual.

Information fields can be specified when a population is created, or added later
using population member functions. They are essential for proper operation of
many simuPOP operators. For example, all selection operators require information
field fitness to store evaluated fitness values for each individual.
Operator Migrator uses information field migrate_to to store the ID
of subpopulation an individual will migrate to. An error will be raised if these
operators are applied to a population without needed information fields.

Example: Basic usage of information fields

>>> import simuPOP as sim
>>> pop = sim.Population(10, loci=[20], ancGen=1,
... infoFields=['father_idx', 'mother_idx'])
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(genotype=[0]*20+[1]*20)
...],
... matingScheme=sim.RandomMating(
... ops=[
... sim.Recombinator(rates=0.01),
... sim.ParentsTagger()
...]
...),
... gen = 1
...)
1
>>> pop.indInfo('mother_idx') # mother of all offspring
(9.0, 8.0, 8.0, 0.0, 8.0, 9.0, 8.0, 7.0, 7.0, 9.0)
>>> ind = pop.individual(0)
>>> mom = pop.ancestor(ind.mother_idx, 1)
>>> print(ind.genotype(0))
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
>>> print(mom.genotype(0))
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
>>> print(mom.genotype(1))
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

now exiting runScriptInteractively...

Download infoField.py

Example basicInfoFields demonstrates the basic usage of
information fields. In this example, a population with two information fields
mother_idx and father_idx are created. Besides the present generation,
this population keeps one ancestral generations (ancGen=1, see Section
subsec_Ancestral_populations for details).
After initializing each individual with two chromosomes with all zero and all
one alleles respectively, the population evolves one generation, subject to
recombination at rate 0.01. Parents of each individual are recorded, by operator
ParentsTagger, to information fields mother_idx and father_idx
of each offspring.

After evolution, the population is extracted from the simulator, and the values
of information field mother_idx of all individuals are printed. The next
several statements get the first Individual from the population, and his mother
from the parental generation using the indexes stored in this individual’s
information fields. Genotypes at the first homologous copy of this individual’s
chromosome is printed, along with two parental chromosomes.

Information fields can only be added or removed at the population level
because all individuals need to have the same set of fields. Values of
information fields could be accessed at Individual or population levels, using
functions such as Individual.info, Individual.setInfo,
population.indInfo, Population.setIndInfo. These functions will be
introduced in their respective classes.

Note

Information fields can be located both by names and by indexes**,** the former
provides better readability at a slight cost of performance because these names
have to be translated into indexes each time. However, use of names are
recommended in most cases for readability considerations.

Individual

individuals are building blocks of a population. An individual object cannot be
created independently, but references to inidividuals can be retrieved using
member functions of a population object.

Access individual genotype

From a user’s point of view, genotypes of an individual are stored sequentially
and can be accessed locus by locus, or in batch. The alleles are arranged by
position, chromosome and ploidy. That is to say, the first allele on the first
chromosome of the first homologous set is followed by alleles at other loci on
the same chromosome, then markers on the second and later chromosomes, followed
by alleles on the second homologous set of the chromosomes for a diploid
individual. A consequence of this memory layout is that alleles at the same
locus of a non-haploid individual are separated by Individual.totNumLoci()
loci. The memory layout of a diploid individual with two chromosomes is
illustrated in Figure fig_genotype_layout.

Figure: Memory layout of individual genotype

[image: Users/bpeng1/simuPOP/simuPOP/doc/figures/genotype.png]

simuPOP provides several functions to read/write individual genotype. For
example, Individual.allele() and Individual.setAllele() can
be used to read and write single alleles. You could also access alleles in batch
mode using functions Individual.genotype() and
Individual.setGenotype(). It is worth noting that, instead of copying
genotypes of an individual to a Python tuple or list, the return value of
function genotype([p, [ch]]) is a special python carray object that reflects
the underlying genotypes. This object behaves like a regular Python list except
that the underlying genotype will be changed if elements of this object are
changed. Only count(x) andindex(x, [start, [stop]]) member functions
can be used, but all comparison, assignment and slice operations are allowed. If
you would like to copy the content of this carray to a Python list, use the
list function. Example individualGenotype
demonstrates the use of these functions.

Example: Access individual genotype

>>> import simuPOP as sim
>>> pop = sim.Population([2, 1], loci=[2, 5])
>>> for ind in pop.individuals(1):
... for marker in range(pop.totNumLoci()):
... ind.setAllele(marker % 2, marker, 0)
... ind.setAllele(marker % 2, marker, 1)
... print('%d %d ' % (ind.allele(marker, 0), ind.allele(marker, 1)))
...
0 0
1 1
0 0
1 1
0 0
1 1
0 0
>>> ind = pop.individual(1)
>>> geno = ind.genotype(1) # the second homologous copy
>>> geno
[0, 0, 0, 0, 0, 0, 0]
>>> geno[2] = 3
>>> ind.genotype(1)
[0, 0, 3, 0, 0, 0, 0]
>>> geno[2:4] = [3, 4] # direct modification of the underlying genotype
>>> ind.genotype(1)
[0, 0, 3, 4, 0, 0, 0]
>>> # set genotype (genotype, ploidy, chrom)
>>> ind.setGenotype([2, 1], 1, 1)
>>> geno
[0, 0, 2, 1, 2, 1, 2]
>>> #
>>> geno.count(1) # count
2
>>> geno.index(2) # index
2
>>> ind.setAllele(5, 3) # change underlying genotype using setAllele
>>> print(geno) # geno is change
[0, 0, 2, 1, 2, 1, 2]
>>> print(geno) # but not geno
[0, 0, 2, 1, 2, 1, 2]
>>> geno[2:5] = 4 # can use regular Python slice operation
>>> print(ind.genotype())
[0, 0, 0, 5, 0, 0, 0, 0, 0, 4, 4, 4, 1, 2]

now exiting runScriptInteractively...

Download individualGenotype.py

The same object will also be returned by function Population.genotype().

individual sex, affection status and information fields

In addition to structural information shared by all individuals in a population,
the individual class provides member functions to get and set genotype, sex,
affection status and information fields of an individual. Example
individuals demonstrates how to access and modify
individual sex, affection status and information fields. Note that information
fields can be accessed as attributes of individuals. For example,
ind.info('father_idx') is equivalent to ind.father_idx and
ind.setInfo(35, 'age') is equivalent to ind.age = 35.

Example: Access Individual properties

>>> import simuPOP as sim
>>> pop = sim.Population([5, 4], loci=[2, 5], infoFields='x')
>>> # get an individual
>>> ind = pop.individual(3)
>>> ind.ploidy() # access to genotypic structure
2
>>> ind.numChrom()
2
>>> ind.affected()
False
>>> ind.setAffected(True) # access affection sim.status,
>>> ind.sex() # sex,
1
>>> ind.setInfo(4, 'x') # and information fields
>>> ind.x = 5 # the same as ind.setInfo(4, 'x')
>>> ind.info('x') # get information field x
5.0
>>> ind.x # the same as ind.info('x')
5.0

now exiting runScriptInteractively...

Download individual.py

Population

The Population object is the most important object of simuPOP. It consists
of one or more generations of individuals, grouped by subpopulations, and a
local Python dictionary to hold arbitrary population information. This class
provides a large number of functions to access and modify population structure,
individuals and their genotypes and information fields. The following sections
explain these features in detail.

Access and change individual genotype

From a user’s point of view, genotypes of all individuals in a population are
arranged sequentially. Similar to functions Individual.genotype() and
Individual.setGenotype(), genotypes of a population can be accessed in
batch using functions Population.genotype() and
Population.setGenotype(). However, because it is error prone to locate
an allele of a particular individual in this long array, these functions are
usually used to perform population-level genotype operations such as clearing
all alleles (e.g. pop.setGenotype(0)) or counting the number of a particular
allele across all individuals (e.g. pop.genotype().count(1)).

Another way to change alleles across the whole population is to recode existing
alleles to other numbers. This is sometimes needed if you need to change allele
states to conform with a particular mutation model, assumptions of other
software applications or genetic samples. For example, if your dataset uses 1,
2, 3, 4 for A, C, T, G alleles, and you would like to use alleles 0, 1, 2 and 3
for A, C, G, T (a convention for simuPOP when nucleotide mutation models are
involved), you can use

pop.recodeAlleles([0, 0, 1, 3, 2], alleleNames=['A', 'C', 'G', 'T'])

to convert and rename the alleles (1 allele to 0, 2 allele to 1, etc). This
operation will be applied to all subpopulations for all ancestral generations,
but can be restricted to selected loci.

Subpopulations

A simuPOP population consists of one or more subpopulations. If a population
is not structured, it has one subpopulation that is the population itself.
Subpopulations serve as barriers of individuals in the sense that mating only
happens between individuals in the same subpopulation. A number of functions are
provided to merge, remove, resize subpopulations, and move individuals between
subpopulations (migration).

Example subPopName demonstrates how to use some of the
subpopulation related functions.

Example: Manipulation of subpopulations

>>> import simuPOP as sim
>>> pop = sim.Population(size=[3, 4, 5], ploidy=1, loci=1, infoFields='x')
>>> # individual 0, 1, 2, ... will have an allele 0, 1, 2, ...
>>> pop.setGenotype(range(pop.popSize()))
>>> #
>>> pop.subPopSize(1)
4
>>> # merge subpopulations
>>> pop.mergeSubPops([1, 2])
1
>>> # split subpopulations
>>> pop.splitSubPop(1, [2, 7])
(1, 2)
>>> pop.subPopSizes()
(3, 2, 7)
>>> # remove subpopulations
>>> pop.removeSubPops(1)
>>> pop.subPopSizes()
(3, 7)

now exiting runScriptInteractively...

Download subPop.py

Some population operations change the IDs of subpopulations. For example, if a
population has three subpopulations 0, 1, and 2, and subpopulation 1 is split
into two subpouplations, subpopulation 2 will become subpopulation 3. Tracking
the ID of a subpopulation can be problematic, especially when conditional or
random subpopulation operations are involved. In this case, you can specify
names to subpopulations. These names will follow their associated subpopulations
during population operations so you can identify the ID of a subpopulation by
its name. Note that simuPOP allows duplicate subpopulation names.

Example: Use of subpopulation names

>>> import simuPOP as sim
>>> pop = sim.Population(size=[3, 4, 5], subPopNames=['x', 'y', 'z'])
>>> pop.removeSubPops([1])
>>> pop.subPopNames()
('x', 'z')
>>> pop.subPopByName('z')
1
>>> pop.splitSubPop(1, [2, 3])
(1, 2)
>>> pop.subPopNames()
('x', 'z', 'z')
>>> pop.setSubPopName('z-1', 1)
>>> pop.subPopNames()
('x', 'z-1', 'z')
>>> pop.subPopByName('z')
2

now exiting runScriptInteractively...

Download subPopName.py

Virtual subpopulations and virtual splitters *

simuPOP subpopulations can be further divided into virtual subpopulations (VSP),
which are groups of individuals who share certain properties. For example, all
male individuals, all unaffected individuals, all individuals with information
field age > 20, all individuals with genotype 0, 0 at a given locus, can form
VSPs. VSPs do not have to add up to the whole subpopulation, nor do they have to
be non-overlapping. Unlike subpopulations that have strict boundaries, VSPs
change easily with the changes of individual properties.

VSPs are defined by virtual splitters. It is a definition for groups of
individuals in each subpopulation. A splitter defines the same number of VSPs
in all subpopulations, although sizes of these VSPs vary across subpopulations
due to subpopulation differences. For example, a SexSplitter()
defines two VSPs, the first with all male individuals and the second with all
female individuals, and a InfoSplitter(field='x', values=[1, 2,
4]) defines three VSPs whose members have values 1, 2 and 4 at
information field x, respectively. This splitter also allows the use of
cutoff values and ranges to define VSPs. If different types of VSPs are needed,
a combined splitter can be used to combine VSPs defined by several splitters.

A VSP is represented by a [sp, vsp] pair where sp and vsp can be
subpopulation indexes or names. Its name and size can be obtained using
functions subPopName() and subPopSize(). Example virtualSplitter demonstrates how to apply virtual splitters to a population,
and how to check VSP names and sizes.

Example: Define virtual subpopulations in a population

>>> import simuPOP as sim
>>> import random
>>> pop = sim.Population(size=[200, 400], loci=[30], infoFields='x')
>>> # assign random information fields
>>> sim.initSex(pop)
>>> sim.initInfo(pop, lambda: random.randint(0, 3), infoFields='x')
>>> # define a virtual splitter by sex
>>> pop.setVirtualSplitter(sim.SexSplitter())
>>> pop.numVirtualSubPop() # Number of defined VSPs
2
>>> pop.subPopName([0, 0]) # Each VSP has a name
'Male'
>>> pop.subPopSize([0, 1]) # Size of VSP 1 in subpopulation 0
109
>>> pop.subPopSize([0, 'Female']) # Refer to vsp by its name
109
>>> # define a virtual splitter by information field 'x'
>>> pop.setVirtualSplitter(sim.InfoSplitter(field='x', values=[0, 1, 2, 3]))
>>> pop.numVirtualSubPop() # Number of defined VSPs
4
>>> pop.subPopName([0, 0]) # Each VSP has a name
'x = 0'
>>> pop.subPopSize([0, 0]) # Size of VSP 0 in subpopulation 0
46
>>> pop.subPopSize([1, 0]) # Size of VSP 0 in subpopulation 1
92

now exiting runScriptInteractively...

Download virtualSplitter.py

VSP provides an easy way to access groups of individuals in a subpopulation and
allows finer control of an evolutionary process. For example, mating schemes can
be applied to VSPs which makes it possible to apply different mating schemes to,
for example, individuals with different ages. By applying migration, mutation
etc to VSPs, it is easy to implement advanced features such as sex-biased
migrations, different mutation rates for individuals at different stages of a
disease. Example virtualSubPop demonstrates how to
initialize genotype and information fields to individuals in male and female
VSPs.

Example: Applications of virtual subpopulations

>>> import simuPOP as sim
>>> import random
>>> pop = sim.Population(10, loci=[2, 3], infoFields='Sex')
>>> sim.initSex(pop)
>>> pop.setVirtualSplitter(sim.SexSplitter())
>>> # initialize male and females with different genotypes.
>>> sim.initGenotype(pop, genotype=[0]*5, subPops=[(0, 0)])
>>> sim.initGenotype(pop, genotype=[1]*5, subPops=[(0, 1)])
>>> # set Sex information field to 0 for all males, and 1 for all females
>>> pop.setIndInfo([sim.MALE], 'Sex', [0, 0])
>>> pop.setIndInfo([sim.FEMALE], 'Sex', [0, 1])
>>> # Print individual genotypes, followed by values at information field Sex
>>> sim.dump(pop, structure=False)
SubPopulation 0 (), 10 Individuals:
 0: FU 11 111 | 11 111 | 2
 1: FU 11 111 | 11 111 | 2
 2: MU 00 000 | 00 000 | 1
 3: MU 00 000 | 00 000 | 1
 4: MU 00 000 | 00 000 | 1
 5: MU 00 000 | 00 000 | 1
 6: MU 00 000 | 00 000 | 1
 7: FU 11 111 | 11 111 | 2
 8: FU 11 111 | 11 111 | 2
 9: FU 11 111 | 11 111 | 2

now exiting runScriptInteractively...

Download virtualSubPop.py

Advanced virtual subpopulation splitters **

simuPOP provides a number of virtual splitters that can define VSPs using
specified properties. For example, InfoSplitter(field='a',
values=[1,2,3]) defines three VSPs whose individuals have values 1, 2,
and 3 at information field a, respectively; SexSplitter()
defines two VSPs of male and female individuals, respectively; and
RangeSplitter(ranges=[[0, 2000], [2000, 5000]]) defines two VSPs
using two blocks of individuals.

A CombinedSplitter can be used if your simulation needs more than one
sets of VSPs. For example, you may want to split your subpopulations both by sex
and by affection status. In this case, you can define a combined splitter using

CombinedSplitter(splitters=[SexSplitter(), AffectionSplitter()])

This splitter simply stacks VSPs defined in AffectionSplitter() after
SexSplitter() so that unaffected and affected VSPs are now VSPs 2 and
3 (0 and 1 are used for male and female VSPs).

There are also scenarios when you would like to define finer VSPs with
individuals belonging to more than one VSPs. For example, you may want to have a
look of frequencies of certain alleles in affected male vs affected females, or
count the number of males and females with certain value at an information
field. In this case, a ProductSplitter can be used to define VSPs using
interactions of several VSPs. For example,

ProductSplitter(splitters=[SexSplitter(), AffectionSplitter()])

defines 4 subpopulations by splitting VSPs defined by SexSplitter()
with affection status. These four VSPs will then have unaffected male, affected
male, unaffected female and affected female individuals, respectively.

If you consider ProductSplitter as an intersection splitter that
defines new VSPs as intersections of existing VSPs, you may wonder how to define
unions of VSPs. For example, you can make a case where you want to consider
Individuals with information field a < 0 or a > 100 together. A regular
InfoSplitter(field='a', cutoff=[0, 100]) cannot do that because
it defines three VSPs with , and
, respectively. The trick here is to use parameter vspMap of
a CombinedSplitter. If this parameter is defined, multiple VSPs could
be groups or reordered to define a new set of VSPs. For example,

CombinedSplitter(splitters=[InfoSplitter(field='a', cutoff=[0, 100])], vspMap=[[0,2], 1])

defines two VSPs using VSPs 0 and 2, and VSP 1 defined by the
InfoSplitter so that the first VSP contains individuals with
 or .

Example advancedVSP demonstrates some advanced usages of
virtual splitters.

Example: Advanced virtual subpopulation usages.

>>> import simuPOP as sim
>>> import random
>>> pop = sim.Population(size=[2000, 4000], loci=[30], infoFields='x')
>>> # assign random information fields
>>> sim.initSex(pop)
>>> sim.initInfo(pop, lambda: random.randint(0, 3), infoFields='x')
>>> #
>>> # 1, use a combined splitter
>>> pop.setVirtualSplitter(sim.CombinedSplitter(splitters = [
... sim.SexSplitter(),
... sim.InfoSplitter(field='x', values=[0, 1, 2, 3])
...]))
>>> pop.numVirtualSubPop() # Number of defined VSPs
6
>>> pop.subPopName([0, 0]) # Each VSP has a name
'Male'
>>> pop.subPopSize([0, 0]) # sim.MALE
1011
>>> pop.subPopSize([1, 4]) # individuals in sp 1 with value 2 at field x
1048
>>> #
>>> # use a product splitter that defines additional VSPs by sex and info
>>> pop.setVirtualSplitter(sim.ProductSplitter(splitters = [
... sim.SexSplitter(names=['M', 'F']), # give a new set of names
... sim.InfoSplitter(field='x', values=[0, 1, 2, 3])
...]))
>>> pop.numVirtualSubPop() # Number of defined VSPs
8
>>> pop.subPopName([0, 0]) # Each VSP has a name
'M, x = 0'
>>> pop.subPopSize([0, 0]) # sim.MALE with value 1 in sp 0
240
>>> pop.subPopSize([1, 5]) # sim.FEMALE with value 1 in sp 1
453
>>> #
>>> # use a combined splitter to join VSPs defined by a
>>> # product splitter
>>> pop.setVirtualSplitter(sim.CombinedSplitter([
... sim.ProductSplitter([
... sim.SexSplitter(),
... sim.InfoSplitter(field='x', values=[0, 1, 2, 3])])],
... vspMap = [[0,1,2], [4,5,6], [7]],
... names = ['Male x<=3', 'Female x<=3', 'Female x=4']))
>>> pop.numVirtualSubPop() # Number of defined VSPs
3
>>> pop.subPopName([0, 0]) # Each VSP has a name
'Male x<=3'
>>> pop.subPopSize([0, 0]) # sim.MALE with value 0, 1, 2 at field x
770
>>> pop.subPopSize([1, 1]) # sim.FEMALE with value 0, 1 or 2 at field x
1493

now exiting runScriptInteractively...

Download advancedVSP.py

Access individuals and their properties

There are many ways to access individuals of a population. For example, function
Population.Individual(idx) returns a reference to the idx-th
individual in a population. An optional parameter subPop can be specified to
return the idx-th individual in the subPop-th subpopulation.

If you would like to access a group of individuals, either from a whole
population, a subpopulation, or from a virtual subpopulation,
Population.individuals([subPop]) is easier to use. This function
returns a Python iterator that can be used to iterate through individuals. An
advantage of this function is that subPopcan be a virtual subpopulation
which makes it easy to iterate through Individuals with certain properties (such
as all male Individuals). If you would like to iterate through multiple virtual
subpopulations in one or more ancestral generations, you can use another
function Population.allIndividuals(subPops, ancGens).

If more than one generations are stored in a population, function
ancestor(idx, [subPop], gen) can be used to access Individual from an
ancestral generation (see Section subsec_Ancestral_populations for details). Because there is no group access
function for ancestors, it may be more convenient to use useAncestralGen to
make an ancestral generation the current generation, and use
Population.Individuals. Note that ancestor() function can always access
individuals at a certain generation, regardless which generation the current
generation is. Example batchAccess demonstrates how to use
all these Individual-access functions.

If an unique ID is assigned to all individuals in a population, you can look up
individuals from their IDs using function Population.indByID(). The
information field to save individual ID is usually ind_id and you can use
operator IdTagger and its function form tagID to set this
field. Note that this function can be used to look up individuals in the present
and all ancestral generations, although a parameter (ancGen) can be used to
limit search to a specific generation if you know in advance which generation
the individual locates.

Example: Access individuals of a population

>>> import simuPOP as sim
>>> # create a sim.population with two generations. The current generation has values
>>> # 0-9 at information field x, the parental generation has values 10-19.
>>> pop = sim.Population(size=[5, 5], loci=[2, 3], infoFields='x', ancGen=1)
>>> pop.setIndInfo(range(10, 20), 'x')
>>> pop1 = pop.clone()
>>> pop1.setIndInfo(range(10), 'x')
>>> pop.push(pop1)
>>> #
>>> ind = pop.individual(5) # using absolute index
>>> ind.x
5.0
>>> ind.x # the same as ind.x
5.0
>>> # use a for loop, and relative index
>>> for idx in range(pop.subPopSize(1)):
... print(pop.individual(idx, 1).x)
...
5.0
6.0
7.0
8.0
9.0
>>> # It is usually easier to use an iterator
>>> for ind in pop.individuals(1):
... print(ind.x)
...
5.0
6.0
7.0
8.0
9.0
>>> # Access individuals in VSPs
>>> pop.setVirtualSplitter(sim.InfoSplitter(cutoff=[3, 7, 17], field='x'))
>>> for ind in pop.individuals([1, 1]):
... print(ind.x)
...
5.0
6.0
>>> # Access all individuals in all ancestral generations
>>> print([ind.x for ind in pop.allIndividuals()])
[0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0]
>>> # or only specified subpopulations or ancestral generations
>>> print([ind.x for ind in pop.allIndividuals(subPops=[(0,2), (1,3)], ancGens=1)])
[10.0, 11.0, 12.0, 13.0, 14.0, 17.0, 18.0, 19.0]
>>>
>>> # Access individuals in ancetral generations
>>> pop.ancestor(5, 1).x # absolute index
15.0
>>> pop.ancestor(0, 1, 1).x # relative index
15.0
>>> # Or make ancestral generation the current generation and use 'individual'
>>> pop.useAncestralGen(1)
>>> pop.individual(5).x # absolute index
15.0
>>> pop.individual(0, 1).x # relative index
15.0
>>> # 'ancestor' can still access the 'present' (generation 0) generation
>>> pop.ancestor(5, 0).x
5.0
>>> # access individual by ID
>>> pop.addInfoFields('ind_id')
>>> sim.tagID(pop)
>>> [int(ind.ind_id) for ind in pop.individuals()]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> # access individual by ID. Note that individual 12 is in the parental generation
>>> pop.indByID(12).x
1.0

now exiting runScriptInteractively...

Download accessIndividual.py

Although it is easy to access individuals in a population, it is often more
efficient to access genotypes and information fields in batch mode. For example,
functions genotype() andsetGenotype() can read/write genotype of all
individuals in a population or (virtual) subpopulation, functions indInfo()
and setIndInfo() can read/write certain information fields in a population
or (virtual) subpopulation. The write functions work in a circular manner in the
sense that provided values are reused if they are not enough to fill all
genotypes or information fields. Example batchAccess
demonstrates the use of such functions.

Example: Access Individual properties in batch mode

>>> import simuPOP as sim
>>> import random
>>> pop = sim.Population(size=[4, 6], loci=2, infoFields='x')
>>> pop.setIndInfo([random.randint(0, 10) for x in range(10)], 'x')
>>> pop.indInfo('x')
(7.0, 5.0, 8.0, 10.0, 7.0, 0.0, 8.0, 4.0, 4.0, 10.0)
>>> pop.setGenotype([0, 1, 2, 3], 0)
>>> pop.genotype(0)
[0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]
>>> pop.setVirtualSplitter(sim.InfoSplitter(cutoff=[3], field='x'))
>>> pop.setGenotype([0]) # clear all values
>>> pop.setGenotype([5, 6, 7], [1, 1])
>>> pop.indInfo('x', 1)
(7.0, 0.0, 8.0, 4.0, 4.0, 10.0)
>>> pop.genotype(1)
[5, 6, 7, 5, 0, 0, 0, 0, 6, 7, 5, 6, 7, 5, 6, 7, 5, 6, 7, 5, 6, 7, 5, 6]

now exiting runScriptInteractively...

Download batchAccess.py

Attach arbitrary auxillary information using information fields

Information fields are usually set during population creation, using the
infoFields parameter of the population constructor. It can also be set or
added using functions setInfoFields, addInfoFieldand addInfoFields.
Example popInfo demonstrates how to read and write information
fields from an individual, or from a population in batch mode. Note that
functions Population.indInfo and Population.setIndInfo can be
applied to (virtual) subpopulation using a optional parameter subPop.

Example: Add and use of information fields in a population

>>> import simuPOP as sim
>>> pop = sim.Population(10)
>>> pop.setInfoFields(['a', 'b'])
>>> pop.addInfoFields('c')
>>> pop.addInfoFields(['d', 'e'])
>>> pop.infoFields()
('a', 'b', 'c', 'd', 'e')
>>> #
>>> # information fields can be accessed in batch mode
>>> pop.setIndInfo([1], 'c')
>>> # as well as individually.
>>> for ind in pop.individuals():
... ind.e = ind.c + 1
...
>>> print(pop.indInfo('e'))
(2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0, 2.0)

now exiting runScriptInteractively...

Download popInfo.py

Keep track of ancestral generations

A simuPOP population usually holds individuals in one generation. During
evolution, an offspring generation will replace the parental generation and
become the present generation (population), after it is populated from a
parental population. The parental generation is discarded.

This is usually enough when only the present generation is of interest. However,
parental generations can provide useful information on how genotype and other
information are passed from parental to offspring generations. simuPOP provides
a mechanism to store and access arbitrary number of ancestral generations in a
population object. Applications of this feature include pedigree tracking,
reconstruction, and pedigree ascertainments.

A parameter ancGen is used to specify how many generations a population
object can store (which is usually called the ancestral depth of a
population). This parameter is default to 0, meaning keeping no ancestral
population. You can specify a positive number n to store n most recent
generations; or -1 to store all generations. Of course, storing all
generations during an evolutionary process is likely to exhaust the RAM of your
computer quickly.

Several member functions can be used to manipulate ancestral generations:

	ancestralGens()returns the number of ancestral generations stored in a
population.

	setAncestralDepth(depth) resets the number of generations a population can
store.

	push(pop) will push population pop into the current population.
pop will become the current generation, and the current generation will
either be removed (if ancGen == 0), or become the parental generation of pop.
The greatest ancestral generation may be removed. This function is rarely used
because populations with ancestral generations are usually created during an
evolutionary process.

	useAncestralGen(idx) set the present generation to idx generation.
idx = 1 for the parental generation, 2 for grand-parental, …, and
0 for the present generation. This is useful because most population
functions act on the present generation. You should always call
setAncestralPop(0) after you examined the ancestral generations.

If a population has several ancestral generations, they are referred by their
indexes 0 (the latest generation), 1 (parental generation), … and
(top-most ancestral generation) where equals to ancestralGens().
In many cases, you can retrieve the properties of ancestral generations
directly, using functions such as

	popSize(ancGen=-1), subPopSizes(ancGen=-1), subPopSize(subPop, ancGen=-1):
population and subpopulation sizes of ancestral generation ancGen.

	ancestor(index, ancGen): Get a reference to the index individual of
ancestral generation ancGen.

However, most population member functions work at the current generation so you
will need to switch to an ancestral generation using function
useAncestralGen() if you would like to manipulate an ancestral generation.
For example, you can remove the second subpopulation of the parental generation
using functions:

pop.useAncestralGen(1)
pop.removeSubPops(1)

A typical use of ancestral generations is demonstrated in example extract. In this example, a population is created and is initialized with
allele frequency 0.5. Its ancestral depth is set to 2 at the beginning of
generation 18 so that it can hold parental generations at generation 18 and 19.
The allele frequency at each generation is calculated and displayed, both during
evolution using a Stat operator, and after evolution using the function
form this operator. Note that setting the ancestral depth at the end of an
evolutionary process is a common practice because we are usually only interested
in the last few generations.

Example: Ancestral populations

>>> import simuPOP as sim
>>> pop = sim.Population(500, loci=1, ancGen=2)
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5])
...],
... matingScheme = sim.RandomMating(),
... postOps=[
... sim.Stat(alleleFreq=0, begin=-3),
... sim.PyEval(r"'%.3f\n' % alleleFreq[0][0]", begin=-3)
...],
... gen = 20
...)
0.495
0.510
0.506
20
>>> # information
>>> pop.ancestralGens()
2
>>> pop.popSize(ancGen=1)
500
>>> pop.setVirtualSplitter(sim.SexSplitter())
>>> # number of males in the current and parental generation
>>> pop.subPopSize((0,0)), pop.subPopSize((0,0), ancGen=1)
(254, 249)
>>> # start from current generation
>>> for i in range(pop.ancestralGens(), -1, -1):
... pop.useAncestralGen(i)
... sim.stat(pop, alleleFreq=0)
... print('%d %.3f' % (i, pop.dvars().alleleFreq[0][0]))
...
2 0.495
1 0.510
0 0.506
>>> # restore to the current generation
>>> pop.useAncestralGen(0)

now exiting runScriptInteractively...

Download ancestralPop.py

Change genotypic structure of a population

Several functions are provided to remove, add empty loci or chromosomes, and to
merge loci or chromosomes from another population. They can be used to trim
unneeded loci, expand existing population or merge two populations. Example
extract demonstrates how to use these populations. Note that
function Population.addLociFrom by default merges chromosomes one by one
according to chromosome index. If byName is set to True, it will try to
match chromosomes by name and merge them. This example also demonstrates the use
of DBG_WARNING flag, which will trigger a warning message when chromosomes
with different names are merged.

Example: Add and remove loci and chromosomes

>>> import simuOpt
>>> simuOpt.setOptions(debug='DBG_WARNING')
>>> import simuPOP as sim
Turn on debug 'DBG_WARNING'
>>> pop = sim.Population(10, loci=3, chromNames=['chr1'])
>>> # 1 1 1,
>>> pop.setGenotype([1])
>>> # 1 1 1, 0 0 0
>>> pop.addChrom(lociPos=[0.5, 1, 2], lociNames=['rs1', 'rs2', 'rs3'],
... chromName='chr2')
>>> pop1 = sim.Population(10, loci=3, chromNames=['chr3'],
... lociNames=['rs4', 'rs5', 'rs6'])
>>> # 2 2 2,
>>> pop1.setGenotype([2])
>>> # 1 1 1, 0 0 0, 2 2 2
>>> pop.addChromFrom(pop1)
>>> # 1 1 1, 0 0 0, 2 0 2 2 0
>>> pop.addLoci(chrom=[2, 2], pos=[1.5, 3.5], lociNames=['rs7', 'rs8'])
(7, 10)
>>> # 1 1 1, 0 0 0, 2 0 2 0
>>> pop.removeLoci(8)
>>> # loci names can also be used.
>>> pop.removeLoci(['rs1', 'rs7'])
>>> sim.dump(pop)
Ploidy: 2 (diploid)
Chromosomes:
1: chr1 (AUTOSOME, 3 loci)
 (1), (2), (3)
2: chr2 (AUTOSOME, 2 loci)
 rs2 (1), rs3 (2)
3: chr3 (AUTOSOME, 3 loci)
 rs4 (1), rs6 (3), rs8 (3.5)
population size: 10 (1 subpopulations with 10 Individuals)
Number of ancestral populations: 0

SubPopulation 0 (), 10 Individuals:
 0: MU 111 00 220 | 111 00 220
 1: MU 111 00 220 | 111 00 220
 2: MU 111 00 220 | 111 00 220
 3: MU 111 00 220 | 111 00 220
 4: MU 111 00 220 | 111 00 220
 5: MU 111 00 220 | 111 00 220
 6: MU 111 00 220 | 111 00 220
 7: MU 111 00 220 | 111 00 220
 8: MU 111 00 220 | 111 00 220
 9: MU 111 00 220 | 111 00 220

>>> # add loci from another population
>>> pop2 = sim.Population(10, loci=2, lociPos=[0.1, 2.2], chromNames='chr3')
>>> pop.addLociFrom(pop2)
WARNING: Chromosome 'chr3' is merged to chromosome 'chr1'.
>>> pop.addLociFrom(pop2, byName=2)
>>> sim.dump(pop, genotype=False)
Ploidy: 2 (diploid)
Chromosomes:
1: chr1 (AUTOSOME, 5 loci)
 (0.1), (1), (2), (2.2), (3)
2: chr2 (AUTOSOME, 2 loci)
 rs2 (1), rs3 (2)
3: chr3 (AUTOSOME, 5 loci)
 (0.1), rs4 (1), (2.2), rs6 (3), rs8 (3.5)
population size: 10 (1 subpopulations with 10 Individuals)
Number of ancestral populations: 0

now exiting runScriptInteractively...

Download addRemoveLoci.py

Remove or extract individuals and subpopulations from a population

Functions Population.removeIndividuals and
Population.removeSubPops remove selected individuals or groups of
individuals from a population. Functions Population.extractIndividuals
and Population.extractSubPops extract individuals and subpopulations
from an existing population and form a new one.

Functions removeIndividauls and extractIndividuals could be used to
remove or extract individuals from the present generation by indexes or from all
ancestral generations by IDs or a Python filter function. This function should
accept parameter ind or one or more information fields. simuPOP will pass
individual for parameter ind, and values at specified information fields
(age in this example) of each individual to this function. The present
population structure will be kept, even if some subpopulations are left empty.
For example, you could remove the first thirty individuals of a population using

pop.removeIndividuals(indexes=range(30))

or remove all individuals at age 20 or 30 using

pop.removeIndividuals(IDs=(20, 30), idField='age')

or remove all individuals with age between 20 and 30 using

pop.removeIndividuals(filter=lambda age: age >=20 and age <=30)

. In the last example, a Python lambda function is defined to avoid the
definition of a named function.

Functions removeSubPops or extractSubPops could be used to remove or
extract subpopulations, or goups of individuals defined by virtual
subpopulations from a population. The latter case is very interesting because it
could be used to remove or extract individuals with similar properties, such as
all individuals between the ages 40 and 60, as demonstrated in Example
extract.

Example: Extract individuals

>>> import simuPOP as sim
>>> import random
>>> pop = sim.Population(size=[200, 200], loci=[5, 5], infoFields='age')
>>> sim.initGenotype(pop, genotype=range(10))
>>> sim.initInfo(pop, lambda: random.randint(0,75), infoFields='age')
>>> pop.setVirtualSplitter(sim.InfoSplitter(field='age', cutoff=[20, 60]))
>>> # remove individuals
>>> pop.removeIndividuals(indexes=range(0, 300, 10))
>>> print(pop.subPopSizes())
(180, 190)
>>> # remove individuals using IDs
>>> pop.setIndInfo([1, 2, 3, 4], field='age')
>>> pop.removeIndividuals(IDs=[2, 4], idField='age')
>>> # remove indiviuals using a filter function
>>> sim.initSex(pop)
>>> pop.removeIndividuals(filter=lambda ind: ind.sex() == sim.MALE)
>>> print([pop.individual(x).sex() for x in range(8)])
[2, 2, 2, 2, 2, 2, 2, 2]
>>> #
>>> # remove subpopulation
>>> pop.removeSubPops(1)
>>> print(pop.subPopSizes())
(56,)
>>> # remove virtual subpopulation (people with age between 20 and 60)
>>> pop.removeSubPops([(0, 1)])
>>> print(pop.subPopSizes())
(56,)
>>> # extract another virtual subpopulation (people with age greater than 60)
>>> pop1 = pop.extractSubPops([(0,2)])
>>> sim.dump(pop1, structure=False, max=10)
SubPopulation 0 (), 0 Individuals:

now exiting runScriptInteractively...

Download extract.py

Store arbitrary population information as population variables

Each simuPOP population has a Python dictionary that can be used to store
arbitrary Python variables. These variables are usually used by various
operators to share information between them. For example, the Stat operator
calculates population statistics and stores the results in this Python
dictionary. Other operators such as the PyEval and TerminateIfread from this dictionary and act upon its information.

simuPOP provides two functions, namely Population.vars() and
Population.dvars() to access a population dictionary. These functions return
the same dictionary object but dvars() returns a wrapper class so that
you can access this dictionary as attributes. For example,
pop.vars()['alleleFreq'][0] is equivalent to pop.dvars().alleleFreq[0].
Because dictionary subPop[spID] is frequently used by operators to store
variables related to a particular (virtual) subpopulation, function
pop.vars(subPop) is provided as a shortcut to
pop.vars()['subPop'][spID]. Example popVars demonstrates
how to set and access population variables.

Example: population variables

>>> import simuPOP as sim
>>> from pprint import pprint
>>> pop = sim.Population(100, loci=2)
>>> sim.initGenotype(pop, freq=[0.3, 0.7])
>>> print(pop.vars()) # No variable now
{}
>>> pop.dvars().myVar = 21
>>> print(pop.vars())
{'myVar': 21}
>>> sim.stat(pop, popSize=1, alleleFreq=0)
>>> # pprint prints in a less messy format
>>> pprint(pop.vars())
{'alleleFreq': {0: defdict({0: 0.275, 1: 0.725})},
 'alleleNum': {0: defdict({0: 55.0, 1: 145.0})},
 'myVar': 21,
 'popSize': 100,
 'subPopSize': [100]}
>>> # print number of allele 1 at locus 0
>>> print(pop.vars()['alleleNum'][0][1])
145.0
>>> # use the dvars() function to access dictionary keys as attributes
>>> print(pop.dvars().alleleNum[0][1])
145.0
>>> print(pop.dvars().alleleFreq[0])
defdict({0: 0.275, 1: 0.725})

now exiting runScriptInteractively...

Download popVars.py

It is important to understand that this dictionary forms a local namespace
in which Python expressions can be evaluated. This is the basis of how
expression-based operators work. For example, the PyEvaloperator in
example simple_example evaluates expression
``'%.2f\\t' % LD[0][1]'' in each population’s local namespace when it is
applied to that population. This yields different results for different
population because their LD values are different. In addition to Python
expressions, Python statements can also be executed in the local namespace of a
population, using the stmts parameter of the PyEval or
PyExec operator. Example expression demonstrates
the use of a simuPOP terminator, which terminates the evolution of a population
when its expression is evaluated as True. Note that The evolve()function of this example does not specify how many generations to evolve so it
will stop only after all replicates stop. The return value of this function
indicates how many generations each replicate has evolved. This example also
demonstrates how to run multiple replicates of an evolutionary process, which we
will discuss in detail latter.

Example: Expression evaluation in the local namespace of a population

>>> import simuPOP as sim
>>> simu = sim.Simulator(sim.Population(100, loci=1), rep=5)
>>> simu.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5])
...],
... matingScheme = sim.RandomMating(),
... postOps=[
... sim.Stat(alleleFreq=0),
... sim.TerminateIf('len(alleleFreq[0]) == 1')
...]
...)
(129, 1540, 180, 247, 242)

now exiting runScriptInteractively...

Download expression.py

Save and load a population

simuPOP populations can be saved to and loaded from disk files using
Population.save(file) member function and global function
loadPopulation. Virtual splitters are not saved because they are
considered as runtime definitions. Although files in any extension can be used,
extension .pop is recommended. Example savePop demonstrates
how to save and load a population in the native simuPOP format.

Example: Save and load a population

>>> import simuPOP as sim
>>> pop = sim.Population(100, loci=5, chromNames=['chrom1'])
>>> pop.dvars().name = 'my sim.Population'
>>> pop.save('sample.pop')
>>> pop1 = sim.loadPopulation('sample.pop')
>>> pop1.chromName(0)
'chrom1'
>>> pop1.dvars().name
'my sim.Population'

now exiting runScriptInteractively...

Download savePop.py

The native simuPOP format is portable across different platforms but is not
human readable and is not recognized by other applications. If you need to save
a simuPOP population in a format that is recognizable by a particular software,
you can use functions importPopulation, export, and operator
Exporter if you would like to export populations during evolution. These
functions are defined in module simuPOP.utils.

Import and export datasets in unsupported formats *

simuPOP provides a few utility functions to import and export populations in
common formats such as GENEPOP, Phylip, and STRUCTURE (see chapter utility
modules for details). If you need to import data from a file in a format that is
not currently supported, you generally need to first scan the file for
information such as number and names of chromosomes, loci, alleles,
subpopulation, and individuals. After you create a population without genotype
information from these parameters, you can scan the file for the second time and
fill the population with genotypes and other information. Example
importData demonstrates how to define a function to import
from a file that is saved by function saveCSV.

Example: Import a population from another file format

>>> import simuPOP as sim
>>> def importData(filename):
... 'Read data from ``filename`` and create a population'
... data = open(filename)
... header = data.readline()
... fields = header.split(',')
... # columns 1, 3, 5, ..., without trailing '_1'
... names = [fields[x].strip()[:-2] for x in range(1, len(fields), 2)]
... popSize = 0
... alleleNames = set()
... for line in data.readlines():
... # get all allele names
... alleleNames |= set([x.strip() for x in line.split(',')[1:]])
... popSize += 1
... # create a population
... alleleNames = list(alleleNames)
... pop = sim.Population(size=popSize, loci=len(names), lociNames=names,
... alleleNames=alleleNames)
... # start from beginning of the file again
... data.seek(0)
... # discard the first line
... data.readline()
... for ind, line in zip(pop.individuals(), data.readlines()):
... fields = [x.strip() for x in line.split(',')]
... sex = sim.MALE if fields[0] == '1' else sim.FEMALE
... ploidy0 = [alleleNames.index(fields[x]) for x in range(1, len(fields), 2)]
... ploidy1 = [alleleNames.index(fields[x]) for x in range(2, len(fields), 2)]
... ind.setGenotype(ploidy0, 0)
... ind.setGenotype(ploidy1, 1)
... ind.setSex(sex)
... # close the file
... data.close()
... return pop
...
>>> from simuPOP.utils import saveCSV
>>> pop = sim.Population(size=[10], loci=[3, 2], lociNames=['rs1', 'rs2', 'rs3', 'rs4', 'rs5'],
... alleleNames=['A', 'B'])
>>> sim.initSex(pop)
>>> sim.initGenotype(pop, freq=[0.5, 0.5])
>>> # output sex but not affection status.
>>> saveCSV(pop, filename='sample.csv', affectionFormatter=None,
... sexFormatter={sim.MALE:1, sim.FEMALE:2})
>>> # have a look at the file
>>> print(open('sample.csv').read())
sex, rs1_1, rs1_2, rs2_1, rs2_2, rs3_1, rs3_2, rs4_1, rs4_2, rs5_1, rs5_2
2, B, B, B, B, B, A, A, B, B, A
2, B, A, B, A, B, A, A, A, A, B
1, B, B, B, B, B, B, B, B, B, A
1, B, A, B, A, B, B, B, A, A, A
1, B, B, B, B, B, B, A, A, B, A
1, A, B, B, A, B, B, B, A, B, B
1, B, B, B, B, B, B, B, B, A, A
2, B, B, A, A, B, A, A, A, B, A
2, A, B, B, B, A, B, B, A, A, B
2, B, A, A, B, A, A, B, B, B, A

>>> pop1 = importData('sample.csv')
>>> sim.dump(pop1)
Ploidy: 2 (diploid)
Chromosomes:
1: (AUTOSOME, 5 loci)
 rs1 (1), rs2 (2), rs3 (3), rs4 (4), rs5 (5)
population size: 10 (1 subpopulations with 10 Individuals)
Number of ancestral populations: 0

SubPopulation 0 (), 10 Individuals:
 0: FU BBBAB | BBABA
 1: FU BBBAA | AAAAB
 2: MU BBBBB | BBBBA
 3: MU BBBBA | AABAA
 4: MU BBBAB | BBBAA
 5: MU ABBBB | BABAB
 6: MU BBBBA | BBBBA
 7: FU BABAB | BAAAA
 8: FU ABABA | BBBAB
 9: FU BAABB | ABABA

now exiting runScriptInteractively...

Download importData.py

Unless there are specific requirements in the order and labeling of individuals,
exporting a simuPOP population is usually straightforward. Functions that are
useful in such occasions include structural functions
Population.numSubPop(), Population.subPopName,
Population.popSize() and Population.subPopSizes(), and
individual access functions Population.individual() and
Population.individuals() and individual population access functions
such as Individual.allele() and Individual.info(). Function
saveFSTAT in the cookbook module fstatUtil or saveCSV in module
simuPOP.utils are good examples you can follow.

simuPOP Operators

simuPOP is large, consisting of more than 70 operators and various functions
that covers all important aspects of genetic studies. These includes mutation
(k-allele, stepwise, generalized stepwise), migration (arbitrary, can create
new subpopulation), recombination (uniform or nonuniform), gene conversion,
quantitative trait, selection, penetrance (single or multi-locus, hybrid),
ascertainment (case-control, affected sibpairs, random), statistics calculation
(allele, genotype, haplotype, heterozygote number and frequency; expected
heterozygosity; bi-allelic and multi-allelic , and
 linkage disequilibrium measures; ,
and); pedigree tracing, visualization (using R or other Python
modules). This chapter covers the basic and some not-so-basic usages of these
operators, organized roughly by genetic factors.

	Introduction to operators
	Apply operators to selected replicates and (virtual) subpopulations at selected generations

	Applicable populations and (virtual) subpopulations

	Dynamically determined loci (parameter loci) *

	Write output of operators to one or more files

	During-mating operators

	Function form of an operator

	Initialization
	Initialize individual sex (operator InitSex)

	Initialize genotype (operator InitGenotype)

	Initialize information fields (operator InitInfo)

	Expressions and statements
	Output a Python string (operator PyOutput)

	Execute Python statements (operator PyExec)

	Evaluate and output Python expressions (operator PyEval)

	Expression and statement involving individual information fields (operator InfoEval and InfoExec) *

	Using functions in external modules in simuPOP expressions and statements

	Demographic changes
	Migration (operator Migrator)
	Migration by probability

	Migration by proportion and counts

	Theoretical migration models

	migrate from virtual subpopulations *

	Arbitrary migration models **

	Migration using backward migration matrix (operator BackwardMigrator)

	Split subpopulations (operators SplitSubPops)

	Merge subpopulations (operator MergeSubPops)

	Resize subpopulations (operator ResizeSubPops)

	Time-dependent migration rate

	Genotype transmitters
	Generic genotype transmitters (operators GenoTransmitter, CloneGenoTransmitter, MendelianGenoTransmitter, SelfingGenoTransmitter, HaplodiploidGenoTransmitter, and MitochondrialGenoTransmitter) *

	Recombination (Operator Recombinator)

	Gene conversion (Operator Recombinator) *

	Tracking all recombination events **

	Mutation
	Mutation models specified by rate matrixes (MatrixMutator)

	k-allele mutation model (KAlleleMutator)

	Diallelic mutation models (SNPMutator)

	Nucleotide mutation models (AcgtMutator)

	Mutation model for microsatellite markers (StepwiseMutator)

	Simulating arbitrary mutation models using a hybrid mutator (PyMutator)*

	Mixed mutation models (MixedMutator) **

	Context-dependent mutation models (ContextMutator)**

	Manually-introduced mutations (PointMutator)

	Apply mutation to (virtual) subpopulations *

	Allele mapping **

	Mutation rate and transition matrix of a MatrixMutator**

	Infinite-sites model and other simulation techniques **

	Recording and tracing individual mutants **

	Penetrance
	Map penetrance model (operator MapPenetrance)

	Multi-allele penetrance model (operator MaPenetrance)

	Multi-loci penetrance model (operator MlPenetrance)

	Hybrid penetrance model (operator PyPenetrance)

	Quantitative trait
	A hybrid quantitative trait operator (operator PyQuanTrait)

	Natural Selection
	Natural selection through the selection of parents

	Natural selection through the selection of offspring *

	Are two selection scenarios equivalent? **

	Map selector (operator MapSelector)

	Multi-allele selector (operator MaSelector)

	Multi-locus selection models (operator MlSelector)

	A hybrid selector (operator PySelector)

	Multi-locus random fitness effects (operator PyMlSelector)

	Alternative implementations of natural selection

	Frequency dependent or dynamic selection pressure *

	Support for virtual subpopulations *

	Natural selection in heterogeneous mating schemes **

	Tagging operators
	Inheritance tagger (operator InheritTagger)

	Summarize parental informatin fields (operator SummaryTagger)

	Tracking parents (operator ParentsTagger)

	Tracking index of offspring within families (operator OffspringTagger)

	Assign unique IDs to individuals (operator IdTagger)

	Tracking Pedigrees (operator PedigreeTagger)

	A hybrid tagger (operator PyTagger)

	Tagging that involves other parental information

	Statistics calculation (operator Stat)
	How statistics calculation works

	defdict datatype

	Support for virtual subpopulations

	Counting individuals by sex and affection status

	Number of segregating and fixed sites

	Allele count and frequency

	Genotype count and frequency

	Homozygote and heterozygote count and frequency

	Haplotype count and frequency

	Summary statistics of information fields

	Linkage disequilibrium

	Genetic association

	population structure

	Hardy-Weinberg equilibrium test

	Measure of Inbreeding

	Effective population size

	Other statistics

	Support for sex and customized chromosome types

	Conditional operators
	Conditional operator (operator IfElse) *

	Conditionally terminate an evolutionary process (operator TerminateIf)

	Conditional removal of individuals (operator DiscardIf)

	Miscellaneous operators
	An operator that does nothing (operator NoneOp)

	dump the content of a population (operator Dumper)

	Save a population during evolution (operator SavePopulation)

	Pause and resume an evolutionary process (operator Pause) *

	Measuring execution time of operators (operator TicToc) *

	Hybrid and Python operators
	Hybrid operators

	Python operator PyOperator *

	During-mating Python operator *

	Define your own operators *

Introduction to operators

Operators are objects that act on populations. There are two types of operators:

	Operators that are applied to populations. These operators are used in the
initOps, preOps, postOps and finalOps parameters of the
evolve function. The initOps operators are applied before an
evolutionary process, the preOps operators are applied to the parental
population at each generation before mating, the postOps operators are
applied to the offspring population at each generation after mating, and the
finalOps operators are applied after an evolutionary process. Examples of
such operators include MergeSubPops to merge subpopulations and
StepwiseMutator to mutate individuals using a stepwise mutation model.

	Operators that are applied to individuals (offspring) during mating. These
operators are used in the ops parameter of a mating scheme. They are usually
used to transmit genotype or other information from parents to offspring.
Examples of such operators include MendelianGenoTransmitter that
transmit parental genotype to offspring according to Mendelian laws and
ParentsTagger that record the indexes of parents in the parental
population to each offspring.

Some mutators could be applied both to populations and individuals. For example,
an IdTagger could be applied to a whole population and assign an unique
ID to all individuals, or to offspring during mating.

The following sections will introduce common features of all operators. The next
chapter will explain all simuPOP operators in detail.

Apply operators to selected replicates and (virtual) subpopulations at selected generations

Operators are, by default, applied to all generations during an evolutionary
process. This can be changed using the begin, end, step and at
parameters. As their names indicate, these parameters control the starting
generation (begin), ending generation (end), generations between two
applicable generations (step), and an explicit list of applicable
generations (at, a single generation number is also acceptable). Other
parameters will be ignored if at is specified. It is worth noting that, if
an evolutionary process has a pre-sepcified ending generation, negative
generations numbers are allowed. They are counted backward from the ending
generation.

For example, if a simulator starts at generation 0, and the evolve
function has parameter gen=10, the simulator will stop at the beginning of
generation 10. Generation -1 refers to generation 9, and generation
-2 refers to generation 8, and so on. Example applicableGen demonstrates how to set applicable generations of an operator.
In this example, a population is initialized before evolution using an
InitGenotype operator. allele frequency at locus 0 is calculated at
generation 80, 90, but not 100 because the evolution stops at the
beginning of generation 100. A PyEval operator outputs generation
number and allele frequency at the end of generation 80 and 90. Another
PyEval operator outputs similar information at generation 90 and
99, before and after mating. Note, however, because allele frequencies are
only calculated twice, the pre-mating allele frequency at generation 90 is
actually calculated at generation 80, and the allele frequencies display for
generation 99 are calculated at generation 90. At the end of the
evolution, the population is saved to a file using a SavePopulation
operator.

Example: Applicable generations of an operator.

>>> import simuPOP as sim
>>> pop = sim.Population(1000, loci=[20])
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.8, 0.2])
...],
... preOps=[
... sim.PyEval(r"'At the beginning of gen %d: allele Freq: %.2f\n' % (gen, alleleFreq[0][0])",
... at = [-10, -1])
...],
... matingScheme = sim.RandomMating(),
... postOps=[
... sim.Stat(alleleFreq=0, begin=80, step=10),
... sim.PyEval(r"'At the end of gen %d: allele freq: %.2f\n' % (gen, alleleFreq[0][0])",
... begin=80, step=10),
... sim.PyEval(r"'At the end of gen %d: allele Freq: %.2f\n' % (gen, alleleFreq[0][0])",
... at = [-10, -1])
...],
... finalOps=sim.SavePopulation(output='sample.pop'),
... gen=100
...)
At the end of gen 80: allele freq: 0.92
At the beginning of gen 90: allele Freq: 0.92
At the end of gen 90: allele freq: 0.93
At the end of gen 90: allele Freq: 0.93
At the beginning of gen 99: allele Freq: 0.93
At the end of gen 99: allele Freq: 0.93
100

now exiting runScriptInteractively...

Download applicableGen.py

Applicable populations and (virtual) subpopulations

A simulator can evolve multiple replicates of a population simultaneously.
Different operators can be applied to different replicates of this population.
This allows side by side comparison between simulations.

Parameter reps is used to control which replicate(s) an operator can be
applied to. This parameter can be a list of replicate numbers or a single
replicate number. Negative index is allowed where -1 refers to the last
replicate. This technique has been widely used to produce table-like output
where a PyOutput outputs a newline when it is applied to the last
replicate of a simulator. Example hybridOperator
demonstrates how to use this reps parameter. It is worth noting that
negative indexes are dynamic indexes relative to number of active populations.
For example, rep=-1 will refer to a previous population if the last
population has stopped evolving. Use a non-negative replicate number if this is
not intended.

Example: Apply operators to a subset of populations

>>> import simuPOP as sim
>>> simu = sim.Simulator(sim.Population(100, loci=[20]), 5)
>>> simu.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.2, 0.8])
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(alleleFreq=0, step=10),
... sim.PyEval('gen', step=10, reps=0),
... sim.PyEval(r"'\t%.2f' % alleleFreq[0][0]", step=10, reps=(0, 2, -1)),
... sim.PyOutput('\n', step=10, reps=-1)
...],
... gen=30,
...)
0 0.23 0.22 0.29
10 0.15 0.23 0.21
20 0.04 0.07 0.10
(30, 30, 30, 30, 30)

now exiting runScriptInteractively...

Download replicate.py

An operator can also be applied to specified (virtual) subpopulations. For
example, an initializer can be applied to male individuals in the first
subpopulation, and everyone in the second subpopulation using parameter
subPops=[(0,0), 1], if a virtual subpopulation is defined by individual sex.
Generally speaking,

	subPops=[] applies the operator to all subpopulation. This is usually the
default value of an operator.

	subPops=[vsp1, vsp2,...] applies the operator all specified (virtual)
subpopulations. (e.g. subPops=[(0,0), 1]).

	subPops=sp is an abbreviation for subPops=[sp]. If sp is virtual,
it has to be written as [sp] because subPops=(0, 1) is intepreted as two
non-virtual subpopulation.

However, not all operators support this parameter, and even if they do, their
interpretations of parameter input may vary. Please refer to documentation for
individual operators in the simuPOP reference manual for details.

Dynamically determined loci (parameter loci) *

Many operators accept a parameter loci to specify the applicable loci. This
parameter can be

	ALL_AVAIL: all available loci of the population to which the operator is
applied.

	[1, 2, 4, 5]: A list of loci indexes. When the operator is applied to a
population, it will be applied to the specified loci.

	[('chr1', 5), ('chr1', 10), ('chr2', 5)]: A list of chromosome position
pairs. That is to say, when the operator is applied to a population, it will
find loci at specified position of specified chromosome. Here chromosome names
are names specified by parameter chromNames of the Population
constructor. That is to say, the operator can be applied to all population with
such chromosomes and loci at specified locations.

	func: A function with an optional parameter pop. When the operator is
applied to a population, it will call this function, optionally pass the
population to be applied to this function, and use its output as indexes of
loci.

The last usage is very interesting because it allows the determination of loci
according to population property. For example, Example dynamicLoci shows an example with a MaSelector that is applied to
the locus with highest frequency at each generation by calling function
mostPopular, which calculates allele frequency and pick the locus with
highest allele frequency, This example looks silly, but the technique is very
useful in simulating the introduction of disease loci by, for example, adding
positive selection pressure to one of the chosen loci.

Example: Natural selection with dynamically determined loci

>>> import simuPOP as sim
>>> pop = sim.Population(100, loci=[10], infoFields='fitness')
>>>
>>> def mostPopular(pop):
... sim.stat(pop, alleleFreq=sim.ALL_AVAIL)
... freq = [pop.dvars().alleleFreq[x][1] for x in range(pop.totNumLoci())]
... max_freq = max(freq)
... pop.dvars().selLoci = (freq.index(max_freq), max_freq)
... return [freq.index(max_freq)]
...
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.6, 0.4]),
...],
... preOps=[
... sim.MaSelector(fitness=[1, 0.9, 0.8], loci=mostPopular),
... sim.PyEval(r"'gen=%d, select against %d with frequency %.2f\n' % (gen, selLoci[0], selLoci[1])"),
...],
... matingScheme=sim.RandomMating(),
... gen=10,
...)
gen=0, select against 6 with frequency 0.45
gen=1, select against 7 with frequency 0.46
gen=2, select against 2 with frequency 0.51
gen=3, select against 2 with frequency 0.48
gen=4, select against 2 with frequency 0.45
gen=5, select against 9 with frequency 0.45
gen=6, select against 3 with frequency 0.46
gen=7, select against 9 with frequency 0.44
gen=8, select against 7 with frequency 0.47
gen=9, select against 3 with frequency 0.44
10

now exiting runScriptInteractively...

Download dynamicLoci.py

Write output of operators to one or more files

All operators we have seen, except for the SavePopulation operator in
Example applicableGen, write their output to the standard
output, namely your terminal window. However, it would be much easier for
bookkeeping and further analysis if these output can be redirected to disk
files. Parameter output is designed for this purpose.

Parameter output can take the following values:

	'' (an empty string): No output.

	'>': Write to standard output.

	'filename' or '>filename': Write the output to a file named filename.
If multiple operators write to the same file, or if the same operator writes to
the file file several times, only the last write operation will succeed.

	'>>filename': Append the output to a file named filename. The file will be
opened at the beginning of evolve function and closed at the end. An
existing file will be cleared.

	'>>>filename': This is similar to the '>>' form but the file will not
be cleared at the beginning of the evolve function.

	'!expr': expr is considered as a Python expression that will be
evaluated at a population’s local namespace whenever an output string is needed.
For example, '!''%d.txt'' % gen' would return 0.txt, 1.txt etc at
generation 0, 1, ….

	File handle of an opened file. Actually any python object with a write
function.

	A Python function that can accept a string as its only parameter
(func(msg)). When an operator outputs a message, this function will be
called with this message.

	A WithMode(output, 'b') object with output being the any of
the allowed output string or function. This object tells simuPOP that the output
is opened in binary model so that it should output bytes instead of texts to it.
This is mostly designed for Python 3 because file objects in Python 2 accepts
string even if they are opened in binary mode.

Because a table output such as the one in Example hybridOperator is written by several operators, it is clear that all of them
need to use the '>>' output format.

The SavePopulation operator in Example applicableGen write to file sample.pop. This works well if there is only
one replicate but not so when the operator is applied to multiple populations.
Only the last population will be saved successfully! In this case, the
expression form of parameter output should be used.

The expression form of this parameter accepts a Python expression. Whenever a
filename is needed, this expression is evaluated against the local namespace of
the population it is applied to. Because the evolve function automatically
sets variables gen and rep in a population’s local namespace, such
information can be used to produce an output string. Of course, any variable in
this namespace can be used so you are not limited to these two variable.

Example hybridOperator demonstrates the use of these two
parameters. In this example, a table is written to file LD.txt using
output='>>LD.txt'. Similar operation to output='R2.txt' fails because
only the last value is written to this file. The last operator
writes output for each replicate to their respective output file such as
LD_0.txt, using an expression that involves variable rep.

Example: Use the output and outputExpr parameters

>>> import simuPOP as sim
>>> simu = sim.Simulator(sim.Population(size=1000, loci=2), rep=3)
>>> simu.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(genotype=[1, 2, 2, 1])
...],
... matingScheme = sim.RandomMating(ops=sim.Recombinator(rates=0.01)),
... postOps=[
... sim.Stat(LD=[0, 1]),
... sim.PyEval(r"'%.2f\t' % LD[0][1]", step=20, output='>>LD.txt'),
... sim.PyOutput('\n', reps=-1, step=20, output='>>LD.txt'),
... sim.PyEval(r"'%.2f\t' % R2[0][1]", output='R2.txt'),
... sim.PyEval(r"'%.2f\t' % LD[0][1]", step=20, output="!'>>LD_%d.txt' % rep"),
...],
... gen=100
...)
(100, 100, 100)
>>> print(open('LD.txt').read())
0.25 0.24 0.24
0.21 0.20 0.21
0.16 0.15 0.17
0.15 0.13 0.13
0.11 0.10 0.13

>>> print(open('R2.txt').read()) # Only the last write operation succeed.
0.20
>>> print(open('LD_2.txt').read()) # Each replicate writes to a different file.
0.24 0.21 0.17 0.13 0.13

now exiting runScriptInteractively...

Download output.py

Example outputFunc demonstrates an advanced usage of the
output parameter. In this example, a logging object is created to write to a
logfile as well as the standard output. The info and debug functions of
this object are assigned to two operators so that their outputs can be sent to
both a logfile and to the console window. One of the advantages of using a
logging mechanism is that debugging output could be suppressed easily by
adjusting the logging level of the logging object. Note that function
logging.info() automatically adds a new line to its input messages before it
writes them to an output.

Example: Output to a Python function

>>> import simuPOP as sim
>>> import logging
>>> # logging to a file simulation.log, with detailed debug information
>>> logging.basicConfig(
... filename='simulation.log',
... level=logging.DEBUG,
... format='%(levelname)s: %(message)s',
... filemode='w'
...)
>>> formatter = logging.Formatter('%(message)s')
>>> logger = logging.getLogger('')
>>> pop = sim.Population(size=1000, loci=2)
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(genotype=[1, 2, 2, 1])
...],
... matingScheme = sim.RandomMating(ops=sim.Recombinator(rates=0.01)),
... postOps=[
... sim.Stat(LD=[0, 1]),
... sim.PyEval(r"'LD: %d, %.2f' % (gen, LD[0][1])", step=20,
... output=logger.info), # send LD to console and a logfile
... sim.PyEval(r"'R2: %d, %.2f' % (gen, R2[0][1])", step=20,
... output=logger.debug), # send R2 only to a logfile
...],
... gen=100
...)
100
>>> print(open('simulation.log').read())
INFO: LD: 0, 0.25
DEBUG: R2: 0, 0.97
INFO: LD: 20, 0.20
DEBUG: R2: 20, 0.64
INFO: LD: 40, 0.18
DEBUG: R2: 40, 0.51
INFO: LD: 60, 0.12
DEBUG: R2: 60, 0.25
INFO: LD: 80, 0.10
DEBUG: R2: 80, 0.17

now exiting runScriptInteractively...

Download outputFunc.py

During-mating operators

All operators in Examples applicableGen, replicate and output are applied before or after mating.
There is, however, a hidden during-mating operator that is called by
RandomMating(). This operator is called
MendelianGenoTransmitter() and is responsible for transmitting
genotype from parents to offspring according to Mendel’s laws. All pre-defined
mating schemes (see Section sec_Mating_Schemes) use
a special kind of during-mating operator to transmit genotypes. They are called
genotype transmitters just to show the kind of task they perform. More
during mating operators could be specified by replacing the default operator
used in the ops parameter of a mating scheme (or an offspring generator if
you are defining your own mating scheme).

Operators used in a mating scheme honor applicability parameters begin,
step, end, at and reps although they do not support negative
population and replicate indexes. It is therefore possible to apply different
during-mating operators at different generations. For example, a
Recombinator is used in Example transmitter to
transmit parental genotypes to offspring after generation 30 while the
MendelianGenoTransmitter is applied before that.

Example: Genotype transmitters

>>> import simuPOP as sim
>>> pop = sim.Population(size=10000, loci=2)
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(genotype=[1, 2, 2, 1])
...],
... matingScheme = sim.RandomMating(ops=[
... sim.MendelianGenoTransmitter(end=29),
... sim.Recombinator(rates=0.01, begin=30),
...]),
... postOps=[
... sim.Stat(LD=[0, 1]),
... sim.PyEval(r"'gen %d, LD: %.2f\n' % (gen, LD[0][1])", step=20)
...],
... gen=100
...)
gen 0, LD: 0.25
gen 20, LD: 0.25
gen 40, LD: 0.23
gen 60, LD: 0.19
gen 80, LD: 0.15
100

now exiting runScriptInteractively...

Download transmitter.py

During-mating operators can be applied to (virtual) subpopulations using
parameter subPops, which refers to (virtual) subpopulations in the
offspring population. Section subsec_Pre_defined_genotype_transmitters and sec_Genotype_transmitters list all genotype transmitters, Section
subsec_Customized_genotype_transmitter demonstrates how to define your own
genotype transmitter, Section subsec_vspSelection
demonstrates the use of during-mating operator in virtual subpopulations.

Function form of an operator

Operators are usually applied to populations through a simulator but they can
also be applied to a population directly. For example, it is possible to create
an InitGenotype operator and apply to a population as follows:

InitGenotype(freq=[.3, .2, .5]).apply(pop)

Similarly, you can apply the hybrid penetrance model defined in Example
hybridOperator to a population by

PyPenetrance(func=myPenetrance, loci=[10, 30, 50]).apply(pop)

This usage is used so often that it deserves some simplification. Equivalent
functions are defined for most operators. For example, function initGenotype
is defined for operator InitGenotype as follows

Example: The function form of operator texttt{InitGenotype

>>> from simuPOP import InitGenotype, Population
>>> def initGenotype(pop, *args, **kwargs):
... InitGenotype(*args, **kwargs).apply(pop)
...
>>> pop = Population(1000, loci=[2,3])
>>> initGenotype(pop, freq=[.2, .3, .5])

now exiting runScriptInteractively...

Download funcform.py

These functions are called function form of operators. Using these functions,
the above two example can be written as

initGenotype(pop, freq=[.3, .2, .5])

and

pyPenetrance(pop, func=myPenetrance, loci=[10, 30, 50])

respectively. Note that applicability parameters such as begin and end
can still be passed, but they are ignored by these functions.

Finally, it is worth noting that, if you have a function that manipulates
population, you can make it an operator by wrapping it in a PyOperator
so that it can be called repeatedly during evolution. For example, for a
function myFunc that works on a population, you can define a wrapper
function

def Func(pop):
 # call myFunc
 myFunc(pop)
 return True

which can then use it in a PyOperator as follows:

PyOperator(func=Func)

The wrapper function is not needed if myFunc returns True by itself. It can
also be simplifed to a lambda function

PyOperator(func=lambda pop: myFunc(pop) is None)

if you are certain that myFunc does not return any value (return None).

Note

Whereas output files specified by '>' are closed immediately after they are
written, those specified by '>>' and '>>>' are not closed after the
operator is applied to a population. This is not a problem when operators are
used in a simulator because Simulator.evolve closes all files opened by
operators, but can cause trouble when the operator is applied directly to a
population. For example, multiple calls to dump(pop,
output='>>file') will dump pop to file repeatedly but file will not be
closed afterward. In this case, closeOutput('file') should be used
to explicitly close the file.

Initialization

simuPOP provides three operators to initialize individual sex, information
fields and genotype at the population level. A number of parameter are provided
to cover most commonly used initialization scenarios. A Python operator can be
used to intialize a population explicitly if none of the operators fits your
need.

Initialize individual sex (operator InitSex)

Operator InitSex() and function initSex() initialize individual
sex either randomly or using a given sequence. In the first case, individuals
are assigned MALE or FEMALE with equal probability unless parameter
maleFreq is used to specify the probability of having a male Individual.
Alternatively, parameter maleProp can be used to specify exact proportions of
male individuals so that you will have exactly 1000 males and 1000 females if
you apply InitSex(maleProp=0.5) to a population of 2000
individuals.

Both parameters maleFreq and maleProp assigns individual sex randomly.
If for some reason you need to specify individual sex explicitly, you could use
a sequence of sex (MALE or FEMALE) to assign sex to individuals
succesively. The list will be reused if needed. If a list of (virtual)
subpopulations are given, this operator will only initialize individuals in
these (virtual) subpopulations. Example InitSex demonstrates
how to use two InitSex operators to initialize two subpopulations.

Example: Initialize individual sex

>>> import simuPOP as sim
>>> pop = sim.Population(size=[1000, 1000])
>>> sim.initSex(pop, maleFreq=0.3, subPops=0)
>>> sim.initSex(pop, sex=[sim.MALE, sim.FEMALE, sim.FEMALE], subPops=1)
>>> sim.stat(pop, numOfMales=True, vars='numOfMales_sp')
>>> print(pop.dvars(0).numOfMales)
290
>>> print(pop.dvars(1).numOfMales)
334

now exiting runScriptInteractively...

Download InitSex.py

Initialize genotype (operator InitGenotype)

Operator InitGenotype (and its function form initGenotype)
initializes individual genotype by allele frequency, allele proportion,
haplotype frequency, haplotype proportions or a list of genotypes:

	By frequency of alleles. For example, InitGenotype(freq=(0, 0.2,
0.4, 0.2)) will assign allele 0, 1, 2, and 3 with probability 0, 0.2, 0.4 and
0.2 respectively.

	By proportions of alleles. For example, InitGenotype(prop=(0,
0.2, 0.4, 0.2)) will assign 400 allele 1, 800 allele 2 and 400 allele 3 to a
diploid population with 800 individuals.

	By frequency of haplotypes. For example, InitGenotype(haplotypes=[[0, 0], [1,1], [0,1],[1,1]]) will assign four haplotypes with
equal probabilities. InitGenotype(haplotypes=[[0, 0], [1,1],
[0,1],[1,1]], freq=[0.2, 0.2, 0.3, 0.3]) will assign these haplotypes with
different frequencies. If there are more than two loci, the haplotypes will be
repeated.

	By frequency of haplotypes. For example, InitGenotype(haplotypes=[[0, 0], [1,1], [0,1],[1,1]], prop=[0.2, 0.2, 0.3, 0.3]) will
assign four haplotypes with exact proportions.

	By a list of genotype. For example, InitGenotype(genotype=[1, 2,
2, 1]) will assign genotype 1, 2, 2, 1 repeatedly to a
population. If individuals in this population has two homologous copies of a
chromosome with two loci, this operator will assign haplotype 1, 2 to
the first homologous copy of the chromosome, and 2, 1 to the second
copy.

	By multiple allele frequencies or proportions returned by a function passed to
parameter freq or prop (new in version 1.1.7). This function can accept
parameters loc, subPop or vsp and returns locus, subpopopulation or
virtual subpopulation specific allele frequencies. For example, if you would
like to initialize genotypes with random allele frequency, you can set
freq=lambda : random.random() so that a new frequency is drawn from an
uniform distribution for each new locus. Note that simuPOP expects the return
value of this function to be a list of frequencies for alleles 0, 1, …, but
treats a single return value x as [x, 1-x] for simplicity.

Parameter loci and ploidy can be used to specify a subset of loci and
homologous sets of chromosomes to initialize, and parameter subPops can be
used to specify subsets of individuals to initialize. Example InitGenotype demonstrates how to use these the InitGenotype
operator, including examples on how to define and use virtual subpopulations to
initialize individual genotype by sex or by proportion.

Example: Initialize individual genotype

>>> import simuPOP as sim
>>> pop = sim.Population(size=[2000, 3000], loci=[5, 7])
>>> # by allele frequency
>>> def printFreq(pop, loci):
... sim.stat(pop, alleleFreq=loci)
... print(', '.join(['{:.3f}'.format(pop.dvars().alleleFreq[x][0]) for x in loci]))
...
>>> sim.initGenotype(pop, freq=[.4, .6])
>>> sim.dump(pop, max=6, structure=False)
SubPopulation 0 (), 2000 Individuals:
 0: MU 11000 0011111 | 11111 0101110
 1: MU 00000 1111111 | 11101 1111001
 2: MU 10111 0111100 | 01111 1011111
 3: MU 11011 1101010 | 11010 1011111
 4: MU 11011 0011010 | 10011 1001110
 5: MU 00001 1010011 | 11111 1111110
SubPopulation 1 (), 3000 Individuals:
2000: MU 10011 0010100 | 01001 0011010

>>> printFreq(pop, range(5))
0.397, 0.404, 0.400, 0.402, 0.406
>>> # by proportion
>>> sim.initGenotype(pop, prop=[0.4, 0.6])
>>> printFreq(pop, range(5))
0.400, 0.400, 0.400, 0.400, 0.400
>>> # by haplotype frequency
>>> sim.initGenotype(pop, freq=[.4, .6], haplotypes=[[1, 1, 0, 1], [0, 0, 1]])
>>> sim.dump(pop, max=6, structure=False)
SubPopulation 0 (), 2000 Individuals:
 0: MU 11011 1011101 | 00100 1001001
 1: MU 11011 1011101 | 11011 1011101
 2: MU 00100 1001001 | 00100 1001001
 3: MU 00100 1001001 | 00100 1001001
 4: MU 11011 1011101 | 11011 1011101
 5: MU 00100 1001001 | 11011 1011101
SubPopulation 1 (), 3000 Individuals:
2000: MU 00100 1001001 | 00100 1001001

>>> printFreq(pop, range(5))
0.597, 0.597, 0.403, 0.597, 0.597
>>> # by haplotype proportion
>>> sim.initGenotype(pop, prop=[0.4, 0.6], haplotypes=[[1, 1, 0], [0, 0, 1, 1]])
>>> printFreq(pop, range(5))
0.600, 0.600, 0.400, 0.000, 0.600
>>> # by genotype
>>> pop = sim.Population(size=[2, 3], loci=[5, 7])
>>> sim.initGenotype(pop, genotype=[1]*5 + [2]*7 + [3]*5 +[4]*7)
>>> sim.dump(pop, structure=False)
SubPopulation 0 (), 2 Individuals:
 0: MU 11111 2222222 | 33333 4444444
 1: MU 11111 2222222 | 33333 4444444
SubPopulation 1 (), 3 Individuals:
 2: MU 11111 2222222 | 33333 4444444
 3: MU 11111 2222222 | 33333 4444444
 4: MU 11111 2222222 | 33333 4444444

>>> #
>>> # use virtual subpopulation
>>> pop = sim.Population(size=[2000, 3000], loci=[5, 7])
>>> pop.setVirtualSplitter(sim.SexSplitter())
>>> sim.initSex(pop)
>>> sim.initGenotype(pop, genotype=range(10), loci=range(5))
>>> # initialize all males
>>> sim.initGenotype(pop, genotype=[2]*7, loci=range(5, 12),
... subPops=[(0, 0), (1, 0)])
>>> # assign genotype by proportions
>>> pop.setVirtualSplitter(sim.ProportionSplitter([0.4, 0.6]))
>>> sim.initGenotype(pop, freq=[0.2, 0.8], subPops=[(0,0)])
>>> sim.initGenotype(pop, freq=[0.5, 0.5], subPops=[(0,1)])
>>> #
>>> # initialize by random allele frequency
>>> import random
>>> sim.initGenotype(pop, freq=lambda : random.random())
>>> printFreq(pop, range(5))
0.580, 0.239, 0.100, 0.576, 0.674
>>> # initialize with loci specific frequency. here
>>> # lambda loc: 0.01*loc is equivalent to
>>> # lambda loc: [0.01*loc, 1-0.01*loc]
>>> sim.initGenotype(pop,
... freq=lambda loc: 0.01*loc)
>>> printFreq(pop, range(5))
0.000, 0.009, 0.018, 0.029, 0.041
>>> # initialize with VSP-specific frequency
>>> sim.initGenotype(pop,
... freq=lambda vsp: [[0.2, 0.8], [0.5, 0.5]][vsp[1]],
... subPops=[(0, 0), (0, 1)])
>>>

now exiting runScriptInteractively...

Download InitGenotype.py

Initialize information fields (operator InitInfo)

Operator InitInfo and its function form initInfo initialize one or
more information fields of all individuals or Individuals in selected (virtual)
subpopulations using either a list of values or a Python function. If a value or
a list of value is given, it will be used repeatedly to assign values of
specified information fields of all applicable individuals. For example,
initInfo(pop, values=1, infoFields='x') will assign value 1 to
information field x of all individuals, and

initInfo(pop, values=[1, 2, 3], infoFields='x', subPops=[(0,1)])

will assign values 1, 2, 3, 1, 2, 3… to information
field x of individuals in the second virtual subpopulation of subpopulation
0.

The values parameter also accepts a Python function. This feature is usually
used to assign random values to an information field. For example,
values=random.random would assign a random value between 0 and 1. If a
function takes parameters, a lambda function can be used. For example,

initInfo(pop, lambda : random.randint(2, 5), infoFields=['x', 'y'])

assigns random integers between 2 and 5 to information fields x and y of
all individuals in pop. Example InitInfo demonstrates these
usages.

Example: initialize information fields

>>> import simuPOP as sim
>>> import random
>>> pop = sim.Population(size=[5], loci=[2], infoFields=['sex', 'age'])
>>> pop.setVirtualSplitter(sim.SexSplitter())
>>> sim.initSex(pop)
>>> sim.initInfo(pop, 0, subPops=[(0,0)], infoFields='sex')
>>> sim.initInfo(pop, 1, subPops=[(0,1)], infoFields='sex')
>>> sim.initInfo(pop, lambda: random.randint(20, 70), infoFields='age')
>>> sim.dump(pop, structure=False)
SubPopulation 0 (), 5 Individuals:
 0: FU 00 | 00 | 1 39
 1: FU 00 | 00 | 1 29
 2: MU 00 | 00 | 0 68
 3: MU 00 | 00 | 0 50
 4: MU 00 | 00 | 0 21

now exiting runScriptInteractively...

Download InitInfo.py

Expressions and statements

Output a Python string (operator PyOutput)

Operator PyOutput is a simple operator that prints a Python string when
it is applied to a population. It is commonly used to print the progress of a
simulation (e.g. PyOutput('start migration\\n', at=200)) or
output separators to beautify outputs from PyEval outputs (e.g.
PyOutput('\\n', rep=-1).

Execute Python statements (operator PyExec)

Operator PyExec executes Python statements in a population’s local
namespace when it is applied to that population. This operator is designed to
execute short Python statements but multiple statements separated by newline
characters are allowed.

Example PyExec uses two PyExec operators to create and
use a variable traj in each population’s local namespace. The first operator
initialize this variable as an empty list. During evolution, the frequency of
allele 1 at locus 0 is calcuated (operator Stat) and appended to this
variable (operator PyExec). The result is a trajectory of allele
frequencies during evolution.

Example: Execute Python statements during evolution

>>> import simuPOP as sim
>>> simu = sim.Simulator(sim.Population(100, loci=1),
... rep=2)
>>> simu.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.2, 0.8]),
... sim.PyExec('traj=[]')
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(alleleFreq=0),
... sim.PyExec('traj.append(alleleFreq[0][1])'),
...],
... gen=5
...)
(5, 5)
>>> # print Trajectory
>>> print(', '.join(['%.3f' % x for x in simu.dvars(0).traj]))
0.775, 0.790, 0.760, 0.750, 0.750

now exiting runScriptInteractively...

Download PyExec.py

Evaluate and output Python expressions (operator PyEval)

Operator PyEval evaluate a given Python expression in a population’s
local namespace and output its return value. This operator has been widely used
(e.g. Example simple_example, ancestralPop, applicableGen and output) to output statistics of populations and report progress.

Two additional features of this operator may become handy from time to time.
First, an optional Python statements (parameter stmts) can be specified which
will be executed before the expression is evaluated. Second, the population
being applied can be exposed in its own namespace as a variable (parameter
exposePop). This makes it possible to access properties of a population other
than its variables. Example PyEval demonstrates both features.
In this example, two statements are executed to count the number of unique
parents in an offspring population and save them as variables numFather and
numMother. The operator outputs these two variables alone with a generation
number.

Example: Evaluate a expression and statements in a population’s local namespace.

>>> import simuPOP as sim
>>> pop = sim.Population(1000, loci=1,
... infoFields=['mother_idx', 'father_idx'])
>>> pop.evolve(
... initOps=sim.InitSex(),
... matingScheme=sim.RandomMating(ops=[
... sim.MendelianGenoTransmitter(),
... sim.ParentsTagger(),
...]),
... postOps=[
... sim.Stat(alleleFreq=0),
... sim.PyEval(r'"gen %d, #father %d, #mother %d\n"' \
... ' % (gen, numFather, numMother)',
... stmts="numFather = len(set(pop.indInfo('father_idx')))\n"
... "numMother = len(set(pop.indInfo('mother_idx')))",
... exposePop='pop')
...],
... gen=3
...)
gen 0, #father 439, #mother 433
gen 1, #father 433, #mother 432
gen 2, #father 449, #mother 420
3

now exiting runScriptInteractively...

Download PyEval.py

Note that the function form of this operator (pyEval) returns the result
of the expression rather than writting it to an output.

Expression and statement involving individual information fields (operator InfoEval and InfoExec) *

Operators PyEval and PyExec work at the population level,
using the local namespace of populations. Operator InfoEval and
InfoExec, on the contraray, work at the individual level, using
individual information fields (and population variables) as variables. In this
case, individual information fields are copied to the population namespace one
by one before expression or statements are executed for each individual.
Optionally, the individual object can be exposed to these namespace using a
user-specified name (parameter exposeInd). Individual information fields will
be updated if the value of these fields are changed.

Operator InfoEval evaluates an expression and outputs its value.
Operator InfoExec executes one or more statements and does not produce
any output. Operator InfoEval is usually used to output individual
information fields and properties in batch mode. It is faster and sometimes
easier to use than corresponding for loop plus individual level operations. For
example

	InfoEval(r'''%.2f\\t'' % a') outputs the value of information
field a for all individuals, separated by tabs.

	InfoEval('ind.sexChar()', exposeInd='ind') outputs the sex of
all individuals using an exposed individual object ind.

	InfoEval('a+b**2') outputs for information
fields and for all individuals.

Example InfoEval demonstrates the use of this operator.

Example: Evaluate expressions using individual information fields

>>> import simuPOP as sim
>>> import random
>>> pop = sim.Population(20, loci=1, infoFields='a')
>>> pop.setVirtualSplitter(sim.InfoSplitter('a', cutoff=[3]))
>>> sim.initGenotype(pop, freq=[0.2, 0.8])
>>> pop.setIndInfo([random.randint(2, 5) for x in range(20)], 'a')
>>> sim.infoEval(pop, 'a', subPops=[(0, 0)]);print(' ')
2.02.02.02.0
>>> sim.infoEval(pop, 'ind.allele(0, 0)', exposeInd='ind');print(' ')
11011111111100111111
>>> # use sim.population variables
>>> pop.dvars().b = 5
>>> sim.infoEval(pop, '"%d " % (a+b)');print(' ')
8 9 10 8 9 10 8 9 10 10 9 7 9 7 9 7 9 7 9 8

now exiting runScriptInteractively...

Download InfoEval.py

Operator InfoExec is usually used to set individual information fields.
For example

	InfoExec('age += 1') increases the age of all individuals by
one.

	InfoExec('risk = 2 if packPerYear > 10 else 1.5') sets
information field risk to 2 if packPerYear is greater than 10,
and 1.5 otherwise. Note that conditional expression is only available for
Python version 2.5 or later.

	InfoExec('a = b*c') sets the value of information field a
to the product of b and c.

Example InfoExec demonstrates the use of this operator, using
its function form infoExec.

Example: Execute statements using individual information fields

>>> import simuPOP as sim
>>> pop = sim.Population(100, loci=1, infoFields=['a', 'b', 'c'])
>>> sim.initSex(pop)
>>> sim.initGenotype(pop, freq=[0.2, 0.8])
>>> sim.infoExec(pop, 'a=1')
>>> print(pop.indInfo('a')[:10])
(1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
>>> sim.infoExec(pop, 'b=ind.sex()', exposeInd='ind')
>>> print(pop.indInfo('b')[:10])
(2.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0)
>>> sim.infoExec(pop, 'c=a+b')
>>> print(pop.indInfo('c')[:10])
(3.0, 3.0, 2.0, 2.0, 2.0, 2.0, 2.0, 3.0, 3.0, 3.0)
>>> pop.dvars().d = 5
>>> sim.infoExec(pop, 'c+=d')
>>> print(pop.indInfo('c')[:10])
(8.0, 8.0, 7.0, 7.0, 7.0, 7.0, 7.0, 8.0, 8.0, 8.0)
>>> # the operator can update population variable as well
>>> sim.infoExec(pop, 'd+=c*c')
>>> print(pop.dvars().d)
5835.0

now exiting runScriptInteractively...

Download InfoExec.py

Note that a statement can also be specified for operator InfoEval,
which will be executed before an expression is evaluated.

Using functions in external modules in simuPOP expressions and statements

All simuPOP expressions and statements are evaluated in a population’s local
namespace, which is a dictionary with no access to external modules. If you
would like to use external modules (e.g. functions from the random module),
you will have to import them to the namespace explicitly, using something like

exec('import random', pop.vars(), pop.vars())

before you evolve the population.

Example outputByInterval demonstrates the application
of this technique. This example imports the time module in the population’s
local namespace and set init_time and last_time before evolution. During
evolution, anIfElse operator is used to output the status of the
simulation for every 5 seconds using expression time.time() - last_time > 5.
last_time is reset using the PyExec operator. The evolution will
last 20 seconds and be terminated by the Terminator with expression
time.time() - init_time > 20.

Example: Write the status of an evolutionary process every 10 seconds

>>> import simuPOP as sim
>>> import time
>>> pop = sim.Population(1000, loci=10)
>>> pop.dvars().init_time = time.time()
>>> pop.dvars().last_time = time.time()
>>> exec('import time', pop.vars(), pop.vars())
>>> pop.evolve(
... initOps=sim.InitSex(),
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.IfElse('time.time() - last_time > 5', [
... sim.PyEval(r'"Gen: %d\n" % gen'),
... sim.PyExec('last_time = time.time()')
...]),
... sim.TerminateIf('time.time() - init_time > 20')
...]
...)
Gen: 5043
Gen: 9971
Gen: 14997
19925
>>>

now exiting runScriptInteractively...

Download outputByInterval.py

Demographic changes

A mating scheme controls the size of an offspring generation using parameter
subPopSize. This parameter has been described in detail in section
subsec_offspring_size. In summary,

	The subpopulation sizes of the offspring generation will be the same as the
parental generation if subPopSize is not set.

	The offspring generation will have a fixed size if subPopSize is set to a
number (no subpopulation) or a list of subpopulation sizes.

	The subpopulation sizes of an offspring generation will be determined by the
return value of a demographic function if subPopSize is set to such a
function (a function that returns subpopulation sizes at each generation).

Note

Parameter subPopSize only controls subpopulation sizes of an offspring
generation immediately after it is generated. population or subpopulation sizes
could be changed by other operators.

During mating, a mating scheme goes through each parental subpopulation and
populates its corresponding offspring subpopulation. This implies that

	Parental and offspring populations should have the same number of
subpopulations.

	Mating happens strictly within each subpopulation.

This section will introduce several operators that allow you to move dndividuals
across the boundary of subpopulations (migration), and change the number of
subpopulations during evolution (split and merge). Please refer to
subsec_offspring_size (control the size of the
offspring generation section of chapter mating scheme) for more details. For
more advanced demographic models, please refer to the simuPOP.demography
module.

Migration (operator Migrator)

Migration by probability

Operator Migrator (and its function form migrate) migrates
individuals from one subpopulation to another. The key parameters are

	from subpopulations (parameter subPops). A list of subpopulations from
which individuals migrate. Default to all subpopulations.

	to subpopulations (parameter toSubPops). A list of subpopulations to
which individuals migrate. Default to all subpopulations. A new subpopulation
ID can be specified to create a new subpopulation from migrants.

	A migration rate matrix (parameter rate). A by matrix
(a nested list in Python) that specifies migration rate from each source to
each destination subpopulation. That is to say,
specifies migration rate from to
. Needless to say, and are
determined by the number of from and to subpopulations.

Example migrateByProb demonstrate the use of a
Migrator to migrate individuals between three subpopulations. Note that

	Operator Migrator relies on an information field migrate_to
(configurable) to record destination subpopulation of each individual so this
information field needs to be added to a population befor migration.

	Migration rates to subpopulation themselves are determined automatically so
they can be left unspecified.

Example: Migration by probability

>>> import simuPOP as sim
>>> pop = sim.Population(size=[1000]*3, infoFields='migrate_to')
>>> pop.evolve(
... initOps=sim.InitSex(),
... preOps=sim.Migrator(rate=[
... [0, 0.1, 0.1],
... [0, 0, 0.1],
... [0, 0.1, 0]
...]),
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(popSize=True),
... sim.PyEval('subPopSize'),
... sim.PyOutput('\n')
...],
... gen = 5
...)
[762, 1108, 1130]
[601, 1175, 1224]
[490, 1233, 1277]
[395, 1282, 1323]
[320, 1300, 1380]
5

now exiting runScriptInteractively...

Download migrateByProb.py

Migration by proportion and counts

Migration rate specified in the rate parameter in Example migrateByProb is intepreted as probabilities. That is to say, a migration
rate is interpreted as the probability at which any individual
in subpopulation migrates to subpopulation . The exact number
of migrants are randomly distributed.

If you would like to specify exactly how many migrants migrate from a
subpopulation to another, you can specify parameter mode of operator
Migrator to BY_PROPORTION or BY_COUNTS. The BY_PROPORTION
mode interpret as proportion of individuals who will migrate
from subpopulation to so the number of migrant will be exactly subPopSize(m). In the
BY_COUNTS mode, is interpretted as number of migrants,
regardless the size of subpopulation . Example
migrateByPropAndCount demonstrates these two
migration modes, as well as the use of parameters subPops and toSubPops.

Example: Migration by proportion and count

>>> import simuPOP as sim
>>> pop = sim.Population(size=[1000]*3, infoFields='migrate_to')
>>> pop.evolve(
... initOps=sim.InitSex(),
... preOps=sim.Migrator(rate=[[0.1], [0.2]],
... mode=sim.BY_PROPORTION,
... subPops=[1, 2],
... toSubPops=[3]),
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(popSize=True),
... sim.PyEval('subPopSize'),
... sim.PyOutput('\n')
...],
... gen = 5
...)
[1000, 900, 800, 300]
[1000, 810, 640, 550]
[1000, 729, 512, 759]
[1000, 657, 410, 933]
[1000, 592, 328, 1080]
5
>>> #
>>> pop.evolve(
... preOps=sim.Migrator(rate=[[50, 50], [100, 50]],
... mode=sim.BY_COUNTS,
... subPops=[3, 2],
... toSubPops=[2, 1]),
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(popSize=True),
... sim.PyEval('subPopSize'),
... sim.PyOutput('\n')
...],
... gen = 5
...)
[1000, 692, 328, 980]
[1000, 792, 328, 880]
[1000, 892, 328, 780]
[1000, 992, 328, 680]
[1000, 1092, 328, 580]
5

now exiting runScriptInteractively...

Download migrateByPropAndCount.py

Theoretical migration models

To facilitate the use of widely used theoretical migration models, a few
functions are defined in module simuPOP.demography
subsec_Predefined_migration_models.
These functions generate migration matrixes that can be plugged in to the
Migrator operator.

migrate from virtual subpopulations *

Under a realistic eco-social settings, individuals in a subpopulation rarely
have the same probability to migrate. Genetic evidence has shown that female has
a higher migrate rate than male in humans, perhaps due to migration patterns
related to inter-population marriages. Such sex-biased migration also happens in
other large migration events such as slave trade.

It is easy to simulate most of such complex migration models by migrating from
virtual subpopulations. For example, if you define virtual subpopulations by
sex, you can specify different migration rates for males and females and control
the proportion of males among migrants, by specifying virtual subpopulations in
parameter subPops. Parameter toSubPops does not accept virtual
subpopulations because you cannot, for example, migrate to females in a
subpopulation.

Example migrateVSP demonstrate a sex-biased migration model
where males dominate migrants from subpopulation 0. To avoid confusing, this
example uses the proportion migration mode. At the beginning of the first
generation, there are 500 males and 500 females in each subpopulation. A 10%
male migration rate and 5% female migration rate leads to 50 male migrants and
25 female migrants. Subpopulation sizes and number of males in each
subpopulation before mating are therefore:

	Subpopulation 0: male 500-50, female 500-25, total 925

	Subpopulation 1: male 500+50, female 500+25, total 1075

Note that the unspecified to subpopulations are subpopulation 0 and 1, which
cannot be virtual.

Example: Migration from virtual subpopulations

>>> import simuPOP as sim
>>> pop = sim.Population(size=[1000]*2, infoFields='migrate_to')
>>> pop.setVirtualSplitter(sim.SexSplitter())
>>> pop.evolve(
... # 500 males and 500 females
... initOps=sim.InitSex(sex=[sim.MALE, sim.FEMALE]),
... preOps=[
... sim.Migrator(rate=[
... [0, 0.10],
... [0, 0.05],
...],
... mode = sim.BY_PROPORTION,
... subPops=[(0, 0), (0, 1)]),
... sim.Stat(popSize=True, numOfMales=True, vars='numOfMales_sp'),
... sim.PyEval(r"'%d/%d\t%d/%d\n' % (subPop[0]['numOfMales'], subPopSize[0], "
... "subPop[1]['numOfMales'], subPopSize[1])"),
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(popSize=True, numOfMales=True, vars='numOfMales_sp'),
... sim.PyEval(r"'%d/%d\t%d/%d\n' % (subPop[0]['numOfMales'], subPopSize[0], "
... "subPop[1]['numOfMales'], subPopSize[1])"),
...],
... gen = 2
...)
450/925 550/1075
426/925 520/1075
384/859 562/1141
425/859 582/1141
2

now exiting runScriptInteractively...

Download migrateVSP.py

Arbitrary migration models **

If none of the described migration mothods fits your need, you can always resort
to manual migration. One such example is when you need to mimick an existing
evolutionary scenario so you know exactly which subpopulation each individual
will migrate to.

Manual migration is actually very easy. All you need to do is specifying the
destination subpopulation of all individuals in the from subpopulations
(parameter subPops), using an information field (usually migrate_to).
You can then call the Migrator using mode=BY_IND_INFO. Example
manualMigration shows how to manually move individuals
around. This example uses the function form of Migrator. You usually
need to use a Python operator to set destination subpopulations if you would
like to manually migrate individuals during an evolutionary process.

Example: Manual migration

>>> import simuPOP as sim
>>> pop = sim.Population([10]*2, infoFields='migrate_to')
>>> pop.setIndInfo([0, 1, 2, 3]*5, 'migrate_to')
>>> sim.migrate(pop, mode=sim.BY_IND_INFO)
>>> pop.subPopSizes()
(5, 5, 5, 5)

now exiting runScriptInteractively...

Download manualMigration.py

Note

individuals with an invalid destination subpopulation ID (e.g. an negative
number) will be discarded silently. Although not recommended, this feature can
be used to remove individuals from a subpopulation.

Migration using backward migration matrix (operator BackwardMigrator)

Backward migration matrices are widely used in theoretical population genetics
and coalescent based simulations. Instead of specifying the probability of
migrating from one subpopulation to another (namely how migration happens), such
matrices specify the probability that individuals in a subpopulation originate
from others (namely the result of migration). simuPOP simulates such models by
converting backward migration matrices to foward ones using the theory described
below. Due to the limit of such models, simuPOP cannot simulate migration
from/to virtual subpopulatons, creation of new subpopulation, different source
and destination subpopulations, and will generate an error if the conversion
process fails.

To explain the differences between forward and backward migration matrices, let
us assume that there are subpopulations with population sizes
, and a forward migration matrix

where is the probability that an individual will migration from
subpopulation to . After migration happens, subppulation
sizes are changed to , and the
origin of individuals in each subpopulation can be described by the backward
migration matrix

where is the probability that an individual in subpopulation
 originates from subpopulation .

These qualities can be derived from original population sizes and the forward
migration matrix. That is to say, the size of new subpopulation is the
sum of all migrants to this subpopulation

and the size of the original population is the sum of all migrants
from this subpopulation

and the composition of subpopulation (e.g. individuals originate from
subpopulation) is

In matrix form, these formulas can be written as

and

Therefore, given a backward migration matrix and current population
size , we can derive a forward migration matrix using

and

Note that is always true if is symmetric and
 (equal subpopulation size) so simuPOP will use
directly in this case. Also note that might not be inversable and
 and might be invalid (e.g. negative population size or
forward migration rate) for given and . simuPOP will
terminate with an error message in these cases.

The following example backwardMigration demonstrates
how to use a backward migration matrix to perform migration. It initializes all
individuals with indexes of subpopulations they belong to before migration and
calculates the percent of individuals from each source population using a
PyOperator with function originOfInds. The so-called overseved backward
migration matrix is similar to specified migration matrix despite of stochastic
effects. This example also uses turnOnDebug function to let the operator print
the expected subpopulation size () and calculate forward migration
matrix () at each generation, which, as expected, vary from generation
to generation.

Example: Migration using a backward migration matrix

>>> import simuPOP as sim
>>> sim.turnOnDebug('DBG_MIGRATOR')
>>> pop = sim.Population(size=[10000, 5000, 8000], infoFields=['migrate_to', 'migrate_from'])
>>> def originOfInds(pop):
... print('Observed backward migration matrix at generation {}'.format(pop.dvars().gen))
... for sp in range(pop.numSubPop()):
... # get source subpop for all individuals in subpopulation i
... origins = pop.indInfo('migrate_from', sp)
... spSize = pop.subPopSize(sp)
... B_sp = [origins.count(j) * 1.0 /spSize for j in range(pop.numSubPop())]
... print(' ' + ', '.join(['{:.3f}'.format(x) for x in B_sp]))
... return True
...
>>> pop.evolve(
... initOps=sim.InitSex(),
... preOps=
... # mark the source subpopulation of each individual
... [sim.InitInfo(i, subPops=i, infoFields='migrate_from') for i in range(3)] + [
... # perform migration
... sim.BackwardMigrator(rate=[
... [0, 0.04, 0.02],
... [0.05, 0, 0.02],
... [0.02, 0.01, 0]
...]),
... # calculate and print observed backward migration matrix
... sim.PyOperator(func=originOfInds),
... # calculate population size
... sim.Stat(popSize=True),
... # and print it
... sim.PyEval(r'"Pop size after migration: {}\n".format(", ".join([str(x) for x in subPopSize]))'),
...],
... matingScheme=sim.RandomMating(),
... gen = 5
...)
Expected next population size is 10211.4, 4851.8, 7936.84
Forward migration matrix is 0.959867, 0.024259, 0.0158737, 0.0816908, 0.902435, 0.0158737, 0.0255284, 0.0121295, 0.962342
Observed backward migration matrix at generation 0
 0.939, 0.040, 0.021
 0.051, 0.927, 0.022
 0.020, 0.010, 0.969
Pop size after migration: 10218, 4859, 7923
Expected next population size is 10453.6, 4690.64, 7855.79
Forward migration matrix is 0.961671, 0.0229529, 0.0153764, 0.0860553, 0.897777, 0.0161675, 0.0263879, 0.0118406, 0.961772
Observed backward migration matrix at generation 1
 0.942, 0.038, 0.020
 0.049, 0.932, 0.020
 0.023, 0.010, 0.968
Pop size after migration: 10417, 4706, 7877
Expected next population size is 10675.5, 4517.1, 7807.37
Forward migration matrix is 0.963329, 0.0216814, 0.0149897, 0.0907397, 0.89267, 0.0165902, 0.0271056, 0.0114691, 0.961425
Observed backward migration matrix at generation 2
 0.942, 0.039, 0.020
 0.048, 0.930, 0.022
 0.020, 0.010, 0.970
Pop size after migration: 10660, 4536, 7804
Expected next population size is 10946, 4323.5, 7730.53
Forward migration matrix is 0.965217, 0.0202791, 0.0145038, 0.0965253, 0.886432, 0.0170426, 0.0280522, 0.0110802, 0.960868
Observed backward migration matrix at generation 3
 0.940, 0.040, 0.020
 0.050, 0.930, 0.020
 0.020, 0.011, 0.969
Pop size after migration: 10942, 4321, 7737
Expected next population size is 11260.4, 4079.55, 7660
Forward migration matrix is 0.967357, 0.0186417, 0.0140011, 0.104239, 0.878033, 0.0177274, 0.0291081, 0.0105456, 0.960346
Observed backward migration matrix at generation 4
 0.937, 0.043, 0.021
 0.046, 0.933, 0.021
 0.019, 0.009, 0.972
Pop size after migration: 11331, 4042, 7627
5

now exiting runScriptInteractively...

Download backwardMigrate.py

Split subpopulations (operators SplitSubPops)

Operator SplitSubPops splits one or more subpopulations into finer
subpopulations. It can be used to simulate populations that originate from the
same founder population. For example, a population of size 1000 in Example
splitBySize is split into three subpopulations of sizes
300, 300 and 400 respectively, after evolving as a single population for two
generations.

Example: Split subpopulations by size

>>> import simuPOP as sim
>>> pop = sim.Population(1000)
>>> pop.evolve(
... preOps=[
... sim.SplitSubPops(subPops=0, sizes=[300, 300, 400], at=2),
... sim.Stat(popSize=True),
... sim.PyEval(r'"Gen %d:\t%s\n" % (gen, subPopSize)')
...],
... matingScheme=sim.RandomSelection(),
... gen = 4
...)
Gen 0: [1000]
Gen 1: [1000]
Gen 2: [300, 300, 400]
Gen 3: [300, 300, 400]
4

now exiting runScriptInteractively...

Download splitBySize.py

Operator SplitSubPops splits a subpopulation by sizes of the resulting
subpopulations. It is often easier to do so with proportions. In addition, if a
demographic function is used, you should make sure that the number of
subpopulations will be the same before and after mating at any generation. One
way of doing this is to apply a SplitSubPops operator at the right
generation. Example splitByProp demonstrates such an
evolutionary scenario. However, it is often easier to split the population in
the demographic function in such case (see section
subsec_Advanced_demo_func for details).

Example: Split subpopulations by proportion

>>> import simuPOP as sim
>>> def demo(gen, pop):
... if gen < 2:
... return 1000 + 100 * gen
... else:
... return [x + 50 * gen for x in pop.subPopSizes()]
...
>>> pop = sim.Population(1000)
>>> pop.evolve(
... preOps=[
... sim.SplitSubPops(subPops=0, proportions=[.5]*2, at=2),
... sim.Stat(popSize=True),
... sim.PyEval(r'"Gen %d:\t%s\n" % (gen, subPopSize)')
...],
... matingScheme=sim.RandomSelection(subPopSize=demo),
... gen = 4
...)
Gen 0: [1000]
Gen 1: [1000]
Gen 2: [550, 550]
Gen 3: [650, 650]
4

now exiting runScriptInteractively...

Download splitByProp.py

Either by sizes or by proportions, individuals in a subpopulation are
divided randomly. It is, however, also possible to split subpopulations
according to individual information fields. In this case, individuals with
different values at a given information field will be split into different
subpopulations. This is demonstrated in Example splitByInfo
where the function form of operator SplitSubPops is used.

Example: Split subpopulations by individual information field

>>> import simuPOP as sim
>>> import random
>>> pop = sim.Population([1000]*3, subPopNames=['a', 'b', 'c'], infoFields='x')
>>> pop.setIndInfo([random.randint(0, 3) for x in range(1000)], 'x')
>>> print(pop.subPopSizes())
(1000, 1000, 1000)
>>> print(pop.subPopNames())
('a', 'b', 'c')
>>> sim.splitSubPops(pop, subPops=[0, 2], infoFields=['x'])
>>> print(pop.subPopSizes())
(243, 244, 262, 251, 1000, 243, 244, 262, 251)
>>> print(pop.subPopNames())
('a', 'a', 'a', 'a', 'b', 'c', 'c', 'c', 'c')

now exiting runScriptInteractively...

Download splitByInfo.py

Merge subpopulations (operator MergeSubPops)

Operator MergeSubPops merges specified subpopulations into a single
subpopulation. This operator can be used to simulate admixed populations where
two or more subpopulations merged into one subpopulation and continue to evolve
for a few generations. Example MergeSubPops simulates such
an evolutionary scenario. A demographic model could be added similar to Example
splitByProp.

Example: Merge multiple subpopulations into a single subpopulation

>>> import simuPOP as sim
>>> pop = sim.Population([500]*2)
>>> pop.evolve(
... preOps=[
... sim.MergeSubPops(subPops=[0, 1], at=3),
... sim.Stat(popSize=True),
... sim.PyEval(r'"Gen %d:\t%s\n" % (gen, subPopSize)')
...],
... matingScheme=sim.RandomSelection(),
... gen = 5
...)
Gen 0: [500, 500]
Gen 1: [500, 500]
Gen 2: [500, 500]
Gen 3: [1000]
Gen 4: [1000]
5

now exiting runScriptInteractively...

Download MergeSubPops.py

Resize subpopulations (operator ResizeSubPops)

Whenever possible, it is recommended that subpopulation sizes are changed
naturally, namely through the population of an offspring generation. However, it
is sometimes desired to change the size of a population forcefully. Examples of
such applications include immediate expansion of a small population before
evolution, and the simulation of sudden population size change caused by natural
disaster. By default, new individuals created by such sudden population
expansion get their genotype from existing individuals. Example
ResizeSubPops shows a scenario where two subpopulations
expand instantly at generation 3.

Example: Resize subpopulation sizes

>>> import simuPOP as sim
>>> pop = sim.Population([500]*2)
>>> pop.evolve(
... preOps=[
... sim.ResizeSubPops(proportions=(1.5, 2), at=3),
... sim.Stat(popSize=True),
... sim.PyEval(r'"Gen %d:\t%s\n" % (gen, subPopSize)')
...],
... matingScheme=sim.RandomSelection(),
... gen = 5
...)
Gen 0: [500, 500]
Gen 1: [500, 500]
Gen 2: [500, 500]
Gen 3: [750, 1000]
Gen 4: [750, 1000]
5

now exiting runScriptInteractively...

Download ResizeSubPops.py

Time-dependent migration rate

In evolutionary scenarios with complex demographic models, number of
subpopulations and migration rate might change from generation to generation.
For example, if one of the subpopulations is split into two, the migration
matrix has to be changed to accommendate increased number of subpopulations.

If there are a limited number of demographic changes and a few number of pre-
determined migration matrices. You can use a number of Migrators that are
applied at different generations. For example, you can use the following
operators to apply the first migration scheme during first ten generations (0,
…, 9), and the second migration scheme during the rest of the evolutionary
process:

preOps=[
 Migrator(rate=M1, end=9),
 Migrator(rate=M2, begin=10),
]

If changes of demographies are frequent or stochastic so that migration matrices
can only be determined programmatically, it is easier to use a
PyOperator to migrate populations using the function form of a
Migrator. This is demonstrated in Example varyingMigr where migration matrixes are computed dynamically due to random
split of subpopulations.

Example: Varying migration rate

>>> import simuPOP as sim
>>>
>>> from simuPOP.utils import migrIslandRates
>>> import random
>>>
>>> def demo(pop):
... # this function randomly split populations
... numSP = pop.numSubPop()
... if random.random() > 0.3:
... pop.splitSubPop(random.randint(0, numSP-1), [0.5, 0.5])
... return pop.subPopSizes()
...
>>> def migr(pop):
... numSP = pop.numSubPop()
... sim.migrate(pop, migrIslandRates(0.01, numSP))
... return True
...
>>> pop = sim.Population(10000, infoFields='migrate_to')
>>> pop.evolve(
... initOps=sim.InitSex(),
... preOps=[
... sim.PyOperator(func=migr),
... sim.Stat(popSize=True),
... sim.PyEval(r'"Gen %d:\t%s\n" % (gen, subPopSize)')
...],
... matingScheme=sim.RandomMating(subPopSize=demo),
... gen = 5
...)
Gen 0: [10000]
Gen 1: [4982, 5018]
Gen 2: [2495, 2505, 5000]
Gen 3: [2509, 2517, 4974]
Gen 4: [2512, 2512, 4976]
5

now exiting runScriptInteractively...

Download VaryingMigr.py

Genotype transmitters

Generic genotype transmitters (operators GenoTransmitter, CloneGenoTransmitter, MendelianGenoTransmitter, SelfingGenoTransmitter, HaplodiploidGenoTransmitter, and MitochondrialGenoTransmitter) *

A number of during-mating operators are defined to transmit genotype from
parent(s) to offspring. They are rarely used or even seen directly because they
are used as genotype transmitters of mating schemes.

	GenoTransmitter: This genotype transmitter is usually used by
customized genotype transmitters because it provides some utility functions that
are more efficient than their Pythonic counterparts.

	CloneGenoTransmitter: Copy all genotype on non-customized chromosomes
from a parent to an offspring. It also copies parental sex to the offspring
because sex can be genotype determined. This genotype transmitter is used by
mating scheme CloneMating. This genotype transmitter can be applied to
populations of any ploidy type. If you would like to copy part of the
chromosomes, or customized chromosomes, a parameter chroms could be used to
specify chromosomes to copy.

	MendelianGenoTransmitter: Copy genotypes from two parents (a male and
a female) to an offspring following Mendel’s laws, used by mating scheme
RandomMating.This genotype transmitter can only be applied to diploid
populations.

	SelfingGenoTransmitter: Copy genotypes from one parent to an
offspring using self-fertilization, used by mating scheme SelfMating.
This genotype transmitter can only be applied to diploid populations.

	HaplodiploidGenoTransmitter: Set genotype to male and female
offspring differently in a haplodiploid population, used by mating scheme
HaplodiploidMating. This genotype transmitter can only be applied to
haplodiploid populations.

	MitochondrialGenoTransmitter: Treat a single mitochondrial
chromosome, or all customized chromosomes, or specified chromosomes as
mitochondrial chromosomes and transmit maternal mitochondrial chromosomes
randomly to an offspring. This genotype transmitter can be applied to
populations of any ploidy type. It trasmits the first homologous copy of
chromosomes maternally and clears alleles on other homologous copies of
chromosomes of an offspring.

Recombination (Operator Recombinator)

The generic genotype transmitters do not handle genetic recombination. A
genotype transmitter Recombinator is provided for such purposes, and
can be used with RandomMating and SelfMating (replace
MendelianGenoTransmitter and SelfingGenoTransmitter used in
these mating schemes).

Recombination rate is implemented between adjacent markers. There can be
only one recombination event between adjacent markers no matter how far apart
they are located on a chromosome. In practise, a Recombinator goes
along chromosomes and determine, between each adjacent loci, whether or not a
recombination happens.

Recombination rates could be specified in the following ways:

	If a single recombination rate is specified through paramter rates, it
will be the recombination rate between all adjacent loci, regardless of loci
position.

	If recombination happens only after certain loci, you can specify these loci
using parameter loci. For example,

Recombinator(rates=0.1, loci=[2, 5])

recombines a chromosome only after loci 2 (between 2 and 3) and 5 (between 5
and 6).

	If parameter loci is given with a list of loci, different recombination
rate can be given to each of them. The two lists should have the same length.
For example

Recombinator(rates=[0.1, 0.05], loci=[2, 5])

uses two different recombination rates after loci 2 and 5.

	If parameter loci is not given (default to loci=ALL_AVAIL) but a list
of recombination rates is assigned, the rates will be assigned to each locus.
The length of prameter rates should equal to total number of loci but the
recombiantion rates for the locus at the end of each chromosome will be ignored
(assumed to be 0.5). For example

Recombinator(rates=[0.1]*5 + [0.2]*5)

uses two different recombination rates for two chromosomes with 5 loci.

	If recombination rates vary across your chromosomes, a long list of rate
and loci may be needed to specify recombination rates one by one. An
alternative method is to specify a recombination intensity. Recombination
rate between two adjacent loci is calculated as the product of this intensity
and distance between them. For example, if you apply operator

Recombinator(intensity=0.1)

to a population

Population(size=100, loci=[4], lociPos=[0.1, 0.2, 0.4, 0.8])

The recombination rates between adjacent markers will be 0.1*0.1,
0.1*0.2 and 0.1*0.4 respectively.

Example: Genetic recombination at all and selected loci

>>> import simuPOP as sim
>>> simu = sim.Simulator(sim.Population(size=[1000], loci=[100]),
... rep=2)
>>> simu.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(genotype=[0]*100 + [1]*100)
...],
... matingScheme=sim.RandomMating(ops = [
... sim.Recombinator(rates=0.01, reps=0),
... sim.Recombinator(rates=[0.01]*10, loci=range(50, 60), reps=1),
...]),
... postOps=[
... sim.Stat(LD=[[40, 55], [60, 70]]),
... sim.PyEval(r'"%d:\t%.3f\t%.3f\t" % (rep, LD_prime[40][55], LD_prime[60][70])'),
... sim.PyOutput('\n', reps=-1)
...],
... gen = 5
...)
0: 0.741 0.806 1: 0.904 1.000
0: 0.658 0.715 1: 0.882 1.000
0: 0.491 0.668 1: 0.843 1.000
0: 0.435 0.610 1: 0.818 1.000
0: 0.383 0.567 1: 0.763 1.000
(5, 5)

now exiting runScriptInteractively...

Download recRate.py

Example recRate demonstrates how to specify recombination rates
for all loci or for specified loci. In this example, two replicates of a
population are evolved, subject to two different Recombinators. The first
Recombinator applies the same recombination rate between all adjacent loci, and
the second Recombinator recombines only after loci 50 - 59. Because there is no
recombination event between loci 60 and 70 for the second replicate, linkage
disequilibrium values between these two loci does not decrease as what happens
in the first replicate.

Example: Genetic recombination rates specified by intensity

>>> import simuPOP as sim
>>> pop = sim.Population(size=[1000], loci=3, lociPos=[0, 1, 1.1])
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(genotype=[0]*3 + [1]*3)
...],
... matingScheme=sim.RandomMating(ops=sim.Recombinator(intensity=0.01)),
... postOps=[
... sim.Stat(LD=[[0, 1], [1, 2]]),
... sim.PyEval(r'"%.3f\t%.3f\n" % (LD_prime[0][1], LD_prime[1][2])', step=10)
...],
... gen = 50
...)
0.988 0.998
0.912 0.996
0.836 0.991
0.896 0.982
0.814 0.991
50

now exiting runScriptInteractively...

Download recIntensity.py

Example recIntensity demonstrates the use of the
intensity parameter. In this example, the distances between the first two
loci and the latter two loci are 1 and 0.1 respectively. This leads
recombination rates 0.01 and 0.001 respectively with a recombination intensity
0.01. Consequently, LD between the first two loci decay much faster than the
latter two.

If more advanced recombination model is desired, a customized genotype
transmitter can be used. For example, Example sexSpecificRec uses two Recombinators to implement sex-specific
recombination.

Note

Both loci positions and recombination intensity are unitless. You can assume
different unit for loci position and recombination intensity as long as the
resulting recombination rate makes sense.

Gene conversion (Operator Recombinator) *

simuPOP uses the Holliday junction model to simulate gene conversion. This model
treats recombination and conversion as a unified process. The key features of
this model is

	Two (out of four) chromatids pair and a single strand cut is made in each
chromatid

	Strand exchange takes place between the chromatids

	Ligation occurs yielding two completely intact DNA molecules

	Branch migration occurs, giving regions of heteroduplex DNA

	Resolution of the Holliday junction gives two DNA molecules with heteroduplex
DNA. Depending upon how the holliday junction is resolved, we either observe no
exchange of flanking markers, or an exchange of flanking markers. The former
forms a conversion event, which can be considered as a double recombination.

In practise, gene conversion can be considered as a double recombination event.
That is to say, when a recombination event happens, it has certain probability
to trigger a second recombination event along the chromosome. The distance
between the two locations where recombination events happen is the tract length
of this conversion event.

The probability at which gene conversion happens, and how tract length is
determined is specify using parameter convMode of a Recombinator. This
parameter can be

	NoConversion No gene conversion. (default)

	(NUM_MARKERS, prob, N) Convert a fixed number N of markers at
probability prob.

	(TRACT_LENGTH, prob, N) Convert a fixed length N of chromosome regions
at probability prob. This can be used when markers are not equally spaced on
chromosomes.

	(GEOMETRIC_DISTRIBUTION, prob, p) When a conversion event happens at
probability prob, convert a random number of markers, with a geometric
distribution with parameter p.

	(EXPONENTIAL_DISTRIBUTION, prob, p) When a conversion event happens at
probability prob, convert a random length of chromosome region, using an
exponential distribution with parameter p.

Note that

	If tract length is determined by length (TractLength or
ExponentialDistribution), the starting point of the flanking region is
uniformly distributed between marker and , if the
recombination happens at marker . That is to say, it is possible that
no marker is converted with a positive tract length.

	A conversion event will act like a recombination event if its flanking region
exceeds the end of a chromosome, or if another recombination event happens
before the end of the flanking region.

Example conversion compares two Recombinators. The first
Recombinator is a regular Recombinator that recombine between loci 50 and 51.
The second Recombinator is a conversion operator because every recombination
event will become a conversion event (prob=1). Because a second recombination
event will surely happen between loci 60 and 61, there will be either no or
double recombination events between loci 40, 70. LD between these two loci
therefore does not decrease, although LD between locus 55 and these two loci
will decay.

Example: Gene conversion

>>> import simuPOP as sim
>>> simu = sim.Simulator(sim.Population(size=[1000], loci=[100]),
... rep=2)
>>> simu.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(genotype=[0]*100 + [1]*100)
...],
... matingScheme=sim.RandomMating(ops=[
... sim.Recombinator(rates=0.01, loci=50, reps=0),
... sim.Recombinator(rates=0.01, loci=50, reps=1, convMode=(sim.NUM_MARKERS, 1, 10)),
...]),
... postOps=[
... sim.Stat(LD=[[40, 55], [40, 70]]),
... sim.PyEval(r'"%d:\t%.3f\t%.3f\t" % (rep, LD_prime[40][55], LD_prime[40][70])'),
... sim.PyOutput('\n', reps=-1)
...],
... gen = 5
...)
0: 0.988 0.988 1: 0.980 1.000
0: 0.982 0.982 1: 0.982 1.000
0: 0.982 0.982 1: 0.974 1.000
0: 0.974 0.974 1: 0.954 1.000
0: 0.960 0.960 1: 0.940 1.000
(5, 5)

now exiting runScriptInteractively...

Download conversion.py

Tracking all recombination events **

To understand the evolutionary history of a simulated population, it is
sometimes needed to track down all ancestral recombination events. In order to
do that, you will first need to give an unique ID to each individual so that you
could make sense of the dumped recombination events. Although this is routinely
done using operator IdTagger (see example IdTagger
for details), it is a little tricky here because you need to place the during-
mating IdTagger before a Recombinator in the ops parameter
of a mating scheme so that offspring ID could be set and outputted correctly.

After setting the name of the ID field (usually ind_id) to the infoField
parameter of a Recombinator, it can dump a list of recombinatin events
(loci after which recombinatin events happened) for each set of homologous
chromosomes of an offspring. Each line is in the format of

offspringID parentID startingPloidy rec1 rec2

Example trackRec gives an example how the output looks like.

Example: Tracking all recombination events

>>> import simuPOP as sim
>>> pop = sim.Population(1000, loci=[1000, 2000], infoFields='ind_id')
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.IdTagger(),
...],
... matingScheme=sim.RandomMating(ops = [
... sim.IdTagger(),
... sim.Recombinator(rates=0.001, output='>>rec.log', infoFields='ind_id')]),
... gen = 5
...)
5
>>> rec = open('rec.log')
>>> # print the first three lines of the log file
>>> print(''.join(rec.readlines()[:4]))
1001 642 0 381 999 1490
1001 250 1 908 999 1315 2134
1002 847 1 999
1002 91 0 975 999 1245 2546

now exiting runScriptInteractively...

Download trackRec.py

Mutation

A mutator (a mutation operator) mutates alleles at certain loci from one allele
to another. Because alleles are simple non-nagative numbers that can be
intrepreted as nucleotides, codons, squences of nucleotides or even genetic
deletions, appropriate mutation models have to be chosen for different types of
loci. Please refer to Section sec_Genotypic_structure for a few examples.

A mutator will mutate alleles at all loci unless parameter loci is used to
specify a subset of loci. Different mutators have different concepts and forms
of mutation rates. If a mutator accepts only a single mutation rate (which can
be in the form of a list or a matrix), it uses parameter rate and applies
the same mutation rate to all loci. If a mutator accepts a list of mutation
rates (each of which is a single number), it uses parameter rates and
applies different mutation rates to different loci if multiple loci are
specified. Note that parameter rates also accepts single form inputs (e.g.
rates=0.01) in which case the same mutation rate will be applied to all
loci.

Mutation models specified by rate matrixes (MatrixMutator)

A mutation model can be defined as a mutation rate matrix
 where is the probability
that an allele mutates to per generation per locus. Although
mathematical formulation of are sometimes unscaled, simuPOP
assumes for all and requires such
rate matrixes in the specification of a mutation model. of such a
matrix are ignored because they are automatically calculated from
.

A MatrixMutator is defined to mutate between alleles 0, 1, …,
 according to a given rate matrix. Conceptually speaking, this
mutator goes through each mutable allele and mutates it to allele
 according to probabilities ,
. Most alleles will be kept intact because mutations usually
happen at low probability (with close to 1). For example, Example
MatrixMutator simulates a locus with 3 alleles. Because
the rate at which allele 2 mutats to alleles 0 and 1 is higher than the rate
alleles 0 and 2 mutate to allele 2, the frequency of allele 2 decreases over
time.

Example: General mutator specified by a mutation rate matrix

>>> import simuPOP as sim
>>> pop = sim.Population(size=[2000], loci=1)
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.2, 0.3, 0.5])
...],
... preOps=sim.MatrixMutator(rate = [
... [0, 1e-5, 1e-5],
... [1e-4, 0, 1e-4],
... [1e-3, 1e-3, 0]
...]),
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(alleleFreq=0, step=100),
... sim.PyEval(r"', '.join(['%.3f' % alleleFreq[0][x] for x in range(3)]) + '\n'",
... step=100),
...],
... gen=1000
...)
0.192, 0.302, 0.505
0.241, 0.292, 0.467
0.328, 0.273, 0.399
0.270, 0.322, 0.408
0.312, 0.412, 0.276
0.330, 0.344, 0.327
0.332, 0.424, 0.244
0.426, 0.372, 0.201
0.413, 0.384, 0.203
0.395, 0.408, 0.198
1000

now exiting runScriptInteractively...

Download MatrixMutator.py

Note

Alleles other than 0, 1, …, $n-1$ will not be mutated because their mutation
rates are undefined. A warning message will be displayed for this case when
debugging code DBG_WARNING is turnned on.

k-allele mutation model (KAlleleMutator)

A -allele model assumes alleles
 at a locus and mutate between them using rate
matrix

The only parameter is the mutation rate, which is the rate at which
an allele mutates to any other allele with equal probability.

This mutation model is a special case of the MatrixMutator but a
specialized KAlleleMutator is recommended because it provides better
performance, especially when is large. In addition, this operator
allows different mutation rates at different loci. When is not
specified, it is assumed to be the number of allowed alleles (e.g. 2 for binary
modules). Example KAlleleMutator desmonstrates the use
of this operator where parameters rate and loci are used to specify
different mutation rates for different loci. Because this operator treats all
alleles equally, all alleles will have the same allele frequency in the long
run.

Example: A k-allele mutation model

>>> import simuPOP as sim
>>> pop = sim.Population(size=[2000], loci=1*3)
>>> pop.evolve(
... initOps=sim.InitSex(),
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.KAlleleMutator(k=5, rates=[1e-2, 1e-3], loci=[0, 1]),
... sim.Stat(alleleFreq=range(3), step=100),
... sim.PyEval(r"', '.join(['%.3f' % alleleFreq[x][0] for x in range(3)]) + '\n'",
... step=100),
...],
... gen=500
...)
0.991, 0.999, 1.000
0.368, 0.918, 1.000
0.300, 0.815, 1.000
0.257, 0.639, 1.000
0.209, 0.573, 1.000
500

now exiting runScriptInteractively...

Download KAlleleMutator.py

Note

If alleles k and higher exist in the population, they will not be mutated
because their mutation rates are undefined. A warning message will be displayed
for this case when debugging code DBG_WARNING is turnned on.

Diallelic mutation models (SNPMutator)

MatrixMutator and KAlleleMutator are general purpose mutators
in the sense that they do not assume a type for the mutated alleles. This and
the following sections describe mutation models for specific types of alleles.

If there are only two alleles at a locus, a diallelic mutation model should be
used. Because single nucleotide polymorphisms (SNPs) are the most widely
avaiable diallelic markers, a SNPMutator is provided to mutate such
markers using a mutate rate matrix

Despite of its name, this mutator can be used in many theoretical models
assuming and
. If , mutations will
be directional. Example SNPMutator applies such a
directional mutaton model to two loci, but with a purifying selection applied to
the first locus. Because of the selection pressure, the frequency of allele 1 at
the first locus does not increase indefinitely as allele 1 at the second locus.

Example: A diallelic directional mutation model

>>> import simuPOP as sim
>>> pop = sim.Population(size=[2000], loci=[1, 1], lociNames=['A', 'B'],
... infoFields='fitness')
>>> pop.evolve(
... initOps=sim.InitSex(),
... preOps=[
... sim.SNPMutator(u=0.001),
... sim.MaSelector(loci='A', fitness=[1, 0.99, 0.98]),
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(alleleFreq=['A', 'B'], step=100),
... sim.PyEval(r"'%.3f\t%.3f\n' % (alleleFreq[0][1], alleleFreq[1][1])",
... step=100),
...],
... gen=500
...)
0.001 0.001
0.077 0.087
0.099 0.192
0.099 0.300
0.085 0.400
500

now exiting runScriptInteractively...

Download SNPMutator.py

Nucleotide mutation models (AcgtMutator)

Mutations in these models assume alleles 0, 1, 2, 3 as nucleotides A, C, G, and
T. The operator is named AcgtMutator to remind you the alphabetic order
of these nucleotides. This mutation model is specified by a rate matrix

which is determined by 12 parameters. However, several simpler models with fewer
parameters can be used. In addition to parameters shared by all mutation
operators, a nucleotide mutator is specified by a parameter list and a model
name. For example:

AcgtMutator(rate=[1e-5, 0.5], model='K80')

specifies a nucleotide mutator using Kimura’s 2-parameter model with
 and . Because multiple parameters could be
involved for a particular mutation model, the definition of a mutation rate
and other paramters are model dependent and may varying with different
mathematical representation of the models.

The names and acceptable parameters of acceptable models are listed below:

	Jukes and Cantor 1969 model: model='JC69', rate=[]

The Jukes and Cantor model is similar to a -allele model but its
definition of is different. More specifically, when a mutation event
happens at rate , an allele will have equal probability to mutate to
any of the 4 allelic states.

	Kimura’s 2-parameter 1980 model: model='K80', rate=[,
]

Kimura ‘s model distinguishes transitions (, and
 namely and
 with probability) and
transversions (others) with probability . It would be a
Jukes and Cantor model if .

	Felsenstein 1981 model: model='F81', rate=[, ,
,].

This model assumes different base frequencies but the same probabilities for
transitions and transversions. is calculated from
, and .

	Hasegawa, Kishino and Yano 1985 model: model='HKY85', rate=[,
, , ,]

This model replaces 1/4 frequency used in the Kimura’s 2-parameter model with
nucleotide-specific frequencies.

	Tamura 1992 model: model='T92', rate=[,]

This model is a HKY85 model with and
,

	Tamura and Nei 1993 model: model='TN93', rate=[,
, , , ,
]

This model extends the HKY1985 model by distinguishing
 transitions (namely
) and transitions
() with different .

	Generalized time reversible model: model='GTR', rate=[,
, , , , ,
, ,]

The generalized time reviersible model is the most general neutral,
indepdendent, finite-sites, time-reversible model possible. It is specified by
six parameters and base frequencies. Its rate matrix is defined as

	General model: model='general' (default), rate=[,
, , , , ,
, , , , ,
].

This is the most general model with 12 parameters:

It is not surprising that all other models are implemented as special cases of
this model.

Example AcgtMutator applies a Kimmura’s 2-parameter
mutation model to a population with a single nucleotide marker.

Example: A Kimura’s 2 parameter mutation model

>>> import simuPOP as sim
>>> pop = sim.Population(size=[2000], loci=1,
... alleleNames=['A', 'C', 'G', 'T'])
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[.1, .1, .1, .7])
...],
... matingScheme=sim.RandomMating(),
... preOps=[
... sim.AcgtMutator(rate=[1e-4, 0.5], model='K80'),
... sim.Stat(alleleFreq=0, step=100),
... sim.PyEval(r"', '.join(['%.3f' % alleleFreq[0][x] for x in range(4)]) + '\n'",
... step=100),
...],
... gen=500
...)
0.093, 0.101, 0.094, 0.712
0.142, 0.073, 0.084, 0.701
0.135, 0.160, 0.083, 0.623
0.230, 0.128, 0.013, 0.628
0.293, 0.189, 0.008, 0.510
500

now exiting runScriptInteractively...

Download AcgtMutator.py

Mutation model for microsatellite markers (StepwiseMutator)

The stepwise mutation model (SMM) was proposed by Ohta1973 to model the
mutation of Variable Number Tandem Repeat (VNTR), which consists of tandem
repeat of sequences. VNTR markers consisting of short sequences (e.g. 5 basepair
or less) are also called microsatellite markers. A mutation event of a VNTR
marker either increase of decrease the number of repeats, as a result of
slipped-strand mispairing or unequal sister chromatid exchange and genetic
recombination.

A StepwiseMutator assumes that alleles at a locus are the number of
tandem repeats and mutates them by increasing or decreasing the number of
repeats during a mutation event. By adjusting parameters incProb,
maxAllele and mutStep, this operator can be used to simulate the
standard neutral stepwise mutation model and a number of generalized stepwise
mutation models. For example, Example StepwiseMutator
uses two StepwiseMutator to mutate two microsatellite markers, using a
standard and a generalized model where a geometric distribution is used to
determine the number of steps.

Example: A standard and a generalized stepwise mutation model

>>> import simuPOP as sim
>>> pop = sim.Population(size=1000, loci=[1, 1])
>>> pop.evolve(
... # all start from allele 50
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq= [0]*50 + [1])
...],
... matingScheme=sim.RandomMating(),
... preOps=[
... sim.StepwiseMutator(rates=1e-3, loci=0),
... sim.StepwiseMutator(rates=1e-3, incProb=0.6, loci=1,
... mutStep=(sim.GEOMETRIC_DISTRIBUTION, 0.2)),
...],
... gen=100
...)
100
>>> # count the average number tandem repeats at both loci
>>> cnt0 = cnt1 = 0
>>> for ind in pop.individuals():
... cnt0 += ind.allele(0, 0) + ind.allele(0, 1)
... cnt1 += ind.allele(1, 0) + ind.allele(1, 1)
...
>>> print('Average number of repeats at two loci are %.2f and %.2f.' % \
... (cnt0/2000., cnt1/2000.))
Average number of repeats at two loci are 50.03 and 49.70.

now exiting runScriptInteractively...

Download StepwiseMutator.py

Simulating arbitrary mutation models using a hybrid mutator (PyMutator)*

A hybrid mutator PyMutator mutates random alleles at selected loci
(parameter loci), replicates (parameter loci), subpopulations (parameter
subPop) with specified mutation rate (parameter rate). Instead of
mutating the alleles by itself, it passes the alleles to a user-defined function
and use it return values as the mutated alleles. Arbitrary mutation models could
be implemented using this operator.

Example PyMutator applies a simple mutation model where an
allele is increased by a random number between 1 and 5 when it is mutated. Two
different mutation rates are used for two different loci so average alleles at
these two loci are different.

Example: A hybrid mutation model

>>> import simuPOP as sim
>>> import random
>>> def incAllele(allele):
... return allele + random.randint(1, 5)
...
>>> pop = sim.Population(size=1000, loci=[20])
>>> pop.evolve(
... initOps=sim.InitSex(),
... matingScheme=sim.RandomMating(),
... postOps=sim.PyMutator(func=incAllele, rates=[1e-4, 1e-3],
... loci=[2, 10]),
... gen = 1000
...)
1000
>>> # count the average number tandem repeats at both loci
>>> def avgAllele(pop, loc):
... ret = 0
... for ind in pop.individuals():
... ret += ind.allele(loc, 0) + ind.allele(loc, 1)
... return ret / (pop.popSize() * 2.)
...
>>> print('Average number of repeats at two loci are %.2f and %.2f.' % \
... (avgAllele(pop, 2), avgAllele(pop, 10)))
Average number of repeats at two loci are 0.01 and 2.19.

now exiting runScriptInteractively...

Download PyMutator.py

Mixed mutation models (MixedMutator) **

Mixed mutation models are sometimes used to model real data. For example, a
-allele model can be used to explain extremely large or small number
of tandem repeats at a microsatellite marker which are hard to justify using a
standard stepwise mutation model. A mixed mutation model would apply two or more
mutation models at pre-specified probabilities.

A MixedMutator is constructed by a list of mutators and their
respective probabilities. It accepts regular mutator parameters such as
rates, loci, subPops, mapIn and mapOut and mutates aleles at
specified rate. When a mutation event happens, it calls one of the mutators to
mutate the allele. For example, Example MixedMutator
applies a mixture of -allele model and stepwise model to mutate a
micosatellite model.

Example: A mixed k-allele and stepwise mutation model

>>> import simuPOP as sim
>>> pop = sim.Population(5000, loci=[1, 1])
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(genotype=[50, 50])
...],
... preOps=[
... # the first locus uses a pure stepwise mutation model
... sim.StepwiseMutator(rates=0.001, loci=0),
... # the second locus uses a mixed model
... sim.MixedMutator(rates=0.001, loci=1, mutators=[
... sim.KAlleleMutator(rates=1, k=100),
... sim.StepwiseMutator(rates=1)
...], prob=[0.1, 0.9])],
... matingScheme=sim.RandomMating(),
... gen = 20
...)
20
>>> # what alleles are there?
>>> geno0 = []
>>> geno1 = []
>>> for ind in pop.individuals():
... geno0.extend([ind.allele(0, 0), ind.allele(0, 1)])
... geno1.extend([ind.allele(1, 0), ind.allele(1, 1)])
...
>>> print('Locus 0 has alleles', ', '.join([str(x) for x in set(geno0)]))
Locus 0 has alleles 49, 50, 51
>>> print('Locus 1 has alleles', ', '.join([str(x) for x in set(geno1)]))
Locus 1 has alleles 67, 49, 50, 51, 88

now exiting runScriptInteractively...

Download MixedMutator.py

When a mutation event happens, mutators in Example MixedMutator mutate the allele with probability (mutation rate) 1. If
different mutation rates are specified, the overall mutation rates would be the
product of mutation rate of MixedMutator and the passed mutators.
However, it is extremely important to understand that although
MixedMutator(rates=mu) with StepwiseMutator(rates=1) and MixedMutator(rates=1)with
StepwiseMutator(rates=mu) mutate alleles at the same mutation
rate, the former is much more efficient because it triggers far less mutation
events.

Context-dependent mutation models (ContextMutator)**

All mutation models we have seen till now are context independent. That is to
say, how an allele is mutated depends only on the allele itself. However, it is
understood that DNA and amino acid substitution rates are highly sequence
context-dependent, e.g., C T substitutions in vertebrates
may occur much more frequently at CpG sites. To simulate such models, a mutator
must consider the context of a mutated allele, e.g. certain number of alleles to
the left and right of this allele, and mutate the allele accordingly.

A ContextMutator can be used to mutate an allele depending on its
surrounding loci. This mutator is constructed by a list of mutators and their
respective contexts. It accepts regular mutator parameters such as rates,
loci, subPops, mapIn and mapOut and mutates aleles at specified
rate. When a mutation event happens, it checks the context of the mutaed allele
and choose a corresponding mutator to mutate the allele. An additional mutator
can be specified to mutate alleles with unknown context. Example
ContextMutator applies two SNPMutator at
different rates under different contexts.

Example: A context-dependent mutation model

>>> import simuPOP as sim
>>> pop = sim.Population(5000, loci=[3, 3])
>>> pop.evolve(
... # initialize locus by 0, 0, 0, 1, 0, 1
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(genotype=[1, 1], loci=[3, 5])
...],
... preOps=[
... sim.ContextMutator(mutators=[
... sim.SNPMutator(u=0.1),
... sim.SNPMutator(u=1),
...],
... contexts=[(0, 0), (1, 1)],
... loci=[1, 4],
... rates=0.01
...),
... sim.Stat(alleleFreq=[1, 4], step=5),
... sim.PyEval(r"'Gen: %2d freq1: %.3f, freq2: %.3f\n'" +
... " % (gen, alleleFreq[1][1], alleleFreq[4][1])", step=5)
...],
... matingScheme=sim.RandomMating(),
... gen = 20
...)
Gen: 0 freq1: 0.001, freq2: 0.010
Gen: 5 freq1: 0.005, freq2: 0.059
Gen: 10 freq1: 0.007, freq2: 0.108
Gen: 15 freq1: 0.015, freq2: 0.142
20

now exiting runScriptInteractively...

Download ContextMutator.py

Note that although

ContextMutator(mutators=[
 SNPMutator(u=0.1),
 SNPMutator(u=1)],
 contexts=[(0, 0), (1, 1)],
 rates=0.01
)

and

ContextMutator(mutators=[
 SNPMutator(u=0.001),
 SNPMutator(u=0.01)],
 contexts=[(0, 0), (1, 1)],
 rates=1
)

both apply two SNPMutator at mutation rates 0.001 and 0.01, the
former is more efficient because it triggers less mutation events.

Context-dependent mutator can also be implemented by a PyMutator. When
a non-zero parameter context is specified, this mutator will collect
context number of alleles to the left and right of a mutated allele and pass
them as a second parameter of the user-provided mutation function. Example
pyContextMutator applies the same mutation model as
Example ContextMutator using a PyMutator.

Example: A hybrid context-dependent mutation model

>>> import simuPOP as sim
>>> import random
>>> pop = sim.Population(5000, loci=[3, 3])
>>> def contextMut(allele, context):
... if context == [0, 0]:
... if allele == 0 and random.random() < 0.1:
... return 1
... elif context == [1, 1]:
... if allele == 0:
... return 1
... # do not mutate
... return allele
...
>>> pop.evolve(
... # initialize locus by 0, 0, 0, 1, 0, 1
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(genotype=[1, 1], loci=[3, 5])
...],
... preOps=[
... sim.PyMutator(func=contextMut, context=1,
... loci=[1, 4], rates=0.01
...),
... #sim.SNPMutator(u=0.01, v= 0.01, loci=[1, 4]),
... sim.Stat(alleleFreq=[1, 4], step=5),
... sim.PyEval(r"'Gen: %2d freq1: %.3f, freq2: %.3f\n'" +
... " % (gen, alleleFreq[1][1], alleleFreq[4][1])", step=5)
...],
... matingScheme=sim.RandomMating(),
... gen = 20
...)
Gen: 0 freq1: 0.000, freq2: 0.000
Gen: 5 freq1: 0.000, freq2: 0.000
Gen: 10 freq1: 0.000, freq2: 0.000
Gen: 15 freq1: 0.000, freq2: 0.000
20

now exiting runScriptInteractively...

Download pyContextMutator.py

Manually-introduced mutations (PointMutator)

Operator PointMutator is different from all other mutators in that it
mutates specified alleles of specified individuals. It is usually used to
manually introduce one or more mutants to a population. Although it is not a
recommended method to introduce a disease predisposing allele, the following
example (Example PointMutator) demonstrates an
evolutionary process where mutants are repeatedly introduced and raised by
positive selection until it reaches an appreciable allele frequency. This
example uses two IfElse operators. The first one introduces a mutant
when there is no mutant in the population, and the second one terminate the
evolution when the frequency of the mutant reaches 0.05.

Example: Use a point mutator to introduce a disease predisposing allele

>>> import simuPOP as sim
>>> pop = sim.Population(1000, loci=1, infoFields='fitness')
>>> pop.evolve(
... initOps=sim.PyOutput('Introducing alleles at generation'),
... preOps=sim.MaSelector(loci=0, wildtype=0, fitness=[1, 1.05, 1.1]),
... matingScheme=sim.RandomSelection(),
... postOps=[
... sim.Stat(alleleFreq=0),
... sim.IfElse('alleleNum[0][1] == 0', ifOps=[
... sim.PyEval(r"' %d' % gen"),
... sim.PointMutator(inds=0, loci=0, allele=1),
...]),
... sim.IfElse('alleleFreq[0][1] > 0.05', ifOps=[
... sim.PyEval(r"'.\nTerminate at generation %d at allele freq %.3f.\n'" +
... " % (gen, alleleFreq[0][1])"),
... sim.TerminateIf('True'),
...])
...],
...)
Introducing alleles at generation 0 1 2 16 17 18 22 30 32 33 34 41 81 82 83.
Terminate at generation 111 at allele freq 0.051.
112

now exiting runScriptInteractively...

Download PointMutator.py

Apply mutation to (virtual) subpopulations *

A mutator is usually applied to all individuals in a population. However, you
can restrict its use to specified subpopulations and/or virtual subpopulations
using parameter subPop. For example, you can use subPop=[0, 2] to apply
the mutator only to individuals in subpopulations 0 and 2.

Virtual subpopulations can also be specified in this parameter. For example, you
can apply different mutation models to male and female individuals, to
unaffected or affected individuals, to patients at different stages of a cancer.
Example mutatorVSP demonstrate a mutation model where
individuals with more tandem repeats at a disease predisposing locus are more
likely to develop a disease (e.g. fragile-X). Affected individuals are then
subject to a non-neutral mutation model at an accerlerated mutation rate.

Example: Applying mutation to virtual subpopulations.

>>> import simuPOP as sim
>>> def fragileX(geno):
... '''A disease model where an individual has increased risk of
... affected if the number of tandem repeats exceed 75.
... '''
... # Alleles A1, A2.
... maxRep = max(geno)
... if maxRep < 50:
... return 0
... else:
... # individuals with allele >= 70 will surely be affected
... return min(1, (maxRep - 50)*0.05)
...
>>> def avgAllele(pop):
... 'Get average allele by affection sim.status.'
... sim.stat(pop, alleleFreq=(0,1), subPops=[(0,0), (0,1)],
... numOfAffected=True, vars=['alleleNum', 'alleleNum_sp'])
... avg = []
... for alleleNum in [\
... pop.dvars((0,0)).alleleNum[0], # first locus, unaffected
... pop.dvars((0,1)).alleleNum[0], # first locus, affected
... pop.dvars().alleleNum[1], # second locus, overall
...]:
... alleleSum = numAllele = 0
... for idx,cnt in enumerate(alleleNum):
... alleleSum += idx * cnt
... numAllele += cnt
... if numAllele == 0:
... avg.append(0)
... else:
... avg.append(alleleSum * 1.0 /numAllele)
... # unaffected, affected, loc2
... pop.dvars().avgAllele = avg
... return True
...
>>> pop = sim.Population(10000, loci=[1, 1])
>>> pop.setVirtualSplitter(sim.AffectionSplitter())
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(genotype=[50, 50])
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... # determine affection sim.status for each offspring (duringMating)
... sim.PyPenetrance(func=fragileX, loci=0),
... # unaffected offspring, mutation rate is high to save some time
... sim.StepwiseMutator(rates=1e-3, loci=1),
... # unaffected offspring, mutation rate is high to save some time
... sim.StepwiseMutator(rates=1e-3, loci=0, subPops=[(0, 0)]),
... # affected offspring have high probability of mutating upward
... sim.StepwiseMutator(rates=1e-2, loci=0, subPops=[(0, 1)],
... incProb=0.7, mutStep=3),
... # number of affected
... sim.PyOperator(func=avgAllele, step=20),
... sim.PyEval(r"'Gen: %3d #Aff: %d AvgRepeat: %.2f (unaff), %.2f (aff), %.2f (unrelated)\n'"
... + " % (gen, numOfAffected, avgAllele[0], avgAllele[1], avgAllele[2])",
... step=20),
...],
... gen = 101
...)
Gen: 0 #Aff: 0 AvgRepeat: 1.01 (unaff), 0.00 (aff), 1.01 (unrelated)
Gen: 20 #Aff: 6 AvgRepeat: 1.53 (unaff), 0.50 (aff), 1.52 (unrelated)
Gen: 40 #Aff: 20 AvgRepeat: 2.56 (unaff), 2.04 (aff), 1.53 (unrelated)
Gen: 60 #Aff: 46 AvgRepeat: 2.56 (unaff), 2.04 (aff), 2.04 (unrelated)
Gen: 80 #Aff: 55 AvgRepeat: 3.08 (unaff), 1.53 (aff), 2.04 (unrelated)
Gen: 100 #Aff: 48 AvgRepeat: 2.04 (unaff), 1.52 (aff), 2.04 (unrelated)
101

now exiting runScriptInteractively...

Download mutatorVSP.py

At the beginning of a simulation, all individuals have 50 copies of a tandem
repeat and the mutation follows a standard neutral stepwise mutation model.
individuals with more than 50 repeats will have an increasing probability to
develop a disease () for). The averge repeat
number therefore increases for affected individuals. In contrast, the mean
number of repeats at locus 1 on a separate chromosome oscillate around 50.

Allele mapping **

If alleles in your simulation do not follow the convention of a mutation model,
you may want to use the pop.recodeAlleles() function to recode your alleles
so that appropriate mutation models could be applied. If this is not possible,
you can use a general mutation model with your own mutation matrix, or an
advanced feature called allele mapping.

Allele mapping is done through two parameters mapIn and mapOut, which map
alleles in your population to and from alleles assumed in a mutation model. For
example, an AcgtMutator mutator assumes alleles A, C, G and
T for alleles 0, 1, 2, and 3 respectively. If for any reason the alleles in
your application does not follow this order, you will need to map these alleles
to the alleles assumed in the mutator. For example, if you assumes C, G,
A, T for alleles 0, 1, 2, and 3 respectively, you can use parameters

mapIn=[1, 2, 0, 3], mapOut=[2, 0, 1, 3]

to map your alleles (C(0)->C(1), G(1)->G(2), A(2)->A(0),
T(3)->T(3)) to alleles AcgtMutator assumes, and then map mutated
alleles (A(0)->A(2), C(1)->C(0), G(2)->G(1), T(3)->T(3)) back.
Example alleleMapping gives another example where alleles
4, 5, 6 and 7 are mutated using a 4-allele model.

Example: Allele mapping for mutation operators

>>> import simuPOP as sim
>>> pop = sim.Population(size=[2000], loci=1)
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0]*4 + [0.1, 0.2, 0.3, 0.4])
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.KAlleleMutator(k=4, rates=1e-4, mapIn=[0]*4 + list(range(4)),
... mapOut=[4, 5, 6, 7]),
... sim.Stat(alleleFreq=0, step=100),
... sim.PyEval(r"', '.join(['%.2f' % alleleFreq[0][x] for x in range(8)]) + '\n'",
... step=100),
...],
... gen=500
...)
0.00, 0.00, 0.00, 0.00, 0.09, 0.20, 0.30, 0.41
0.00, 0.00, 0.00, 0.00, 0.13, 0.20, 0.40, 0.26
0.00, 0.00, 0.00, 0.00, 0.17, 0.20, 0.31, 0.31
0.00, 0.00, 0.00, 0.00, 0.19, 0.18, 0.26, 0.37
0.00, 0.00, 0.00, 0.00, 0.18, 0.24, 0.23, 0.34
500

now exiting runScriptInteractively...

Download alleleMapping.py

These two parameters also accept Python functions which should return
corresponding mapped-in or out allele for a given allele. These two functions
can be used to explore very fancy mutation models. For example, you can
categorize a large number of alleles into alleles assumed in a mutation model,
and emit random alleles from a mutated allele.

Mutation rate and transition matrix of a MatrixMutator**

A MatrixMutator is specified by a mutation rate matrix. Although
mutation rates of this mutator is typically allele-dependent, the
MatrixMutator is implemented as a two-step process where mutation
events are triggered independent to allelic states. This section describes these
two steps which can be useful if you need to use a maxtrixMutator in a
MixedMutator or ContextMutator, and would like to factor out
an allele-independent mutation rate to the wrapper mutator.

Because alleles usually have different probabilities of mutating to other
alleles, a mutation process is usually allele dependent. Given a mutation
model , it is obviously inefficient to go through all
mutable alleles and determine whether or not to mutate it using
. simuPOP uses a two step procedure to mutate a large number
of alleles. More specifically, for each mutation model, we determine
 as the overall mutation rate,
and then

	For each allele, trigger a mutation event with probability .
Because is usually very small and is the same for all alleles, this
step can be implemented efficiently.

	When a mutation event happens, mutation allele to allele
with probability

Because steps 1 and 2 are independent, it is easy to verify that

if and

where the first and second items are probabilities of no-mutation at steps 1 and
2. was chosen as the smallest that makes
 for all .

For example, for a -allele model with

 is directly for the first step and

for the second step. Therefore, mutation rate in a -allele model could be interpreted as the probability of mutation, and a
mutation event would mutate an allele to any other allele with equal
probability.

For a classical mutation model with and
,

if and , ,

That is to say, we would mutate at a mutation rate , mutate
allele to with probability 1 and mutate allele to
 with probability 0.5.

Infinite-sites model and other simulation techniques **

Infinite-sites and infinite-alleles models have some similarities. If you assume
that mutation is the only force to create new mutants, you can treat a long
chromosomal region as a locus and use the infinite-alleles model, actually a
-allele model with large , to mimic the infinite-site model.
This assumption is certainly wrong with the infinite-site model when
recombination is involved, because recombination creates new haplotypes
(alleles) under the infinite-site model. However, for short regions where
recombination can be ignored, an -allele model can be an easy and
fast way to mimic an infinite-site model. That statement basically says that you
have a choice between two models if you would like to simulate the evolution of
this gene, namely considering the gene as a locus and simulating variants as
alleles, or considering the gene as a sequence and simulating haplotypes as
alleles.

For example, the CFTR gene (for cystic fibrosis) can have many alleles (thinking
in terms of infinite-allele model) which are nucleotide mutations on tens of
locations (infinite-site model). In order to simulate the evolution of this
gene, you have a choice between two models, namely considering the gene as a
locus and simulating variants as alleles, or considering the gene as a sequence
and simulating haplotypes as alleles. Because there is supposed to be only one
mutant at each site, you can assign a unique location for each allele of an
infinite-allele model and convert multi-allelic datasets simulated by an
infinite-allele model to sequences of diallelic markers. Note that mutation
rates are interpreted differently for these two models.

If specific location of such a mutation is needed, it is possible to record the
location of mutations during an evolution and minic an infinite-sites model. For
example, alleles in Example infiniteSites are used to
store location of a mutation event. When a mutation event happens, the location
of the new allele (rather the allele itself) is recorded on the chromosome
(actually list of mutation events) of an individual. The transmission of
chromosomes proceed normally and effectively transmit mutants from parents to
offspring. At the end of the simulation, each individual accumulates a number of
mutation events and they are essentially alleles at their respective locations.

Example: Mimicking an infinite-sites model using mutation events as alleles

>>> import simuOpt
>>> simuOpt.setOptions(alleleType='long')
>>> import simuPOP as sim
>>>
>>> def infSitesMutate(pop, param):
... '''Apply an infinite mutation model'''
... (startPos, endPos, rate) = param
... # for each individual
... for ind in pop.individuals():
... # for each homologous copy of chromosomes
... for p in range(2):
... # using a geometric distribution to determine
... # the first mutation location
... loc = sim.getRNG().randGeometric(rate)
... # if a mutation happens, record the mutated location
... if startPos + loc < endPos:
... try:
... # find the first non-zero location
... idx = ind.genotype(p).index(0)
... # record mutation here
... ind.setAllele(startPos + loc, idx, ploidy=p)
... except:
... raise
... print('Warning: more than %d mutations have accumulated' % pop.totNumLoci())
... pass
... return True
...
>>> pop = sim.Population(size=[2000], loci=[100])
>>> pop.evolve(
... initOps=sim.InitSex(),
... preOps=[
... # mutate in a 10Mb region at rate 1e-8
... sim.PyOperator(func=infSitesMutate, param=(1, 10000000, 1e-8)),
...],
... matingScheme=sim.RandomMating(),
... gen = 100
...)
100
>>> # now, we get a sim.Population. Let us have a look at the 'alleles'.
>>> # print the first five mutation locations
>>> print(pop.individual(0).genotype()[:5])
[1527502, 4774892, 7979220, 3671118, 395142]
>>> # how many alleles are there (does not count 0)?
>>> print(len(set(pop.genotype())) - 1)
2700
>>> # Allele count a simple count of alleles.
>>> cnt = {}
>>> for allele in pop.genotype():
... if allele == 0:
... continue
... if allele in cnt:
... cnt[allele] += 1
... else:
... cnt[allele] = 1
...
>>> # highest allele frequency?
>>> print(max(cnt.values()) *0.5 / pop.popSize())
0.05475

now exiting runScriptInteractively...

Download infiniteSites.py

All mutation models in simuPOP apply to existing alleles at pre-specified loci.
However, if the location of loci cannot be determined beforehand, it is
sometimes desired to create new loci as a result of mutation. A customized
operator can be used for this purpose (see Example newOperator), but extra attention is needed to make sure that other operators
are applied to the correct loci because loci indexes will be changed with the
insertion of new loci. This technique could also be used to simulate mutations
over long sequences.

Recording and tracing individual mutants **

Mutation operators mutate alleles in place and by default do not generate any
output. If you are interested in knowing the source of each mutant, you can
specify an output stream and let the mutation operators dump details of each
mutation event, which consists of generation number, locus index, ploidy,
original allele, and mutated allele. If a list of information fields are
specified through parameter infoFields, values at these information fields
will also be outputted (if they exist in the population. The default information
field is ind_id, which allow you to record the ID of individuals harboring
the mutants.

Example countMutants demonstrates how to use this feature
to count the number of mutants at each locus. Instead of sending the output to a
file (e.g. output='>>mutants.txt'), this example sends the output to a
Python function, which parses input string and counts the number of mutants at
each locus using a global dictionary variable. As we can see from the output,
because the KAlleleMutator uses a higher mutation rate (0.01) at locus 1 than
mutation rate (0.001) at locus 0, there are 10 times more mutants at the second
locus. There are about 3/4 mutations on the locus on chromosome X and 1/4
mutations on the locus on chromosome Y, for obvious reasons.

Example: Count number of mutants from mutator outputs

>>> import simuPOP as sim
>>> from collections import defaultdict
>>> # count number of mutants at each locus
>>> counter = defaultdict(int)
>>> def countMutants(mutants):
... global counter
... for line in mutants.split('\n'):
... # a trailing \n will lead to an empty string
... if not line:
... continue
... (gen, loc, ploidy, a1, a2, id) = line.split('\t')
... counter[int(loc)] += 1
...
>>> pop = sim.Population([5000]*3, loci=[2,1,1], infoFields='ind_id',
... chromTypes=[sim.AUTOSOME, sim.CHROMOSOME_X, sim.CHROMOSOME_Y])
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5]),
... sim.IdTagger(),
...],
... preOps=[
... sim.KAlleleMutator(rates=[0.001] + [0.01]*3,
... loci=range(4), k=100, output=countMutants),
...],
... matingScheme=sim.RandomMating(
... ops=[
... sim.IdTagger(),
... sim.MendelianGenoTransmitter()
...]),
... gen = 10
...)
10
>>> print(counter.items())
dict_items([(0, 308), (1, 2984), (2, 2319), (3, 768)])

now exiting runScriptInteractively...

Download countMutants.py

Penetrance

Penetrance is the probability for an individual to be affected with a disease
conditioning on his or her genotype and other risk factors. A penetrance model
calculates such a probability for an individual and assign affection status
randomly according to this probability. For example, if an individual with
genotype 10 has probability 0.2 to be affected according to a penetrance
model, he or she will be affected with probability 0.2. Note that simuPOP
supports only one affection status. If there are multiple affection outcomes
involved, you can treat them as binary quantitative traits and use information
fields to store them.

A penetrance operator can be applied before or after mating, to assign affection
status to all individuals in the parental or offspring generation, respectively.
It can also be applied during mating and assign affection status to each
offspring. The latter could be used to assit natural selection through the
selection of offspring. You can also assign affection status to all individuals
in a population using the function form of a penetrance operator (e.g. function
mapPenetrance for operator MapPenetrance). Compared the penetrance
operators that assign affection status to only the current generation, these
functions by default assign affection status to all ancestral generations as
well.

A penetrance operator usually do not store the penetrance values. However, if an
information field is given, penetrance values will be saved to this information
field before it is used to determine individual affection status.

Map penetrance model (operator MapPenetrance)

A map penetrance opertor uses a Python dictionary to provide penetrance values
for each type of genotype. For example, Example MapPenetrance uses a dictionary with keys (0,0), (0,1) and (1,1)
to specify penetrance for individuals with these genotypes at locus 0.

Example: A penetrance model that uses pre-defined fitness value

>>> import simuPOP as sim
>>> pop = sim.Population(size=2000, loci=2)
>>> sim.initGenotype(pop, freq=[.2, .8])
>>> sim.mapPenetrance(pop, loci=0,
... penetrance={(0,0):0, (0,1):.2, (1,1):.3})
>>> sim.stat(pop, genoFreq=0, numOfAffected=1, vars='genoNum')
>>> # number of affected individuals
>>> pop.dvars().numOfAffected
531
>>> # which should be roughly (#01 + #10) * 0.2 + #11 * 0.3
>>> (pop.dvars().genoNum[0][(0,1)] + pop.dvars().genoNum[0][(1,0)]) * 0.2 \
... + pop.dvars().genoNum[0][(1,1)] * 0.3
514.2

now exiting runScriptInteractively...

Download MapPenetrance.py

The above example assumes that penetrance for individuals with genotypes
(0,1) and (1,0) are the same. This assumption is usually valid but can
be vialoated with impriting. In that case, you can specify fitness for both
types of genotypes. The underlying mechanism is that the MapPenetrance
looks up a genotype in the dictionary first directly, and then without phase
information if a genotype is not found.

This operator supports haplodiploid populations and sex chromosomes. In these
cases, only valid alleles should be listed which can lead to dictionary keys
with different lengths. In addition, although less used because of potentially a
large number of keys, this operator can act on multiple loci. For example,

	keys (a1,a2) and (a1,) can be used to specify fitness values for
female and male individuals in a haplodiploid population, respectively

	keys (x1,x2) and (x1,) can be used to specify fitness for female and
male individuals according to a locus on the X chromosome in a diploid
population, respectively. Similarly, keys () and (y,) for a locus on
chromosome Y.

	keys (a1,a2,b1,b2) can be used to specify fitness values according to
genotype at two loci in a diploid population.

Multi-allele penetrance model (operator MaPenetrance)

A multi-allele penetrance model divides alleles into two groups, wildtype A
and mutants a, and treat alleles within each group as the same. The penetrance
model is therefore simplified to

	Two fitness values for genotype , in the haploid case

	Three fitness values for genotype AA, Aa and aa in the diploid single
locus case. Genotype Aa and aA are assumed to have the same impact on
fitness.

The default wildtype group contains allele 0 so the two allele groups are zero
and non-zero alleles. Example MaPenetrance demonstrates
the use of this operator.

Example: A multi-allele penetrance model

>>> import simuPOP as sim
>>> pop = sim.Population(5000, loci=3)
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.9] + [0.02]*5)
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.MaPenetrance(loci=0, penetrance=(0.01, 0.2, 0.3)),
... sim.Stat(numOfAffected=True, vars='propOfAffected'),
... sim.PyEval(r"'Gen: %d Prevalence: %.1f%%\n' % (gen, propOfAffected*100)"),
...],
... gen = 5
...)
Gen: 0 Prevalence: 4.4%
Gen: 1 Prevalence: 4.4%
Gen: 2 Prevalence: 4.7%
Gen: 3 Prevalence: 4.4%
Gen: 4 Prevalence: 4.3%
5

now exiting runScriptInteractively...

Download MaPenetrance.py

Operator MaPenetrance also supports multiple loci by specifying fitness
values for all combination of genotype at specified loci. In the case of two
loci, this operator requires

	Four fitness values for genotype AB, Ab, aB and ab in the
haploid case,

	Nine fitness values for genotype AABB, AABb, AAbb, AaBB,
AaBb, Aabb, aaBB, aaBb, and aabb in the haploid case.

In general, values are needed for haploid populations and
 values are needed for diploid populations where is the
number of loci. This operator does not yet support haplodiploid populations and
sex chromosomes.

Multi-loci penetrance model (operator MlPenetrance)

Although an individual’s affection status can be affected by several factors,
each of which can be modeled individually, only one penetrance value is used
to determine a person’s affection status and we have to use a multi-locus
penetrance model to combine single-locus models.

This multi-loci penetrance model applies several penetrance models to each
Individual and computes an overall penetrance value from the penetrance values
provided by these operators. Although this selector is designed to obtain multi-
loci penetrance values from several single-locus penetrance models, any
penetrance operator, including those obtain their penetrance values from
multiple disease predisposing loci, can be used in this operator. This operator
uses parameter mode to control how Individual penetrance values are
combined. More specifically, if are penetrance values obtained
from individual selectors, this selector returns

	 if mode=MULTIPLICATIVE, and

	 if mode=ADDITIVE, and

	 if mode=HETEROGENEITY

0 or 1 will be returned if the returned fitness value is out of range of
[0,1].

Example MlPenetrance demonstrates the use of this operator
using an multiplicative multi-locus model over three additive single-locus
models at three diesease predisposing loci.

Example: A multi-loci penetrance model

>>> import simuPOP as sim
>>> pop = sim.Population(5000, loci=3)
>>> sim.initGenotype(pop, freq=[0.2]*5)
>>> # the multi-loci penetrance
>>> sim.mlPenetrance(pop, mode=sim.MULTIPLICATIVE,
... ops = [sim.MaPenetrance(loci=loc,
... penetrance=[0, 0.3, 0.6]) for loc in range(3)])
>>> # count the number of affected individuals.
>>> sim.stat(pop, numOfAffected=True)
>>> pop.dvars().numOfAffected
542

now exiting runScriptInteractively...

Download MlPenetrance.py

Hybrid penetrance model (operator PyPenetrance)

When your selection model involves multiple interacting genetic and
environmental factors, it might be easier to calculate a penetrance value
explicitly using a Python function. A hybrid penetrance operator can be used for
this purpose. If your penetrance model depends solely on genotype, you can
define a function such as

def pfunc(geno):
 # calculate penetrance according to genotype at specified loci
 # in the order of A1,A2,B1,B2,C1,C2 for loci A,B,C (for diploid)
 return val

and use this function in an operator PySelector(func=pfunc,
loci=loci). If your penetrance model depends on genotype as well as some
information fields, you can define a function in the form of

def pfunc(geno, fields):
 # calculate penetrance according to genotype at specified loci
 # and values at specified informaton fields.
 return val

and use this function in an operator PySelector(func=pfunc,
loci=loci, paramFields=fields). If the function you provide accepts three
arguments, PyPenetrance will pass generation number as the third
argument so that you could implement generation-specific penetrance models (e.g.
pfunc(geno, fields, gen)).

When a PyPenetrance operator is used to calculate penetrance for an
individual, it will collect his or her genotype at specified loci, optional
values at specified information fields, and the generation number to a user-
specified Python function, and take its return value as penetrance. As you can
imagine, the incorporation of information fields and generation number allow the
implementation of very complex penetrance scenarios such as gene environment
interaction and varying selection pressures. Note that this operator does not
pass sex and affection status to the user-defined function. If your selection
model is sex-dependent, you can define an information field sex, synchronize
its value with individual sex (e.g. using operator InfoExec('sex=ind.sex()', exposeInd='ind') and pass this information to the user-
defined function (PySelector(func=func, paramFields='sex')).

Example PySelector demonstrates how to use a
PyPenetrance to specify penetrance values according to a fitness table
and the smoking status of each individual. In this example, Individual risk is
doubled when he or she smokes. The disease prevalence is therefore much higher
in smokers than in non-smokers.

Example: A hybrid penetrance model

>>> import simuPOP as sim
>>> import random
>>> pop = sim.Population(size=2000, loci=[1]*2, infoFields=['p', 'smoking'])
>>> pop.setVirtualSplitter(sim.InfoSplitter(field='smoking', values=[0,1]))
>>> # the second parameter gen can be used for varying selection pressure
>>> def penet(geno, smoking):
... # BB Bb bb
... # AA 0.01 0.01 0.01
... # Aa 0.01 0.03 0.03
... # aa 0.01 0.03 0.05
... #
... # geno is (A1 A2 B1 B2)
... if geno[0] + geno[1] == 1 and geno[2] + geno[3] != 0:
... v = 0.03 # case of AaBb
... elif geno[0] + geno[1] == 2 and geno[2] + geno[3] == 1:
... v = 0.03 # case of aaBb
... elif geno[0] + geno[1] ==2 and geno[2] + geno[3] == 2:
... v = 0.05 # case of aabb
... else:
... v = 0.01 # other cases
... if smoking:
... return v * 2
... else:
... return v
...
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[.5, .5]),
... sim.PyOutput('Calculate prevalence in smoker and non-smokers\n'),
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... # set smoking status randomly
... sim.InitInfo(lambda : random.randint(0,1), infoFields='smoking'),
... # assign affection status
... sim.PyPenetrance(loci=[0, 1], func=penet),
... sim.Stat(numOfAffected=True, subPops=[(0, sim.ALL_AVAIL)],
... vars='propOfAffected_sp', step=20),
... sim.PyEval(r"'Non-smoker: %.2f%%\tSmoker: %.2f%%\n' % "
... "(subPop[(0,0)]['propOfAffected']*100, subPop[(0,1)]['propOfAffected']*100)",
... step=20)
...],
... gen = 50
...)
Calculate prevalence in smoker and non-smokers
Non-smoker: 2.24% Smoker: 4.52%
Non-smoker: 2.29% Smoker: 3.61%
Non-smoker: 1.85% Smoker: 3.80%
50
>>>

now exiting runScriptInteractively...

Download PyPenetrance.py

Quantitative trait

Quantitative traits are naturally stored in information fields of each
individual. A quantitative trait operator assigns quantitative trait fields
according to individual genetic (genotype) and environmental (other information
fields) information. Although a large number of quantitative trait models have
been used in theoretical and empirical studies, no model is popular enough to
deserve a specialized operator. Therefore, only one hybrid operator is currently
provided in simuPOP.

A hybrid quantitative trait operator (operator PyQuanTrait)

Operator PyQuanTrait accepts a user defined function that returns
quantitative trait values for specified information fields. This operator can
comunicate with functions in one of the forms of func(geno), func(geno,
field_name, ...) or func(geno, field_name, gen) where field_name
should be name of existing fields. simuPOP will pass genotype and value of
specified fields according to name of the passed function. Note that geno are
arrange locus by locus, namely in the order of A1,``A2``,``B1``,``B2`` for
loci A and B.

A quantitative trait operator can be applied before or after mating and assign
values to the trait fields of all parents or offspring, respectively. It can
also be applied during mating to assign trait values to offspring. Example
PyQuanTrait demonstrates the use of this operator, using
two trait fields trait1 and trait2 which are determined by individual
genotype and age. This example also demonstrates how to calculate statistics
within virtual subpopulations (defined by age).

Example: A hybrid quantitative trait model

>>> import simuPOP as sim
>>> import random
>>> pop = sim.Population(size=5000, loci=2, infoFields=['qtrait1', 'qtrait2', 'age'])
>>> pop.setVirtualSplitter(sim.InfoSplitter(field='age', cutoff=[40]))
>>> def qtrait(geno, age):
... 'Return two traits that depends on genotype and age'
... return random.normalvariate(age * sum(geno), 10), random.randint(0, 10*sum(geno))
...
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.2, 0.8]),
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... # use random age for simplicity
... sim.InitInfo(lambda:random.randint(20, 75), infoFields='age'),
... sim.PyQuanTrait(loci=(0,1), func=qtrait, infoFields=['qtrait1', 'qtrait2']),
... sim.Stat(meanOfInfo=['qtrait1'], subPops=[(0, sim.ALL_AVAIL)],
... vars='meanOfInfo_sp'),
... sim.PyEval(r"'Mean of trait1: %.3f (age < 40), %.3f (age >=40)\n' % "
... "(subPop[(0,0)]['meanOfInfo']['qtrait1'], subPop[(0,1)]['meanOfInfo']['qtrait1'])"),
...],
... gen = 5
...)
Mean of trait1: 92.876 (age < 40), 183.515 (age >=40)
Mean of trait1: 94.041 (age < 40), 183.374 (age >=40)
Mean of trait1: 95.447 (age < 40), 183.288 (age >=40)
Mean of trait1: 95.017 (age < 40), 183.919 (age >=40)
Mean of trait1: 94.769 (age < 40), 185.430 (age >=40)
5
>>>

now exiting runScriptInteractively...

Download PyQuanTrait.py

Natural Selection

Natural selection through the selection of parents

In the simplest scenario, natural selection is implemented in two steps:

	Before mating happens, an operator (called a selector) goes through a
population and assign each individual a fitness value. The fitness values are
stored in an information field called fitness.

	When mating happens, parents are chosen with probabilities that are
proportional to their fitness values. For example, assuming that a parental
population consists of four Individuals with fitness values 1, 2, 3, and 4,
respectively, the probability that they are picked to produce offspring are
, , , and
respectively. As you can image, if the offspring population has 10 individuals,
the four parents will on average parent 1, 2, 3 and 4 offspring.

Because parents with lower fitness values have less chance to be produce
offspring, their genotypes have less chance to be passed to an offspring
generation. If the decreased fitness is caused by the presence of certain mutant
(e.g. a mutant causing a serious disease), individuals with that mutant will
have less change to survive and effecitively reduce or eleminate that mutant
from the population.

Example selectParents gives an example of natural
selection. In this example, a MapSelector is used to explicitly assign
fitness value to genotypes at the first locus. The fitness values are 1,
0.98, 0.97 for genotypes 00, 01 and 11 respectively. The
selector set individual fitness values to information field fitness before
mating happens. The RandomMating mating scheme then selects parents
according to parental fitness values.

Example: Natural selection through the selection of parents

>>> import simuPOP as sim
>>> pop = sim.Population(4000, loci=1, infoFields='fitness')
>>> simu = sim.Simulator(pop, rep=3)
>>> simu.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5])
...],
... preOps=sim.MapSelector(loci=0, fitness={(0,0):1, (0,1):0.98, (1,1):0.97}),
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(alleleFreq=0, step=10),
... sim.PyEval("'Gen:%3d ' % gen", reps=0, step=10),
... sim.PyEval(r"'%.3f\t' % alleleFreq[0][1]", step=10),
... sim.PyOutput('\n', reps=-1, step=10)
...],
... gen = 50
...)
Gen: 0 0.490 0.492 0.487
Gen: 10 0.433 0.430 0.431
Gen: 20 0.403 0.390 0.419
Gen: 30 0.343 0.325 0.383
Gen: 40 0.303 0.297 0.334
(50, 50, 50)

now exiting runScriptInteractively...

Download selectParents.py

Note

The selection algorithm used in simuPOP is called fitness proportionate
selection, or roulette-wheel selection. simuPOP does not use the more
efficient stochastic universal sampling algorithm because the number of needed
offspring is unknown in advance.

Natural selection through the selection of offspring *

Natural selection can also be implemented as selection of offspring. Remember
that an individual will be discarded if one of the during-mating operators fails
(return False), a during-mating selector discards offspring
according to fitness values of offspring. Instead of relative fitness that
will be compared against other individuals during the selection of parents,
fitness values of a during-mating selector are considered as absolute fitness
which are probabilities to survive and have to be between 0 and 1.

A during-mating selector works as follows:

	During evolution, parents are chosen randomly to produce one or more
offspring. (Nothing prevents you from choosing parents according to their
fitness values, but it is rarely justifiable to apply natural selection to both
parents and offspring.)

	A selection operator is applied to each offspring during mating and
determines his or her fitness value. The fitness value is considered as
probability to survive so an offspring will be discarded (operator returns
False) if the fitnessvalue is larger than an uniform random number.

	Repeat steps 1 and 2 until the offspring generation is populated.

Because many offspring will be generated and discarded, especially when
offspring fitness values are low, selection through offspring is less efficient
than selection through parents. In addition, absolute fitness is usually more
difficult to estimate than relative fitness. So, unless there are compelling
reasons (e.g. simulating realistic scenarios of survival competition among
offspring), selection through parents are recommended.

Example selectOffspring gives an example of natural
selection through the selection of offspring. This example looks almost
identical to Example selectParents but the underlying
selection mechanism is quite different. Note that selection through offspring
does not save fitness values to an information field so you do not need to add
information field fitness to the population.

Example: Natural selection through the selection of offspring

>>> import simuPOP as sim
>>> pop = sim.Population(10000, loci=1)
>>> simu = sim.Simulator(pop, rep=3)
>>> simu.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5])
...],
... matingScheme=sim.RandomMating(ops=[
... sim.MendelianGenoTransmitter(),
... sim.MapSelector(loci=0, fitness={(0,0):1, (0,1):0.98, (1,1):0.97}),
...]),
... postOps=[
... sim.Stat(alleleFreq=0, step=10),
... sim.PyEval("'Gen:%3d ' % gen", reps=0, step=10),
... sim.PyEval(r"'%.3f\t' % alleleFreq[0][1]", step=10),
... sim.PyOutput('\n', reps=-1, step=10)
...],
... gen = 50
...)
Gen: 0 0.493 0.493 0.496
Gen: 10 0.461 0.464 0.465
Gen: 20 0.436 0.445 0.442
Gen: 30 0.389 0.386 0.385
Gen: 40 0.370 0.345 0.348
(50, 50, 50)

now exiting runScriptInteractively...

Download selectOffspring.py

Are two selection scenarios equivalent? **

If you look closely at Examples selectParents and
selectOffspring, you will notice that their results are
quite similar. This is actually what you should expect in most cases. Let us
look at the theoretical consequence of selection through parents or offspring in
a simple case with asexual mating.

Assuming a diallelic marker with three genotypes ,
and , with frequencies , and
, and relative fitness values , , and
 respectively. If we select through offspring, the proportion of
genotype etc., should be

because offspring genotypes are randomly drawn from the parental generation, and
each offspring has certain probability to survive.

Now, if we select through parents, the proportion of parents with genotype
 will be the number of individuals times its probability to
be chosen:

This is, however, exactly

which corresponds to the proportion of offspring with such genotype. That is to
say, in this simple case, two types of selection scenarios yield identical
results.

These two types of selection scenarios do not have to always yield identical
results. Exceptions exist in cases with more than one offspring or sexual mating
with sex-specific survival rate. simuPOP provides both selection implementations
and you should choose one of them for your particular simulation.

Map selector (operator MapSelector)

A map selector uses a Python dictionary to provide fitness values for each type
of genotype. For example, Example MapSelector uses a
dictionary with keys (0,0), (0,1) and (1,1) to specify fitness
values for individuals with these genotypes at locus 0. This example is a
typical example of heterozygote advantage. When
the genotype frequencies will go to an equilibrium state. Theoretically, if
 and , the stable allele
frequency of allele 0 is

which is in the example (,
).

Example: A selector that uses pre-defined fitness value

>>> import simuPOP as sim
>>> pop = sim.Population(size=1000, loci=1, infoFields='fitness')
>>> s1 = .1
>>> s2 = .2
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[.2, .8])
...],
... preOps=sim.MapSelector(loci=0, fitness={(0,0):1-s1, (0,1):1, (1,1):1-s2}),
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(alleleFreq=0),
... sim.PyEval(r"'%.4f\n' % alleleFreq[0][0]", step=100)
...],
... gen=301
...)
0.2250
0.6605
0.6530
0.6870
301
>>>

now exiting runScriptInteractively...

Download MapSelector.py

The above example assumes that the fitness value for individuals with genotypes
(0,1) and (1,0) are the same. This assumption is usually valid but can
be vialoated with impriting. In that case, you can specify fitness for both
types of genotypes. The underlying mechanism is that the MapSelector
looks up a genotype in the dictionary first directly, and then without phase
information if a genotype is not found.

This operator supports haplodiploid populations and sex chromosomes. In these
cases, only valid alleles should be listed which can lead to dictionary keys
with different lengths. In addition, although less used because of potentially a
large number of keys, this operator can act on multiple loci. Please refer to
MapPenetrance for details.

Multi-allele selector (operator MaSelector)

A multi-allele selector divides alleles into two groups, wildtype A and
mutants a, and treat alleles within each group as the same. The fitness model
is therefore simplified to

	Two fitness values for genotype , in the haploid case

	Three fitness values for genotype AA, Aa and aa in the diploid single
locus case. Genotype Aa and aA are assumed to have the same impact on fitness.

The default wildtype group contains allele 0 so the two allele groups are zero
and non-zero alleles. Example MaSelector demonstrates the
use of this operator. This example is identical to Example MapSelector except that there are five alleles at locus 0 and alleles 1, 2,
3, 4 are treated as a single non-widetype group.

Example: A multi-allele selector

>>> import simuPOP as sim
>>> pop = sim.Population(size=1000, loci=1, infoFields='fitness')
>>> s1 = .1
>>> s2 = .2
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[.2] * 5)
...],
... preOps=sim.MaSelector(loci=0, fitness=[1-s1, 1, 1-s2]),
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(alleleFreq=0),
... sim.PyEval(r"'%.4f\n' % alleleFreq[0][0]", step=100)
...],
... gen = 301)
0.2250
0.6605
0.6530
0.6870
301

now exiting runScriptInteractively...

Download MaSelector.py

Operator MaSelector also supports multiple loci by specifying fitness
values for all combination of genotype at specified loci. In the case of two
loci, this operator requires

	Four fitness values for genotype AB, Ab, aB and ab in the
haploid case,

	Nine fitness values for genotype AABB, AABb, AAbb, AaBB,
AaBb, Aabb, aaBB, aaBb, and aabb in the haploid case.

In general, values are needed for haploid populations and
 values are needed for diploid populations where is the
number of loci. This operator does not yet support haplodiploid populations and
sex chromosomes. Example MaSelectorHaploid
demonstrates the use of a multi-locus model in a haploid population.

Example: A multi-locus multi-allele selection model in a haploid population

>>> import simuPOP as sim
>>> pop = sim.Population(size=10000, ploidy=1, loci=[1,1], infoFields='fitness')
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[.5, .5])
...],
... # fitness values for AB, Ab, aB and ab
... preOps=sim.MaSelector(loci=[0,1], fitness=[1, 1, 1, 0.95]),
... matingScheme=sim.RandomSelection(),
... postOps=[
... sim.Stat(haploFreq=[0, 1], step=25),
... sim.PyEval(r"'%.3f\t%.3f\t%.3f\t%.3f\n' % (haploFreq[(0,1)][(0,0)],"
... "haploFreq[(0,1)][(0,1)], haploFreq[(0,1)][(1,0)],"
... "haploFreq[(0,1)][(1,1)])", step=25)
...],
... gen = 100
...)
0.264 0.243 0.252 0.240
0.292 0.294 0.321 0.093
0.339 0.330 0.303 0.027
0.310 0.383 0.297 0.009
100

now exiting runScriptInteractively...

Download MaSelectorHaploid.py

Multi-locus selection models (operator MlSelector)

Although an individual’s fitness can be affected by several factors, each of
which can be modeled individually, only one fitness value is used to determine
a person’s ability to pass all these factors to his or her offspring. Although
in theory we sometimes assume independent evolution of disease predisposing loci
(mostly for mathematical reasons), in practise we have to use a multi-locus
selection model to combine single-locus models.

This multi-loci selector applies several selectors to each individual and
computes an overall fitness value from the fitness values provided by these
selectors. Although this selector is designed to obtain multi-loci fitness
values from several single-locus fitness models, any selector, including those
obtain their fitness values from multiple disease predisposing loci, can be used
in this selector. This selector uses parameter mode to control how
individual fitness values are combined. More specifically, if are
fitness values obtained from individual selectors, this selector returns

	 if mode=MULTIPLICATIVE, and

	 if mode=ADDITIVE, and

	 if mode=HETEROGENEITY

0 will be returned if the returned fitness value is less than 0.

This operator simply combines individual fitness values and it is your
responsibility to apply and interpret these models. For example, if relative
fitness values are greater than one, the heterogeneity model hardly makes sense.
Example MlSelector demonstrates the use of this operator
using an additive multi-locus model over an additive and a recessive single-
locus model at two diesease predisposing loci. For comparison, we simulate two
additional replicates with selection only applying to one of the two loci. It
would be interesting to see if these two loci evolve more or less independently
by comparing allele freqency trajectories of these two replicates to those in
the first replicate.

Example: A multi-loci selector

>>> import simuPOP as sim
>>> pop = sim.Population(size=10000, loci=2, infoFields='fitness')
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[.5, .5])
...],
... preOps=[
... sim.MlSelector([
... sim.MapSelector(loci=0, fitness={(0,0):1, (0,1):1, (1,1):.8}),
... sim.MapSelector(loci=1, fitness={(0,0):1, (0,1):0.9, (1,1):.8}),
...], mode = sim.ADDITIVE, reps=0),
... sim.MapSelector(loci=0, fitness={(0,0):1, (0,1):1, (1,1):.8}, reps=1),
... sim.MapSelector(loci=1, fitness={(0,0):1, (0,1):0.9, (1,1):.8}, reps=2)
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(alleleFreq=[0,1]),
... sim.PyEval(r"'REP %d:\t%.3f\t%.3f\t' % (rep, alleleFreq[0][1], alleleFreq[1][1])"),
... sim.PyOutput('\n', reps=-1),
...],
... gen = 5
...)
REP 0: 0.472 0.465
REP 0: 0.452 0.429
REP 0: 0.429 0.397
REP 0: 0.405 0.378
REP 0: 0.382 0.355
5

now exiting runScriptInteractively...

Download MlSelector.py

A hybrid selector (operator PySelector)

When your selection model involves multiple interacting genetic and
environmental factors, it might be easier to calculate a fitness value
explicitly using a Python function. A hybrid selector can be used for this
purpose. If your selection model depends solely on genotype, you can define a
function such as

def fitness_func(geno):
 # calculate fitness according to genotype at specified loci
 # genotypes are arrange locus by locus, namely A1,A2,B1,B2 for loci A and B
 return val

and use this function in an operator PySelector(func=fitness_func,
loci=loci). If your selection model depends on genotype as well as some
information fields, you can define a function in the form of

def fitness_func(geno, field1, field2):
 # calculate fitness according to genotype at specified loci
 # and values at specified informaton fields.
 return val

where field1, field2 are names of information fields. simuPOP will pass
genotype and value of specified fields according to name of the passed function.
Note that genotypes are arrange locus by locus, namely in the order of
A1,``A2``,``B1``,``B2`` for loci A and B. Other parameters such as
gen, ind, and pop are also allowed. Please check the reference
manual for details.

When a PySelector is used to calculate fitness for an individual
(parents if applied pre-mating, offspring if applied during-mating), it will
collect his or her genotype at specified loci, optional values at specified
information fields, generation number, or individual to a user-specified Python
function, and take its return value as fitness. As you can imagine, the
incorporation of information fields and generation number allow the
implementation of very complex selection scenarios such as gene environment
interaction and varying selection pressures.

Example PySelector demonstrates how to use a
PySelector to specify fitness values according to a fitness table and
the smoking status of each individual.

Example: A hybrid selector

>>> import simuPOP as sim
>>> import random
>>> pop = sim.Population(size=2000, loci=[1]*2, infoFields=['fitness', 'smoking'])
>>> s1 = .02
>>> s2 = .03
>>> # the second parameter gen can be used for varying selection pressure
>>> def sel(geno, smoking):
... # BB Bb bb
... # AA 1 1 1
... # Aa 1 1-s1 1-s2
... # aa 1 1 1-s2
... #
... # geno is (A1 A2 B1 B2)
... if geno[0] + geno[1] == 1 and geno[2] + geno[3] == 1:
... v = 1 - s1 # case of AaBb
... elif geno[2] + geno[3] == 2:
... v = 1 - s2 # case of ??bb
... else:
... v = 1 # other cases
... if smoking:
... return v * 0.9
... else:
... return v
...
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[.5, .5])
...],
... preOps=sim.PySelector(loci=[0, 1], func=sel),
... matingScheme=sim.RandomMating(),
... postOps=[
... # set smoking status randomly
... sim.InitInfo(lambda : random.randint(0,1), infoFields='smoking'),
... sim.Stat(alleleFreq=[0, 1], step=20),
... sim.PyEval(r"'%.4f\t%.4f\n' % (alleleFreq[0][1], alleleFreq[1][1])", step=20)
...],
... gen = 50
...)
0.4943 0.4890
0.4880 0.4285
0.4898 0.4073
50

now exiting runScriptInteractively...

Download PySelector.py

Multi-locus random fitness effects (operator PyMlSelector)

If the fitness of individuals is determined by fitness effects over a large
number of loci, both MlSelector and PySelector are difficult
to use because the former requires a large number of single-locus selectors, and
the latter requires the processing long genome sequences. If the overall fitness
can be determined by fitness effects of mutants, a PyMlSelector can be
used. This operator

	Calls a user-provided call-back function for each locus with at least a mutant
(non-zero allele). The function can accept location and genotype so the fitness
can be location and genotype dependent. The return value is cached so the
function will be called only once for each locus-genotype pair.

	The fitness of each individual is determined by fitness values of loci with at
least one mutant, using the same methods as operator MlSelector. This
implicitly assumes that loci without any mutant have fitness value 1 and will
not contribute to the final fitness value.

Example PySelector demonstrates how to use a
PyMlSelector to implement a fitness model where each mutant has a
random fitness drawn from a Gamma distribution. An additive model is used so a
homozygote will have a fitness penalty that doubles that of a heterozygote.
Because the fitness values of heterozygote and homozygote at each locus are
requested separately, a class is used to store locus-specific s values.

The fitness value of each locus-genotype pair is outputted to a file, and it
should be interesting to plot the distribution of allele frequency at each locus
against the fitness values, because mutants that suffer from stronger negative
natural selection are supposed to be rarer.

Example: Random fitness effect

>>> import simuOpt
>>> simuOpt.setOptions(quiet=True, alleleType='mutant')
>>> import simuPOP as sim
>>> import random
>>> pop = sim.Population(size=2000, loci=[10000], infoFields=['fitness'])
>>>
>>> class GammaDistributedFitness:
... def __init__(self, alpha, beta):
... self.coefMap = {}
... self.alpha = alpha
... self.beta = beta
...
... def __call__(self, loc, alleles):
... # because s is assigned for each locus, we need to make sure the
... # same s is used for fitness of genotypes 01 (1-s) and 11 (1-2s)
... # at each locus
... if loc in self.coefMap:
... s = self.coefMap[loc]
... else:
... s = random.gammavariate(self.alpha, self.beta)
... self.coefMap[loc] = s
... #
... if 0 in alleles:
... return 1. - s
... else:
... return 1. - 2.*s
...
>>> pop.evolve(
... initOps=sim.InitSex(),
... preOps=[
... sim.AcgtMutator(rate=[0.00001], model='JC69'),
... sim.PyMlSelector(GammaDistributedFitness(0.23, 0.185),
... output='>>sel.txt'),
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(numOfSegSites=sim.ALL_AVAIL, step=50),
... sim.PyEval(r"'Gen: %2d #seg sites: %d\n' % (gen, numOfSegSites)",
... step=50)
...],
... gen = 201
...)
Gen: 0 #seg sites: 180
Gen: 50 #seg sites: 1310
Gen: 100 #seg sites: 1479
Gen: 150 #seg sites: 1511
Gen: 200 #seg sites: 1579
201
>>> print(''.join(open('sel.txt').readlines()[:5]))
5855 1 0 0.978125
1085 2 0 0.340724
2907 0 1 0.998146
7773 0 1 0.927273
1835 0 2 0.999976

now exiting runScriptInteractively...

Download PyMlSelector.py

Alternative implementations of natural selection

If you know how natural selection works in simuPOP, you do not have to use a
selector to perform natural selection. For example,

	If you choose to use fitness values of parents to perform probabilistic
natural selection during mating, you just need to set individual fitness in some
way before mating. (You do not even have to use information field fitness
because you can specify which information field to use in a mating scheme using
parameter selectionField). This can be done through a penetrance model (as
shown in the following example) where affected individuals are selected against
during mating, a quantitative trait model (where a trait is defined to control
individual fitness), or by setting information field fitness manually through a
Python operator.

	If you would like to perform deterministic selection on certain phenotype, you
can explicitly remove individuals before or during mating. More explicitly, you
can use an operator DiscardIf to remove parents before mating or remove
offspring during mating according to certain status (disease status or
quantitative trait), provided that the trait status is defined before this
operator is applied.

Example peneSelector demonstrates a commonly used case
where parents who are affected with certain disease are excluded from producing
offspring. In this example, a penetrance model (operator MaPenetrance)
is applied to the parental generation to determine who will be affected. An
InfoExec operator is used to set individual fitness to 1 if he or she
is unaffected, and 0 if he or she is affected. Due to the way parents are
selected, affected parents will not be able to produce offspring as long as
there is any unaffected individual. Because individual affection status is
determined by his or her genotype, this genotype - affection status - fitness
relationship could be implemented using an equivalent MaSelector. This
method could be extended to InfoExec('fitness = 1 -
0.01*ind.affected()', exposeInd='ind') to select against, but not remove,
affected parents, and similarly InfoExec('fitness = 1 - 0.01*(LDL >
250)') to select against individuals according to a quantitative trait. For
this particular example, a DiscardIf operator could be used, although
it can be slower because of the explicit removal of parents.

Example: Natural selection according to individual affection status

>>> import simuPOP as sim
>>> pop = sim.Population(size=2000, loci=1, infoFields='fitness')
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[.5, .5])
...],
... preOps=[
... sim.MaPenetrance(loci=0, penetrance=[0.01, 0.1, 0.2]),
... sim.Stat(numOfAffected=True, step=25, vars='propOfAffected'),
... sim.PyEval(r"'Percent of affected: %.3f\t' % propOfAffected", step=50),
... sim.InfoExec('fitness = not ind.affected()', exposeInd='ind')
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(alleleFreq=0),
... sim.PyEval(r"'%.4f\n' % alleleFreq[0][1]", step=50)
...],
... gen=151
...)
Percent of affected: 0.110 0.4713
Percent of affected: 0.009 0.0095
Percent of affected: 0.013 0.0000
Percent of affected: 0.008 0.0000
151

now exiting runScriptInteractively...

Download peneSelector.py

Frequency dependent or dynamic selection pressure *

If individual fitness depends on individual information fields and/or population
variables, you will have to calculate individual fitness using expressions or
functions. In order to access individual information fields and population
variable and calculate individual fitness, you have the option to

	Use a PySelector and pass genotype, values of information fields,
references to individual and population to a user-provided function, which
returns fitness value for each individual.

	Use of PyOperator to obtain information of the population (e.g.
variables) and all individuals. Determine individual fitness and set information
field fitness of all individuals.

	Use an operator InfoExec to calculate individual fitness using
expressions. This method can be more efficient than others because simuPOP does
not have to call a user-provided function.

Example freqDependentSelection demonstrates an
example where the fitness values of individuals are calculated from allele
frequencies calculated using a Stat operator. Because the fitness
values of individuals are 1, , for
genotype 00, 01 and 11 where is the frequency of allele 1, this allele
will be under purifying selection if its frequency is over 0.5, and positive
selection if its frequency is less than 0.5. Consequently, the frequency of this
allele will oscillate around 0.5 during evolution, as shown in the result of
this example.

Example: Frequency dependent selection

>>> import simuPOP as sim
>>> pop = sim.Population(size=2000, loci=1, infoFields='fitness')
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[.5, .5])
...],
... preOps=[
... sim.Stat(alleleFreq=0),
... sim.InfoExec('''fitness = {
... 0: 1,
... 1: 1 - (alleleFreq[0][1] - 0.5)*0.1,
... 2: 1 - (alleleFreq[0][1] - 0.5)*0.2}[ind.allele(0,0)+ind.allele(0,1)]''',
... exposeInd='ind'),
... sim.Stat(meanOfInfo='fitness'),
... sim.PyEval(r"'alleleFreq=%.3f, mean fitness=%.5f\n' % (alleleFreq[0][1], meanOfInfo['fitness'])",
... step=25),
...],
... matingScheme=sim.RandomMating(),
... gen=151
...)
alleleFreq=0.495, mean fitness=1.00045
alleleFreq=0.504, mean fitness=0.99955
alleleFreq=0.484, mean fitness=1.00150
alleleFreq=0.492, mean fitness=1.00076
alleleFreq=0.499, mean fitness=1.00005
alleleFreq=0.526, mean fitness=0.99726
alleleFreq=0.514, mean fitness=0.99856
151

now exiting runScriptInteractively...

Download freqDependentSelector.py

Support for virtual subpopulations *

Support for virtual subpopulations allows you to use different selectors for
different (virtual) subpopulations. Because virtual subpopulations may overlap,
and they do not have to cover all individuals in a subpopulation, it is
important to remember that

	If virtual subpopulations overlap, the fitness value set by the last selector
will be used.

	If an individual is not included in any of the virtual subpopulation, its
fitness value will be zero which will prevent them from producing any offspring.

Example vspSelector demonstrates how to apply selectors to
virtual subpopulations. This example has two subpopulations, each having two
virtual subpopulations defined by sex. Natural selection is applied to male
individuals in the first subpopulation, and female individuals in the second
subpopulation. However, because the sex of offspring is randomly determined, the
selection actually decreases the disease allele frequency for all inviduals.

Example: Selector in virtual subpopulations

>>> import simuPOP as sim
>>> pop = sim.Population(size=[5000, 5000], loci=1, infoFields='fitness')
>>> pop.setVirtualSplitter(sim.SexSplitter())
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[.5, .5])
...],
... preOps=[
... sim.MaSelector(loci=0, fitness=[1, 1, 0.98], subPops=[(0,0), (1,1)]),
... sim.MaSelector(loci=0, fitness=[1, 0.99, 0.98], subPops=[(0,1), (1,0)]),
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(alleleFreq=[0], subPops=[(sim.ALL_AVAIL, sim.ALL_AVAIL)],
... vars='alleleFreq_sp', step=50),
... sim.PyEval(r"'%.4f\t%.4f\t%.4f\t%.4f\n' % "
... "tuple([subPop[x]['alleleFreq'][0][1] for x in ((0,0),(0,1),(1,0),(1,1))])",
... step=50)
...],
... gen=151
...)
0.5022 0.5083 0.4970 0.5020
0.4086 0.4054 0.3849 0.3817
0.3275 0.3259 0.2435 0.2532
0.2715 0.2662 0.1305 0.1338
151

now exiting runScriptInteractively...

Download vspSelector.py

Selecting through offspring can also be applied to virtual subpopulations. For
example, Example vspDuringMatingSelector moves
the selectors to the ops parameter of RandomMating. In this way,
male and female offspring will have different survival probabilities according
to their genotype.

Example: Selection against offspring in virtual subpopulations

>>> import simuPOP as sim
>>> pop = sim.Population(size=[5000, 5000], loci=1, infoFields='fitness')
>>> pop.setVirtualSplitter(sim.SexSplitter())
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[.5, .5])
...],
... matingScheme=sim.RandomMating(ops=[
... sim.MendelianGenoTransmitter(),
... sim.MaSelector(loci=0, fitness=[1, 1, 0.98], subPops=[(0,0), (1,1)]),
... sim.MaSelector(loci=0, fitness=[1, 0.99, 0.98], subPops=[(0,1), (1,0)]),
...]),
... postOps=[
... sim.Stat(alleleFreq=[0], subPops=[(sim.ALL_AVAIL, sim.ALL_AVAIL)],
... vars='alleleFreq_sp', step=50),
... sim.PyEval(r"'%.4f\t%.4f\t%.4f\t%.4f\n' % "
... "tuple([subPop[x]['alleleFreq'][0][1] for x in ((0,0),(0,1),(1,0),(1,1))])",
... step=50)
...],
... gen=151
...)
0.5018 0.5034 0.4941 0.4853
0.3652 0.3728 0.3820 0.3766
0.2882 0.2920 0.2590 0.2667
0.2083 0.1994 0.2378 0.2356
151

now exiting runScriptInteractively...

Download vspDuringMatingSelector.py

Natural selection in heterogeneous mating schemes **

Multiple mating schemes could be applied to the same subpopulation in a
heterogeneous mating scheme (HeteroMating). These mating schemes may or
may not support natural selection, may be applied to different virtual
subpopulations of population, and they may see Individuals differently in terms
of individual fitness. Parameter fitnessField of a mating scheme could be
used to handle such cases. More specifically,

	You can turn off the natural selection support of a mating scheme by setting
fitnessField=''.

	If a mating scheme uses a different set of fitness values, you can add an
information field (e.g. fitness1), setting individual fitness to this
information field using a selector (with parameter infoFields='fitness1')
and tells a mating scheme to look in this information field for fitness values
(using parameter fitnessField='fitness1').

Tagging operators

In simuPOP, tagging refers to the action of setting various information fields
of offspring, usually using various parental information during the production
of offspring. simuPOP provides a number of tagging operators (called taggers)
for various purposes. Because tagging operators are during-mating operators,
parameter subPops can be used to tag only offspring that belong to specified
virtual subpopulation. (e.g. all male offspring)

Inheritance tagger (operator InheritTagger)

An inheritance tagger passes values of parental information field(s) to the
corresponding offspring information field(s). Depending on the parameters, an
InheritTagger can

	For asexual mating schemes, pass one or more information fields from parent to
offspring.

	Pass one or more information fields from father to offspring
(mode=PATERNAL).

	Pass one or more information fields from mother to offspring
(mode=MATERNAL).

	Pass the maximal, minimal, sum, multiplcation or average of values of one or
more information fields of both parents (mode=MAXIMUM, MINIMUM,
ADDITION, MULTIPLICATION or MEAN).

This can be used to track the spread of certain information during evolution.
For example, ExampleInheritTagger tags the first
individuals of ten subpopulations of size 1000. individuals in the offspring
generation inherits the maximum value of field x from his/her parents so
x is inherited regardless of the sex of parents. A Stat operator is used to
calculate the number of offspring having this tag in each subpopulation. The
results show that some tagged ancestors have many offspring, and some have none.
If you run this simulation long enough, you can see that all ancestors become
the ancestor of either none or all indiviudals in a population. Note that this
simulation only considers genealogical inheritance and ancestors do not have to
pass any genotype to the last generation.

Example: Use an inherit tagger to track offspring of individuals

>>> import simuPOP as sim
>>> pop = sim.Population(size=[1000]*10, loci=1, infoFields='x')
>>> # tag the first individual of each subpopulation.
>>> for sp in range(pop.numSubPop()):
... pop.individual(0, sp).x = 1
...
>>> pop.evolve(
... initOps=sim.InitSex(),
... matingScheme=sim.RandomMating(ops=[
... sim.MendelianGenoTransmitter(),
... sim.InheritTagger(mode=sim.MAXIMUM, infoFields='x'),
...]),
... postOps=[
... sim.Stat(sumOfInfo='x', vars=['sumOfInfo_sp']),
... sim.PyEval(r'", ".join(["%3d" % subPop[i]["sumOfInfo"]["x"] for i in range(10)])+"\n"'),
...],
... gen = 5
...)
 2, 1, 0, 1, 1, 2, 3, 3, 1, 1
 5, 1, 0, 1, 1, 3, 3, 5, 3, 0
 9, 2, 0, 2, 2, 7, 9, 5, 13, 0
 21, 4, 0, 2, 5, 18, 11, 9, 27, 0
 39, 5, 0, 6, 8, 36, 23, 20, 67, 0
5

now exiting runScriptInteractively...

Download InheritTagger.py

Summarize parental informatin fields (operator SummaryTagger)

A SummaryTagger summarize values of one or more parental information
fields and place the result in an offspring information field. If mating is
sexual, two sets of values will be involved. Summarization methods include
MEAN, MINIMUM, MAXIMUM, SUMMATION and MULTIPLICATION. The
operator is usually used to summarize certain characteristic of parents of each
offspring. For example, a SummaryTagger is used in Example
SummaryTagger to calculate the mean fitness of parents
during each mating event. The results are saved in the avgFitness field of
offspring. Because allele 1 at locus 0 is under purifying selection, the allele
frequency of this allele decreases. In the mean time, fitness of parents
increases because less and less parents have this allele.

Example: Using a summary tagger to calculate mean fitness of parents.

>>> import simuPOP as sim
>>> pop = sim.Population(1000, loci=1, infoFields=['fitness', 'avgFitness'])
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5]),
...],
... preOps=sim.MaSelector(loci=0, wildtype=0, fitness=[1, 0.99, 0.95]),
... matingScheme=sim.RandomMating(ops=[
... sim.MendelianGenoTransmitter(),
... sim.SummaryTagger(mode=sim.MEAN, infoFields=['fitness', 'avgFitness']),
...]),
... postOps=[
... sim.Stat(alleleFreq=0, meanOfInfo='avgFitness', step=10),
... sim.PyEval(r"'gen %d: allele freq: %.3f, average fitness of parents: %.3f\n' % "
... "(gen, alleleFreq[0][1], meanOfInfo['avgFitness'])", step=10)
...],
... gen = 50,
...)
gen 0: allele freq: 0.473, average fitness of parents: 0.984
gen 10: allele freq: 0.421, average fitness of parents: 0.986
gen 20: allele freq: 0.388, average fitness of parents: 0.988
gen 30: allele freq: 0.288, average fitness of parents: 0.991
gen 40: allele freq: 0.256, average fitness of parents: 0.993
50

now exiting runScriptInteractively...

Download SummaryTagger.py

Tracking parents (operator ParentsTagger)

A parents tagger is used to record the indexes of parents (in the parental
population) in the information fields (default to father_idx,
mother_idx) of their offspring. These indexes provide a way to track down an
individuals parents, offspring and consequently all relatives in a multi-
generation population. Because this operator has been extensively used in this
guide, please refer to other sections for an Example (e.g. Example
basicInfoFields).

As long as parental generations do not change after the offspring generation is
created, recorded parental indexes can be used to locate parents of an
individual. However, in certain applications when parental generations change
(e.g. to draw a pedigree from a large population), or when individuals can not
be looked up easily using indexes (e.g. after individuals are saved to a file),
giving every Individual an unique ID and refer to them using ID will be a better
choice.

Tracking index of offspring within families (operator OffspringTagger)

An offspring tagger is used to record the index of offspring within each family
in an information field (default to offspring_idx) of offspring. Because the
index is reset for each mating event, the index will be reset even if two
adjacent families share the same parents. In addition, this operator records the
relative index of an offspring so the index will not change if an offspring is
re-generated when the previous offspring is discarded for any reason.

Because during-mating selection operator discards offspring according their
genotypes, a mating scheme can produce families with varying sizes even if
numOffspring is set to a constant number. On the other hand, if we would
like to ensure equal family size N in the presence of natural selection, we
will have to produce more offspring so that there can be at least N offspring
in each family after selection. Once N offspring have been generated,
excessive offspring can be discarded according to offspring_idx. The
following example demonstrates such a simulation scenario:

Example: Keeping constant family size in the presence of natural selection against offspring

>>> import simuPOP as sim
>>> pop = sim.Population(1000, loci=1, infoFields='offspring_idx')
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5]),
...],
... matingScheme=sim.RandomMating(ops=[
... sim.MendelianGenoTransmitter(),
... # lethal recessive alleles
... sim.MaSelector(loci=0, wildtype=0, fitness=[1, 0.90, 0.5]),
... sim.OffspringTagger(),
... sim.DiscardIf('offspring_idx > 4'),
...], numOffspring=10),
... postOps=[
... sim.Stat(alleleFreq=0, step=10),
... sim.PyEval(r"'gen %d: allele freq: %.3f\n' % "
... "(gen, alleleFreq[0][1])", step=10)
...],
... gen = 50,
...)
gen 0: allele freq: 0.445
gen 10: allele freq: 0.187
gen 20: allele freq: 0.089
gen 30: allele freq: 0.087
gen 40: allele freq: 0.059
50

now exiting runScriptInteractively...

Download OffspringTagger.py

Because families with lethal alleles produce the same number of offspring as
families without such alleles, natural selection happens within each families
and is weaker than the case when natural selection is used to all offspring.
This phenomena is generally referred to as reproductive compensation.

Assign unique IDs to individuals (operator IdTagger)

Although it is possible to use generation number and individual indexes to
locate individuals in an evolving population, an unique I D makes it much easier
to identify individuals when migration is involved, and to analyze an
evolutionary process outside of simuPOP. An operator IdTagger (and its
function form tagID) is provided by simuPOP to assign an unique ID to
all individuals during evolution.

The IDs of individuals are usually stored in an information field named
ind_id. To ensure uniqueness across populations, a single source of ID is
used for this operator. individual IDs are assigned consecutively starting from
0. If you would like to reset the sequence or start from a different number, you
can call the reset(startID) function of any IdTagger.

An IdTagger is usually used during-mating to assign ID to each
offspring. However, if it is applied directly to a population, it will assign
unique IDs to all individuals in this population. This property is usually used
in the preOps parameter of function Simulator.evolve to assign
initial ID to a population. For example, two IdTagger operators are
used in Example IdTagger to assign IDs to all individuals.
Although different operators are used, different IDs are assigned to
individuals.

Example: Assign unique IDs to individuals

>>> import simuPOP as sim
>>> pop = sim.Population(10, infoFields='ind_id', ancGen=1)
>>> pop.evolve(
... initOps=sim.IdTagger(),
... matingScheme=sim.RandomSelection(ops=[
... sim.CloneGenoTransmitter(),
... sim.IdTagger(),
...]),
... gen = 1
...)
1
>>> print([int(ind.ind_id) for ind in pop.individuals()])
[11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
>>> pop.useAncestralGen(1)
>>> print([int(ind.ind_id) for ind in pop.individuals()])
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> sim.tagID(pop) # re-assign ID
>>> print([int(ind.ind_id) for ind in pop.individuals()])
[21, 22, 23, 24, 25, 26, 27, 28, 29, 30]

now exiting runScriptInteractively...

Download IdTagger.py

Tracking Pedigrees (operator PedigreeTagger)

A PedigreeTagger is similar to a ParentsTagger in that it
records parental information in offspring’s information fields. However, instead
of indexes of parents, this operator records an unique ID of each parent to make
it easier to study and reconstruct a complete pedigree of a whole evolutionary
process. The default information fields are father_id and mother_id.

By default, the PedigreeTagger does not produce any output. However, if
a valid output string (or function) is specified, it will output the ID of
offspring and their parents, sex and affection status of offspring, and
optionally values at specified information fields (parameter outputFields)
and genotype at specified loci (parameter outputLoci). Because this operator
only outputs offspring, the saved file does not have detailed information of
individuals in the top-most ancestral generation. If you would like to record
complete pedigree information, you can apply PedigreeTagger in the
initOps operator of function Simulator.evolve or
Population.evolve to output information of the initial population.
Although this operator is primarily used to output pedigree information, values
at specified information fields and genotypes at specified loci could also be
outputed.

Example PedigreeTagger demonstrates how to output the
complete pedigree of an evolutionary process. Note that IdTagger has to
be applied before PedigreeTagger so that IDs of offspring could be
assigned before they are outputted.

Example: Output a complete pedigree of an evolutionary process

>>> import simuPOP as sim
>>> pop = sim.Population(100, infoFields=['ind_id', 'father_id', 'mother_id'])
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.IdTagger(),
... sim.PedigreeTagger(output='>>pedigree.txt'),
...],
... matingScheme=sim.RandomMating(ops=[
... sim.IdTagger(),
... sim.PedigreeTagger(output='>>pedigree.txt'),
... sim.MendelianGenoTransmitter()]
...),
... gen = 100
...)
100
>>> ped = open('pedigree.txt')
>>> lines = ped.readlines()
>>> ped.close()
>>> # first few lines, saved by the first PedigreeTagger
>>> print(''.join(lines[:3]))
1 0 0 F U
2 0 0 F U
3 0 0 M U

>>> # last several lines, saved by the second PedigreeTagger
>>> print(''.join(lines[-3:]))
10098 9974 9915 F U
10099 9967 9997 M U
10100 9945 9936 M U

>>> # load this file
>>> ped = sim.loadPedigree('pedigree.txt')
>>> # should have 100 ancestral generations (plus one present generation)
>>> ped.ancestralGens()
100

now exiting runScriptInteractively...

Download PedigreeTagger.py

A hybrid tagger (operator PyTagger)

A PyTagger uses a user-defined function to pass parental information
fields to offspring. When a mating event happens, this operator collect values
of specified information fields of parents, pass them to a user-provided
function, and use the return values to set corresponding offspring information
fields. A typical usage of this operator is to set random environmental factors
that are affected by parental values. Example PyTagger
demonstrates such an example where the location of each offspring (x, y) is
randomly assigned around the middle position of his or her parents.

Example: Use of a hybrid tagger to pass parental information to offspring

>>> import simuPOP as sim
>>> import random
>>> def randomMove(x, y):
... '''Pass parental information fields to offspring'''
... # shift right with high concentration of alleles...
... off_x = random.normalvariate((x[0]+x[1])/2., 0.1)
... off_y = random.normalvariate((y[0]+y[1])/2., 0.1)
... return off_x, off_y
...
>>> pop = sim.Population(1000, loci=[1], infoFields=['x', 'y'])
>>> pop.setVirtualSplitter(sim.GenotypeSplitter(loci=0, alleles=[[0, 0], [0,1], [1, 1]]))
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5]),
... sim.InitInfo(random.random, infoFields=['x', 'y'])
...],
... matingScheme=sim.RandomMating(ops=[
... sim.MendelianGenoTransmitter(),
... sim.PyTagger(func=randomMove),
...]),
... postOps=[
... sim.Stat(minOfInfo='x', maxOfInfo='x'),
... sim.PyEval(r"'Range of x: %.2f, %.2f\n' % (minOfInfo['x'], maxOfInfo['x'])")
...],
... gen = 5
...)
Range of x: -0.17, 1.12
Range of x: -0.05, 1.14
Range of x: 0.01, 1.01
Range of x: 0.01, 1.04
Range of x: 0.06, 0.95
5
>>>

now exiting runScriptInteractively...

Download PyTagger.py

Tagging that involves other parental information

If the way how parental information fields pass to their offspring is affected
by parental genotype, sex, or affection status, you could use a Python operator
(PyOperator) during mating to explicitly obtain parental information
and set offspring information fields.

Alternatively, you can add another information field, translate needed
information to this field and pass the genotype information in the form of
information field. Operator InfoExec could be helpful in this case.
Example otherTagging demonstrates such an example where
the number of affected parents are recorded in an information field. Before
mating happens, a penetrance operator is used to assign affection status to
parents. The affection status is then copied to an information field affected so
that operator SummaryTagger could be used to count the number of
affected parents. Two MaPenetrance operators are used both before and
after mating to assign affection status to both parental and offspring
generations. This helps dividing the offspring generation into affected and
unaffected virtual subpopulations. Not surprisingly, the average number of
affected parents is larger for affected individuals than unaffected individuals.

Example: Tagging that involves other parental information

>>> import simuPOP as sim
>>> pop = sim.Population(1000, loci=[1], infoFields=['aff', 'numOfAff'])
>>> # define virtual subpopulations by affection sim.status
>>> pop.setVirtualSplitter(sim.AffectionSplitter())
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5]),
...],
... preOps=[
... # get affection sim.status for parents
... sim.MaPenetrance(loci=0, wildtype=0, penetrance=[0.1, 0.2, 0.4]),
... # set 'aff' of parents
... sim.InfoExec('aff = ind.affected()', exposeInd='ind'),
...],
... # get number of affected parents for each offspring and store in numOfAff
... matingScheme=sim.RandomMating(ops=[
... sim.MendelianGenoTransmitter(),
... sim.SummaryTagger(mode=sim.SUMMATION, infoFields=['aff', 'numOfAff'])]),
... postOps=[
... # get affection sim.status for offspring
... sim.MaPenetrance(loci=0, wildtype=0, penetrance=[0.1, 0.2, 0.4]),
... # calculate mean 'numOfAff' of offspring, for unaffected and affected subpopulations.
... sim.Stat(meanOfInfo='numOfAff', subPops=[(0,0), (0,1)], vars=['meanOfInfo_sp']),
... # print mean number of affected parents for unaffected and affected offspring.
... sim.PyEval(r"'Mean number of affected parents: %.2f (unaff), %.2f (aff)\n' % "
... "(subPop[(0,0)]['meanOfInfo']['numOfAff'], subPop[(0,1)]['meanOfInfo']['numOfAff'])")
...],
... gen = 5
...)
Mean number of affected parents: 0.41 (unaff), 0.44 (aff)
Mean number of affected parents: 0.41 (unaff), 0.54 (aff)
Mean number of affected parents: 0.47 (unaff), 0.55 (aff)
Mean number of affected parents: 0.47 (unaff), 0.55 (aff)
Mean number of affected parents: 0.42 (unaff), 0.45 (aff)
5
>>>

now exiting runScriptInteractively...

Download otherTagging.py

Statistics calculation (operator Stat)

How statistics calculation works

A Stat operator calculates specified statistics of a population when it
is applied to this population. This operator can be applied to specified
replicates (parameter rep) at specified generations (parameter begin, end,
step, and at). This operator does not produce any output (ignore parameter
output) after statistics are calculated. Instead, it stores results in the
local namespace of the population being applied. Other operators can retrieve
these variables or evalulate expression directly in this local namespace.

The Stat operator is usually used in conjunction with a PyEval
or PyExec operator which execute Python statements and/or expressions
in a population’s local namespace. For example, operators

ops = [
 Stat(alleleFreq=[0]),
 PyEval("'%.2f' % alleleFreq[0][0]")
]

in the ops parameter of the Simulator.evolve function will be
applied to populations during evolution. The first operator calculates allele
frequency at the first locus and store the results in each population’s local
namespace. The second operator formats and outputs one of the variables. Because
of the flexiblity of the PyEval operator, you can output statistics,
even simple derived statistics, in any format. For example, you can output
expected heterozygosity () using calculated allele
frequencies as follows:

PyEval("'H_exp=%.2f' % (1-sum([x*x for x in alleleFreq[0].values()]))")

Note that alleleFreq[0] is a dictionary.

You can also retrieve variables in a population directly using functions
Population.vars() or Population.dvars(). The only difference
between these functions is that vars returns a dictionary and dvars() returns a Python object that uses variable names as attributes
(vars()['alleleFreq'] is equivalent to dvars.alleleFreq). This
method is usually used when the function form of the Stat operator is
used. For example,

stat(pop, alleleFreq=[0])
H_exp = 1 - sum([x*x for x in pop.dvars().alleleFreq[0].values()])

uses the stat function (note the capital S) to count frequencies of alleles
for a given population and calculates expected heterozygosity using these
variables.

defdict datatype

simuPOP uses dictionaries to save statistics such as allele frequencies. For
example, alleleFreq[5] can be {0:0.2, 3:0.8} meaning there are 20%
allele 0 and 80% allele 3 at locus 5 in a population. However, because it is
sometimes unclear whether or not a particular allele exists in a population,
alleleFreq[5][allele] can fail with a KeyError exception if
alleleFreq[5] does not have key allele.

To address this problem, a special default dictionary type defdict is
used for dictionaries with keys determined from a population. This derived
dictionary type works just like a regular dictionay, but it returns 0, instead
of raising a KeyError exception, when an invalid key is used. For example,
subpopulations in Example defdictType have different
alleles. Although pop.dvars(sp).alleleFreq[0] have only two keys for
sp=0 or 1, pop.dvars(sp).alleleFreq[0][x] are used to print
frequencies of alleles 0, 1 and 2.

Example: The defdict datatype

>>> import simuPOP as sim
>>> pop = sim.Population([100]*2, loci=1)
>>> sim.initGenotype(pop, freq=[0, 0.2, 0.8], subPops=0)
>>> sim.initGenotype(pop, freq=[0.2, 0.8], subPops=1)
>>> sim.stat(pop, alleleFreq=0, vars=['alleleFreq_sp'])
>>> for sp in range(2):
... print('Subpop %d (with %d alleles): ' % (sp, len(pop.dvars(sp).alleleFreq[0])))
... for a in range(3):
... print('%.2f ' % pop.dvars(sp).alleleFreq[0][a])
...
Subpop 0 (with 2 alleles):
0.00
0.21
0.79
Subpop 1 (with 2 alleles):
0.21
0.79
0.00

now exiting runScriptInteractively...

Download defdict.py

Note

The standard collections module of Python has a defaultdict type that
accepts a default factory function that will be used when an invalid key is
encountered. The defdict type is similar to defaultdict(int) but
with an important difference: when an invalid key is encountered, d[key]
with a default value will be inserted to a defaultdict(int), but will not be
inserted to a defdict. That is to say, it is safe to use
alleleFreq[loc].keys() to get available alleles after non-assignment
alleleFreq[loc][allele] operations.

Support for virtual subpopulations

The Stat operator supports parameter subPops and can calculate
statistics in specified subpopulations. For example

Stat(alleleFreq=[0], subPops=[(0, 0), (1, 0)])

will calculate the frequencies of alleles at locus 0, among Individuals in two
virtual subpopulations. If the virtual subpopulation is defined by sex (using a
SexSplitter), the above operator will calculate allele frequency among
all males in the first and second subpopulations (not separately!). If
subPops is not specified, allele frequency of the whole population (all
subpopulations) will be calculated.

Although many statistics could be calculated and outputted, the Stat
operator by default outputs a selected number of variables for each statisic
calculated. Other statistics could be calculated and outputted if their names
are specified in parameter vars. Variable names ending with _sp is
interpreted as variables that will be calculated and outputted in all or
specified (virtual) subpopulations. For example, parameter vars in

Stat(alleleFreq=[0], subPops=[0, (1, 0)], vars=['alleleFreq_sp', 'alleleNum_sp'])

tells this operator to output numbers and frequencies of alleles at locus 0
in subpopulation 0 and virtual subpopulation (1,0). These variables will
be saved in dictionaries subPop[sp] of the local namespace. For example, the
above operator will write variables such as subPop[0]['alleleFreq'],
subPop[(1,0)]['alleleFreq'] and subPop[(1,0)]['alleleNum']. Functions
Population.vars(sp) and Population.dvars(sp) are
provided as shortcuts to access these variables but the full variable names have
to be specified if these variables are used in expressions.

By default, the same variables will be set for a statistic, regardless of the
values of the loci and subPops parameter. This can be a problem if
multiple Stat operators are used to calculate the same statistics for
different sets of loci (e.g. for each chromosome) or subpopulations. To avoid
name conflict, you can use parameter suffix to add a suffix to all variables
outputted by a Stat operator. For example, Example statSuffix uses 4 Stat operators to calculate overall and pairwise
 values for three subpopulations. Different suffixes are used for
pairwise estimators so that variables set by these operators will
not override each other.

Example: Add suffixes to variables set by multiple Stat operators

>>> import simuPOP as sim
>>> pop = sim.Population([5000]*3, loci=5)
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5])
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(structure=range(5), subPops=(0, 1), suffix='_01', step=40),
... sim.Stat(structure=range(5), subPops=(1, 2), suffix='_12', step=40),
... sim.Stat(structure=range(5), subPops=(0, 2), suffix='_02', step=40),
... sim.Stat(structure=range(5), step=40),
... sim.PyEval(r"'Fst=%.3f (pairwise: %.3f %.3f %.3f)\n' % (F_st, F_st_01, F_st_12, F_st_02)",
... step=40),
...],
... gen = 200
...)
Fst=0.000 (pairwise: 0.000 0.000 0.000)
Fst=0.004 (pairwise: 0.006 0.003 0.004)
Fst=0.012 (pairwise: 0.017 0.015 0.004)
Fst=0.008 (pairwise: 0.012 0.010 0.001)
Fst=0.008 (pairwise: 0.007 0.009 0.007)
200

now exiting runScriptInteractively...

Download statSuffix.py

Note

The Stat opeartor accepts overlapping or even duplicate virtual
subpopulations. During the calculation of summary statistics, these
subpopulations are treated as separate subpopulations so some individuals can be
counted more than once. For example, individuals in virtual subpopulation (0, 1)
will be counted twice during the calculation of allele frequency and population
size in operator

Stat(alleleFreq=[0], popSize=True, subPops=[0, (0, 1)])

Counting individuals by sex and affection status

Parameters popSize, numOfMales and numOfAffected provide basic Individual
counting statistics. They count the number of all, male/female,
affected/unaffected individuals in all or specified (virtual) subpopulations,
and set variables such as popSize, numOfMales, numOfFemales,
numOfAffected, numOfUnaffected. Proportions and statistics for
subpopulations are available if variables such as propOfMales,
numOfAffected_sp are specified in parameter vars. Another variable
subPopSize is defined for parameter popSize=True. It is a list of sizes
of all or specified subpopulations and is easier to use than referring to
variable popSize from individual subpopulations.

Example statCount demonstrates how to use these parameters in
operator Stat. It defines four VSPs by sex and affection status (using
a stackedSplitter) and count individuals by sex and affection status. It is
worth noting that pop.dvars().popSize in the first example is the total
number of individuals in two virtual subpopulations (0,0) and (0,2),
which are all male indiviudals, and all unaffected individuals. Because these
two VSPs overlap, this variable can be larger than actual population size.

Example: Count individuals by sex and/or affection status

>>> import simuPOP as sim
>>> pop = sim.Population(10000, loci=1)
>>> pop.setVirtualSplitter(sim.CombinedSplitter(
... [sim.SexSplitter(), sim.AffectionSplitter()]))
>>> sim.initSex(pop)
>>> sim.initGenotype(pop, freq=[0.2, 0.8])
>>> sim.maPenetrance(pop, loci=0, penetrance=[0.1, 0.2, 0.5])
>>> # Count sim.population size
>>> sim.stat(pop, popSize=True, subPops=[(0, 0), (0, 2)])
>>> # popSize is the size of two VSPs, does not equal to total sim.population size.
>>> # Because two VSPs overlap (all males and all unaffected), popSize can be
>>> # greater than real sim.population size.
>>> print(pop.dvars().subPopSize, pop.dvars().popSize)
[5052, 6080] 11132
>>> # print popSize of each virtual subpopulation.
>>> sim.stat(pop, popSize=True, subPops=[(0, 0), (0, 2)], vars='popSize_sp')
>>> # Note the two ways to access variable in (virtual) subpopulations.
>>> print(pop.dvars((0,0)).popSize, pop.dvars().subPop[(0,2)]['popSize'])
5052 6080
>>> # Count number of male (should be the same as the size of VSP (0,0).
>>> sim.stat(pop, numOfMales=True)
>>> print(pop.dvars().numOfMales)
5052
>>> # Count the number of affected and unaffected male individual
>>> sim.stat(pop, numOfMales=True, subPops=[(0, 2), (0, 3)], vars='numOfMales_sp')
>>> print(pop.dvars((0,2)).numOfMales, pop.dvars((0,3)).numOfMales)
3056 1996
>>> # or number of affected male and females
>>> sim.stat(pop, numOfAffected=True, subPops=[(0, 0), (0, 1)], vars='numOfAffected_sp')
>>> print(pop.dvars((0,0)).numOfAffected, pop.dvars((0,1)).numOfAffected)
1996 1924
>>> # These can also be done using a sim.ProductSplitter...
>>> pop.setVirtualSplitter(sim.ProductSplitter(
... [sim.SexSplitter(), sim.AffectionSplitter()]))
>>> sim.stat(pop, popSize=True, subPops=[(0, x) for x in range(4)])
>>> # counts for male unaffected, male affected, female unaffected and female affected
>>> print(pop.dvars().subPopSize)
[3056, 1996, 3024, 1924]

now exiting runScriptInteractively...

Download statCount.py

Number of segregating and fixed sites

Parameter numOfSegSites counts the number of segregating sites for specified
or all loci, for all individuals or individuals in specified (virtual)
subpopulations. It can also be used to count the number of fixed sites . This
parameter sets variables numOfSegSites and numOfFixedSites. Here we
defined fixed sites as loci with only one non-zero allele (e.g. fixed to a non-
zero allele). Other numbers, such as all loci with only one allele (including
zero), or loci with all wildtype alleles (only zero), can be derived from these
two counts. Starting from version 1.1.3, variables segSites and
fixedSites can be used to return a list of segregating and fixed sites.

For example, Example numSegSites demonstrates how to use
this operator to calculate the number of segregating sites (sites with alleles 0
and 1), number of fixed sites (sites with only allele 1), and number of loci
with only wildtype alleles (loci with only allele 0). As you can see, the
population starts with 100 segregating sites. During evolution, alleles at some
loci get lost and some get fixed, and there should be no segregating site if we
evolve the population for long enough.

Example: Count number of segregating and fixed sites

>>> import simuPOP as sim
>>> pop = sim.Population(100, loci=[1]*100)
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.3, 0.7]),
... sim.PyOutput('#all 0\t#seg sites\t#all 1\n'),
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(numOfSegSites=sim.ALL_AVAIL,
... vars=['numOfSegSites', 'numOfFixedSites']),
... sim.PyEval(r'"%d\t%d\t%d\n" % (100-numOfSegSites-numOfFixedSites,'
... 'numOfSegSites, numOfFixedSites)',
... step=50)
...],
... gen=500
...)
#all 0 #seg sites #all 1
0 100 0
0 93 7
3 76 21
7 55 38
12 40 48
17 31 52
19 23 58
22 19 59
26 14 60
28 10 62
500
>>> # output a list of segregating sites
>>> sim.stat(pop, numOfSegSites=sim.ALL_AVAIL, vars='segSites')
>>> print(pop.dvars().segSites)
[11, 15, 20, 32, 39, 43, 44, 51, 86, 95]

now exiting runScriptInteractively...

Download statNumOfSegSites.py

Allele count and frequency

Parameter alleleFreq accepts a list of markers at which allele frequencies in
all or specified (virtual) subpopulations will be calculated. This statistic
sets variables alleleFreq[loc][allele] and alleleNum[loc][allele] which
are frequencies and numbers of allele allele at locus loc, respectively.
If variables alleleFreq_sp and alleleNum_sp are specified in parameter
vars, these variables will be set for all or specified (virtual)
subpopulations. At the Python level, these variables are dictionaries of
default dictionaries. That is to say, alleleFreq[loc] at a unspecified
locus will raise a KeyError exception, and alleleFreq[loc][allele] of an
invalid allele will return 0.

Example statAlleleFreq demonstrates an advanced usage of
allele counting statistic. In this example, two virtual subpopulations are
defined by individual affection status. During evolution, a multi-allele
penetrance operator is used to determine individual affection status and a
Stat operator is used to calculate allele frequencies in these two
virtual subpopulations, and in the whole population. Because the simulated
disease is largely caused by the existence of allele 1 at the first locus, it is
expected that the frequency of allele 1 is higher in the case group than in the
control group. It is worth noting that alleleFreq[0][1] in this example is
the frequency of allele 1 in the whole population because these two virtual
subpopulations add up to the whole population.

Example: Calculate allele frequency in affected and unaffected individuals

>>> import simuPOP as sim
>>> pop = sim.Population(10000, loci=1)
>>> pop.setVirtualSplitter(sim.AffectionSplitter())
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(loci=0, freq=[0.8, 0.2])
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.MaPenetrance(penetrance=[0.1, 0.4, 0.6], loci=0),
... sim.Stat(alleleFreq=0, subPops=[(0, 0), (0, 1)],
... vars=['alleleFreq', 'alleleFreq_sp']),
... sim.PyEval(r"'Gen: %d, freq: %.2f, freq (aff): %.2f, freq (unaff): %.2f\n' % " + \
... "(gen, alleleFreq[0][1], subPop[(0,1)]['alleleFreq'][0][1]," + \
... "subPop[(0,0)]['alleleFreq'][0][1])"),
...],
... gen = 5
...)
Gen: 0, freq: 0.20, freq (aff): 0.41, freq (unaff): 0.14
Gen: 1, freq: 0.20, freq (aff): 0.40, freq (unaff): 0.14
Gen: 2, freq: 0.20, freq (aff): 0.41, freq (unaff): 0.14
Gen: 3, freq: 0.20, freq (aff): 0.41, freq (unaff): 0.14
Gen: 4, freq: 0.19, freq (aff): 0.41, freq (unaff): 0.14
5

now exiting runScriptInteractively...

Download statAlleleFreq.py

Genotype count and frequency

Parameter genoFreq accepts a list of loci at which genotype counts and
frequencies are calculated and outputted. A genotype is represented as a tuple
of alleles at a locus. The length of the tupples** **is determined by the number
of homologous copy of chromosomes in a population. For example, genotypes in a
diploid population are ordered pairs such as (1, 2) where 1 and 2 are
alleles at a locus on, respectively, the first and second homologous copies of
chromosomes. (1, 2) and (2, 1) are different genotypes. This statistic
sets dictionaries (with locus indexes as keys) of default dictionaries (with
genotypes as keys) genoFreq and genoNum.

Example statGenoFreq creates a small population and
initializes a locus with rare alleles 0, 1 and a common allele 2. A function
stat (the function form of operator Stat) is used to count the
available genotypes. Note that pop.dvars().genoFreq[0][(i,j)] can be used to
print frequencies of all genotypes even when not all genotypes are available in
the population.

Example: Counting genotypes in a population

>>> import simuPOP as sim
>>> pop = sim.Population(100, loci=[1, 1, 1], lociNames=['A', 'X', 'Y'],
... chromTypes=[sim.AUTOSOME, sim.CHROMOSOME_X, sim.CHROMOSOME_Y])
>>> sim.initGenotype(pop, freq=[0.01, 0.05, 0.94])
>>> sim.stat(pop, genoFreq=['A', 'X']) # both loci indexes and names can be used.
>>> print('Available genotypes on autosome:', list(pop.dvars().genoFreq[0].keys()))
Available genotypes on autosome: [(0, 2), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)]
>>> for i in range(3):
... for j in range(3):
... print('%d-%d: %.3f' % (i, j, pop.dvars().genoFreq[0][(i,j)]))
...
0-0: 0.000
0-1: 0.000
0-2: 0.020
1-0: 0.000
1-1: 0.030
1-2: 0.070
2-0: 0.010
2-1: 0.040
2-2: 0.830
>>> print('Genotype frequency on chromosome X:\n', \
... '\n'.join(['%s: %.3f' % (x,y) for x,y in pop.dvars().genoFreq[1].items()]))
Genotype frequency on chromosome X:
 (0,): 0.020
(1,): 0.030
(2,): 0.950

now exiting runScriptInteractively...

Download statGenoFreq.py

Homozygote and heterozygote count and frequency

In a diploid population, a heterozygote is a genotype with two different alleles
and a homozygote is a genotype with two identical alleles. Parameter
heteroFreq accepts a list of loci and outputs variables heteroFreq which
is a dictionary of heterozygote frequencies at specfied loci. Optional variables
heteroNum, homoFreq and homoNum can be outputted for all and each
(virtual) subpopulations. Example statHeteroFreq
demonstrates the decay of heterozygosity of a locus due to genetic drift.

Example: Counting homozygotes and heterozygotes in a population

>>> import simuPOP as sim
>>> pop = sim.Population(100, loci=1)
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5])
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(heteroFreq=0, step=10),
... sim.PyEval(r"'Gen: %d, HeteroFreq: %.2f\n' % (gen, heteroFreq[0])", step=20)
...],
... gen = 100
...)
Gen: 0, HeteroFreq: 0.45
Gen: 20, HeteroFreq: 0.44
Gen: 40, HeteroFreq: 0.55
Gen: 60, HeteroFreq: 0.46
Gen: 80, HeteroFreq: 0.40
100

now exiting runScriptInteractively...

Download statHeteroFreq.py

Haplotype count and frequency

Haplotypes refer to alleles on the same homologous copy of a chromosome at
specified loci. For example, an diploid individual can have haplotypes (0, 2,
1) and (0, 1, 1) at loci (2, 3, 5) if he or she has genotype (0,
0), (2, 1) and (1,1) at loci 2, 3 and 5 respectively. Parameter
haploFreq accept one or more lists of loci specifying one or more haplotype
sites (e.g. haploFreq=[(0,1,2), (2,3)] specifies two haplotype sites). The
results are saved to dictionaries (with haplotype site as keys) of default
dictionaries (with haplotype as keys). For example,
haploFreq[(0,1,2)][(0,1,1)] will be the frequency of haplotype (0, 1, 1)
at loci (0, 1, 2). Example statHaploFreq prints the
numbers of genotypes and haplotypes at loci 0, 1 and 2 of a small population.
Note that the viewVars function defined in module simuUtil can make use
of a wxPython window to view all variables if it is called in GUI mode.

Example: Counting haplotypes in a population

>>> import simuPOP as sim
>>> from simuPOP.utils import viewVars
>>> pop = sim.Population(100, loci=3)
>>> sim.initGenotype(pop, freq=[0.2, 0.4, 0.4], loci=0)
>>> sim.initGenotype(pop, freq=[0.2, 0.8], loci=2)
>>> sim.stat(pop, genoFreq=[0, 1, 2], haploFreq=[0, 1, 2],
... vars=['genoNum', 'haploFreq'])
>>> viewVars(pop.vars(), gui=False)
{'genoNum': {0: {(0, 0): 3.0,
 (0, 1): 7.0,
 (0, 2): 5.0,
 (1, 0): 9.0,
 (1, 1): 14.0,
 (1, 2): 16.0,
 (2, 0): 8.0,
 (2, 1): 14.0,
 (2, 2): 24.0},
 1: defdict({(0, 0): 100.0}),
 2: {(0, 0): 4.0,
 (0, 1): 19.0,
 (1, 0): 15.0,
 (1, 1): 62.0}},
 'haploFreq': {(0, 1, 2): {(0, 0, 0): 0.03,
 (0, 0, 1): 0.145,
 (1, 0, 0): 0.055,
 (1, 0, 1): 0.315,
 (2, 0, 0): 0.125,
 (2, 0, 1): 0.33}}}

now exiting runScriptInteractively...

Download statHaploFreq.py

Note

haploFreq does not check if loci in a haplotype site belong to the same
chromosome, or if loci are duplicated or in order. It faithfully assemble
alleles at specified loci as haplotypes although these haplotypes might not be
biologically meaningful.

Note

Counting a large number of haplotypes on long haplotype sites may exhaust the
RAM of your computer.

Summary statistics of information fields

Parameter sumOfInfo, meanOfInfo, varOfInfo, maxOfInfo and
minOfInfo are used to calculate the sum, mean, sample variance
(), max and min
of specified information fields of individuals in all or specified (virtual)
subpopulations. The results are saved in dictionaries sumOfInfo,
meanOfInfo, varOfInfo, maxOfInfo and minOfInfo with information
fields as keys. For example, parameter meanOfInfo='age' calculates the mean
age of all individuals and set variable meanOfInfo['age'].

Example statInfo demonstrates a mixing process of two
populations. The population starts with two types of individuals with ancestry
values 0 or 1 (information field anc). During the evolution, parents mate
randomly and the ancestry of offspring is the mean of parental ancestry values.
A Stat operator is used to calculate the mean and variance of
individual ancestry values, and the number of individuals in five ancestry
groups. It is not surprising that whereas population mean ancestry does not
change, more and more people have about the same number of ancestors from each
group and have an ancestry value around 0.5. The variance of ancestry values
therefore decreases gradually.

Example: Calculate summary statistics of information fields

>>> import simuPOP as sim
>>> import random
>>> pop = sim.Population([500], infoFields='anc')
>>> # Defines VSP 0, 1, 2, 3, 4 by anc.
>>> pop.setVirtualSplitter(sim.InfoSplitter('anc', cutoff=[0.2, 0.4, 0.6, 0.8]))
>>> #
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... # anc is 0 or 1
... sim.InitInfo(lambda : random.randint(0, 1), infoFields='anc')
...],
... matingScheme=sim.RandomMating(ops=[
... sim.MendelianGenoTransmitter(),
... sim.InheritTagger(mode=sim.MEAN, infoFields='anc')
...]),
... postOps=[
... sim.Stat(popSize=True, meanOfInfo='anc', varOfInfo='anc',
... subPops=[(0, sim.ALL_AVAIL)]),
... sim.PyEval(r"'Anc: %.2f (%.2f), #inds: %s\n' %" + \
... "(meanOfInfo['anc'], varOfInfo['anc'], " + \
... "', '.join(['%4d' % x for x in subPopSize]))")
...],
... gen = 5,
...)
Anc: 0.51 (0.12), #inds: 118, 0, 251, 0, 131
Anc: 0.51 (0.06), #inds: 27, 121, 190, 137, 25
Anc: 0.52 (0.03), #inds: 14, 143, 138, 181, 24
Anc: 0.52 (0.02), #inds: 4, 85, 267, 137, 7
Anc: 0.52 (0.01), #inds: 0, 40, 385, 75, 0
5

now exiting runScriptInteractively...

Download statInfo.py

Linkage disequilibrium

Parameter LD accepts a list of loci-pairs (e.g. LD=[(0,1),(2,3)]) with
optional primary alleles at two loci (e.g. LD=[(0,1,0,0),(2,3)]). For each
pair of loci, this operator calculates linkage disequilibrium and optional
association measures between them.

Assuming that two loci are both diallelic, one with alleles and
, and the other with alleles and . If we denote
, as allele and haplotype frequencies for allele
 and haplotype , respectively, the linkage disequilibrium
measures with respect to primaries alleles A and B are

	Basic LD measure :

D ranges from -0.25 to 0.25. The sign depends on the choice of alleles (A
and B) at two loci.

	Lewontin’s where

D’ ranges from -1 to 1. The sign depends on the choice of alleles (A and
B) at two loci.

	 (in Devlin1995)

If one or both loci have more than 2 alleles, or if no primary allele is
specified, the LD measures are calculated as follows:

	If primary alleles are specified, all other alleles are considered as minor
alleles with combined frequency (e.g.). The same formulas apply
which lead to signed and measures.

	If primary alleles are not specified, these LD measures are calculated as the
average of the absolute value of diallelic measures of all allele pairs. For
example, the multi-allele version of is

where and iterate through all alleles at the two loci. In
the diallelic case, LD measures will be the absolute value of the single
measures because and only differ by signs.

In another word,

	LD=[loc1, loc2] will yield positive and measures.

	LD=[loc1, loc2, allele1, allele2] will yield signed and
 measures.

	In the diallelic case, both cases yield identical results except for signs of
 and .

	In the multi-allelic case, the results can be different because LD=[loc1,
loc2, allele1, allele2] combines non-primary alleles and gives a single
diallelic measure.

Note

A large number of linkage disequilibrium measures have been used in different
disciplines but not all of them are well-accepted. Requests of adding a
particular LD measure will be considered when a reliable reference is provided.

Association tests between specified loci could also be calculated using a
 by table of haplotype frequencies. If primary alleles are
specified, non-primary alleles are combined to form a 2 by 2 table
(). Otherwise, and are respective numbers of
alleles at two loci.

	 and its -value (variable LD_ChiSq and
LD_ChiSq_p, respectively). A one-side test with
 degrees of freedom will be used.

	Cramer V statistic (variable CramerV):

where equals the total number of haplotypes
(for autosomes in diploid populations).

This statistic sets variables LD, LD_prime, R2, and optionally
ChiSq, ChiSq_p and CramerV. SubPopulation specific variables can be
calculated by specifying variables such as LD_sp and R2_sp. Example
statLD demonstrates how to calculate various LD measures and
output selected variables. Note that the significant overall LD between two loci
is an artifact of population structure because loci are in linkage equilibrium
in each subpopulation.

Example: Linkage disequilibrium measures

>>> import simuPOP as sim
>>> pop = sim.Population([1000]*2, loci=3)
>>> sim.initGenotype(pop, freq=[0.2, 0.8], subPops=0)
>>> sim.initGenotype(pop, freq=[0.8, 0.2], subPops=1)
>>> sim.stat(pop, LD=[[0, 1, 0, 0], [1, 2]],
... vars=['LD', 'LD_prime', 'R2', 'LD_ChiSq', 'LD_ChiSq_p', 'CramerV',
... 'LD_prime_sp', 'LD_ChiSq_p_sp'])
>>> from pprint import pprint
>>> pprint(pop.vars())
{'CramerV': {0: defdict({1: 0.3355834766347789}),
 1: defdict({2: 0.39144946095755695})},
 'LD': {0: defdict({1: 0.08387987499999999}),
 1: defdict({2: 0.09783043749999992})},
 'LD_ChiSq': {0: defdict({1: 450.4650791611408}),
 1: defdict({2: 612.9307219358476})},
 'LD_ChiSq_p': {0: defdict({1: 0.0}), 1: defdict({2: 0.0})},
 'LD_prime': {0: defdict({1: 0.3425347836362625}),
 1: defdict({2: 0.4057999832524774})},
 'R2': {0: defdict({1: 0.1126162697902852}),
 1: defdict({2: 0.15323268048396166})},
 'subPop': {0: {'LD_ChiSq_p': {0: defdict({1: 0.03843990070970382}),
 1: defdict({2: 0.5110492462003573})},
 'LD_prime': {0: defdict({1: -0.17661111690962444}),
 1: defdict({2: 0.016760924318107204})}},
 1: {'LD_ChiSq_p': {0: defdict({1: 0.8024214035646771}),
 1: defdict({2: 0.11685510935577492})},
 'LD_prime': {0: defdict({1: -0.02259456714902688}),
 1: defdict({2: 0.035632559660018596})}}}}

now exiting runScriptInteractively...

Download statLD.py

Genetic association

Genetic association refers to association between individual genotype (alleles
or genotype) and phenotype (affection status). There are a large number of
statistics tests based on different study designs (e.g. case-control, Pedigree,
longitudinal) with different covariate variables. Although specialized software
applications should be used for sophisticated statistical analysis, simuPOP
provides a number of simple genetic association tests for convenience. These
tests

	Are single-locus tests that test specified loci separately.

	Are based on individual affection status. Associations between genotype and
quantitative traits are currently unsupported.

	Apply to all individuals in specified (virtual) subpopulations. Because a
population usually has much more unaffected individuals than affected ones, it
is a common practice to draw certain types of samples (e.g. a case-control
sample with the same number of cases and controls) before statistical tests are
applied.

simuPOP currently supports the following tests:

	Allele-based Chi-square test: This is the basic allele-based
 test that can be applied to diploid as well as haploid
populations. Basically, a 2 by contigency table is set up for each
locus with being the number of alleles in cases
 and controls . A
 test is applied to each locus and set variables
Allele_ChiSq and Allele_ChiSq_p to the statistic and
its two-sided value (with degrees freedom). Note that
genotype information is not preserved in such a test.

	Genotype-based Chi-square test: This is the genotype-based
 test for diploid populations. Basically, a 2 by
contigency table is set up for each locus with being the number
of genotype (unordered pairs of alleles) in cases
 and controls . A
 test is applied to each locus and set variables Geno_ChiSq
and Geno_ChiSq_p to the statistic and its two-sided
 value (with degrees freedom). This test is usually applied
to diallelic loci with 3 genotypes (AA, Aa and aa) but it can be applied
to loci with more than two alleles as well.

	Genotype-based trend test: This Cochran-Armitage test can only be applied
to diallelic loci in diploid populations. For each locus, a 2 by 3 contigency
table is set up with being the number of genotype
(AA, Aa and aa with A being the wildtype allele) in cases
 and controls . A Cochran-
Armitage trend test is applied to each locus and set variables Armitage_p to
its two-sided value.

Example statAssociation demonstrates how to apply a
penetrance model, draw a case-control sample and apply genetic association tests
to an evolving population. In this example, a penetrance model is applied to a
locus (locus 3). A Python operator is then used to draw a case-control sample
from the population and test genetic association at two surrounding loci.
Because these two loci are tightly linked to the disease predisposing locus,
they are in strong association with the disease initially. However, because of
recombination, such association decays with time at rates depending on their
genetic distances to the disease predisposing locus.

Example: Genetic association tests

>>> import simuPOP as sim
>>> from simuPOP.utils import *
>>> from simuPOP.sampling import drawCaseControlSample
>>> def assoTest(pop):
... 'Draw case-control sample and apply association tests'
... sample = drawCaseControlSample(pop, cases=500, controls=500)
... sim.stat(sample, association=(0, 2), vars=['Allele_ChiSq_p', 'Geno_ChiSq_p', 'Armitage_p'])
... print('Allele test: %.2e, %.2e, Geno test: %.2e, %.2e, Trend test: %.2e, %.2e' \
... % (sample.dvars().Allele_ChiSq_p[0], sample.dvars().Allele_ChiSq_p[2],
... sample.dvars().Geno_ChiSq_p[0], sample.dvars().Geno_ChiSq_p[2],
... sample.dvars().Armitage_p[0], sample.dvars().Armitage_p[2]))
... return True
...
>>> pop = sim.Population(size=100000, loci=3)
>>> pop.setVirtualSplitter(sim.ProportionSplitter([0.5, 0.5]))
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(genotype=[0]*3, subPops=[(0,0)]),
... sim.InitGenotype(genotype=[1]*3, subPops=[(0,1)]),
...],
... matingScheme=sim.RandomMating(ops=sim.Recombinator(loci=[0, 1], rates=[0.01, 0.005])),
... postOps=[
... sim.MaPenetrance(loci=1, penetrance=[0.1, 0.2, 0.4]),
... sim.PyOperator(func=assoTest, step=20),
...],
... gen = 100
...)
Allele test: 0.00e+00, 0.00e+00, Geno test: 0.00e+00, 0.00e+00, Trend test: 0.00e+00, 0.00e+00
Allele test: 1.14e-13, 4.44e-16, Geno test: 3.09e-13, 2.66e-15, Trend test: 7.66e-14, 2.22e-16
Allele test: 1.71e-08, 8.55e-15, Geno test: 4.95e-08, 3.45e-13, Trend test: 1.62e-08, 7.36e-14
Allele test: 8.57e-09, 7.99e-15, Geno test: 3.09e-08, 2.18e-14, Trend test: 7.05e-09, 2.66e-15
Allele test: 3.12e-06, 9.05e-09, Geno test: 5.95e-06, 8.83e-08, Trend test: 2.12e-06, 1.26e-08
100

now exiting runScriptInteractively...

Download statAssociation.py

population structure

Parameter structure measures the structure of a population using the
following statistics:

	The statistic developed by Nei Nei1973. This statistic is
equivalent to Wright’s fixation index in the diallelic case so it
can be considered as the multi-allele and multi-locus extension of Wright’s
. It assumes known genotype frequency so it can be used to
calculate true of a population when all genotype information is
available. This statistic sets a dictionary of locus level
(variable g_st) and a summary statistics for all loci (variable G_st).

	Wright’s fixation index calculated using an algorithm developed
by Weir1984. This statistic considers existing populations as random samples
from an infinite pool of populations with the same ancestral population so it is
best to be applied to random samples where true genotype frequencies are
unknown. This statistic sets dictionaries of locus level ,
 and (variables f_st, f_is and f_it),
and summary statistics for all loci (variables F_st, F_is and F_it)
. When hetergozygote count is unavailable (non-diploid population, loci on sex
chromosomes and mitochondrial chromosomes), simuPOP uses expected heterozygosity
to estimate this quantity.

These statistics by default uses all existing subpopulations, but it can also be
applied to a subset of subpopulations, or even virtual subpopulations using
parameter subPops. That is to say, you can measure the genetic difference
between males and females using subPops=[(0,0), (0,1)] if a SexSplitter is
used to define two virtual subpopulations with male and female individuals
respectively.

Example statStructure demonstrate a simulation with two
replicates. In the first replicate, three subpopulations evolve separately
without migration and become more and more genetically distinct. In the second
replicate, a low level migration is applied between subpopulations so the
population structure is kept at a low level.

Example: Measure of population structure

>>> import simuPOP as sim
>>> from simuPOP.utils import migrIslandRates
>>> simu = sim.Simulator(sim.Population([5000]*3, loci=10, infoFields='migrate_to'),
... rep=2)
>>> simu.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5])
...],
... preOps=sim.Migrator(rate=migrIslandRates(0.01, 3), reps=1),
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(structure=range(10), step=40),
... sim.PyEval("'Fst=%.3f (rep=%d without migration) ' % (F_st, rep)", step=40, reps=0),
... sim.PyEval("'Fst=%.3f (rep=%d with migration) ' % (F_st, rep)", step=40, reps=1),
... sim.PyOutput('\n', reps=-1, step=40)
...],
... gen = 200
...)
Fst=0.000 (rep=0 without migration) Fst=0.000 (rep=1 with migration)
Fst=0.003 (rep=0 without migration) Fst=0.002 (rep=1 with migration)
Fst=0.006 (rep=0 without migration) Fst=0.002 (rep=1 with migration)
Fst=0.008 (rep=0 without migration) Fst=0.003 (rep=1 with migration)
Fst=0.010 (rep=0 without migration) Fst=0.001 (rep=1 with migration)
(200, 200)

now exiting runScriptInteractively...

Download statStructure.py

Hardy-Weinberg equilibrium test

Parameter HWE accepts a list of loci at which exact Hardy Weinberg
equilibrium tests are applied. The p-values of the tests are assigned to a
dictionary HWE. Example statHWE demonstrates how Hardy
Weinberg equilibrium is reached in one generation.

Example: Hardy Weinberg Equilibrium test

>>> import simuPOP as sim
>>> pop = sim.Population([1000], loci=1)
>>> pop.setVirtualSplitter(sim.ProportionSplitter([0.4, 0.4, 0.2]))
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(genotype=[0,0], subPops=[(0,0)]),
... sim.InitGenotype(genotype=[0,1], subPops=[(0,1)]),
... sim.InitGenotype(genotype=[1,1], subPops=[(0,2)]),
...],
... preOps=[
... sim.Stat(HWE=0, genoFreq=0),
... sim.PyEval(r'"HWE p-value: %.5f (AA: %.2f, Aa: %.2f, aa: %.2f)\n" % (HWE[0], '
... 'genoFreq[0][(0,0)], genoFreq[0][(0,1)] + genoFreq[0][(1,0)], genoFreq[0][(1,1)])'),
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(HWE=0, genoFreq=0),
... sim.PyEval(r'"HWE p-value: %.5f (AA: %.2f, Aa: %.2f, aa: %.2f)\n" % (HWE[0], '
... 'genoFreq[0][(0,0)], genoFreq[0][(0,1)] + genoFreq[0][(1,0)], genoFreq[0][(1,1)])'),
...],
... gen = 1
...)
HWE p-value: 0.00000 (AA: 0.40, Aa: 0.40, aa: 0.20)
HWE p-value: 0.93636 (AA: 0.38, Aa: 0.48, aa: 0.15)
1

now exiting runScriptInteractively...

Download statHWE.py

Measure of Inbreeding

Inbreeding coefficient at a generation is defined as the probability that the
two alleles in a given individual are identical by decent (IBD). Although it is
usually very difficult to estimate this quantity, it is easy to observe it
directly during evolution if the ancestors of alleles are tracked. This can be
done using the lineage module of simuPOP where allelic lineage is tracked during
evolution. For example, Example statIBD output the frequency of
IBD loci in a population of size 500. It also outputs the frequency of IBS
(Identical by State), which should always be larger than IBD frequency, and
theoretical estimate of the decay of inbreeding coefficient.

Example: Frequency of IBD as a measure of inbreeding coefficient

>>> import simuOpt
>>> simuOpt.setOptions(alleleType='lineage')
>>> import simuPOP as sim
>>> pop = sim.Population([500], loci=[1]*100)
>>> pop.evolve(
... initOps=[
... sim.InitLineage(),
... sim.InitSex(),
... sim.InitGenotype(freq=[0.2]*5),
...],
... preOps=[
... sim.Stat(inbreeding=sim.ALL_AVAIL, popSize=True, step=10),
... sim.PyEval(r'"gen %d: IBD freq %.4f, IBS freq %.4f, est: %.4f\n" % '
... '(gen, sum(IBD_freq.values()) /len(IBD_freq), '
... ' sum(IBS_freq.values()) /len(IBS_freq), '
... ' 1 - (1-1/(2.*popSize))**gen)', step=10)
...],
... matingScheme=sim.RandomMating(),
... gen = 100
...)
gen 0: IBD freq 0.0000, IBS freq 0.1994, est: 0.0000
gen 10: IBD freq 0.0084, IBS freq 0.2072, est: 0.0100
gen 20: IBD freq 0.0167, IBS freq 0.2142, est: 0.0198
gen 30: IBD freq 0.0266, IBS freq 0.2204, est: 0.0296
gen 40: IBD freq 0.0380, IBS freq 0.2292, est: 0.0392
gen 50: IBD freq 0.0486, IBS freq 0.2383, est: 0.0488
gen 60: IBD freq 0.0577, IBS freq 0.2457, est: 0.0583
gen 70: IBD freq 0.0689, IBS freq 0.2566, est: 0.0676
gen 80: IBD freq 0.0782, IBS freq 0.2616, est: 0.0769
gen 90: IBD freq 0.0887, IBS freq 0.2638, est: 0.0861
100

now exiting runScriptInteractively...

Download statIBD.py

Effective population size

Effective population size is an important, yet complicated concept in population
genetics. Simply put, the effective population size is determined by a mating
scheme, namely how parents are selected and how offsprings are generated. In the
context of forward-time simulation, if we populate an offspring population from
a parental population, a true effective population size can be calculated, under
certain assumptions, as

where and are the mean and variance of the number of
gametes each parent transmits to the offspring generation. Naturally, the
number of sex chromosomes transmitted will be different for males and females.
This effective size is independent of genotypes and is called the demographic
effective size.

Because the calculation of demographic effective size needs to track which
alleles are transmitted from parental to offspring population, it has to collect
information from both parental and offspring populations, and can only be
calculated using the lineage modules of simuPOP. As shown in Example
statNeDemographic, a Stat operator is
applied before mating to mark lineage of alleles of each locus with an
individual index, and save the IDs of parents in a variable Ne_demo_base.
After mating, another Stat operator is used to count how many alleles
each parent has contributed to the offspring generation, and calculate
demographic effective size accordingly. This example uses three virtual
subpopulations, a whole subpopulation, all male individuals, and all female
individuals, and calculated effective size for loci on an autosome, an X
chromosome, and a Y chromosome. As we can imagine, the effective size is 0 at
the Y chromosome for all females, because no such chromsome is transmitted from
the parental population.

Example: Demographic effective population size

>>> import simuOpt
>>> simuOpt.setOptions(alleleType='lineage', quiet=True)
>>> import simuPOP as sim
>>> pop = sim.Population([2000], loci=[1]*3,
... chromTypes=[sim.AUTOSOME, sim.CHROMOSOME_X, sim.CHROMOSOME_Y])
>>> pop.setVirtualSplitter(sim.SexSplitter())
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.3, 0.7]),
...],
... preOps=[
... sim.Stat(effectiveSize=range(3), subPops=[0, (0,0), (0,1)],
... vars='Ne_demo_base_sp'),
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(effectiveSize=range(3), subPops=[0, (0,0), (0,1)],
... vars='Ne_demo_sp'),
... sim.PyEval(r'"Demographic Ne: %.1f (auto), %.1f (X), %.1f (Y), '
... r'Males: %.1f, %.1f, %.1f, Females: %.1f, %.1f, %.1f\n"'
... '% tuple([subPop[0]["Ne_demo"][x] for x in (0, 1, 2)] + '
... '[subPop[(0,0)]["Ne_demo"][x] for x in (0, 1, 2)] + '
... '[subPop[(0,1)]["Ne_demo"][x] for x in (0, 1, 2)])')
...],
... gen = 5
...)
Demographic Ne: 2021.2 (auto), 1808.8 (X), 1056.1 (Y), Males: 1038.4, 1049.4, 1056.1, Females: 983.8, 983.8, nan
Demographic Ne: 2024.8 (auto), 1886.4 (X), 918.2 (Y), Males: 965.7, 1014.2, 918.2, Females: 1063.3, 1063.3, nan
Demographic Ne: 2048.7 (auto), 1858.5 (X), 969.2 (Y), Males: 1023.0, 1037.4, 969.2, Females: 1025.1, 1025.1, nan
Demographic Ne: 1955.0 (auto), 1790.6 (X), 956.8 (Y), Males: 958.8, 985.2, 956.8, Females: 996.5, 996.5, nan
Demographic Ne: 2000.5 (auto), 1811.7 (X), 955.1 (Y), Males: 983.8, 966.2, 955.1, Females: 1016.8, 1016.8, nan
5

now exiting runScriptInteractively...

Download statNeDemographic.py

Effective population sizes could also be estimated from genotypes because
changes of genotypes reflects properties of the mating scheme. However, it is
important to realize that evolving a population for one generation is only one
realization of many possible realizations of the same mating scheme (effective
size). If we consider the demographic effective size as the average effective
size of all realizations, estimating effective size from genotypes will be
inaccurate unless a large number of unlinked loci are used. The temporal methods
essentially try to get better estimate by averaging such realizations across
multiple generations, although the demographic effective size might vary due to
change of population size.

simuPOP currently provides two temporal methods proposed by Waples (1989) and
Jorde & Ryman’s (2007). Because these methods estimate effective population size
using changes of allele frequencies of samples at two generations, it is
necessary to set a baseline generation before any temporal method could be
applied.

The baseline information is saved to variable Ne_temporal_base when this
variable is specified in the vars parameter of the Stat operator.
After the baseline is set, for example, at generation 0, if the operator
Stat is applied at generations 0, 20, and 40, it will set variable
Ne_waples89_P1, Ne_waples89_P2(for Waples 1989) and Ne_tempoFS_P1,
Ne_tempoFS_P2 (for Jorde & Ryman 2007, as implemented in a package
TempoFS) as the census population size at generation 0, estimated effective
population sizes between generation 0 and 20 at generation 20, and estimates
between 0 and 40 at generation 40. The variables are lists of three elements:
the estimated Ne and lower and upper boundaries of the 95% confidence interval.

Sampling plan 1 assumes that samples are drawn with replacement at the first
time point so that some of the individuals sampled in the first time period
could have contributed genes to subsequent generations (see Nei and Tajima, 1981
Genetics and other papers). simuPOP uses census population (or subpopulation if
the statistics are calcuated for each subpopulations) size as and
consider the sample being a subset of the population (or subpopulation), it
should be applied to a virtual subpopulation (e.g. a subset of individuals
defined by a RangeSplitter) of the whole population. Sample plan 2
treats the sample as a sample from an infinitely-sized population, and should be
applied to a population (sample) that is actually extracted from a larger
population. Results under both assumptions are calculated and provided so you
should choose the ones that match your sampling plan.

Example statNeTemporal demonstrates how to calculate
temporal effective population sizes at a 20 generation interval during
evolution, using a fixed baseline generation at generation 0. The statistics are
estimated from genotypes at 50 unlinked loci from 500 random samples from a
population of size 2000. Instead of drawing random samples explicitly, this
example defines a virtual subpopulation that consists of the first 500
individuals in the population. The Stat operator is applied at generations 0,
20, 40, …, 100 to this virtual subpopulation, with the first output being the
census size (of the sample). Because a standard Wright-Fisher random mating
scheme is used, the true effective population size should be around 2000. It
would be interesting to adjust this evolutionary process (with population
expansion, with varying number of offspring etc) and the method of estimation
(sample size, generations between estimates) to see how well this statistic
estimate effective population size under different scenarios.

Example: Temporal effective population size using a fixed baseline sample

>>> import simuPOP as sim
>>> pop = sim.Population([2000], loci=[1]*50)
>>> pop.setVirtualSplitter(sim.RangeSplitter([0, 500]))
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.3, 0.7]),
... sim.Stat(effectiveSize=range(50), subPops=[(0,0)],
... vars='Ne_temporal_base'),
...],
... preOps=[
... sim.Stat(effectiveSize=range(50), subPops=[(0,0)],
... vars=['Ne_waples89_P1', 'Ne_tempoFS_P1'], step=20),
... sim.PyEval(r'"Waples Ne: %.1f (%.1f - %.1f), TempoFS: '
... r'%.1f (%.1f - %.1f), at generation %d\n" % '
... 'tuple(Ne_waples89_P1 + Ne_tempoFS_P1 + [gen])', step=20)
...],
... matingScheme=sim.RandomMating(),
... gen = 101
...)
Waples Ne: 500.0 (500.0 - 500.0), TempoFS: 500.0 (500.0 - 500.0), at generation 0
Waples Ne: 1853.1 (1155.2 - 3536.1), TempoFS: 1843.2 (1255.1 - 3467.7), at generation 20
Waples Ne: 1537.9 (979.7 - 2452.6), TempoFS: 1565.7 (1117.0 - 2617.2), at generation 40
Waples Ne: 1843.3 (1178.0 - 2872.4), TempoFS: 1963.4 (1332.2 - 3730.9), at generation 60
Waples Ne: 1783.0 (1143.4 - 2710.7), TempoFS: 1807.2 (1291.5 - 3008.7), at generation 80
Waples Ne: 1572.7 (1011.2 - 2346.6), TempoFS: 1639.5 (1205.1 - 2563.6), at generation 100
101

now exiting runScriptInteractively...

Download statNeTemporal.py

Instead of using a fixed baseline generation, it is also possible to reset
baseline generation during evolution. For example, Example statNeInterval demonstrates how to calculate temporal effective population
sizes at a 20 generation interval during evolution. This example sets variable
Ne_temporal_base with Ne_waples89_P1 whenever the Stat operator is
applied. This effectively resets the baseline generation to the present
generation at generations 0, 20, 40, etc, so baseline generations 0, 20, 40, …
are used at generations 20, 40, …. This example also demonstrates how to use
the suffix parameter to apply the same statistics with different parameters.

Example: Temporal effective population size between consecutive samples

>>> import simuPOP as sim
>>> pop = sim.Population([2000], loci=[1]*50)
>>> pop.setVirtualSplitter(sim.RangeSplitter([0, 500]))
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.3, 0.7]),
... sim.Stat(effectiveSize=range(50), subPops=[(0,0)],
... vars='Ne_temporal_base'),
...],
... preOps=[
... sim.Stat(effectiveSize=range(50), subPops=[(0,0)],
... vars='Ne_waples89_P1', step=20),
... sim.Stat(effectiveSize=range(50), subPops=[(0,0)], step=20,
... suffix='_i', vars=['Ne_temporal_base', 'Ne_waples89_P1']),
... sim.PyEval(r'"Waples Ne (till %d): %.1f (%.1f - %.1f), '
... r'(interval) %.1f (%.1f - %.1f)\n" % '
... 'tuple([gen] + Ne_waples89_P1 + Ne_waples89_P1_i)',
... step=20)
...],
... matingScheme=sim.RandomMating(),
... gen = 101
...)
Waples Ne (till 0): 500.0 (500.0 - 500.0), (interval) 500.0 (500.0 - 500.0)
Waples Ne (till 20): 1853.1 (1155.2 - 3536.1), (interval) 1853.1 (1155.2 - 3536.1)
Waples Ne (till 40): 1537.9 (979.7 - 2452.6), (interval) 2063.7 (1281.1 - 4094.1)
Waples Ne (till 60): 1843.3 (1178.0 - 2872.4), (interval) 1681.9 (1052.1 - 3112.9)
Waples Ne (till 80): 1783.0 (1143.4 - 2710.7), (interval) 1872.7 (1167.0 - 3586.3)
Waples Ne (till 100): 1572.7 (1011.2 - 2346.6), (interval) 2056.1 (1276.6 - 4073.3)
101

now exiting runScriptInteractively...

Download statNeInterval.py

Linkage disequilibrium method is another popular method to estimate effective
population size. Compared to temporal methods, it has the distinct advantage
that it requires only one sample. simuPOP provides a method that is developed by
Waples in his 2006 paper. To use this method, you will need to specify variable
Ne_LD for a random mating scheme, or Ne_LD_mono for a monogamous mating
scheme. statNeLD demonstrates this usage. Note that because
the LDNe mehod is sensitive to rare alleles (which can lead to inflated measure
of LD), simuPOP provides estimates that ignores alleles with frequencies less
than 0 (all alleles are kept), 0.01, 0.02 and 0.05. The results are saved in
variable Ne_LD as a dictionary with keys 0, 0.01, 0.02, 0.05, and values as
lists of estimated effective population sizes and their 95% confidence
intervals. Because of the existence of many rare alleles, the example gives
quite different estimates with and without rare alleles (using cutoff=0.02).

Example: Effective population size estimated using a LD based method

>>> import simuPOP as sim
>>> pop = sim.Population([2000], loci=[1]*50)
>>> pop.setVirtualSplitter(sim.RangeSplitter([0, 500]))
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.005]*4 + [0.015]*2 + [0.25, 0.7]),
...],
... preOps=[
... sim.Stat(effectiveSize=sim.ALL_AVAIL, subPops=[(0,0)],
... vars='Ne_LD', step=20),
... sim.PyEval(r'"LD Ne (gen %d): %.1f (%.1f - %.1f)'
... r', %.1f (%.1f - %.1f, adjusted)\n" % '
... 'tuple([gen] + Ne_LD[0.] + Ne_LD[0.02])',
... step=20)
...],
... matingScheme=sim.RandomMating(),
... gen = 101
...)
LD Ne (gen 0): 30623.2 (5220.9 - inf), inf (8071.2 - inf, adjusted)
LD Ne (gen 20): 6297.4 (2574.4 - inf), 1900.0 (1160.3 - 4647.8, adjusted)
LD Ne (gen 40): 2187.6 (1554.1 - 3589.2), 2535.5 (1459.2 - 8173.8, adjusted)
LD Ne (gen 60): 2757.8 (1799.2 - 5619.3), 3510.9 (1801.6 - 32066.7, adjusted)
LD Ne (gen 80): 2574.0 (1729.7 - 4828.9), 1813.2 (1197.7 - 3501.7, adjusted)
LD Ne (gen 100): 3234.6 (1819.5 - 12210.9), 2834.8 (1603.4 - 10168.4, adjusted)
101

now exiting runScriptInteractively...

Download statNeLD.py

simuPOP allows you to estimate effective population size using genotypes at
selected loci from selected individuals. It is up to you, however, to decide
when to apply the operator (pre- or post-mating), how to draw samples, and
select the right method for your data. For example, the temporal methods assume
discrete generations and no (or slight) selection, migration, and mutation. The
LD method assumes that markers are selectively neutral and independent;
population has discrete generations and is closed to immigration; and sampling
is random. In addition, to keep the interface simple, simuPOP does not provide
many options as dedicated programs do (e.g. TempoFS). Please export your samples
in other formats (e.g. use operator Export(format=''GENEPOP'') or function
export(pop, format=''GENEPOP'') from module simuPOP.utiles) and use
these programs if you need such flexibilities.

Other statistics

If you need other statistics, a popular approach is to define them using Python
operators. If your statistics is based on existing statistics such as allele
frequency, it is a good idea to calculate existing statistics using a stat
function and derive your statistics from population variables. Please refer to
the last chapter of this guide on an example.

If you would like to calculate some summary statistics that involves individual
information fields but cannot be calculated using parameters such as minOfInfo,
you can try to use operators such as InfoExec to process individuals one by one
and collect result. For example, you can use operators

PyExec('s=0')
InfoExec('s+=x*x')
PyEval('s')

to calculate and report where x is an information field
during evolution. This makes use of the fact that operator InfoExec
goes through all individuals and evaluate the statement.

If performance becomes a problem, you might want to have a look at the source
code of simuPOP and implement your statistics at the C++ level. If you believe
that your statistics are popular enough, please send your implementation to the
simuPOP mailinglist for possible inclusion of your statistics into simuPOP.

Support for sex and customized chromosome types

simuPOP supports statistics calculation for loci on sex chromosomes. For
example, when pair-wise difference between haplotypes is calculated using
parameter neutrality, it will pick the right haplotypes for X, and Y
chromosomes. However, because neutrality is calculated based on a group of
haplotypes of all specified loci, even if the loci are collected across
chromosomes, you can not use operator

Stat(neutrality=ALL_AVAIL)

if the loci are selected from chromosomes of different types, because different
numbers of haplotypes exists on these chromosomes. To calculate Pi for these
chromosomes, you would have to calculate them separately, using operators such
as

Stat(neutrality=range(30,40), suffix='_X')
Stat(neutrality=range(40,50), suffix='_Y')

so that all specified loci are on the same type of chromosomes. Here we use
parameter suffix to avoid conflict of variable names because both operator
would produce the same variable Pi without this parameter.

The case with customized chromosomes are more complex because the meaning of
these chromosomes are defined by users. If these chromosomes are mitochondrial
DNAs, only chromosomes from the females are carrying useful information. If you
would like to calculate, for example, the Pi statistics for these
chromosomes, you will have to explicitly selected females for calculation. This
can be done by operator

Stat(neutrality=range(50,60), vsps=[(ALL_AVAIL, 'FEMALE')], suffix='_mt')

if VSPs have been created by a SexSplitter.

Example statChromTypes demonstrates the use of these
operators. This example intentionally initializes all individuals with the same
haplotypes on all chromosomes (the InitGenotype operator ignores
chromosome types). Because of different chromosome types, four Stat
operators are used to get the Pi statistics for them. These operators return
different results because different sets of haplotypes are picked for the
calculation of this statistics.

Example: Statistics for sex and customized chromosome types

>>> import simuPOP as sim
>>> pop = sim.Population(1000, loci=[5]*4,
... chromTypes=[sim.AUTOSOME, sim.CHROMOSOME_X, sim.CHROMOSOME_Y, sim.MITOCHONDRIAL])
>>> pop.setVirtualSplitter(sim.SexSplitter())
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(haplotypes=[[0, 1, 2, 0, 1]*4, [2, 1, 0, 2, 3]*4],
... prop=[0.4, 0.6]),
...],
... matingScheme=sim.RandomMating(
... ops=[
... sim.MendelianGenoTransmitter(),
... sim.MitochondrialGenoTransmitter()]),
... preOps=[
... sim.Stat(neutrality=range(5)),
... sim.Stat(neutrality=range(5, 10), suffix='_X'),
... sim.Stat(neutrality=range(10, 15), suffix='_Y'),
... sim.Stat(neutrality=range(15, 20), suffix='_mt'),
... sim.PyEval(r'"%.3f %.3f %.3f %.3f\n" % (Pi, Pi_X, Pi_Y, Pi_mt)'),
...],
... gen = 2
...)
1.921 1.900 1.973 1.914
1.931 1.921 1.957 1.945
2

now exiting runScriptInteractively...

Download statChromTypes.py

Conditional operators

Conditional operator (operator IfElse) *

Operator IfElse provides a simple way to conditionally apply an
operator. The condition can be a fixed condition, a expression (a string) that
will be evaluated in a population’s local namespace or a user-defined function
when it is applied to the population.

The first case is used to control the execution of certain operators depending
on user input. For example, Example IfElseFixed determines
whether or not some outputs should be given depending on a variable verbose.
Note that the applicability of the conditional operators are determined by the
IfElse operator and individual opearators. That is to say, the
parameters begin, step, end, at, and reps of operators in
ifOps and elseOps are only honored when operator IfElse is
applied.

Example: A conditional opeartor with fixed condition

>>> import simuPOP as sim
>>> pop = sim.Population(size=1000, loci=1)
>>> verbose = True
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5]),
...],
... matingScheme=sim.RandomMating(),
... postOps=sim.IfElse(verbose,
... ifOps=[
... sim.Stat(alleleFreq=0),
... sim.PyEval(r"'Gen: %3d, allele freq: %.3f\n' % (gen, alleleFreq[0][1])",
... step=5)
...],
... begin=10),
... gen = 30
...)
Gen: 10, allele freq: 0.483
Gen: 15, allele freq: 0.455
Gen: 20, allele freq: 0.481
Gen: 25, allele freq: 0.481
30

now exiting runScriptInteractively...

Download IfElseFixed.py

When a string is specified, it will be considered as an expression and be
evaluated in a population’s namespace. The return value will be used to
determine if an operator should be executed. For example, you can re-introduce a
mutant if it gets lost in the population, output a warning when certain
condition is met, or record the occurance of certain events in a population. For
example, Example IfElse records the number of generations the
frequency of an allele goes below 0.4 and beyong 0.6 before it gets lost or
fixed in the population. Note that a list of else-operators can also be executed
when the condition is not met.

Example: A conditional opeartor with dynamic condition

>>> import simuPOP as sim
>>> simu = sim.Simulator(
... sim.Population(size=1000, loci=1),
... rep=4)
>>> simu.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5]),
... sim.PyExec('below40, above60 = 0, 0')
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(alleleFreq=0),
... sim.IfElse('alleleFreq[0][1] < 0.4',
... sim.PyExec('below40 += 1')),
... sim.IfElse('alleleFreq[0][1] > 0.6',
... sim.PyExec('above60 += 1')),
... sim.IfElse('len(alleleFreq[0]) == 1',
... sim.PyExec('stoppedAt = gen')),
... sim.TerminateIf('len(alleleFreq[0]) == 1')
...]
...)
(892, 1898, 4001, 2946)
>>> for pop in simu.populations():
... print('Overall: %4d, below 40%%: %4d, above 60%%: %4d' % \
... (pop.dvars().stoppedAt, pop.dvars().below40, pop.dvars().above60))
...
Overall: 891, below 40%: 20, above 60%: 515
Overall: 1897, below 40%: 1039, above 60%: 51
Overall: 4000, below 40%: 2878, above 60%: 0
Overall: 2945, below 40%: 198, above 60%: 1731

now exiting runScriptInteractively...

Download IfElse.py

In the last case, a user-defined function can be specified. This function should
accept parameter pop when the operator is applied to a population, and one
or more parameters pop, off, dad and mom when it is applied
during-mating. The later could be used to apply different during-mating
operators for different types of parents or offspring. For example, Example
pedigreeMatingAgeStructured in Chapter 6
uses a CloneGenoTransmitter when only one parent is available (when
parameter mom is None), and a MendelianGenoTransmitter when two
parents are available.

Conditionally terminate an evolutionary process (operator TerminateIf)

Operator TerminateIf has been described and used in several examples
such as Example simuGen, expression and
IfElse. This operator accept an Python expression and terminate
the evolution of the population being applied if the expression is evaluated to
be True. This operator is well suited for situations where the number of
generations to evolve cannot be determined in advance.

If a TerminateIf operator is applied to the offspring generation, the
evolutionary cycle is considered to be completed. If the evolution is terminated
before mating, the evolutionary cycle is condered to be incomplete. Such a
difference can be important if the number of generations that have been involved
is important for your analysis.

A less-known feature of operator TerminateIf is its ability to
terminate the evolution of all replicates, using parameter stopAll=True. For
example, Example TerminateIf terminates the evolution of
all populations when one of the populations gets fixed. The return value of
simu.evolve shows that some populations have evolved one generation less
than the population being fixed.

Example: Terminate the evolution of all populations in a simulator

>>> import simuPOP as sim
>>> simu = sim.Simulator(
... sim.Population(size=100, loci=1),
... rep=10)
>>> simu.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5]),
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(alleleFreq=0),
... sim.TerminateIf('len(alleleFreq[0]) == 1', stopAll=True)
...]
...)
(88, 88, 88, 88, 87, 87, 87, 87, 87, 87)
>>>

now exiting runScriptInteractively...

Download TerminateIf.py

Conditional removal of individuals (operator DiscardIf)

Operator DiscardIf accepts a fixed condition or probability, or a
condition or a Python function that returns either True/False or a
probability to remove an individual. When it is applied during mating, it will
evaluate the condition or call the function for each offspring, and discard the
offspring if the return value of the expression or function is True, or remove
at a probability if the return value is a number between 0 and 1. The python
expression accepts information fields as variables so operator
DiscardIf('age > 80') will discard all individuals with age > 80,
and DiscardIf('1-fitness') will remove individuals according to 1
minus their fitness. Optionally, the offspring itself can be used in the
expression if parameter exposeInd is used to set the variable name of the
offspring.

Alternatively, a Python function can be passed to this operator. This function
should be defined with parameters pop, off, mom, dad or names of
information fields. For example, DiscardIf(lambda age: age > 80)
will remove individuals with age > 80.

A constant expression is also allowed in this operator. A fixed condition or
number is acceptable so DiscardIf(0.1) will randomly remove 10%
of all individuals. Although it does not make sense to use DiscardIf(True) because all offspring will be discarded, it is quite useful to use
this operator in the context of DiscardIf(True, subPops=[(0, 0)])
to remove all individuals in a virtual subpopulation. If virtual subpopulation
(0, 0) is defined as all individuals with age > 80, the last method achieves
the same effect as the first two methods.

Example DiscardIf demonstrates an interesting application of
this operator. This example evolves a population for one generation. Instead of
keeping all offspring, it keeps only 500 affected and 500 unaffected offspring.
This is achieved by defining virtual subpopulations by affection status and
range, and discard the first 500 offspring if they are unaffected, and the last
500 offspring if they are affected.

Example: Use operator DiscardIf to generate case control samples

>>> import simuPOP as sim
>>> pop = sim.Population(size=500, loci=1)
>>> pop.setVirtualSplitter(sim.ProductSplitter([
... sim.AffectionSplitter(),
... sim.RangeSplitter([[0,500], [500, 1000]]),
...])
...)
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5]),
...],
... matingScheme=sim.RandomMating(
... ops=[
... sim.MendelianGenoTransmitter(),
... sim.MaPenetrance(loci=0, penetrance=[0, 0.01, 0.1]),
... sim.DiscardIf(True, subPops=[
... (0, 'Unaffected, Range [0, 500)'),
... (0, 'Affected, Range [500, 1000)')])
...],
... subPopSize=1000,
...),
... gen = 1
...)
1
>>> sim.stat(pop, numOfAffected=True)
>>> print(pop.dvars().numOfAffected, pop.dvars().numOfUnaffected)
500 500

now exiting runScriptInteractively...

Download DiscardIf.py

Miscellaneous operators

An operator that does nothing (operator NoneOp)

Operator NoneOp does nothing when it is applied to a population. It
provides a placeholder when an operator is needed but no action is required.
Example NoneOp demonstrates a typical usage of this operator

if hasSelection:
 sel = MapSelector(loci=[0], fitness=[1, 0.99, 0.98])
else:
 sel = NoneOp()
#
simu.evolve(
 preOps=[sel], # and other operators
 matingScheme=RandomMating(),
 gen=10
)

dump the content of a population (operator Dumper)

Operator Dumper and its function form dump has been used
extensively in this guide. They are prefect for demonstration and debugging
purposes because they display all properties of a population in a human readable
format. They are, however, rarely used in realistic settings because outputting
a large population to your terminal can be disastrous.

Even with modestly-sized populations, it is a good idea to dump only parts of
the population that you are interested. For example, you can use parameter
genotype=False to stop outputting individual genotype, structure=False
to stop outtputing genotypic and population structure information,
loci=range(5) to output genotype only at the first five loci, max=N to
output only the first N individuals (default to 100), subPops=[(0,
0)] to output, for example, only the first virtual subpopulation in
subpopulation 0. Multiple virtual subpopulations are allowed and you can even
use subPops=[(ALL_AVAIL, 0)] to go through a specific virtual subpopulation
of all subpopulations. This operator by default only dump the present generation
but you can set ancGens to a list of generation numbers or ALL_AVAIL to
dump part or all ancestral generations. Finally, if there are more than 10
alleles, you can set the width at which each allele will be printed. The
following example (Example Dumper) presents a rather complicated
usage of this operator.

Example: dump the content of a population

>>> import simuPOP as sim
>>> pop = sim.Population(size=[10, 10], loci=[20, 30], infoFields='gen',
... ancGen=-1)
>>> sim.initSex(pop)
>>> pop.setVirtualSplitter(sim.SexSplitter())
>>> pop1 = pop.clone()
>>> sim.initGenotype(pop, freq=[0]*20 + [0.1]*10)
>>> pop.setIndInfo(1, 'gen')
>>> sim.initGenotype(pop1, freq=[0]*50 + [0.1]*10)
>>> pop1.setIndInfo(2, 'gen')
>>> pop.push(pop1)
>>> sim.dump(pop, width=3, loci=[5, 6, 30], subPops=([0, 0], [1, 1]),
... max=10, structure=False)
SubPopulation 0,0 (Male), 5 Individuals:
 2: MU 56 54 52 | 58 54 51 | 2
 3: MU 52 50 51 | 56 51 50 | 2
 4: MU 50 53 52 | 52 59 56 | 2
 5: MU 57 54 56 | 57 57 53 | 2
 6: MU 59 54 54 | 57 51 50 | 2
SubPopulation 1,1 (Female), 7 Individuals:
 10: FU 54 53 57 | 59 59 59 | 2
 11: FU 55 59 51 | 59 51 58 | 2
 12: FU 55 58 58 | 57 54 58 | 2
 14: FU 53 57 52 | 51 54 58 | 2
 15: FU 51 58 59 | 54 52 54 | 2

>>> # list all male individuals in all subpopulations
>>> sim.dump(pop, width=3, loci=[5, 6, 30], subPops=[(sim.ALL_AVAIL, 0)],
... max=10, structure=False)
SubPopulation 0,0 (Male), 5 Individuals:
 2: MU 56 54 52 | 58 54 51 | 2
 3: MU 52 50 51 | 56 51 50 | 2
 4: MU 50 53 52 | 52 59 56 | 2
 5: MU 57 54 56 | 57 57 53 | 2
 6: MU 59 54 54 | 57 51 50 | 2
SubPopulation 1,0 (Male), 3 Individuals:
 13: MU 55 52 53 | 57 56 52 | 2
 17: MU 55 51 51 | 57 55 51 | 2
 19: MU 56 54 53 | 58 58 56 | 2

now exiting runScriptInteractively...

Download Dumper.py

Save a population during evolution (operator SavePopulation)

Because it is usually not feasible to store all parental generations of an
evolving population, it is a common practise to save snapshots of a population
during an evolutionary process for further analysis. Operator
SavePopulation is designed for this purpose. When it is applied to a
population, it will save the population to a file specified by parameter
output.

The tricky part is that populations at different generations need to be saved to
different filenames so the expression version of parameter output needs to
be used (see operator BaseOperator for details). For example,
expression 'snapshot_%d_%d.pop' % (rep, gen) is used in Example
SavePopulation to save population to files such as
snapshot_5_20.pop during the evolution.

Example: Save snapshots of an evolving population

>>> import simuPOP as sim
>>> simu = sim.Simulator(sim.Population(100, loci=2),
... rep=5)
>>> simu.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.2, 0.8])
...],
... matingScheme=sim.RandomMating(),
... postOps=sim.SavePopulation(output="!'snapshot_%d_%d.pop' % (rep, gen)",
... step = 10),
... gen = 50
...)
(50, 50, 50, 50, 50)

now exiting runScriptInteractively...

Download SavePopulation.py

Pause and resume an evolutionary process (operator Pause) *

If you are presenting an evolutinary process in public, you might want to
temporarily stop the evolution so that your audience can have a better look at
intermediate results or figures. If you have an exceptionally long evolutionary
process, you might want to examine the status of the evolution process from time
to time. These can be done using a Pause operator.

The Pause operator can stop the evolution at specified generations, or
when you press a key. In the first case, you usually specify the generations to
Pause (e.g. Pause(step=1000)) so that you can examine the status
of a simulation from time to time. In the second case, you can apply the
operator at each generation and Pause the simulation when you press a key (e.g.
Pause(stopOnKeyStroke=True)). A specific key can be specified so
that you can use different keys to stop different populations, as shown in
Example Pause.

Example: Pause the evolution of a simulation

>>> import simuPOP as sim
>>> simu = sim.Simulator(sim.Population(100), rep=10)
>>> simu.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5])
...],
... matingScheme=sim.RandomMating(),
... postOps=[sim.Pause(stopOnKeyStroke=str(x), reps=x) for x in range(10)],
... gen = 100
...)
(100, 100, 100, 100, 100, 100, 100, 100, 100, 100)

now exiting runScriptInteractively...

Download Pause.py

When a simulation is Paused, you are given the options to resume evolution, stop
the evolution of the Paused population or all populations, or enter an
interactive Python shell to examine the status of a population, which will be
available in the Python shell as pop_X_Y where X and Y are
generation and replicate number of the population, respectively. The evolution
will resume after you exit the Python shell.

Measuring execution time of operators (operator TicToc) *

The TicToc operator can be used to measure the time between two events
during an evolutionary process. It outputs the elapsed time since the last time
it is called, and the overall time since the operator is created. It is very
flexible in that you can measure the time spent for mating in an evolutionary
cycle if you apply it before and after mating, and you can measure time spent
for several evolutionary cycles using generation applicability parameters such
as step and at. The latter usage is demonstrated in Example TicToc.

Example: Monitor the performance of operators

>>> import simuPOP as sim
>>> simu = sim.Simulator(sim.Population(10000, loci=[100]*5), rep=2)
>>> simu.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.1, 0.9])
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(alleleFreq=0),
... sim.TicToc(step=50, reps=-1),
...],
... gen = 101
...)
Start stopwatch.
Elapsed time: 5.00s Overall time: 5.00s
Elapsed time: 4.00s Overall time: 9.00s
(101, 101)

now exiting runScriptInteractively...

Download TicToc.py

Hybrid and Python operators

Hybrid operators

Despite the large number of built-in operators, it is obviously not possible to
implement every genetics models available. For example, although simuPOP
provides several penetrance models, a user may want to try a customized one. In
this case, one can use a hybrid operator.

A hybrid operator is an operator that calls a user-defined function when its
applied to a population. The number and meaning of input parameters and return
values vary from operator to operator. For example, a hybrid mutator sends a to-
be-mutated allele to a user-defined function and use its return value as a
mutant allele. A hybrid selector uses the return value of a user defined
function as individual fitness. Such an operator handles the routine part of the
work (e.g. scan through a chromosome and determine which allele needs to be
mutated), and leave the creative part to users. Such a mutator can be used to
implement complicated genetic models such as an asymmetric stepwise mutation
model for microsatellite markers.

simuPOP operators use parameter names to determine which information should be
passed to a user-defined function. For example, a hybrid quantitative trait
operator recognizes parameters ind, geno, gen and names of
information fields such as smoking. If your model depends on genotype, you
could provide a function with parameter geno (e.g. func(geno)); if your
model depends on smoking and genotype, you could provide a function with
parameters geno and smoking (e.g. func(geno, smoking)); if you model depends
on individual sex, you can use a function that passes the whole individual (e.g.
func(ind)) so that you could check individual sex. When a hybrid operator is
applied to a population, it will check the parameter names of provided Python
function and send requested information automatically.

For example, Example hybridOperator defines a three-
locus heterogeneity penetrance model Risch1990 that yields positive penetrance
only when at least two disease susceptibility alleles are available. The
underlying mechanism of this operator is that for each individual, simuPOP will
collect genotype at specified loci (parameter loci) and send them to
function myPenetrance and evaluate. The return values are used as the
penetrance value of the individual, which is then interpreted as the probability
that this individual will become affected.

Example: Use a hybrid operator

>>> import simuPOP as sim
>>> def myPenetrance(geno):
... 'A three-locus heterogeneity penetrance model'
... if sum(geno) < 2:
... return 0
... else:
... return sum(geno)*0.1
...
>>> pop = sim.Population(1000, loci=[20]*3)
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.8, 0.2])
...],
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.PyPenetrance(func=myPenetrance, loci=[10, 30, 50]),
... sim.Stat(numOfAffected=True),
... sim.PyEval(r"'%d: %d\n' % (gen, numOfAffected)")
...],
... gen = 5
...)
0: 97
1: 96
2: 78
3: 95
4: 80
5

now exiting runScriptInteractively...

Download hybrid.py

Python operator PyOperator *

If hybrid operators are still not flexible enough, you can always resort to a
pure-Python operator PyOperator. This operator has full access to the
evolving population (or parents and offspring when aplied during-mating), and
can therefore perform arbitrary operations.

A PyOperator that is applied pre- or post- mating expects a function
with one or both parameters pop and param, wherepop is the
population being applied, and param is optional, depending on whether or not
a parameter is passed to the PyOperator() constructor. Function
func can perform arbitrary action to pop and must return True or
False. The evolution of pop will be stopped if this function returns
False. This is essentially how operator TerminateIf works.
Alternatively, this callback function can accept ind as one of the
parameters. In this case, the function will be called for all individuals or
individuals in specified (virtual) subpopulations. Individuals will be removed
from the populaton if this function returns False.

Example PyOperator defines such a function. It accepts a
cutoff value and two mutation rates as parameters. It then calculate the
frequency of allele 1 at each locus and apply a two-allele model at high
mutation rate if the frequency is lower than the cutoff and a low mutation rate
otherwise. The kAlleleMutate function is the function form of a mutator
KAlleleMutator (see Section subsec_Function_form for details).

Example: A frequency dependent mutation operator

import simuPOP as sim
def dynaMutator(pop, param):
 '''This mutator mutates commom loci with low mutation rate and rare
 loci with high mutation rate, as an attempt to raise allele frequency
 of rare loci to an higher level.'''
 # unpack parameter
 (cutoff, mu1, mu2) = param;
 sim.stat(pop, alleleFreq=range(pop.totNumLoci()))
 for i in range(pop.totNumLoci()):
 # Get the frequency of allele 1 (disease allele)
 if pop.dvars().alleleFreq[i][1] < cutoff:
 sim.kAlleleMutate(pop, k=2, rates=mu1, loci=[i])
 else:
 sim.kAlleleMutate(pop, k=2, rates=mu2, loci=[i])
 return True

Download PyOperator.py

Example usePyOperator demonstrates how to use this
operator. It first initializes the population using two InitGenotype
operators that initialize loci with different allele frequencies. It applies a
PyOperatorwith function dynaMutator and a tuple of parameters. Allele
frequencies at all loci are printed at generation 0, 10, 20, and
30. Note that this PyOperator is applied at to the parental
generation so allele frequencies have to be recalculated to be used by post-
mating operator PyEval.

Example: Use a PyOperator during evolution

>>> pop = sim.Population(size=10000, loci=[2, 3])
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[.99, .01], loci=[0, 2, 4]),
... sim.InitGenotype(freq=[.8, .2], loci=[1, 3])
...],
... preOps=sim.PyOperator(func=dynaMutator, param=(.2, 1e-2, 1e-5)),
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(alleleFreq=range(5), step=10),
... sim.PyEval(r"' '.join(['%.2f' % alleleFreq[x][1] for x in range(5)]) + '\n'",
... step=10),
...],
... gen = 31
...)
0.02 0.20 0.02 0.20 0.02
0.11 0.22 0.11 0.20 0.11
0.19 0.21 0.20 0.20 0.18
0.21 0.21 0.22 0.21 0.21
31

now exiting runScriptInteractively...

Download PyOperator.py

During-mating Python operator *

A PyOperator can also be applied during-mating. They can be used to
filter out unwanted offspring (by returning False in a user-defined
function), modify offspring, calculate statistics, or pass additional
information from parents to offspring. Depending the names of parameters of your
function, the Python operator will pass offspring (parameter off), his or
her parents (parameter dad and mom), the whole population (parameter
pop) and an optional parameter (parameter param) to this function. For
example, function func(off) will accept references to an offspring, and
func(off, mom, dad) will accept references to both offspring and his or her
parents.

Example duringMatingPyOperator demonstrates the
use of a during-mating Python operator. This operator rejects an offspring if it
has allele 1 at the first locus of the first homologous chromosome, and results
in an offspring population without such individuals.

Example: Use a during-mating PyOperator

>>> import simuPOP as sim
>>> def rejectInd(off):
... 'reject an individual if it off.allele(0) == 1'
... return off.allele(0) == 0
...
>>> pop = sim.Population(size=100, loci=1)
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5])
...],
... matingScheme=sim.RandomMating(
... ops=[
... sim.MendelianGenoTransmitter(),
... sim.PyOperator(func=rejectInd)
...]),
... gen = 1
...)
1
>>> # You should see no individual with allele 1 at locus 0, ploidy 0.
>>> pop.genotype()[:20]
[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]

now exiting runScriptInteractively...

Download pyDuringMatingOperator.py

PyOperator is the most powerful operator in simuPOP and has been widely
used, for example, to calculate statistics and is not supported by the
Stat() operator, to examine population property during evolution, or
prepare populations for a special mating scheme. However, because
PyOperatorworks in the Python interpreter, it is expected that it runs
slower than operators that are implemented at the C/C++ level. If performance
becomes an issue, you can re-implement part or all the operator in C++. Section
subsec_Using_C++ describes how to do this.

Define your own operators *

PyOperator is a Python class so you can derive your own operator from
this operator. The tricky part is that the constructor of the derived operator
needs to call the __init__ function of PyOperator will proper
functions. This technique has been used by simuPOP in a number of occasions. For
example, the VarPlotter operator defined in plotter.py is derived from
PyOperator. This class encapsulates several different plot class that
uses rpy to plot python expressions. One of the plotters is passed to the
func parameter of PyOperator.__init__ so that it can be called when this
operator is applied.

Example sequentialSelfing rewrites the
dynaMutator defined in Example PyOperator into a derived
operator. The parameters are now passed to the constructor of dynaMutator
and are saved as member variables. A member function mutate is defined and
is passed to the constructor of PyOperator. Other than making
dynaMutator look like a real simuPOP operator, this example does not show a
lot of advantage over defining a function. However, when the operator gets
complicated (as in the case for VarPlotter), the object oriented
implementation will prevail.

Example: Define a new Python operator

>>> import simuPOP as sim
>>> class dynaMutator(sim.PyOperator):
... '''This mutator mutates commom loci with low mutation rate and rare
... loci with high mutation rate, as an attempt to raise allele frequency
... of rare loci to an higher level.'''
... def __init__(self, cutoff, mu1, mu2, *args, **kwargs):
... self.cutoff = cutoff
... self.mu1 = mu1
... self.mu2 = mu2
... sim.PyOperator.__init__(self, func=self.mutate, *args, **kwargs)
... #
... def mutate(self, pop):
... sim.stat(pop, alleleFreq=range(pop.totNumLoci()))
... for i in range(pop.totNumLoci()):
... # Get the frequency of allele 1 (disease allele)
... if pop.dvars().alleleFreq[i][1] < self.cutoff:
... sim.kAlleleMutate(pop, k=2, rates=self.mu1, loci=[i])
... else:
... sim.kAlleleMutate(pop, k=2, rates=self.mu2, loci=[i])
... return True
...
>>> pop = sim.Population(size=10000, loci=[2, 3])
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[.99, .01], loci=[0, 2, 4]),
... sim.InitGenotype(freq=[.8, .2], loci=[1, 3])
...],
... preOps=dynaMutator(cutoff=.2, mu1=1e-2, mu2=1e-5),
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(alleleFreq=range(5), step=10),
... sim.PyEval(r"' '.join(['%.2f' % alleleFreq[x][1] for x in range(5)]) + '\n'",
... step=10),
...],
... gen = 31
...)
0.02 0.20 0.02 0.20 0.02
0.11 0.22 0.11 0.20 0.11
0.19 0.21 0.20 0.20 0.18
0.21 0.21 0.22 0.21 0.21
31

now exiting runScriptInteractively...

Download newOperator.py

New during-mating operators can be defined similarly. They are usually used to
define customized genotype transmitters. Section
subsec_Customized_genotype_transmitter will describe this feature in detail.

Evolving populations

	Mating Schemes
	Control the size of the offspring generation

	Advanced use of demographic functions *

	Determine the number of offspring during mating

	Dynamic population size determined by number of offspring *

	Determine sex of offspring

	Monogamous mating

	Polygamous mating

	Asexual random mating

	Mating in haplodiploid populations

	Self-fertilization

	Heterogeneous mating schemes *

	Conditional mating schemes

	Simulator
	Add, access and remove populations from a simulator

	Number of generations to evolve

	Evolve populations in a simulator

	Non-random and customized mating schemes *
	The structure of a homogeneous mating scheme *

	Offspring generators *

	Genotype transmitters *

	A Python parent chooser *

	Using C++ to implement a parent chooser **

	Age structured populations with overlapping generations **

	Tracing allelic lineage *

	Pedigrees
	Create a pedigree object

	Locate close and remote relatives of each individual

	Identify pedigrees (related individuals)

	Save and load pedigrees

	Evolve a population following a specified pedigree structure **

	Simulation of mitochondrial DNAs (mtDNAs) *

Mating Schemes

Mating schemes are responsible for populating an offspring generation from the
parental generation. There are currently two types of mating schemes

	A homogeneous mating scheme is the most flexible and most frequently used
mating scheme and is the center topic of this section. A homogeneous mating is
composed of a parent chooser that is responsible for choosing parent(s) from a
(virtual) subpopulation and an offspring generator that is used to populate
all or part of the offspring generation. During-mating operators are used to
transmit genotypes from parents to offspring. Figure
fig_homogeneous_mating_scheme
demonstrates this process.

	A heterogeneous mating scheme applies several homogeneous mating scheme to
different (virtual) subpopulations. Because the division of virtual
subpopulations can be arbitrary, this mating scheme can be used to simulate
mating in heterogeneous populations such as populations with age structure.

	A pedigree mating scheme evolves a population by following the pedigree
structure of a pedigree. This mating scheme is used to a replay a recorded or
manually created evolutionary process.

This section describes some standard features of mating schemes and most pre-
defined mating schemes. The next section will demonstrate how to build complex
nonrandom mating schemes from scratch.

Figure: A homogeneous mating scheme

[image: Users/bpeng1/simuPOP/simuPOP/doc/figures/HomoMatingScheme.png]

A homogeneous mating scheme is responsible to choose parent(s) from a
subpopulation or a virtual subpopulation, and population part or all of the
corresponding offspring subpopulation. A parent chooser is used to choose one or
two parents from the parental generation, and pass it to an offspring generator,
which produces one or more offspring. During mating operators such as taggers
and Recombinator can be applied when offspring is generated.

Control the size of the offspring generation

A mating scheme goes through each subpopulation and populates the subpopulations
of an offspring generation sequentially. The number of offspring in each
subpopulation is determined by the mating scheme, following the following rules:

	A simuPOP mating scheme, by default, produces an offspring generation that has
the same subpopulation sizes as the parental generation. This does not guarantee
a constant population size because some operators, such as a Migrator
and DiscardIf can change population or subpopulation sizes.

	If fixed subpopulation sizes are given to parameter subPopSize. A mating
scheme will generate an offspring generation with specified sizes even if an
operator has changed parental population sizes.

	A demographic function can be specified to parameter subPopSize. This
function should take one of the two forms func(gen) or func(gen, pop)
where gen is the current generation number and pop is the parental
population just before mating. This function should return an array of new
subpopulation sizes. A single number can be returned if there is only one
subpopulation. The simuPOP.demography module provides a number of
demography-related functions for complex evolutionary secenarios. Please
consider contributing to this module if you have implemented demographic models
for particular populations.

The following examples demonstrate these cases. Example migrSize uses a default RandomMating() scheme that keeps parental
subpopulation sizes. Because migration between two subpopulations are
asymmetric, the size of the first subpopulation increases at each generation,
although the overall population size keeps constant.

Example: Free change of subpopulation sizes

>>> import simuPOP as sim
>>> pop = sim.Population(size=[500, 1000], infoFields='migrate_to')
>>> pop.evolve(
... initOps=sim.InitSex(),
... preOps=sim.Migrator(rate=[[0.8, 0.2], [0.4, 0.6]]),
... matingScheme=sim.RandomMating(),
... postOps=[
... sim.Stat(popSize=True),
... sim.PyEval(r'"%s\n" % subPopSize')
...],
... gen = 3
...)
[843, 657]
[948, 552]
[1010, 490]
3

now exiting runScriptInteractively...

Download migrSize.py

Example migrFixedSize uses the same Migrator to move
individuals between two subpopulations. Because a constant subpopulation size is
specified, the offspring generation always has 500 and 1000 individuals in its
two subpopulations. Note that operators Stat and PyEval are
applied both before and after mating. It is clear that subpopulation sizes
changes before mating as a result of migration, although the pre-mating
population sizes vary because of uncertainties of migration.

Example: Force constant subpopulation sizes

>>> import simuPOP as sim
>>> pop = sim.Population(size=[500, 1000], infoFields='migrate_to')
>>> pop.evolve(
... initOps=sim.InitSex(),
... preOps=[
... sim.Migrator(rate=[[0.8, 0.2], [0.4, 0.6]]),
... sim.Stat(popSize=True),
... sim.PyEval(r'"%s\n" % subPopSize')
...],
... matingScheme=sim.RandomMating(subPopSize=[500, 1000]),
... postOps=[
... sim.Stat(popSize=True),
... sim.PyEval(r'"%s\n" % subPopSize')
...],
... gen = 3
...)
[843, 657]
[500, 1000]
[795, 705]
[500, 1000]
[821, 679]
[500, 1000]
3

now exiting runScriptInteractively...

Download migrFixedSize.py

Example demoFunc uses a demographic function to control the
subpopulation size of the offspring generation. This example implements a linear
population expansion model but arbitrarily complex demographic model can be
implemented similarly.

Example: Use a demographic function to control population size

>>> import simuPOP as sim
>>> def demo(gen):
... return [500 + gen*10, 1000 + gen*10]
...
>>> pop = sim.Population(size=[500, 1000], infoFields='migrate_to')
>>> pop.evolve(
... initOps=sim.InitSex(),
... preOps=sim.Migrator(rate=[[0.8, 0.2], [0.4, 0.6]]),
... matingScheme=sim.RandomMating(subPopSize=demo),
... postOps=[
... sim.Stat(popSize=True),
... sim.PyEval(r'"%s\n" % subPopSize')
...],
... gen = 3
...)
[500, 1000]
[510, 1010]
[520, 1020]
3

now exiting runScriptInteractively...

Download demoFunc.py

If the size of the offspring generation can not be determined directly from
generation number, you can pass the parental population as parameter pop to
the demographic function. For example, Example demoFunc1
implements a demographic model where a population expand at random numbers at
each generation.

Example: Use parental population to determine the size of offspring population

>>> import simuPOP as sim
>>> import random
>>> def demo(pop):
... return [x + random.randint(50, 100) for x in pop.subPopSizes()]
...
>>> pop = sim.Population(size=[500, 1000], infoFields='migrate_to')
>>> pop.evolve(
... initOps=sim.InitSex(),
... matingScheme=sim.RandomMating(subPopSize=demo),
... postOps=[
... sim.Stat(popSize=True),
... sim.PyEval(r'"%s\n" % subPopSize')
...],
... gen = 3
...)
[586, 1075]
[649, 1128]
[742, 1214]
3

now exiting runScriptInteractively...

Download demoFunc1.py

In all the above examples, migration and demographic changes are introduced
manually to influence the evolution of populations. However, the demographic
changes might be driven by other factors such as natural selection so that it is
difficult to predict the size of offspring generations in advance. In this case,
you can manually remove individuals from parental (or offspring) populations
using appropriate operators.

For example, a population in Example demoBySelection
suffers from a sudden reduction of population size (due to perhaps a famine) at
generation 3, and a gradual reduction of population size (due to perhaps an
outburst of an infectious disease) after generation 5. The first event is
implemented using a ResizeSubPops operator that directly shrink the
population size in half. The second event is implemented using a
MaPenetrance and a DiscardIf operator. The first operator
assigns affection status of each individual using a disease model that involves
individual genotype. The second operator discard all individuals that are
affected with the disease. Despite of these unfortunate events, the population
tries to expand exponentially with offspring population sizes set to 105% of
their parental populations.

Example: Change of population size caused by natural selection

>>> import simuPOP as sim
>>> def demo(pop):
... return int(pop.popSize() * 1.05)
...
>>> pop = sim.Population(size=10000, loci=1)
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.7, 0.3])
...],
... preOps=[
... sim.Stat(popSize=True),
... sim.PyEval(r'"%d %s --> " % (gen, subPopSize)'),
... sim.ResizeSubPops(0, proportions=[0.5], at=2),
... sim.MaPenetrance(loci=0, penetrance=[0.01, 0.2, 0.6], begin=4),
... sim.DiscardIf('ind.affected()', exposeInd='ind', begin=4),
... sim.Stat(popSize=True),
... sim.PyEval(r'"%s --> " % subPopSize'),
...],
... matingScheme=sim.RandomMating(subPopSize=demo),
... postOps=[
... sim.Stat(popSize=True),
... sim.PyEval(r'"%s\n" % subPopSize')
...],
... gen = 6
...)
0 [10000] --> [10000] --> [10500]
1 [10500] --> [10500] --> [11025]
2 [11025] --> [5512] --> [5787]
3 [5787] --> [5787] --> [6076]
4 [6076] --> [5188] --> [5447]
5 [5447] --> [4845] --> [5087]
6

now exiting runScriptInteractively...

Download demoBySelection.py

Advanced use of demographic functions *

The parental population passed to a demographic function is usually used to
determine offspring population size from parental population size. However,
because this function is called immediately before mating happens, it provides a
good opportunity for you to prepare the parental generation for mating. Such
activities could generally be done by operators, but operations related to
demographic changes could be done here. For example, Example
advancedDemoFunc uses a demographic function to split
populations at certain generation. The advantage of this method over the use of
a SplitSubPops operator (for example as in Example splitByProp) is that all demographic information presents in the same
function so you do not have to worry about changing an operator when your
demographic model changes.

Example: Use a demographic function to split parental population

>>> import simuPOP as sim
>>> def demo(gen, pop):
... if gen < 2:
... return 1000 + 100 * gen
... if gen == 2:
... # this happens right before mating at generation 2
... size = pop.popSize()
... pop.splitSubPop(0, [size // 2, size - size//2])
... # for generation two and later
... return [x + 50 * gen for x in pop.subPopSizes()]
...
>>> pop = sim.Population(1000)
>>> pop.evolve(
... preOps=[
... sim.Stat(popSize=True),
... sim.PyEval(r'"Gen %d:\t%s (before mating)\t" % (gen, subPopSize)')
...],
... matingScheme=sim.RandomSelection(subPopSize=demo),
... postOps=[
... sim.Stat(popSize=True),
... sim.PyEval(r'"%s (after mating)\n" % subPopSize')
...],
... gen = 5
...)
Gen 0: [1000] (before mating) [1000] (after mating)
Gen 1: [1000] (before mating) [1100] (after mating)
Gen 2: [1100] (before mating) [650, 650] (after mating)
Gen 3: [650, 650] (before mating) [800, 800] (after mating)
Gen 4: [800, 800] (before mating) [1000, 1000] (after mating)
5

now exiting runScriptInteractively...

Download advancedDemoFunc.py

Determine the number of offspring during mating

simuPOP by default produces only one offspring per mating event. Because more
parents are involved in the production of offspring, this setting leads to
larger effective population sizes than mating schemes that produce more
offspring at each mating event. However, various situations require a larger
family size or even varying family sizes. In these cases, parameter
numOffspring can be used to control the number of offspring that are
produced at each mating event. This parameter takes the following types of
inputs

	If a single number is given, numOffspring offspring are produced at each
mating event.

	If a Python function is given, this function will be called each time when a
mating event happens. Generation number can be passed to this function as
parameter gen to allow different numbers of offspring at different
generations. A python generator function can also be passed to provide an
iterator interface to yield number of offspring for all mating events.

	If a tuple (or list) with more than one numbers is given, the first number
must be one of GEOMETRIC_DISTRIBUTION, POISSON_DISTRIBUTION,
BINOMIAL_DISTRIBUTION and UNIFORM_DISTRIBUTION, with one or two
additional parameters.

The number of offspring in the last case will then follow a specific statistical
distribution. More specifically,

	numOffspring=(GEOMETRIC_DISTRIBUTION, p): The number of offspring for each
mating event follows a geometric distribution with mean and variance
:

	numOffspring=(POISSON_DISTRIBUTION, p): The number of offspring for each
mating event follows a Poisson distribution with mean and variance
. The distribution is

Note that, however, because families with zero offspring are ignored, the
distribution of the observed number of offspring (excluding zero) follows a
zero-truncated Poission distribution with probability

The mean number of offspring is therefore , which is
2.31 for .

	numOffspring=(BINOMIAL_DISTRIBUTION, p, n):The number of offspring for
each mating event follows a Binomial distribution with mean and
variance .

Because families with zero offspring are ignored, the distribution of the
observed number of offspring (excluding zero) follows a zero-truncated Bionimial
distribution, with mean number of offspring being
.

	numOffspring=(UNIFORM_DISTRIBUTION, a, b): The number of offspring for
each mating event follows a discrete uniform distribution with lower bound
 and upper bound .

The lower bound of this distribution can be 0 but is identical to the case
with .

Example numOff demonstrates how to use parameter
numOffspring. In this example, a function checkNumOffspring is defined.
It takes a mating scheme as its input parameter and use it to evolve a
population with 30 individuals. After evolving a population for one generation,
parental indexes are used to identify siblings, and then the number of offspring
per mating event.

Example: Control the number of offspring per mating event.

>>> import simuPOP as sim
>>> def checkNumOffspring(numOffspring, ops=[]):
... '''Check the number of offspring for each family using
... information field father_idx
... '''
... pop = sim.Population(size=[30], loci=1, infoFields=['father_idx', 'mother_idx'])
... pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5]),
...],
... matingScheme=sim.RandomMating(ops=[
... sim.MendelianGenoTransmitter(),
... sim.ParentsTagger(),
...] + ops,
... numOffspring=numOffspring),
... gen=1)
... # get the parents of each offspring
... parents = [(x, y) for x, y in zip(pop.indInfo('mother_idx'),
... pop.indInfo('father_idx'))]
... # Individuals with identical parents are considered as siblings.
... famSize = []
... lastParent = (-1, -1)
... for parent in parents:
... if parent == lastParent:
... famSize[-1] += 1
... else:
... lastParent = parent
... famSize.append(1)
... return famSize
...
>>> # Case 1: produce the given number of offspring
>>> checkNumOffspring(numOffspring=2)
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
>>> # Case 2: Use a Python function
>>> import random
>>> def func(gen):
... return random.randint(5, 8)
...
>>> checkNumOffspring(numOffspring=func)
[5, 7, 5, 5, 6, 2]
>>> # Case 3: A geometric distribution
>>> checkNumOffspring(numOffspring=(sim.GEOMETRIC_DISTRIBUTION, 0.3))
[3, 1, 1, 3, 4, 1, 1, 1, 2, 1, 1, 4, 6, 1]
>>> # Case 4: A Possition distribution
>>> checkNumOffspring(numOffspring=(sim.POISSON_DISTRIBUTION, 1.6))
[2, 2, 1, 5, 3, 3, 1, 1, 2, 3, 3, 2, 2]
>>> # Case 5: A Binomial distribution
>>> checkNumOffspring(numOffspring=(sim.BINOMIAL_DISTRIBUTION, 0.1, 10))
[1, 4, 1, 1, 2, 1, 1, 3, 1, 1, 1, 3, 2, 2, 1, 1, 1, 2, 1]
>>> # Case 6: A uniform distribution
>>> checkNumOffspring(numOffspring=(sim.UNIFORM_DISTRIBUTION, 2, 6))
[4, 4, 2, 6, 6, 2, 2, 2, 2]
>>> # Case 7: With selection on offspring
>>> checkNumOffspring(numOffspring=8,
... ops=[sim.MapSelector(loci=0, fitness={(0,0):1, (0,1):0.8, (1,1):0.5})])
[8, 5, 7, 6, 4]

now exiting runScriptInteractively...

Download numOff.py

However, the actual number of offspring can be less than specified because
offspring can be discarded during mating. More specifically, if any during-
mating generator, such as a during-mating selector, returns False during the
production of offspring, the offspring will be discarded so the total number of
offspring will be reduced. This is the case in the seventh case of Example
numOff where offspring with certain genotypes have lower
probabilities to survive. If you would like to control size of families in the
presence of natural selection, you could set a larger numOffspring use a
OffspringTagger to mark the index of offspring, and discard offspring
conditionally using operator DiscardIf . Please refer to example
OffspringTagger for details.

Dynamic population size determined by number of offspring *

What we have described so far requires you to determine the size of offspring
population in advance. Each mating event produces a number of offspring that is
determined by parameter NumOffspring. The mating process stops when the
offspring population is filled. This works for most scenarios but there are
cases where the offspring population size is determined dynamically from a fixed
number of mating events with random number of offspring. For example, you might
design a mating scheme where all males in a population mate only once and
produce random number of offspring.

These kind of mating schemes can be simulated using a demographic model that
calculates offspring population size from pre-simulated number of offspring for
each family. More specifically, we

	Define a demogrphic function (model) that will be called before mating
happens.

	This function determines and save the number of offspring for each mating
event, and return the total number of offspring as offspring population size.

	Pass a function or generator to parameter numOffspring to pass pre-determined
number of offspring. This function will be called each time when number of
offspring is needed.

The number of offspring could be saved and retrieved as global variable but a
more clever method is to store the numbers of offspring in a demographic model
(class). Example dynamicNumOff demonstrates this method
by implementing a demographic model that simulate, save, and return the number
of offspring. Note that although we determine the number of mating events from
number of males in the parental population, a random mating scheme will choose
parents with replacement so it is likely that some parents will be chosen
multiple times while some others are not chosen at all. Please refer to section
“Non-random and customized mating schemes” to learn how to define a mating
scheme that picks parents without replacement.

Example: Dynamic population size determined by number of offspring

>>> import simuPOP as sim
>>>
>>> import random
>>>
>>> class RandomNumOff:
... # a demographic model
... def __init__(self):
... self.numOff = []
...
... def getNumOff(self):
... # return the pre-simulated number of offspring as a generator function
... for item in self.numOff:
... yield item
...
... def __call__(self, pop):
... # define __call__ so that a RandomNumOff object is callable.
... #
... # Each male produce from 1 to 3 offspring. For large population, get the
... # number of males instead of checking the sex of each individual
... self.numOff = [random.randint(1, 3) for ind in pop.individuals() if ind.sex() == sim.MALE]
... # return the total population size
... print('{} mating events with number of offspring {}'.format(len(self.numOff), self.numOff))
... return sum(self.numOff)
...
>>>
>>> pop = sim.Population(10)
>>>
>>> # create a demogranic model
>>> numOffModel = RandomNumOff()
>>>
>>> pop.evolve(
... preOps=sim.InitSex(),
... matingScheme=sim.RandomMating(
... # the model will be called before mating to deteremine
... # family and population size
... subPopSize=numOffModel,
... # the getNumOff function (generator) returns number of offspring
... # for each mating event
... numOffspring=numOffModel.getNumOff
...),
... gen=3
...)
5 mating events with number of offspring [3, 2, 2, 3, 3]
6 mating events with number of offspring [3, 2, 3, 1, 2, 3]
6 mating events with number of offspring [2, 1, 1, 2, 3, 2]
3
>>>

now exiting runScriptInteractively...

Download dynamicNumOff.py

Determine sex of offspring

Because sex can influence how genotypes are transmitted (e.g. sex chromosomes,
haplodiploid population), simuPOP determines offspring sex before it passes an
offspring to a genotype transmitter (during-mating operator) to transmit
genotype from parents to offspring. The default sexMode in almost all mating
schemes is RandomSex, in which case simuPOP assign Male or Female to
offspring with equal probability.

Other sex determination methods are also available:

	sexMode=RANDOM_SEX: Sex is determined randomly, with equal probability for
MALE and FEMALE. This is the default mode for sexual mating schemes such
as random mating.

	sexMode=NO_SEX: Sex is not simulated so everyone is MALE. This is the
default mode for asexual mating schemes.

	sexMode=(PROB_OF_MALES, prob): Produce males with given probability.

	sexMode=(NUM_OF_MALES, n): The first n offspring in each family will
be Male. If the number of offspring at a mating event is less than or equal
to n, all offspring will be male.

	sexMode=(NUM_OF_FEMALES, n): The first n offspring in each family will
be Female.

	sexMode=(SEQUENCE_OF_SEX, s1, s2, ...): Use sequence s1, s2, …
for offspring in each mating event.

	sexMode=(GLOBAL_SEQUENCE_OF_SEX, s1, s2, ...): Use sequence s1,
s2, … for all offspring in a subpopulation. Because other mode of sex
determination works within each mating event, this is the only way to ensure
proportion of sex in a subpopulation. For example, (GLOBAL_SEQUENCE_OF_SEX,
MALE, FEMALE) will gives MALE and FEMALE iteratively to all offspring,
making sure there are equal number of males and females (if there are even
number of offspring).

	sexMode=func or sexMode=generator_func: In this last case, a Python
function or a Python generator function can be specified to provide sex to each
offspring. The function is called whenever an offspring is created. The
generator function is called for each subpopulation, and provides an iterator
that provides sex for all offspring in a subpopulation.

NumOfMales and NumOfFemales are useful in theoretical studies where the
sex ratio of a population needs to be controlled strictly, or in special mating
schemes, usually for animal populations, where only a certain number of male or
female Individuals are allowed in a family. It worth noting that a genotype
transmitter can override specified offspring sex. This is the case for
CloneGenoTransmitter where an offspring inherits both genotype and sex
from his/her parent.

Example sexMode demonstrates how to use parameter sexMode.
In this example, a function checkSexMode is defined. It takes a mating
scheme as its input parameter and use it to evolve a population with 40
individuals. After evolving a population for one generation, sexes of all
offspring are returned as a string.

Example: Determine the sex of offspring

>>> import simuPOP as sim
>>> def checkSexMode(ms):
... '''Check the assignment of sex to offspring'''
... pop = sim.Population(size=[40])
... pop.evolve(initOps=sim.InitSex(), matingScheme=ms, gen=1)
... # return individual sex as a string
... return ''.join(['M' if ind.sex() == sim.MALE else 'F' for ind in pop.individuals()])
...
>>> # Case 1: sim.NO_SEX (all male, sim.RandomMating will not continue)
>>> checkSexMode(sim.RandomMating(sexMode=sim.NO_SEX))
'MM'
>>> # Case 2: sim.RANDOM_SEX (sim.Male/Female with probability 0.5)
>>> checkSexMode(sim.RandomMating(sexMode=sim.RANDOM_SEX))
'MFFFFFFMFFFMFFFMMFFMFFMMMFFMMFMFFFFFFFMF'
>>> # Case 3: sim.PROB_OF_MALES (Specify probability of male)
>>> checkSexMode(sim.RandomMating(sexMode=(sim.PROB_OF_MALES, 0.8)))
'MMFMMFFMMFFMMMMMMMMMFMMFFMMMMMMMMMMMMMMM'
>>> # Case 4: sim.NUM_OF_MALES (Specify number of male in each family)
>>> checkSexMode(sim.RandomMating(numOffspring=3, sexMode=(sim.NUM_OF_MALES, 1)))
'MFFMFFMFFMFFMFFMFFMFFMFFMFFMFFMFFMFFMFFM'
>>> # Case 5: sim.NUM_OF_FEMALES (Specify number of female in each family)
>>> checkSexMode(sim.RandomMating(
... numOffspring=(sim.UNIFORM_DISTRIBUTION, 4, 6),
... sexMode=(sim.NUM_OF_FEMALES, 2))
...)
'FFMMFFMMMFFMMFFMMMMFFMMFFMMMMFFMMFFMMFFM'
>>> # Case 6: sim.SEQUENCE_OF_SEX
>>> checkSexMode(sim.RandomMating(
... numOffspring=4, sexMode=(sim.SEQUENCE_OF_SEX, sim.MALE, sim.FEMALE))
...)
'MF'
>>> # Case 7: sim.GLOBAL_SEQUENCE_OF_SEX
>>> checkSexMode(sim.RandomMating(
... numOffspring=3, sexMode=(sim.GLOBAL_SEQUENCE_OF_SEX, sim.MALE, sim.FEMALE))
...)
'MF'
>>> # Case 8: A generator function
>>> def sexFunc():
... i = 0
... while True:
... i += 1
... if i % 2 == 0:
... yield sim.MALE
... else:
... yield sim.FEMALE
...
>>> checkSexMode(sim.RandomMating(numOffspring=3, sexMode=sexFunc))
'FM'

now exiting runScriptInteractively...

Download sexMode.py

Monogamous mating

Monogamous mating (monogamy) in simuPOP refers to mating schemes in which each
parent mates only once. In an asexual setting, this implies parents are chosen
without replacement. In sexual mating schemes, this means that parents are
chosen without replacement, they have only one spouse during their life time so
that all siblings have the same parents (no half-sibling).

simuPOP provides a diploid sexual monogamous mating scheme
MonogamousMating. However, without careful planning, this mating scheme
can easily stop working due to the lack of parents. For example, if a population
has 40 males and 55 females, only 40 successful mating events can happen and
result in 40 offspring in the offspring generation. MonogamousMating
will exit if the offspring generation is larger than 40.

Example monogamous demonstrates one scenario of using a
monogamous mating scheme where sex of parents and offspring are strictly
specified so that parents will not be exhausted. The sex initializer
InitSex assigns exactly 10 males and 10 females to the initial
population. Because of the use of numOffspring=2, sexMode=(NUM_OF_MALES, 1),
each mating event will produce exactly one male and one female. Unlike a random
mating scheme that only about 80% of parents are involved in the production of
an offspring population with the same size, this mating scheme makes use of all
parents.

Example: Sexual monogamous mating

>>> import simuPOP as sim
>>> pop = sim.Population(20, infoFields=['father_idx', 'mother_idx'])
>>> pop.evolve(
... initOps=sim.InitSex(sex=(sim.MALE, sim.FEMALE)),
... matingScheme=sim.MonogamousMating(
... numOffspring=2,
... sexMode=(sim.NUM_OF_MALES, 1),
... ops=[
... sim.MendelianGenoTransmitter(),
... sim.ParentsTagger(),
...],
...),
... gen = 5
...)
5
>>> [ind.sex() for ind in pop.individuals()]
[1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2]
>>> [int(ind.father_idx) for ind in pop.individuals()]
[16, 16, 2, 2, 4, 4, 8, 8, 0, 0, 14, 14, 10, 10, 12, 12, 18, 18, 6, 6]
>>> [int(ind.mother_idx) for ind in pop.individuals()]
[13, 13, 17, 17, 1, 1, 15, 15, 19, 19, 9, 9, 3, 3, 5, 5, 7, 7, 11, 11]
>>> # count the number of distinct parents
>>> len(set(pop.indInfo('father_idx')))
10
>>> len(set(pop.indInfo('mother_idx')))
10

now exiting runScriptInteractively...

Download monogamous.py

Polygamous mating

In comparison to monogamous mating, parents in a polygamous mate with more than
one spouse during their life-cycle. Both polygany (one man has more than one
wife) and polyandry (one woman has more than one husband) are supported.

Other than regular parameters such as numOffspring, mating scheme
PolygamousMating accepts parameters polySex (default to Male) and
polyNum (default to 1). During mating, an individual with polySex is
selected and then mate with polyNum randomly selected spouse. Example
polygamous demonstrates the use of this mating schemes. Note
that this mating scheme support natural selection, but does not yet handle
varying polyNum and selection of parents without replacement.

Example: Sexual polygamous mating

>>> import simuPOP as sim
>>> pop = sim.Population(100, infoFields=['father_idx', 'mother_idx'])
>>> pop.evolve(
... initOps=sim.InitSex(),
... matingScheme=sim.PolygamousMating(polySex=sim.MALE, polyNum=2,
... ops=[sim.ParentsTagger(),
... sim.MendelianGenoTransmitter()],
...),
... gen = 5
...)
5
>>> [int(ind.father_idx) for ind in pop.individuals()][:20]
[67, 67, 42, 42, 91, 91, 25, 25, 65, 65, 47, 47, 18, 18, 16, 16, 96, 96, 57, 57]
>>> [int(ind.mother_idx) for ind in pop.individuals()][:20]
[58, 58, 58, 0, 68, 32, 37, 89, 6, 85, 12, 58, 36, 12, 66, 44, 51, 85, 60, 29]

now exiting runScriptInteractively...

Download polygamous.py

Asexual random mating

Mating scheme RandomSelection implements an asexual random mating
scheme. It randomly select parents from a parental population (with replacement)
and copy them to an offspring generation. Both genotypes and sex of the parents
are copied because genotype and sex are sometimes related. This mating scheme
can be used to simulate the evolution of haploid sequences in a standard haploid
Wright-Fisher model.

Example RandomSelection applies a
RandomSelection mating scheme to a haploid population with 100
sequences. A parentTagger is used to track the parent of each individual.
Although sex information is not used in this mating scheme, Individual sexes are
initialized and passed to offspring.

Example: Asexual random mating

>>> import simuPOP as sim
>>> pop = sim.Population(100, ploidy=1, loci=[5, 5], ancGen=1,
... infoFields='parent_idx')
>>> pop.evolve(
... initOps=sim.InitGenotype(freq=[0.3, 0.7]),
... matingScheme=sim.RandomSelection(ops=[
... sim.ParentsTagger(infoFields='parent_idx'),
... sim.CloneGenoTransmitter(),
...]),
... gen = 5
...)
5
>>> ind = pop.individual(0)
>>> par = pop.ancestor(ind.parent_idx, 1)
>>> print(ind.sex(), ind.genotype())
1 [1, 1, 0, 1, 1, 0, 1, 0, 0, 0]
>>> print(par.sex(), par.genotype())
1 [1, 1, 0, 0, 1, 1, 1, 1, 0, 1]

now exiting runScriptInteractively...

Download RandomSelection.py

Mating in haplodiploid populations

Male individuals in a haplodiploid population are derived from unfertilized eggs
and thus have only one set of chromosomes. Mating in such a population is
handled by a special mating scheme called haplodiplodMating. This mating
scheme chooses a pair of parents randomly and produces some offspring. It
transmit maternal chromosomes and paternal chromosomes (the only copy) to female
offspring, and only maternal chromosomes to male offspring. Example
HaplodiploidMating demonstrates how to use this
mating scheme. It uses three initializers because sex has to be initialized
before two other intializers can initialize genotype by sex.

Example: Random mating in haplodiploid populations

>>> import simuPOP as sim
>>> pop = sim.Population(10, ploidy=sim.HAPLODIPLOID, loci=[5, 5],
... infoFields=['father_idx', 'mother_idx'])
>>> pop.setVirtualSplitter(sim.SexSplitter())
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(genotype=[0]*10, subPops=[(0, 'Male')]),
... sim.InitGenotype(genotype=[1]*10+[2]*10, subPops=[(0, 'Female')])
...],
... preOps=sim.Dumper(structure=False),
... matingScheme=sim.HaplodiploidMating(
... ops=[sim.HaplodiploidGenoTransmitter(), sim.ParentsTagger()]),
... postOps=sim.Dumper(structure=False),
... gen = 1
...)
SubPopulation 0 (), 10 Individuals:
 0: FU 11111 11111 | 22222 22222 | 0 0
 1: FU 11111 11111 | 22222 22222 | 0 0
 2: MU 00000 00000 | _____ _____ | 0 0
 3: MU 00000 00000 | _____ _____ | 0 0
 4: MU 00000 00000 | _____ _____ | 0 0
 5: MU 00000 00000 | _____ _____ | 0 0
 6: MU 00000 00000 | _____ _____ | 0 0
 7: FU 11111 11111 | 22222 22222 | 0 0
 8: FU 11111 11111 | 22222 22222 | 0 0
 9: FU 11111 11111 | 22222 22222 | 0 0

SubPopulation 0 (), 10 Individuals:
 0: MU 11111 11111 | _____ _____ | 4 9
 1: MU 11111 22222 | _____ _____ | 4 8
 2: MU 22222 11111 | _____ _____ | 6 8
 3: MU 22222 11111 | _____ _____ | 3 8
 4: MU 22222 22222 | _____ _____ | 2 8
 5: MU 22222 22222 | _____ _____ | 6 9
 6: FU 22222 22222 | 00000 00000 | 2 1
 7: FU 22222 22222 | 00000 00000 | 2 1
 8: FU 22222 22222 | 00000 00000 | 3 9
 9: FU 11111 11111 | 00000 00000 | 5 8

1

now exiting runScriptInteractively...

Download HaplodiploidMating.py

Note that this mating scheme does not support recombination and the standard
Recombinator does not work with haplodiploid populations. Please refer to the
next Chapter for how to define a customized genotype transmitter to handle such
a situation.

Self-fertilization

Some plant populations evolve through self-fertilization. That is to say, a
parent fertilizes with itself during the production of offspring (seeds). In a
SelfMating mating scheme, parents are chosen randomly (one at a time),
and are used twice to produce two homologous sets of offspring chromosomes. The
standard Recombinator can be used with this mating scheme. Example
SelfMating initializes each chromosome with different
alleles to demonstrate how these alleles are transmitted in this population.

Example: Selfing mating scheme

>>> import simuPOP as sim
>>> pop = sim.Population(20, loci=8)
>>> # every chromosomes are different. :-)
>>> for idx, ind in enumerate(pop.individuals()):
... ind.setGenotype([idx*2], 0)
... ind.setGenotype([idx*2+1], 1)
...
>>> pop.evolve(
... matingScheme=sim.SelfMating(ops=sim.Recombinator(rates=0.01)),
... gen = 1
...)
1
>>> sim.dump(pop, width=3, structure=False, max=10)
SubPopulation 0 (), 20 Individuals:
 0: FU 36 36 36 36 36 36 36 36 | 36 36 36 36 36 36 36 36
 1: FU 6 6 6 6 6 6 6 6 | 7 7 7 7 7 7 7 7
 2: MU 33 33 33 33 33 33 33 33 | 33 33 33 33 33 33 33 33
 3: MU 22 22 22 22 22 23 23 23 | 22 22 22 22 22 22 22 22
 4: FU 27 27 27 27 27 27 27 27 | 27 27 27 27 27 27 27 27
 5: MU 15 15 15 15 15 15 15 15 | 15 15 15 15 15 15 15 15
 6: MU 35 35 35 35 34 34 34 34 | 34 34 34 34 34 34 34 34
 7: FU 11 11 11 11 11 11 11 11 | 10 10 10 10 10 10 10 10
 8: MU 11 11 11 11 11 11 11 11 | 11 11 11 11 11 11 11 11
 9: FU 24 24 24 24 24 24 24 24 | 25 25 25 25 25 25 25 25

now exiting runScriptInteractively...

Download SelfMating.py

Heterogeneous mating schemes *

Different groups of individuals in a population may have different mating
patterns. For example, individuals with different properties can have varying
fecundity, represented by different numbers of offspring generated per mating
event. This can be extended to aged populations in which only adults (may be
defined by age > 20 and age < 40) can produce offspring, where other individuals
will either be copied to the offspring generation or die.

A heterogeneous mating scheme (HeteroMating) accepts a list of mating
schemes that are applied to different subpopulation or virtual subpopulations.
If multiple mating schemes are applied to the same subpopulation, each of them
only populate part of the offspring subpopulation. This is illustrated in Figure
fig_heterogenous_mating.

Figure: Illustration of a heterogeneous mating scheme

[image: Users/bpeng1/simuPOP/simuPOP/doc/figures/MatingScheme.png]

A heterogeneous mating scheme that applies homogeneous mating schemes MS0,
MS0.0, MS0.1, MS1, MS2.0 and MS2.1 to subpopulation 0, the first and second
virtual subpopulation in subpopulation 0, subpopulation 1, the first and second
virtual subpopulation in subpopulation 2, respectively. Note that VSP 0 and 1 in
subpopulation 0 overlap, and do not add up to subpopulation 0.

For example, Example hateroMatingSP applies two random
mating schemes to two subpopulations. The first mating scheme produces two
offspring per mating event, and the second mating scheme produces four.

Example: Applying different mating schemes to different subpopulations

>>> import simuPOP as sim
>>> pop = sim.Population(size=[1000, 1000], loci=2,
... infoFields=['father_idx', 'mother_idx'])
>>> pop.evolve(
... initOps=sim.InitSex(),
... matingScheme=sim.HeteroMating([
... sim.RandomMating(numOffspring=2, subPops=0,
... ops=[sim.MendelianGenoTransmitter(), sim.ParentsTagger()]
...),
... sim.RandomMating(numOffspring=4, subPops=1,
... ops=[sim.MendelianGenoTransmitter(), sim.ParentsTagger()]
...)
...]),
... gen=10
...)
10
>>> [int(ind.father_idx) for ind in pop.individuals(0)][:10]
[134, 134, 451, 451, 780, 780, 443, 443, 457, 457]
>>> [int(ind.father_idx) for ind in pop.individuals(1)][:10]
[1978, 1978, 1978, 1978, 1582, 1582, 1582, 1582, 1322, 1322]

now exiting runScriptInteractively...

Download HeteroMatingSP.py

The real power of heterogeneous mating schemes lies on their ability to apply
different mating schemes to different virtual subpopulations. For example, due
to different micro-environmental factors, plants in the same population may
exercise both self and cross-fertilization. Because of the randomness of such
environmental factors, it is difficult to divide a population into self and
cross-mating subpopulations. Applying different mating schemes to groups of
individuals in the same subpopulation is more appropriate.

Example hateroMatingVSP applies two mating schemes to
two VSPs defined by proportions of individuals. In this mating scheme, 20% of
individuals go through self-mating and 80% of individuals go through random
mating. This can be seen from the parental indexes of individuals in the
offspring generation: individuals whose mother_idx are -1 are
genetically only derived from their fathers.

It might be surprising that offspring resulted from two mating schemes mix with
each other so the same VSPs in the next generation include both selfed and
cross-fertilized offspring. If this not desired, you can set parameter
shuffleOffspring=False in HeteroMating(). Because the number of
offspring that are produced by each mating scheme is proportional to the size of
parental (virtual) subpopulation, the first 20% of individuals that are produced
by self-fertilization will continue to self-fertilize.

Example: Applying different mating schemes to different virtual subpopulations

>>> import simuPOP as sim
>>> pop = sim.Population(size=[1000], loci=2,
... infoFields=['father_idx', 'mother_idx'])
>>> pop.setVirtualSplitter(sim.ProportionSplitter([0.2, 0.8]))
>>> pop.evolve(
... initOps=sim.InitSex(),
... matingScheme=sim.HeteroMating(matingSchemes=[
... sim.SelfMating(subPops=[(0, 0)],
... ops=[sim.SelfingGenoTransmitter(), sim.ParentsTagger()]
...),
... sim.RandomMating(subPops=[(0, 1)],
... ops=[sim.SelfingGenoTransmitter(), sim.ParentsTagger()]
...)
...]),
... gen = 10
...)
10
>>> [int(ind.father_idx) for ind in pop.individuals(0)][:15]
[789, 666, 145, 125, 681, 183, 727, 308, 392, 11, 183, 223, 208, 29, 309]
>>> [int(ind.mother_idx) for ind in pop.individuals(0)][:15]
[370, 272, -1, 520, 121, 91, 220, 519, 101, 271, -1, 263, 663, -1, 286]

now exiting runScriptInteractively...

Download HeteroMatingVSP.py

Because there is no restriction on the choice of VSPs, mating schemes can be
applied to overlapped (virtual) subpopulations. For example,

HeteroMating(
 matingSchemes = [
 SelfMating(subPops=[(0, 0)]),
 RandomMating(subPops=0)
]
)

will apply SelfMating to the first 20% individuals, and RandomMating will be
applied to all individuals. Similarly,

HeteroMating(
 matingSchemes = [
 SelfMating(subPops=0),
 RandomMating(subPops=0)
]
)

will allow all individuals to be involved in both SelfMating and
RandomMating.

This raises the question of how many offspring each mating scheme will produce.
By default, the number of offspring produced will be proportional to the size of
parental (virtual) subpopulations. In the last example, because both mating
schemes are applied to the same subpopulation, half of all offspring will be
produced by selfing and the other half will be produced by random mating.

This behavior can be changed by a weighting scheme controlled by parameter
weight of each homogeneous mating scheme. Briefly speaking, a positive
weight will be compared against other mating schemes. a negative weight is
considered proportional to the existing (virtual) subpopulation size. Negative
weights are considered before positive or zero weights.

This weighting scheme is best explained by an example. Assuming that there are
three mating schemes working on the same parental subpopulation

	Mating scheme A works on the whole subpopulation of size 1000

	Mating scheme B works on a virtual subpopulation of size 500

	Mating scheme C works on another virtual subpopulation of size 800

Assuming the corresponding offspring subpopulation has individuals,

	If all weights are 0, the offspring subpopulation is divided in proportion to
parental (virtual) subpopulation sizes. In this example, the mating schemes will
produce , ,
individuals respectively.

	If all weights are negative, they are multiplied to their parental (virtual)
subpopulation sizes. For example, weight (-1, -2, -0.5) will lead to sizes
(1000, 1000, 400) in the offspring subpopulation. If in this
case, an error will be raised.

	If all weights are positive, the number of offspring produced from each mating
scheme is proportional to these weights. For example, weights (1, 2, 3) will
lead to , ,
individuals respectively. In this case, 0 weights will produce no offspring.

	If there are mixed positive and negative weights, the negative weights are
processed first, and the rest of the individuals are divided using non-negative
weights. For example, three mating schemes with weights (-0.5, 2, 3) will
produce 500, ,
 individuals respectively.

The last case is demonstrated in Example HeteroMatingWeight where three random mating schemes are applied to
subpopulation 0, virtual subpopulation(0, 0) and virtual subpopulation
(0, 1), with weights -0.5, 2, and 3 respectively. This example
uses an advanced features that will be described in the next section. Namely,
three during-mating Python operators are passed to each mating scheme to mark
their offspring with different numbers.

Example: A weighting scheme used by heterogeneous mating schemes.

>>> import simuPOP as sim
>>> pop = sim.Population(size=[1000], loci=2,
... infoFields='mark')
>>> pop.setVirtualSplitter(sim.RangeSplitter([[0, 500], [200, 1000]]))
>>>
>>> pop.evolve(
... initOps=sim.InitSex(),
... matingScheme=sim.HeteroMating([
... sim.RandomMating(subPops=0, weight=-0.5,
... ops=[sim.InfoExec('mark=0'), sim.MendelianGenoTransmitter()]),
... sim.RandomMating(subPops=[(0, 0)], weight=2,
... ops=[sim.InfoExec('mark=1'), sim.MendelianGenoTransmitter()]),
... sim.RandomMating(subPops=[(0, 1)], weight=3,
... ops=[sim.InfoExec('mark=2'), sim.MendelianGenoTransmitter()])
...]),
... gen = 10
...)
10
>>> marks = list(pop.indInfo('mark'))
>>> marks.count(0.)
500
>>> marks.count(1.)
200
>>> marks.count(2.)
300

now exiting runScriptInteractively...

Download HeteroMatingWeight.py

As a special case that can be quite annoying during the simulation of small
populations, a (virtual) subpopulation can have no male and/or female. If the
parental (virtual) subpopulation is empty, it will produce no offspring
regardless of its weight. However, if the parental (virtual) subpopulation is
not empty, it will be expected to produce some offspring, which is not possible
if a sexual mating scheme is used. In this case, you can use a parameter
weightBy to specify how parental (virtual) population sizes are calculated.
This parameter accepts values ANY_SEX (default), MALE_ONLY,
FEMALE_ONLY, PAIR_ONLY, and use all individuals, number of male
individuals, number of female individuals, and number of male/female pairs
(basically the less of numbers of males and females) as the size of parental
(virtual) subpopulation, respectively. When weightBy=PAIR_ONLY is used,
parental (virtual) subpopulations with only males or females will appear to be
empty and produce no offspring. Note that in this mode (also MALE_ONLY,
FEMALE_ONLY), the perceived parental population sizes are no longer the
actual parental population sizes so you might need to adjust parameter
weight (e.g. weight=-2) to produce correct number of offspring.

Conditional mating schemes

A ConditionalMating mating scheme allows you to apply different mating
schemes to populations with different properties. The condition can be a
constant (True or False), an expression that will be evaluated in the local
namspace of the parental population, or a function that can take parental
population as its input paramter (with parameter name pop).

Using variable rep and gen in the local namespace of the parental
population, we can use this mating scheme to apply different mating schemes to
different replicates and/or at different generations. For example,
matingSchemeByRepAndGen simulates the evolution
of three replicates. The first replicate uses regular mating scheme, the third
replicate uses a mating scheme that produces 70% of males, and the second
replicate do this only for the first 5 generations. Because there are three
cases, a nested ConditionalMating is used.

Example: Apply different mating schemes for different replicates at different generations

>>> import simuPOP as sim
>>> simu = sim.Simulator(sim.Population(1000, loci=[10]), rep=3)
>>> simu.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5])
...],
... matingScheme=sim.ConditionalMating('rep == 0',
... # the first replicate use standard random mating
... sim.RandomMating(),
... sim.ConditionalMating('rep == 1 and gen >= 5',
... # the second replicate produces more males for the first 5 generations
... sim.RandomMating(),
... # the last replicate produces more males all the time
... sim.RandomMating(sexMode=(sim.PROB_OF_MALES, 0.7))
...)
...),
... postOps=[
... sim.Stat(numOfMales=True),
... sim.PyEval("'gen=%d' % gen", reps=0),
... sim.PyEval(r"'\t%d' % numOfMales"),
... sim.PyOutput('\n', reps=-1)
...],
... gen=10
...)
gen=0 477 686 718
gen=1 477 689 698
gen=2 519 692 713
gen=3 479 709 704
gen=4 539 710 688
gen=5 496 482 698
gen=6 489 488 701
gen=7 495 508 715
gen=8 497 488 688
gen=9 528 498 698
(10, 10, 10)

now exiting runScriptInteractively...

Download matingSchemeByRepAndGen.py

A function can be passed as the condition of a ConditionalMating mating
scheme. This allows you to apply operators such as Stat to examine the
condition of populations more closely and determine which mating scheme to use.

Simulator

A simuPOP simulator evolves one or more copies of a population forward in time,
subject to various operators. Although a population could evolve by itself using
function Population.evolve, a simulator with one replicate is actually
used.

Add, access and remove populations from a simulator

A simulator could be created by one or more replicates of a list of populations.
For example, you could create a simulator from five replicates of a population
using

Simulator(pop, rep=5)

or from a list of populations using

Simulator([pop, pop1, pop2])

. pop, pop1 and pop2 do not have to have the same genotypic
structure. In order to avoid duplication of potentially large populations, a
population is by default stolen after it is used to create a simulator. If you
would like to keep the populations, you could set parameter stealPops to
False so that the populations will be copied to the simulator. Populations
in a simulator can be added or removed using functions Simulator.add()
and Simulator.extract(idx).

When a simulator is created, you can access populations in this simulator using
function Simulator.population(idx) or iterate through all
populations using function Simulator.populations(). These functions
return references to the populations so that you can access populations.
Modifying these references will change the corresponding populations within the
simulator. The references will become invalid once the simulator object is
destoryed.

Example Simulator demonstrates different ways to create a
simulator and how to access populations within it.

Example: Create a simulator and access populations

>>> import simuPOP as sim
>>> pop = sim.Population(100, loci=10)
>>> # five copies of the same population
>>> simu = sim.Simulator(pop, rep=5)
>>> simu.numRep()
5
>>> # evolve for ten generations and save the populations
>>> simu.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.3, 0.7])
...],
... matingScheme=sim.RandomMating(),
... finalOps=sim.SavePopulation('!"pop%d.pop"%rep'),
... gen=10
...)
(10, 10, 10, 10, 10)
>>> # load the population and create another Simulator
>>> simu = sim.Simulator([sim.loadPopulation('pop%d.pop' % x) for x in range(5)])
>>> # continue to evolve
>>> simu.evolve(
... matingScheme=sim.RandomMating(),
... gen=10
...)
(10, 10, 10, 10, 10)
>>> # print out allele frequency
>>> for pop in simu.populations():
... sim.stat(pop, alleleFreq=0)
... print('%.2f' % pop.dvars().alleleFreq[0][0])
...
0.36
0.30
0.28
0.01
0.11
>>> # get a population
>>> pop = simu.extract(0)
>>> simu.numRep()
4

now exiting runScriptInteractively...

Download Simulator.py

Number of generations to evolve

A simulator usually evolves a specific number of generations according to
parameter gen of the evolve function. A generation number is used to
track the number of generations a simulator has evolved. Because a new
population has generation number 0, a population would be at the beginning of
generation after it evolves generations. The generation
number would increase if the simulator continues to evolve. During evoluting,
variables rep (replicate number) and gen (current generation number) are
set to each population’s local namespace.

It is not always possible to know in advance the number of generations to
evolve. For example, you may want to evolve a population until a specific allele
gets fixed or lost in the population. In this case, you can let the simulator
run indefinitely (do not set the gen parameter) and depend on a *terminator
*to terminate the evolution of a population. The easiest method to do this is to
use population variables to track the status of a population, and use a
TerminateIf operator to terminate the evolution according to the value
of an expression. Example simuGen demonstrates the use of such
a terminator, which terminates the evolution of a population if allele 0 at
locus 5 is fixed or lost. It also shows the application of an interesting
operator IfElse, which applies an operator, in this case
PyEval, only when an expression returns True. Note that this
example calls the simulator.evolve function twice. The first call does not
specify a mating scheme so a default empty mating scheme (MatingScheme)
that does not transmit genotype is used. Populations start from the beginning of
the fifth generation when the second simulator.evole function is called.

The generation number is stored in each Population using population variable
gen.You can access these numbers from a simulator using function
Simulator.dvars(idx) or from a population using function
Population.dvars(). If needed, you can reset generation numbers by
changing these variables.

Example: Generation number of a simulator

>>> import simuPOP as sim
>>> simu = sim.Simulator(sim.Population(50, loci=[10], ploidy=1),
... rep=3)
>>> simu.evolve(gen = 5)
(5, 5, 5)
>>> simu.dvars(0).gen
5
>>> simu.evolve(
... initOps=[sim.InitGenotype(freq=[0.5, 0.5])],
... matingScheme=sim.RandomSelection(),
... postOps=[
... sim.Stat(alleleFreq=5),
... sim.IfElse('alleleNum[5][0] == 0',
... sim.PyEval(r"'Allele 0 is lost in rep %d at gen %d\n' % (rep, gen)")),
... sim.IfElse('alleleNum[5][0] == 50',
... sim.PyEval(r"'Allele 0 is fixed in rep %d at gen %d\n' % (rep, gen)")),
... sim.TerminateIf('len(alleleNum[5]) == 1'),
...],
...)
Allele 0 is fixed in rep 2 at gen 29
Allele 0 is fixed in rep 1 at gen 74
Allele 0 is lost in rep 0 at gen 120
(116, 70, 25)
>>> [simu.dvars(x).gen for x in range(3)]
[121, 75, 30]

now exiting runScriptInteractively...

Download simuGen.py

Evolve populations in a simulator

There are a number of rules about when and how operators are applied during the
evolution of a population. In summary, in the order at which operators are
processed and applied,

	Operators specified in parameter initOps of function
Simulator.evolve will be applied to the initial population before
evolution, subject to replicate applicability restraint specified by parameter
reps.

	Operators specified in parameter preOps of function
Simulator.evolve will be applied to the parental population at each
generation, subject to replicate and generation applicability restraint
specified by parameters begin, end, step, at, and reps.

	During-mating operators specified in the ops parameter of a mating scheme
will be called during mating to transmit genotype (and possibly information
fields etc) from parental to offspring, subject to replicate and generation
applicability restraint specified by parameters begin, end, step,
at, and reps.

	Operators specified in parameter postOps of function Simulator.evolve
will be applied to the offspring population at each generation, subject to
replicate and generation applicability restraint specified by parameters
begin, end, step, at, and reps.

	Operators specified in parameter finalOps of function
Simulator.evolve will be applied to the final population after
evolution, subject to replicate applicability restraint specified by parameter
reps.

Figure fig_operator_orders illustrated how
operators are applied to an evolutionary process. It worth noting that a default
during-mating operator is defined for each mating scheme. User-specfied
operators will replace the default operator so you need to explicitly
specify the default operator if you intent to add another one.

Figure: Orders at which operators are applied during an evolutionary process

[image: Users/bpeng1/simuPOP/simuPOP/doc/figures/operators.png]

If you suspect that your simulation is not running as expected, you can have a
close look at your evolutionary process by setting the dryrun parameter of
an evolve function to True, or by calling function
describeEvolProcess(). This function takes the same set of parameters
as Simulator.evolve() and returns a description of the evolution
process, which might help you identify misuse of operators.

Example: describe an evolutionary process

>>> import simuPOP as sim
>>>
>>> def outputstat(pop):
... 'Calculate and output statistics, ignored'
... return True
...
>>> # describe this evolutionary process
>>> print(sim.describeEvolProcess(
... initOps=[
... sim.InitSex(),
... sim.InitInfo(lambda: random.randint(0, 75), infoFields='age'),
... sim.InitGenotype(freq=[0.5, 0.5]),
... sim.IdTagger(),
... sim.PyOutput('Prevalence of disease in each age group:\n'),
...],
... preOps=sim.InfoExec('age += 1'),
... matingScheme=sim.HeteroMating([
... sim.CloneMating(subPops=[(0,0), (0,1), (0,2)], weight=-1),
... sim.RandomMating(ops=[
... sim.IdTagger(),
... sim.Recombinator(intensity=1e-4)
...], subPops=[(0,1)]),
...]),
... postOps=[
... sim.MaPenetrance(loci=0, penetrance=[0.01, 0.1, 0.3]),
... sim.PyOperator(func=outputstat)
...],
... gen = 100,
... numRep = 3
...))
Replicate 0 1 2:
Apply pre-evolution operators to the initial population (initOps).
 * <simuPOP.InitSex> initialize sex randomly
 * <simuPOP.InitInfo> initialize information field age using a Python
 function <lambda>
 * <simuPOP.InitGenotype> initialize individual genotype acccording to
 allele frequencies.
 * <simuPOP.IdTagger> assign an unique ID to individuals
 * <simuPOP.PyOutput> write 'Prevalence of disease in each age group:... '
 to output

Evolve a population for 100 generations
 * Apply pre-mating operators to the parental generation (preOps)
 # <simuPOP.InfoExec> execute statement age += 1 using information fields
 as variables.

 * Populate an offspring populaton from the parental population using mating
 scheme <simuPOP.HeteroMating> a heterogeneous mating scheme with 2
 homogeneous mating schemes:
 # <simuPOP.HomoMating> a homogeneous mating scheme that uses
 - <simuPOP.SequentialParentChooser> chooses a parent sequentially
 - <simuPOP.OffspringGenerator> produces offspring using operators
 . <simuPOP.CloneGenoTransmitter> clone genotype, sex and
 information fields of parent to offspring
 in subpopulations (0, 0), (0, 1), (0, 2).
 # <simuPOP.HomoMating> a homogeneous mating scheme that uses
 - <simuPOP.RandomParentsChooser> chooses two parents randomly
 - <simuPOP.OffspringGenerator> produces offspring using operators
 . <simuPOP.IdTagger> assign an unique ID to individuals
 . <simuPOP.Recombinator> genetic recombination.
 in subpopulations (0, 1).

 * Apply post-mating operators to the offspring population (postOps).
 # <simuPOP.MaPenetrance> multiple-alleles penetrance
 # <simuPOP.PyOperator> calling a Python function outputstat

No operator is applied to the final population (finalOps).

now exiting runScriptInteractively...

Download describe.py

Non-random and customized mating schemes *

The structure of a homogeneous mating scheme *

A homogeneous mating scheme (HomoMating) populates an offspring
generation as follows:

	Create an empty offspring population (generation) with appropriate size.
Parental and offspring generation can differ in size but they must have the same
number of subpopulations.

	For each subpopulation, repeatedly choose a parent or a pair of parents from
the parental generation. This is done by a simuPOP object called a parent
chooser.

	One or more offspring are produced from the chosen parent(s) and are placed
in the offspring population. This is done by a simuPOP offspring generator.
An offspring generator uses one or more during-mating operators to transmit
parental genotype to offspring. These operators are called genotype
transmitters.

	After the offspring generation is populated, it will replace the parental
generation and becomes the present generation of a population.

To define a homogeneous mating scheme, you will need to provide a chooser (a
parent chooser that is responsible for choosing one or two parents from the
parental generation) and a generator (an offspring generator that is
responsible for generating a number of offspring from the chosen parents). For
example, a selfingMating mating scheme uses a RandomParentChooser
to choose a parent randomly from a population, possibly according to individual
fitness, it uses a standard OffspringGenerator that uses a
selfingOffspringGenerator to transmit genotype. The constructor of
HomoMating also accepts parameters subPopSize (parameter to control
offspring subpopulation sizes), subPops (applicable subpopulatiosn or
virtual subpopulations), and weight (weighting parameter when used in a
heterogeneous mating scheme). When this mating scheme is applied to the whole
population, subPopSize is used to determine the subpopulation sizes of the
offspring generation (see Section subsec_offspring_size for details), parameters subPops and weight are
ignored. Otherwise, the number of offspring this mating scheme will produce is
determined by the heterogeneous mating scheme.

Example RandomMating demonstrates how the most commonly
used mating scheme, the diploid sexual RandomMating mating scheme is
defined in simuPOP.py. This mating scheme uses a
RandomParentsChooser with replacement, and a standard
OffspringGenerator using a default MendelianGenoTransmitter.

Example: Define a random mating scheme

def RandomMating(numOffspring=1., sexMode=RANDOM_SEX,
 ops=MendelianGenoTransmitter(), subPopSize=[],
 subPops=ALL_AVAIL, weight=0, selectionField='fitness'):
 'A basic diploid sexual random mating scheme.'
 return HomoMating(
 chooser=RandomParentsChooser(True, selectionField),
 generator=OffspringGenerator(ops, numOffspring, sexMode),
 subPopSize=subPopSize,
 subPops=subPops,
 weight=weight)

Download RandomMating.py

Different parent choosers and offspring generators can be combined to define a
large number of homogeneous mating schemes. Some of the parent choosers return
one parent so they work with offspring generators that need one parent (e.g.
selfing or clone offspring generator); some of the parent choosers return two
parents so they work with offspring generators that need two parents (e.g.
Mendelian offspring generator). For example, the standard SelfMating
mating scheme uses a RandomParentChooser but you can easily use a
SequentialParentChooser to choose parents sequentially and self-
fertilize parents one by one. This is demonstrated in Example
sequentialSelfing.

Example: Define a sequential selfing mating scheme

>>> import simuPOP as sim
>>> pop = sim.Population(100, loci=5*3, infoFields='parent_idx')
>>> pop.evolve(
... initOps=[sim.InitGenotype(freq=[0.2]*5)],
... preOps=sim.Dumper(structure=False, max=5),
... matingScheme=sim.HomoMating(
... sim.SequentialParentChooser(),
... sim.OffspringGenerator(ops=[
... sim.SelfingGenoTransmitter(),
... sim.ParentsTagger(infoFields='parent_idx'),
...])
...),
... postOps=sim.Dumper(structure=False, max=5),
... gen = 1
...)
SubPopulation 0 (), 100 Individuals:
 0: MU 441000142224423 | 431303440010114 | 0
 1: MU 334442443034342 | 113203441333201 | 0
 2: MU 034344042424240 | 344304121430212 | 0
 3: MU 132322330420043 | 141300223114240 | 0
 4: MU 111123040033342 | 344344221133120 | 0

SubPopulation 0 (), 100 Individuals:
 0: MU 441000142224423 | 431303440010114 | 0
 1: FU 334442443034342 | 113203441333201 | 1
 2: MU 344304121430212 | 034344042424240 | 2
 3: FU 141300223114240 | 132322330420043 | 3
 4: FU 344344221133120 | 111123040033342 | 4

1

now exiting runScriptInteractively...

Download sequentialSelfing.py

Offspring generators *

An OffspringGenerator accepts a parameters ops (a list of during-
mating operators), numOffspring (control number of offspring per mating
event) and sexMode (control offspring sex). We have examined the last two
parameters in detail in sections subsec_number_of_offspring and subsec_offspring_sex.

The most tricky parameter is the ops parameter. It accepts a list of during
mating operators that are used to transmit genotypes from parent(s) to offspring
and/or set individual information fields. The standard
OffspringGenerator does not have any default operator so no genotype
will be transmitted by default. All stock mating schemes use a default genotype
transmitter. (e,g, a MendelianGenoTransmitter in Example
RandomMating is passed to the offspring generator used in
RandomMating). Note that you need to specify all needed operators if
you use parameter ops to change the operators used in a mating scheme (see
Example HeteroMatingWeight). That is to say, you can
use ops=Recombinator() to replace a default
MendelianGenoTransmitter(), but you have to use ops=[IdTagger(),
MendelianGenoTransmitter()] if you would like to add a during-mating operator
to the default one.

Another offspring generator is provided in simuPOP. This
ControlledOffspringGeneratoris used to control an evolutionary process so
that the allele frequencies at certain loci follows some pre-simulated
frequency trajectories. Please refer to Peng2007a for rationals behind such an
offspring generator and its applications in the simulation of complex human
diseases.

Example controlledOffGenerator demonstrates the
use of such a controlled offspring generator. Instead of using a realistic
frequency trajectory function, it forces allele frequency at locus 5 to increase
linearly. In contrast, the allele frequency at locus 15 on the second chromosome
oscillates as a result of genetic drift. Note that the random mating version of
this mating scheme is defined in simuPOP as ControlledRandomMating.

Example: A controlled random mating scheme

>>> import simuPOP as sim
>>> def traj(gen):
... return [0.5 + gen * 0.01]
...
>>> pop = sim.Population(1000, loci=[10]*2)
>>> # evolve the sim.Population while keeping allele frequency 0.5
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5])
...],
... matingScheme=sim.HomoMating(sim.RandomParentChooser(),
... sim.ControlledOffspringGenerator(loci=5,
... alleles=[0], freqFunc=traj,
... ops = sim.SelfingGenoTransmitter())),
... postOps=[
... sim.Stat(alleleFreq=[5, 15]),
... sim.PyEval(r'"%.2f\t%.2f\n" % (alleleFreq[5][0], alleleFreq[15][0])')
...],
... gen = 5
...)
0.50 0.51
0.51 0.51
0.52 0.51
0.53 0.52
0.54 0.54
5

now exiting runScriptInteractively...

Download controlledOffGenerator.py

Genotype transmitters *

Although any during mating operators can be used in parameter opsof an
offspring generator, those that transmit genotype from parents to offspring are
customarily called genotype transmitters. simuPOP provides a number of
genotype transmitters including clone, Mendelian, selfing, haplodiploid,
genotype transmitter, and a Recombinator. They are usually used implicitly in a
mating scheme, but they can also be used explicitly.

Although simuPOP provides a number of genotype transmitters, they may still be
cases where customized genotype transmitter is needed. For example, a
Recombinator can be used to recombine parental chromosomes but it is well known
that male and female individuals differ in recombination rates. How can you
apply two different Recombinators to male and female Individuals separately?

An immediate thought can be the use of virtual subpopulations. If you apply two
random mating schemes to two virtual subpopulations defined by sex,
RandomParentsChooser will not work because no opposite sex can be found
in each virtual subpopulation. In this case, a customized genotype transmitter
can be used.

A customized genotype transmitter is only a Python during-mating operator.
Although it is possible to define a function and use a PyOperator directly
(Example PyOperator), it is much better to derive an
operator from PyOperator, as the case in Example newOperator.

Example sexSpecificRec defines a
sexSpecificRecombinator that uses, internally, two different Recombinators
to recombine male and female parents. The key statement is the
PyOperator.__init__ line which initializes a Python operator with given
function self.transmitGenotype. Example sexSpecificRec outputs the population in two generations. You should notice
that paternal chromosome are not recombined when they are transmitted to
offspring.

Example: A customized genotype transmitter for sex-specific recombination

>>> from simuPOP import *
>>> class sexSpecificRecombinator(PyOperator):
... def __init__(self, intensity=0, rates=0, loci=[], convMode=NO_CONVERSION,
... maleIntensity=0, maleRates=0, maleLoci=[], maleConvMode=NO_CONVERSION,
... *args, **kwargs):
... # This operator is used to recombine maternal chromosomes
... self.Recombinator = Recombinator(rates, intensity, loci, convMode)
... # This operator is used to recombine paternal chromosomes
... self.maleRecombinator = Recombinator(maleRates, maleIntensity,
... maleLoci, maleConvMode)
... #
... PyOperator.__init__(self, func=self.transmitGenotype, *args, **kwargs)
... #
... def transmitGenotype(self, pop, off, dad, mom):
... # Form the first homologous copy of offspring.
... self.Recombinator.transmitGenotype(mom, off, 0)
... # Form the second homologous copy of offspring.
... self.maleRecombinator.transmitGenotype(dad, off, 1)
... return True
...
>>> pop = Population(10, loci=[15]*2, infoFields=['father_idx', 'mother_idx'])
>>> pop.evolve(
... initOps=[
... InitSex(),
... InitGenotype(freq=[0.4] + [0.2]*3)
...],
... matingScheme=RandomMating(ops=[
... sexSpecificRecombinator(rates=0.1, maleRates=0),
... ParentsTagger()
...]),
... postOps=Dumper(structure=False),
... gen = 2
...)
SubPopulation 0 (), 10 Individuals:
 0: FU 230000130212000 130110020112120 | 310300000030330 000113003202000 | 6 7
 1: FU 110100000002000 223313300111002 | 331311301000220 002330110020020 | 6 7
 2: MU 230301121003012 032010332330303 | 303303022100031 310232031321031 | 5 0
 3: MU 103001320130222 031300110100023 | 303303022100031 003000012020002 | 5 9
 4: FU 210230113000000 231111000121000 | 303303022100031 003000012020002 | 5 8
 5: MU 322030133101023 110323303020211 | 322111021000001 301200303300133 | 2 8
 6: MU 210230113000000 231111000121000 | 331303300011323 310232031321031 | 5 8
 7: FU 200331312001001 200011203020203 | 031032120003212 101032020302120 | 3 1
 8: FU 230000130212000 223313300111002 | 303303022100031 003000012020002 | 5 7
 9: FU 200331312001001 130301011230300 | 322111021000001 320103032303101 | 2 1

SubPopulation 0 (), 10 Individuals:
 0: MU 230000130212000 223313300111002 | 322030133101023 301200303300133 | 5 8
 1: MU 230000130212000 130110020112120 | 303303022100031 310232031321031 | 2 0
 2: FU 303303022100031 003000012020002 | 322111021000001 301200303300133 | 5 4
 3: FU 331311301000220 223313300111002 | 322111021000001 110323303020211 | 5 1
 4: MU 200331312001001 101032020302120 | 230301121003012 032010332330303 | 2 7
 5: FU 031032120003212 200011203020203 | 103001320130222 031300110100023 | 3 7
 6: FU 200331312001001 320103032303101 | 303303022100031 032010332330303 | 2 9
 7: FU 200331312001001 320103032303101 | 303303022100031 310232031321031 | 2 9
 8: FU 200331312001001 130301011230300 | 303303022100031 031300110100023 | 3 9
 9: MU 303303022100031 003000012020002 | 210230113000000 231111000121000 | 6 4

2

now exiting runScriptInteractively...

Download sexSpecificRec.py

A Python parent chooser *

Parent choosers are responsible for choosing one or two parents from a parental
(virtual) subpopulation. simuPOP defines a few parent choosers that choose
parent(s) sequentially, randomly (with or without replacement), or with
additional conditions. Some of these parent choosers support natual selection.
We have seen sequential and random parent choosers in Examples
sequentialSelfing and controlledOffGenerator. Please refer to the simuPOP reference manual for
details about these objects.

A parent choosing scheme can be quite complicated in reality. For example,
salamanders along a river may mate with their neighbors and form several
subspecies. This behavior cannot be readily simulated using any pre-define
parent choosers so a hybrid parent chooser PyParentsChooser() should
be used.

A PyParentsChooser accepts a user-defined Python generator function,
instead of a normal python function, that returns a parent, or a pair of parents
repeatedly. Briefly speaking, when a generator function is called, it returns a
generator object that provides an iterator interface. Each time when this
iterator iterates, this function resumes where it was stopped last time,
executes and returns what the next yield statement returns. For example,
example generator defines a function that calculate
 for . It does
not calculate each repeatedly but returns
, , … sequentially.

Example: A sample generator function

>>> import simuPOP as sim
>>> def func():
... i = 1
... all = 0
... while i <= 5:
... all += 1./i
... i += 1
... yield all
...
>>> for i in func():
... print('%.3f' % i)
...
1.000
1.500
1.833
2.083
2.283

now exiting runScriptInteractively...

Download generator.py

A PyParentsChooser accepts a parent generator function, which takes a
population and a subpopulation index as parameters. When this parent chooser is
applied to a subpopulation, it will call this generator function and ask the
generated generator object repeated for either a parent, or a pair of parents
(references to individual objects or indexes relative to a subpopulation).
Note that PyParentsChooser does not support virtual subpopulation but
you can mimic the effect by returning only parents from certain virtual
subpopulations.

Example PyParentsChooser implements a hybrid parent
chooser that chooses parents with equal social status (rank). In this parent
chooser, all males and females are categorized by their sex and social status. A
parent is chosen randomly, and then his/her spouse is chosen from females/males
with the same social status. The rank of their offspring can increase or
decrease randomly. It becomes obvious now that whereas a python function can
return random male/female pair, the generator interface is much more efficient
because the identification of sex/status groups is done only once.

Example: A hybrid parent chooser that chooses parents by their social status

>>> import simuPOP as sim
>>> from random import randint
>>> def randomChooser(pop, subPop):
... males = []
... females = []
... # identify males and females in each social rank
... for rank in range(3):
... males.append([x for x in pop.individuals(subPop) \
... if x.sex() == sim.MALE and x.rank == rank])
... females.append([x for x in pop.individuals(subPop) \
... if x.sex() == sim.FEMALE and x.rank == rank])
... #
... while True:
... # choose a rank randomly
... rank = int(pop.individual(randint(0, pop.subPopSize(subPop) - 1), subPop).rank)
... yield males[rank][randint(0, len(males[rank]) - 1)], \
... females[rank][randint(0, len(females[rank]) - 1)]
...
>>> def setRank(rank):
... 'The rank of offspring can increase or drop to zero randomly'
... # only use rank of the father
... return (rank[0] + randint(-1, 1)) % 3
...
>>> pop = sim.Population(size=[1000, 2000], loci=1, infoFields='rank')
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitInfo(lambda : randint(0, 2), infoFields='rank')
...],
... matingScheme=sim.HomoMating(
... sim.PyParentsChooser(randomChooser),
... sim.OffspringGenerator(ops=[
... sim.MendelianGenoTransmitter(),
... sim.PyTagger(setRank),
...])
...),
... gen = 5
...)
5

now exiting runScriptInteractively...

Download PyParentsChooser.py

Built-in parent choosers could be used in a PyParentsChooser to choose
parents. The parent chooser needs to be initialized with the parental population
and subpopulation index. Calling the chooseParents function repeatedly will
return pairs of individuals from the population (None will be returned for
one of the parents if the parent chooser only returns one parent). The use of
built-in parent choosers can improve the performance of your
PyParentsChooser, especially for complex selection patterns (e.g. with
natural selection). For example, BuiltInParentsChooser implements a similar mating scheme as Example
PyParentsChooser but uses a
RandomParentChooser to choose males randomly.

Example: Use built-in parent choosers in a Python parent chooser

>>> import simuPOP as sim
>>> from random import randint
>>>
>>> def randomChooser(pop, subPop):
... maleChooser = sim.RandomParentChooser(sexChoice=sim.MALE_ONLY)
... maleChooser.initialize(pop, subPop)
... females = []
... # identify females in each social rank
... for rank in range(3):
... females.append([x for x in pop.individuals(subPop) \
... if x.sex() == sim.FEMALE and x.rank == rank])
... #
... while True:
... # choose a random male
... m = maleChooser.chooseParents()[0]
... rank = int(m.rank)
... # find a female in the same rank
... yield m, females[rank][randint(0, len(females[rank]) - 1)]
...
>>> def setRank(rank):
... 'The rank of offspring can increase or drop to zero randomly'
... # only use rank of the father
... return (rank[0] + randint(-1, 1)) % 3
...
>>> pop = sim.Population(size=[1000, 2000], loci=1, infoFields='rank')
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitInfo(lambda : randint(0, 2), infoFields='rank')
...],
... matingScheme=sim.HomoMating(
... sim.PyParentsChooser(randomChooser),
... sim.OffspringGenerator(ops=[
... sim.MendelianGenoTransmitter(),
... sim.PyTagger(setRank),
...])
...),
... gen = 5
...)
5

now exiting runScriptInteractively...

Download BuiltInParentsChooser.py

Using C++ to implement a parent chooser **

A user defined parent chooser can be fairly complex and computationally
intensive. For example, if a parent tends to find a spouse in his/her vincinity,
geometric distances between all qualified individuals and a chosen parent need
to be calculated for each mating event. If the optimization of the parent
chooser can speed up the simulation significantly, it may be worthwhile to write
the parent chooser in C++.

Although it is feasible, and sometimes easier to derive a class from class
ParentChooser in mating.h (.cpp), modifying simuPOP source code is not
recommended because you would have to modify a new version of simuPOP whenever
you upgrade your simuPOP distribution. Implementing your parent choosing
algorithm in another Python module is preferred.

The first step is to write your own parent chooser in C/C++. Basically, you will
need to pass all necessary information to the C++ level and implement an
algorithm to choose parents randomly. Although simple function based solutions
are possible, a C++ level class such as the myParentsChooserclass defined
in Example parentChooseHeader is recommended. This
class is initialized with indexes of male and female individuals and use a
function chooseParents to return a pair of parents randomly. This parent
chooser is very simple but more complicated parent selection scenarios can be
implemented similarly.

Example: Implement a parent chooser in C++

#include <stdlib.h>
#include <vector>
#include <utility>
using std::pair;
using std::vector;
class myParentsChooser
{
public:
 // A constructor takes all locations of male and female.
 myParentsChooser(const std::vector<int> & m, const std::vector<int> & f)
 : male_idx(m), female_idx(f)
 {
 srand(time(0));
 }

 pair<unsigned long, unsigned long> chooseParents()
 {
 unsigned long male = rand() % male_idx.size();
 unsigned long female = rand() % male_idx.size();
 return std::make_pair(male, female);
 }
private:
 vector<int> male_idx;
 vector<int> female_idx;
};

Download myParentsChooser.h

The second step is to wrap your C++ functions and classes to a Python module.
There are many tools available but SWIG (www.swig.org) is arguably the most
convenient and powerful one. To use SWIG, you will need to prepare an interface
file, which basically tells SWIG which functions and classes you would like to
expose and how to pass parameters between Python and C++. Example
parentsChooserInterface lists an interface file
for the C++ class defined in Example parentChooseHeader. Please refer to the SWIG reference manual for details.

Example: An interface file for the myParentsChooser class

%module myParentsChooser
%{
#include "myParentsChooser.h"
%}
// std_vector.i for std::vector
%include "std_vector.i"
%template() std::vector<int>;
// stl.i for std::pair
%include "stl.i"
%template() std::pair<unsigned long, unsigned long>;
%include "myParentsChooser.h"

Download myParentsChooser.i

The exact procedure to generate and compile a wrapper file varies from system to
system, and from compiler to compiler. Fortunately, the standard Python module
setup process supports SWIG. All you need to do is to write a Python
setup.py file and let the distutil module of Python handle all the
details for you. A typical setup.py file is demonstrated in Example
parentsChooserSetup.

Example: Building and installing the myParentsChooser module

from distutils.core import setup, Extension
import sys
Under linux/gcc, lib stdc++ is needed for C++ based extension.
if sys.platform == 'linux2':
 libs = ['stdc++']
else:
 libs = []
setup(name = "myParentsChooser",
 description = "A sample parent chooser",
 py_modules = ['myParentsChooser'], # will be generated by SWIG
 ext_modules = [
 Extension('_myParentsChooser',
 sources = ['myParentsChooser.i'],
 swig_opts = ['-O', '-shadow', '-c++', '-keyword',],
 include_dirs = ["."],
)
]
)

Download setup.py

You parent chooser can now be compiled and installed using the standard Python
setup.py commands such as

python setup.py install

Please refer to the Python reference manual for other building and installation
options. Note that Python 2.4 and earlier do not support option swig_opts well
so you might have to pass these options using command

python setup.py build_ext --swig-opts=-O -templatereduce \
 -shadow -c++ -keyword -nodefaultctor install

Example parentChooseHeader demonstrates how to use
such a C++ parents chooser in your simuPOP script. It uses the same Python
parent chooser interface as in PyParentsChooser, but
leaves all the (potentially) computationally intensive parts to the C++ level
myParentsChooser object.

Example: Implement a parent chooser in C++

import simuPOP as sim

The class myParentsChooser is defined in module myParentsChooser
try:
 from myParentsChooser import myParentsChooser
except ImportError:
 # if failed to import the C++ version, use a Python version
 import random
 class myParentsChooser:
 def __init__(self, maleIndexes, femaleIndexes):
 self.maleIndexes = maleIndexes
 self.femaleIndexes = femaleIndexes
 def chooseParents(self):
 return self.maleIndexes[random.randint(0, len(self.maleIndexes)-1)],\
 self.femaleIndexes[random.randint(0, len(self.femaleIndexes)-1)]

def parentsChooser(pop, sp):
 'How to call a C++ level parents chooser.'
 # create an object with needed information (such as x, y) ...
 pc = myParentsChooser(
 [x for x in range(pop.popSize()) if pop.individual(x).sex() == sim.MALE],
 [x for x in range(pop.popSize()) if pop.individual(x).sex() == sim.FEMALE])
 while True:
 # return indexes of parents repeatedly
 yield pc.chooseParents()

pop = sim.Population(100, loci=1)
simu.evolve(
 initOps=[
 sim.InitSex(),
 sim.InitGenotype(freq=[0.5, 0.5])
],
 matingScheme=sim.HomoMating(sim.PyParentsChooser(parentsChooser),
 sim.OffspringGenerator(ops=sim.MendelianGenoTransmitter())),
 gen = 100
)

Download cppParentChooser.py

Age structured populations with overlapping generations **

Age is an important factor in many applications because it is related to many
genetic (most obviously mating) and environmental factors that influence the
evolution of a population. The evolution of age structured populations will lead
to overlapping generations because parents can co-exist with their offspring in
such a population. Although simuPOP is based on a discrete generation model, it
can be used to simulate age structured populations.

To evolve an age structured population, you will need to

	Define an information field age and use it to store age of all
individuals. Age is usally assigned randomly at the beginning of a simulation.

	Define a virtual splitter that splits the parental population into several
virtual subpopulation. The most important VSP consists of mating individuals
(e.g. individuals with age between 20 and 40). Advanced features of virtual
splitters can be used to define complex VSPs such as males between age 20 - 40
and females between age 15-30 (use a ProductSplitter to split
subpopulations by sex and age, and then a CombinedSplitter to join
several smaller VSPs together).

	Use a heterogeneous mating scheme that clones most individuals to the next
generation (year) and produce offspring from the mating VSP.

Example ageStructured gives an example of the evolution
of age-structured population.

	Information fields ind_id, father_id and mother_id and operators
IdTagger and PedigreeTagger are used to track pedigree
information during evolution.

	A CloneMating mating scheme is used to copy surviving individuals and
a RandomMating mating scheme is used to produce offspring.

	IdTagger and PedigreeTagger are used in the ops
parameter of RandomMating because only new offspring should have a new
ID and record parental IDs. If you use these operators in the duringOps
parameter of the evolve function, individuals copied by CloneMating
will have a new ID, and a missing parental ID.

	The resulting population is age-structured so Pedigrees could be extracted
from such a population.

	The penetrance function is age dependent. Because this penetrance function is
applied to all individuals at each year and an individual will have the disease
once he or she is affected, this penetrance function is more or less a hazard
function.

Example: Example of the evolution of age-structured population.

>>> import simuPOP as sim
>>> import random
>>> N = 10000
>>> pop = sim.Population(N, loci=1, infoFields=['age', 'ind_id', 'father_id', 'mother_id'])
>>> pop.setVirtualSplitter(sim.InfoSplitter(field='age', cutoff=[20, 50, 75]))
>>> def demoModel(gen, pop):
... '''A demographic model that keep a constant supply of new individuals'''
... # number of individuals that will die
... sim.stat(pop, popSize=True, subPops=[(0,3)])
... # individuals that will be kept, plus some new guys.
... return pop.popSize() - pop.dvars().popSize + N // 75
...
>>> def pene(geno, age, ind):
... 'Define an age-dependent penetrance function'
... # this disease does not occur in children
... if age < 16:
... return 0
... # if an individual is already affected, keep so
... if ind.affected():
... return 1
... # the probability of getting disease increases with age
... return (0., 0.001*age, 0.001*age)[sum(geno)]
...
>>> def outputstat(pop):
... 'Calculate and output statistics'
... sim.stat(pop, popSize=True, numOfAffected=True,
... subPops=[(0, sim.ALL_AVAIL)],
... vars=['popSize_sp', 'propOfAffected_sp'])
... for sp in range(3):
... print('%s: %.3f%% (size %d)' % (pop.subPopName((0,sp)),
... pop.dvars((0,sp)).propOfAffected * 100.,
... pop.dvars((0,sp)).popSize))
... #
... return True
...
>>>
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... # random assign age
... sim.InitInfo(lambda: random.randint(0, 75), infoFields='age'),
... # random genotype
... sim.InitGenotype(freq=[0.5, 0.5]),
... # assign an unique ID to everyone.
... sim.IdTagger(),
... sim.PyOutput('Prevalence of disease in each age group:\n'),
...],
... # increase the age of everyone by 1 before mating.
... preOps=sim.InfoExec('age += 1'),
... matingScheme=sim.HeteroMating([
... # all individuals with age < 75 will be kept. Note that
... # CloneMating will keep individual sex, affection status and all
... # information fields (by default).
... sim.CloneMating(subPops=[(0,0), (0,1), (0,2)], weight=-1),
... # only individuals with age between 20 and 50 will mate and produce
... # offspring. The age of offspring will be zero.
... sim.RandomMating(ops=[
... sim.IdTagger(), # give new born an ID
... sim.PedigreeTagger(), # track parents of each individual
... sim.MendelianGenoTransmitter(), # transmit genotype
...],
... numOffspring=(sim.UNIFORM_DISTRIBUTION, 1, 3),
... subPops=[(0,1)]),],
... subPopSize=demoModel),
... # number of individuals?
... postOps=[
... sim.PyPenetrance(func=pene, loci=0),
... sim.PyOperator(func=outputstat, step=20)
...],
... gen = 200
...)
Prevalence of disease in each age group:
age < 20: 0.578% (size 2596)
20 <= age < 50: 2.649% (size 4002)
50 <= age < 75: 4.217% (size 3249)
age < 20: 0.526% (size 2660)
20 <= age < 50: 27.627% (size 3931)
50 <= age < 75: 50.317% (size 3313)
age < 20: 0.489% (size 2660)
20 <= age < 50: 28.470% (size 3927)
50 <= age < 75: 61.757% (size 3347)
age < 20: 0.639% (size 2660)
20 <= age < 50: 29.449% (size 3990)
50 <= age < 75: 62.384% (size 3246)
age < 20: 0.526% (size 2660)
20 <= age < 50: 27.694% (size 3990)
50 <= age < 75: 64.030% (size 3325)
age < 20: 0.865% (size 2660)
20 <= age < 50: 28.070% (size 3990)
50 <= age < 75: 60.782% (size 3325)
age < 20: 0.489% (size 2660)
20 <= age < 50: 29.624% (size 3990)
50 <= age < 75: 60.812% (size 3325)
age < 20: 0.526% (size 2660)
20 <= age < 50: 29.273% (size 3990)
50 <= age < 75: 61.714% (size 3325)
age < 20: 0.789% (size 2660)
20 <= age < 50: 27.769% (size 3990)
50 <= age < 75: 61.233% (size 3325)
age < 20: 0.639% (size 2660)
20 <= age < 50: 29.073% (size 3990)
50 <= age < 75: 59.669% (size 3325)
200
>>>
>>> # draw two Pedigrees from the last age-structured population
>>> from simuPOP import sampling
>>> sample = sampling.drawNuclearFamilySample(pop, families=2, numOffspring=(2,3),
... affectedParents=(1,2), affectedOffspring=(1,3))
>>> sim.dump(sample)
Ploidy: 2 (diploid)
Chromosomes:
1: (AUTOSOME, 1 loci)
 (1)
Information fields:
age ind_id father_id mother_id
population size: 8 (1 subpopulations with 8 Individuals)
Number of ancestral populations: 0

SubPopulation 0 (), 8 Individuals:
 0: MA 1 | 0 | 37 31578 27047 27596
 1: MU 1 | 0 | 29 32638 29986 29012
 2: MA 1 | 0 | 37 31579 27047 27596
 3: FA 1 | 0 | 57 29012 25317 22955
 4: MU 0 | 0 | 49 29986 27087 25888
 5: FA 1 | 1 | 67 27596 24124 24202
 6: FA 1 | 0 | 29 32637 29986 29012
 7: MA 1 | 0 | 71 27047 23653 20932

>>>

now exiting runScriptInteractively...

Download ageStructured.py

Tracing allelic lineage *

Lineage of alleles consists of information such as the distribution of alleles
(how many people carry this allele, and the relationship between carriers) and
age of alleles (when the alleles were introduced to the population). These
information are important for the study of evolutionary history of mutants. They
are not readily available for normal simulations, and even if you can track the
generations when mutants are introduced, alleles in the present generation that
are of the same type (Identity by Stat, IBS) do not necessarily have the same
ancestral origin (Identity by Decent, IBD).

The lineage modules of simuPOP provides facilities to track allelic lineage.
More specifically,

	Each allele is associated with an integer number (an allelic lineage) that
identifies the origin, or the source of the allele.

	The lineage of each allele is transmitted along with the allele during
evolution. New alleles will be introduced with their own lineage, even if they
share the same states with existing alleles.

	Origin of alleles can be accessed using member functions of the
Individual and Population classes.

Example geneticContribution demonstrates how to
determine the contribution of genetic information from each ancestor. For this
simulation, the alleles of each ancestor are associated with individual-specific
numbers. During evolution, some alleles might get lost, some are copied, and
pieces of chromosomes are mixed due to genetic recombination. At the end of
simulation, the average number of ‘contributors’ of genetic information to each
individual is calculated, as well as the percent of genetic information from
each ancestor. Although this particular simulation can be mimicked using pure-
genotype simulations by using special alleles for each ancestor, the combined
information regarding the state and origin of each allele will be very useful
for genetic studies that involve IBD and IBS.

Example: Contribution of genetic information from ancestors

>>> import simuOpt
>>> simuOpt.setOptions(alleleType='lineage', quiet=True)
>>> import simuPOP as sim
>>> pop = sim.Population(1000, loci=[10]*4)
>>>
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.25]*4),
... sim.InitLineage(range(1000), mode=sim.PER_INDIVIDUAL),
...],
... matingScheme=sim.RandomMating(ops=sim.Recombinator(rates=0.001)),
... gen = 100
...)
100
>>> # average number of 'contributors'
>>> num_contributors = [len(set(ind.lineage())) for ind in pop.individuals()]
>>> print('Average number of contributors is %.2f' % (sum(num_contributors) / float(pop.popSize())))
Average number of contributors is 13.98
>>> # percent of genetic information from each ancestor (baseline is 1/1000)
>>> lineage = pop.lineage()
>>> lin_perc = [lineage.count(x)/float(len(lineage)) for x in range(1000)]
>>> # how many of ancestors do not have any allele left?
>>> print('Number of ancestors with no allele left: %d' % lin_perc.count(0.))
Number of ancestors with no allele left: 817
>>> # top five contributors
>>> lin_perc.sort()
>>> lin_perc.reverse()
>>> print('Top contributors (started with 0.001): %.5f %.5f %.5f' % (lin_perc[0], lin_perc[1], lin_perc[2]))
Top contributors (started with 0.001): 0.03474 0.03058 0.02475

now exiting runScriptInteractively...

Download geneticContribution.py

Example geneticContribution uses operator
InitLineage to explictly assign lineage to alleles of each individual.
You can also track the fate of finer genetic pieces by assigning different
lineage values to chromosomes, or each loci using different mode. This
operator can also assign lineage of alleles to an ID stored in an information
field, which is usually ind_id, a field used by operators such as
IdTagger and PedigreeTagger to assign and trace the pedigree
(parentship) information during evolution. More interesting, when such a field
is present, mutation operators will assign the IDs of recipients of mutants as
the lineage of these mutants. This makes it possible to track the origin of
mutants. Moreover, when a mode FROM_INFO_SIGNED is used, additional ploidy
information will be tagged to lineage values (negative values for mutants on the
second homologous copy of chromosomes) so that you can track the inheritance of
haplotypes.

To make use of these features, it is important to assign IDs to individuals
before these operators are applied. Example ageOfMutants
demonstrates how to use the lineage information to determine the age of mutants.
This example evolves a constant population of size 10,000. An IdTagger
is used before InitGenotype so individual IDs will be assigned as
allelic lineages. Because all offspring get their own IDs during evolution, the
IDs of individuals are assigned to mutants as their lineages, and can be used to
determine the age of these mutants. This is pretty easy to do in this example
because of constant population size. For more complex demographic models, you
might have to record the minimal and maximum IDs of each generation in order to
determine the age of mutants.

Example: Distribution of age of mutants

>>> import simuOpt
>>> simuOpt.setOptions(alleleType='lineage', quiet=True)
>>> import simuPOP as sim
>>> pop = sim.Population(size=10000, loci=[10]*10, infoFields='ind_id')
>>> # just to make sure IDs starts from 1
>>> sim.IdTagger().reset(1)
>>> pop.evolve(
... initOps = [
... sim.InitSex(),
... sim.InitGenotype(freq=[0.2, 0.3, 0.4, 0.1]),
... sim.IdTagger(),
... sim.InitLineage(mode=sim.FROM_INFO),
...],
... # an extremely high mutation rate, just for demonstration
... preOps = sim.AcgtMutator(rate=0.01, model='JC69'),
... matingScheme=sim.RandomMating(
... ops=[
... sim.IdTagger(),
... sim.MendelianGenoTransmitter(),
...]
...),
... gen = 10
...)
10
>>> lin = pop.lineage()
>>> # Number of alleles from each generation
>>> for gen in range(10):
... id_start = gen*10000 + 1
... id_end = (gen+1)*10000
... num_mut = len([x for x in lin if x >= id_start and x <= id_end])
... print('Gen %d: %5.2f %%' % (gen, num_mut / (2*10000*100.) * 100))
...
Gen 0: 93.40 %
Gen 1: 0.72 %
Gen 2: 0.71 %
Gen 3: 0.70 %
Gen 4: 0.74 %
Gen 5: 0.76 %
Gen 6: 0.73 %
Gen 7: 0.74 %
Gen 8: 0.75 %
Gen 9: 0.75 %

now exiting runScriptInteractively...

Download ageOfMutants.py

Pedigrees

Create a pedigree object

A Pedigree object is basically a static population object that is used
to track relationship between individuals. An unique ID is required for all
individuals so that individuals could be identified easily using their IDs.
Individuals in a pedigree usually have one or two information fields to record
the IDs of their parents. Operators IdTagger and
PedigreeTagger are usually used to maintain these information fields
which are, although customizable, almost always ind_id, father_id and
mother_id. After pedigrees are identified, population operations could be
applied, for example, to extracted identified pedigrees from an existing
population. This is basically how module simuPOP.sampling works.

A new pedigree can be created from a population object with an ID field (default
to ind_id), and two optional parental ID fields (default to father_id
and mother_id). For example,

ped = Pedigree(pop, infoFields=ALL_AVAIL)

will create a pedigree object from population pop with information fields
ind_id, father_id and mother_id, copying all available information
fields. The ID field should have an unique ID for each individual and the
parental ID fields should record the ID of his or her parents. Genotype
information and additional information fields can be copied to a pedigree object
if needed. The population object is unchanged.

Another method is to directly convert a population object to a pedigree object,
using member function asPedigree of a population class. For example,

pop.asPedigree()

will convert the existing population to a pedigree object. Object pop can then
be able to call all pedigree member functions. Once your task is done, you can
convert the object back to a population using the Pedigree.asPopulation() member function of the object.

A pedigree object can also be created from a file saved by function
Pedigree.save() or operator PedigreeTagger using function
loadPedigree. Please refer to section save and load pedigrees in
details.

Locate close and remote relatives of each individual

A pedigree object provides several functions for you to identify spouse, sibling
and more distant relatives of each individual. The results are stored to
additional information fields of each individual. For example, if you would like
to know the offspring of all individuals, you can call function
Pedigree.locateRelatives as follows:

offFields = ['off1', 'off2', 'off3']
ped.addInfoFields(offFields)
ped.locateRelatives(OFFSPRING, resultFields=offFields)

This function will locate up to 3 (determined by the length of resultFields)
offspring of each individual and put their IDs in specified informaton fields.
This function allows you to identify spouses (it is common to have multiple
spouses when random mating is used), outbred spouse (exclude spouses who share
at least one of the parents), offspring (all offspring) and common offspring
with a specified spouse, siblings (share at least one parent) and full siblings
(share two parents). It also allows you to limit the result by sex and affection
status (e.g. find only affected female offspring).

More distant relationship can be derived from these relationship using function
Pedigree.traceRelatives. This function accepts a path of information
fields and follows the path to identify relatives. For example

sibFields = ['sib1', 'sib2']
offFields = ['off1', 'off2', 'off3']
cousinFields = ['cousin1', 'cousin2', 'cousin3']
ped.addInfoFields(sibFields + offFields + cousinFields)
ped.locateRelatives(FULLSIBLING, resultFields=sibFields)
ped.locateRelatives(OFFSPRING, resultFields=offFields)
ped.traceRelatives([['father_id', 'mother_id'], sibFields, offFields],
 sex=[ANY_SEX, MALE_ONLY, FEMALE_ONLY],
 resultField=cousinFields)

would first identify full siblings and offspring of all individuals and then
locate father or mother’s male sibling’s daughters. As you can imagine, this
function can be used to track very complicated relationships.

This function also provides a function for you to identify individuals with
specified relatives. Example locateRelative gives an
example how to locate a grandfather with at least five grandchildren. With such
information, functions such as Population.extractIndividuals() could
be used to extract Pedigrees from a population. This is basically how
simuPOP.sampling module works.

Example: Locate close and distant relatives of individuals

>>> import simuPOP as sim
>>> pop = sim.Population(1000, ancGen=2, infoFields=['ind_id', 'father_id', 'mother_id'])
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.IdTagger(),
...],
... matingScheme=sim.RandomMating(
... numOffspring=(sim.UNIFORM_DISTRIBUTION, 2, 4),
... ops=[
... sim.MendelianGenoTransmitter(),
... sim.IdTagger(),
... sim.PedigreeTagger()
...],
...),
... gen = 5
...)
5
>>> ped = sim.Pedigree(pop)
>>> offFields = ['off%d' % x for x in range(4)]
>>> grandOffFields = ['grandOff%d' % x for x in range(5)]
>>> ped.addInfoFields(['spouse'] + offFields + grandOffFields)
>>> # only look spouse for fathers...
>>> ped.locateRelatives(sim.OUTBRED_SPOUSE, ['spouse'], sex=sim.FEMALE_ONLY)
>>> ped.locateRelatives(sim.COMMON_OFFSPRING, ['spouse'] + offFields)
>>> # trace offspring of offspring
>>> ped.traceRelatives([offFields, offFields], resultFields=grandOffFields)
True
>>> #
>>> IDs = ped.individualsWithRelatives(grandOffFields)
>>> # check on ID.
>>> grandFather = IDs[0]
>>> grandMother = ped.indByID(grandFather).spouse
>>> # some ID might be invalid.
>>> children = [ped.indByID(grandFather).info(x) for x in offFields]
>>> childrenSpouse = [ped.indByID(x).spouse for x in children if x >= 1]
>>> childrenParents = [ped.indByID(x).father_id for x in children if x >= 1] \
... + [ped.indByID(x).mother_id for x in children if x >= 1]
>>> grandChildren = [ped.indByID(grandFather).info(x) for x in grandOffFields]
>>> grandChildrenParents = [ped.indByID(x).father_id for x in grandChildren if x >= 1] \
... + [ped.indByID(x).mother_id for x in grandChildren if x >= 1]
>>>
>>> def idString(IDs):
... uniqueIDs = list(set(IDs))
... uniqueIDs.sort()
... return ', '.join(['%d' % x for x in uniqueIDs if x >= 1])
...
>>> print('''GrandParents: %d, %d
... Children: %s
... Spouses of children: %s
... Parents of children: %s
... GrandChildren: %s
... Parents of grandChildren: %s ''' % \
... (grandFather, grandMother, idString(children), idString(childrenSpouse),
... idString(childrenParents), idString(grandChildren), idString(grandChildrenParents)))
GrandParents: 3040, 3847
Children: 4078, 4079, 4080
Spouses of children: 4446, 4797
Parents of children: 3040, 3847
GrandChildren: 5188, 5189, 5879, 5880, 5881
Parents of grandChildren: 4078, 4079, 4446, 4797
>>>
>>> # let us look at the structure of this complete pedigree using another method
>>> famSz = ped.identifyFamilies()
>>> # it is amazing that there is a huge family that connects almost everyone
>>> len(famSz), max(famSz)
(533, 2383)
>>> # if we only look at the last two generations, things are much better
>>> ped.addInfoFields('ped_id')
>>> famSz = ped.identifyFamilies(pedField='ped_id', ancGens=[0,1])
>>> len(famSz), max(famSz)
(664, 114)

now exiting runScriptInteractively...

Download locateRelative.py

Identify pedigrees (related individuals)

The Pedigree class provides some other functions that allows you to
identify related individuals. For example,

	Function Pedigree.identifyAncestors identifies all ancestors of
specified individuals or all individuals at the present generation. In a
diaploid population when there is only one parent, you can see that only a small
portion of ancestors have offspring in the last generation.

	Function Pedigree.identifyOffspring identifies all offspring of
specified individuals across multiple generations.

	Function Pedigree.identifyFamilies groups all related individuals into
families and assign a family ID to all family members. You might be surprised by
how large this kind of family can be when parents are allowed to have multiple
spouses.

All these functions support parameters subPops and ancGens so that you
can limit your search in specific subpopulations and ancestral generations. For
example, you can limit your search to all male individuals to find out someone’s
male offspring. Example locateFamilies demonstrates how
to use these functions to analyze the structure of a complete pedigree.

Example: Identify all ancestors

>>> import simuPOP as sim
>>> pop = sim.Population(1000, ancGen=-1, infoFields=['ind_id', 'father_id', 'mother_id'])
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.IdTagger(),
...],
... matingScheme=sim.RandomMating(
... numOffspring=(sim.UNIFORM_DISTRIBUTION, 2, 4),
... ops=[
... sim.MendelianGenoTransmitter(),
... sim.IdTagger(),
... sim.PedigreeTagger()
...],
...),
... gen = 19
...)
19
>>> # we now have the complete pedigree of 20 generations
>>> pop.asPedigree()
>>> # total number of individuals should be 20 * 1000
>>> # how many families do we have?
>>> fam = pop.identifyFamilies()
>>> len(fam)
525
>>> # but how many families with more than 1 individual?
>>> # The rest of them must be in the initial generation
>>> len([x for x in fam if x > 1])
18
>>> # let us look backward. allAnc are the ancestors who have offspring in the
>>> # last generation. You can see this is a small number compared the number of
>>> # ancestors.
>>> allAnc = pop.identifyAncestors()
>>> len(allAnc)
8614

now exiting runScriptInteractively...

Download locateFamilies.py

Save and load pedigrees

A complete pedigree, including ID, sex and affection status of each individual,
IDs of their parents, and optionally values of some information fields and
genotypes at some loci could be saved to a file, and be loaded using function
loadPedigree. The loaded pedigree could be analyzed using pedigree
functions, or be used to direct the evolution of another evolutionary process
using a pedigree mating scheme.

A pedigree could be saved in two ways. In the first method, a pedigree could be
created using the methods described above and be saved using function
Pedigree.save(). However, if the population is large, recording all
ancestral generations may not be feasible. If this is the case, you can use a
PedigreeTagger operator to save individual information during the
evolution. If you do not care about details of the top-most ancestral
generation, a PedigreeTagger used in a mating scheme should be enough to record
pedigree information of all offspring. Individual in the top-most generation who
have offspring in the next generation will be constructed in
loadPedigree. If you would like to include detailed information about
all individuals in the top-most ancestral generation, you can use a
PedigreeTagger in the initOps parameter of the
Simulator.evolve() or Population.evolve() function.

Example saveLoadPedigree demonstrates how to use these
functions to analyze the structure of a complete pedigree.

Example: Save and load a complete pedigree

>>> import simuPOP as sim
>>> pop = sim.Population(4, loci=1, infoFields=['ind_id', 'father_id', 'mother_id'],
... ancGen=-1)
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.IdTagger(),
... sim.InitGenotype(freq=[0.5, 0.5]),
... sim.PedigreeTagger(output='>>pedigree.ped', outputLoci=0)
...],
... matingScheme=sim.RandomMating(
... ops=[
... sim.MendelianGenoTransmitter(),
... sim.IdTagger(),
... sim.PedigreeTagger(output='>>pedigree.ped', outputLoci=0)
...],
...),
... gen = 2
...)
2
>>> #
>>> print(open('pedigree.ped').read())
1 0 0 F U 0 0
2 0 0 F U 0 1
3 0 0 M U 1 1
4 0 0 M U 1 1
5 4 1 M U 0 1
6 4 2 F U 1 1
7 3 2 F U 0 1
8 3 2 M U 1 1
9 8 7 F U 1 1
10 5 6 M U 1 1
11 5 6 M U 1 1
12 5 7 F U 0 1

>>> pop.asPedigree()
>>> pop.save('pedigree1.ped', loci=0)
>>> print(open('pedigree1.ped').read())
1 0 0 F U 0 0
2 0 0 F U 0 1
3 0 0 M U 1 1
4 0 0 M U 1 1
5 4 1 M U 0 1
6 4 2 F U 1 1
7 3 2 F U 0 1
8 3 2 M U 1 1
9 8 7 F U 1 1
10 5 6 M U 1 1
11 5 6 M U 1 1
12 5 7 F U 0 1

>>> #
>>> ped = sim.loadPedigree('pedigree1.ped')
>>> sim.dump(ped, ancGens=range(3))
Ploidy: 2 (diploid)
Chromosomes:
1: (AUTOSOME, 1 loci)
 (1)
Information fields:
ind_id father_id mother_id
population size: 4 (1 subpopulations with 4 Individuals)
Number of ancestral populations: 2

SubPopulation 0 (), 4 Individuals:
 0: FU 1 | 1 | 9 8 7
 1: MU 1 | 1 | 10 5 6
 2: MU 1 | 1 | 11 5 6
 3: FU 0 | 1 | 12 5 7

Ancestral population 1
SubPopulation 0 (), 4 Individuals:
 0: MU 0 | 1 | 5 4 1
 1: FU 1 | 1 | 6 4 2
 2: FU 0 | 1 | 7 3 2
 3: MU 1 | 1 | 8 3 2

Ancestral population 2
SubPopulation 0 (), 4 Individuals:
 0: FU 0 | 0 | 1 0 0
 1: FU 0 | 1 | 2 0 0
 2: MU 1 | 1 | 3 0 0
 3: MU 1 | 1 | 4 0 0

Download saveLoadPedigree.py

Evolve a population following a specified pedigree structure **

There are some applications where you would like to repeat the same evolutionary
process repeatedly using the same pedigree structure. For example, a gene-
dropping simulation method basically initialize leaves of a pedigree with random
genotypes and pass the genotypes along the pedigree according to Mendelian laws.
This can be done in simuPOP using a pedigree mating scheme.

A pedigree mating scheme PedigreeMating evolves a population following
an existing pedigree structure. If the Pedigree object has N
ancestral generations and a present generation, it can be used to evolve a
population for N generations, starting from the topmost ancestral
generation. At the k-th generation, this mating scheme produces an offspring
generation according to subpopulation structure of the N-k-1 ancestral
generation in the pedigree object (e.g. producing the offspring population of
generation 0 according to the N-1 ancestral generation of the pedigree
object). For each offspring, this mating scheme copies individual ID and sex
from the corresponing individual in the pedigree object. It then locates the
parents of each offspring using their IDs in the pedigree object. A list of
during mating operators are then used to transmit parental genotype to the
offspring.

To use this mating scheme, you should

	Prepare a pedigree object with N ancestral generations (and a present
generation). Parental information should be available at the present, parental,
…, and N-1 ancestral generations. This object could be created by evolving
a population with ancGen set to -1 with parental information tracked by
operators idTagger() and pedigreeTagger().

	Prepare the population so that it contains individuals with IDs matching this
generation, or at least individuals who have offspring in the next topmost
ancestral generation. Because individuals in such a population will parent
offsprings at the N-1 ancestral generation of the pedigree object, it is a
good idea to assign ind_id using ped.indInfo('father_id') and
ped.infInfo('mother_id') of the N-1 ancestral generation of ped.

	Evolve the population using a PedigreeMating mating scheme for N
or less generations. Because parents are chosen by their IDs, subpopulation
structure is ignored and migration will have no effect on the evolutionary
process. No IdTagger should be used to assign IDs to offspring because
re-labeling IDs will confuse this mating scheme. This mating scheme copies
individual sex from pedigree individual to each offspring because individual sex
may affect the way genotypes are transmitted (e.g. a
MendelianGenoTransmitter() with sex chromosomes).

Example pedigreeMating demonstrates how to create a
complete pedigree by evolving a population without genotype, and then replay the
evolutionary process using another population.

Example: Use a pedigree mating scheme to replay an evolutionary process.

>>> import simuPOP as sim
>>> # create a population without any genotype
>>> from simuPOP.utils import migrSteppingStoneRates
>>> ped = sim.Population(size=[1000]*5, ancGen=-1,
... infoFields=['ind_id', 'father_id', 'mother_id', 'migrate_to'])
>>> ped.evolve(
... initOps=[
... sim.InitSex(),
... sim.IdTagger(),
...],
... preOps=sim.Migrator(rate=migrSteppingStoneRates(0.1, 5)),
... matingScheme=sim.RandomMating(
... numOffspring=(sim.UNIFORM_DISTRIBUTION, 2, 4),
... ops=[
... # we do not even need a genotype transmitter...
... sim.IdTagger(),
... sim.PedigreeTagger(),
...]),
... gen=100
...)
100
>>> # convert itself to a pedigree object
>>> ped.asPedigree()
>>> # we should have 100 ancestral generations
>>> N = ped.ancestralGens()
>>> # We should have 101 * 1000 * 5 individuals, but how many actually
>>> # contribute genotype to the last generation?
>>> anc = ped.identifyAncestors()
>>> len(anc)
205647
>>> # remove individuals who do not contribute genotype to the last generation
>>> allIDs = [x.ind_id for x in ped.allIndividuals()]
>>> removedIDs = list(set(allIDs) - set(anc))
>>> ped.removeIndividuals(IDs=removedIDs)
>>> # now create a top most population, but we do not need all of them
>>> # so we record only used individuals
>>> IDs = [x.ind_id for x in ped.allIndividuals(ancGens=N)]
>>> sex = [x.sex() for x in ped.allIndividuals(ancGens=N)]
>>> # create a population, this time with genotype. Note that we do not need
>>> # populaton structure because PedigreeMating disregard population structure.
>>> pop = sim.Population(size=len(IDs), loci=1000, infoFields='ind_id')
>>> # manually initialize ID and sex
>>> sim.initInfo(pop, IDs, infoFields='ind_id')
>>> sim.initSex(pop, sex=sex)
>>> pop.evolve(
... initOps=sim.InitGenotype(freq=[0.4, 0.6]),
... # we do not need migration, or set number of offspring,
... # or demographic model, but we do need a genotype transmitter
... matingScheme=sim.PedigreeMating(ped,
... ops=sim.MendelianGenoTransmitter()),
... gen=100
...)
100
>>> # let us compare the pedigree and the population object
>>> print(ped.indInfo('ind_id')[:5])
(500001.0, 500002.0, 500003.0, 500004.0, 500005.0)
>>> print(pop.indInfo('ind_id')[:5])
(500001.0, 500002.0, 500003.0, 500004.0, 500005.0)
>>> print([ped.individual(x).sex() for x in range(5)])
[1, 2, 1, 1, 2]
>>> print([pop.individual(x).sex() for x in range(5)])
[1, 2, 1, 1, 2]
>>> print(ped.subPopSizes())
(663, 1254, 1213, 1230, 640)
>>> print(pop.subPopSizes())
(663, 1254, 1213, 1230, 640)

now exiting runScriptInteractively...

Download pedigreeMating.py

As long as unique IDs are used for individuals in different generations, the
same technique could be used for overlapping generations as well. Even if some
individuals are copied from generation to generation, separate IDs should be
assigned to these individuals so that a pedigree could be correctly constructed.
Because these individuals are copied from a single parent, the pedigree object
will have mixed number of parents (some individuals have one parent, some have
two). If PedigreeTagger operators are used to record parental
information, such a pedigree could be loaded by function loadPedigree.
Example pedigreeMatingAgeStructured evolves
an age-structured population. Instead of saving all ancestral generations to a
population object and convert it to a pedigree, this example saves the complete
pedigree to file structure.ped and load the pedigree using function
loadPedigree.

Example: Replay an evolutionary process of an age-structured population

>>> import simuPOP as sim
>>>
>>> import random
>>> N = 10000
>>> pop = sim.Population(N, infoFields=['age', 'ind_id', 'father_id', 'mother_id'])
>>> # we simulate age 0, 1, 2, 3
>>> pop.setVirtualSplitter(sim.InfoSplitter(field='age', values=[0, 1, 2, 3]))
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... # random assign age
... sim.InitInfo(lambda: random.randint(0, 3), infoFields='age'),
... # random genotype
... sim.InitGenotype(freq=[0.5, 0.5]),
... # assign an unique ID to everyone.
... sim.IdTagger(),
...],
... # increase the age of everyone by 1 before mating.
... preOps=sim.InfoExec('age += 1'),
... matingScheme=sim.HeteroMating([
... # age 1, 2 will be copied
... sim.CloneMating(
... ops=[
... # This will set offspring ID
... sim.CloneGenoTransmitter(),
... # new ID for offspring in order to track pedigree
... sim.IdTagger(),
... # both offspring and parental IDs will be the same
... sim.PedigreeTagger(output='>>structured.ped'),
...],
... subPops=[(0,1), (0,2)],
... weight=-1
...),
... # age 2 produce offspring
... sim.RandomMating(
... ops=[
... # new ID for offspring
... sim.IdTagger(),
... # record complete pedigree
... sim.PedigreeTagger(output='>>structured.ped'),
... sim.MendelianGenoTransmitter(), # transmit genotype
...],
... subPops=[(0,2)]
...)]
...),
... gen=20
...)
20
>>>
>>> # use a pedigree object recovered from a file saved by operator PedigreeTagger
>>> ped = sim.loadPedigree('structured.ped')
>>> # create a top most population, but we do not need all of them
>>> # so we record only used individuals
>>> IDs = [x.ind_id for x in ped.allIndividuals(ancGens=ped.ancestralGens())]
>>> sex = [x.sex() for x in ped.allIndividuals(ancGens=ped.ancestralGens())]
>>> # create a population, this time with genotype. Note that we do not need
>>> # populaton structure because PedigreeMating disregard population structure.
>>> pop = sim.Population(size=len(IDs), loci=1000, infoFields='ind_id')
>>> # manually initialize ID and sex
>>> sim.initInfo(pop, IDs, infoFields='ind_id')
>>> sim.initSex(pop, sex=sex)
>>> pop.evolve(
... initOps=sim.InitGenotype(freq=[0.4, 0.6]),
... # we do not need migration, or set number of offspring,
... # or demographic model, but we do need a genotype transmitter
... matingScheme=sim.PedigreeMating(ped,
... ops=sim.IfElse(lambda mom: mom is None,
... sim.CloneGenoTransmitter(),
... sim.MendelianGenoTransmitter())
...),
... gen=100
...)
20
>>> #
>>> print(pop.indInfo('ind_id')[:5])
(200001.0, 200002.0, 200003.0, 200004.0, 200005.0)
>>> print([pop.individual(x).sex() for x in range(5)])
[1, 2, 2, 1, 1]
>>> # The pedigree object does not have population structure
>>> print(pop.subPopSizes())
(10000,)

now exiting runScriptInteractively...

Download pedigreeMatingAgeStructured.py

The pedigree is then used to repeat the evolutionary process. However, because
some individuals were produced sexually using MendelianGenoTransmitter
and some were copied using CloneGenoTransitter, an IfElse operator
has to be used to transmit genotypes correctly. This example uses the function
condition of the IfElse operator and makes use of the fact that parent
mom will be None if an individual is copied from his or her father.

plainnat simuPOP

Simulation of mitochondrial DNAs (mtDNAs) *

Mitochondrial DNAs resides in human mitochondrion. A zygote inherits its
organelles from the cytoplasm of the egg, and thus organelle inheritance is
generally maternal. Whereas there is only one copy of a nuclear chromosome per
gamete, there are man copies of an organellar chromosome, forming a population
of identical organelle chromosomes that is transmitted to the offspring through
the egg. Because these organellar chromosomes are identical, they are modelled
in simuPOP as a single chromosome with type MITOCHONDRIAL. In order to
simulate mitochondrial DNAs, it is important to remember:

	MendelianGenoTransmitter and Recombinator do not handle
mitochondrial DNAs so you will have to explicitly use
MitochondrialGenoTransmitter to transmit the mitochondrial DNAs from
mother to offspring. Note that CloneGenoTransmitter is a special
transmitter that will copy everything including sex, information fields to
offspring.

	The Stat operator recognizes this chromosome type and will report
allele, haplotype, and genotype counts, and other statistics correctly, although
some diploid-specific statistics are not applicable.

	Natural selections on mtDNAs is usually performed using operator
MapSelector where single alleles are assigned a fitness value. Operator
MaSelector assumes two alleles and is not applicable.

Example mitochondrial demonstrates the use of a
Recombinator to recombine an autosome and two sex chromosomes, and a
MitochondrialGenoTransmitter to transmit mitochondrial chromosomes.
Natural selection is applied to allele 3 at the 3rd locus on the mitochondrial
DNA, whose frequency in the population decreases as a result.

Example: Transmission of mitochondrial chromosomes

>>> import simuPOP as sim
>>> pop = sim.Population(1000, loci=[5]*4,
... # one autosome, two sex chromosomes, and one mitochondrial chromosomes
... chromTypes=[sim.AUTOSOME, sim.CHROMOSOME_X, sim.CHROMOSOME_Y, sim.MITOCHONDRIAL],
... infoFields=['fitness'])
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.25]*4)
...],
... preOps=[
... sim.MapSelector(loci=17, fitness={(0,): 1, (1,): 1, (2,): 1, (3,): 0.4})
...],
... matingScheme=sim.RandomMating(ops= [
... sim.Recombinator(rates=0.1),
... sim.MitochondrialGenoTransmitter(),
...]),
... postOps=[
... sim.Stat(alleleFreq=17, step=10),
... sim.PyEval(r'"%.2f %.2f %.2f %.2f\n" % (alleleNum[17][0],'
... 'alleleNum[17][1], alleleNum[17][2], alleleNum[17][3])', step=10),
...],
... gen = 100
...)
1288.00 273.00 325.00 114.00
1384.00 245.00 371.00 0.00
1492.00 138.00 370.00 0.00
1461.00 69.00 470.00 0.00
1449.00 65.00 486.00 0.00
1536.00 17.00 447.00 0.00
1624.00 7.00 369.00 0.00
1538.00 0.00 462.00 0.00
1619.00 0.00 381.00 0.00
1623.00 0.00 377.00 0.00
100

now exiting runScriptInteractively...

Download mitochondrial.py

You might wonder how a mutation can change the allele of all organelles in the
mitochondrion. This is generally believed to be done through natural drift
during cytoplasmic segreagation, which is not a mitotic process because it takes
place in dividing asexual cells. Because only one mitochondrial chromosome is
allowed in simuPOP, you will have to use customized chromosome types if you
would like to simulate this process. Fortunately, operator
MitochondrialGenoTransmitter can select random organelles from multiple
customized chromosomes, if no chromosome of type MITOCHONDRIAL is present.

Example mtDNA_evolve demonstrates the fixation of mutant
in cells with multiple organelles. Althogh mutations are introduced to only one
of the organelles, after a number of cell divisions, the majority of the cells
now have only one type of allele. This example uses a RandomSelection
mating scheme to select cells randomly from the parental population. Because no
sexual reproduction is involved, MitochondrialGenoTransmitter passes
the parental genotype to offspring regardless of sex of parent. This example
also demonstrates a disadvantage of using customized chromosomes in that you
will have to calculate statistics by yourself because only you know the meaning
of these chromosomes. In this example, a function is written to count the number
of mutants in each cell (individual), and summarize the number of cells with 0,
1, 2, 3, 4, and 5 copies of the mutant.

Example: Evolution of multiple organelles in mitochondrion

>>> import simuPOP as sim
>>>
>>> def alleleCount(pop):
... summary = [0]* 6
... for ind in pop.individuals():
... geno = ind.genotype(ploidy=0)
... summary[geno[0] + geno[2] + geno[4] + geno[6] + geno[8]] += 1
... print('%d %s' % (pop.dvars().gen, summary))
... return True
...
>>> pop = sim.Population(1000, loci=[2]*5, chromTypes=[sim.CUSTOMIZED]*5)
>>> pop.evolve(
... # every one has miDNAs 10, 00, 00, 00, 00
... initOps=[
... sim.InitGenotype(haplotypes=[[1]+[0]*9]),
...],
... # random select cells for cytoplasmic segregation
... matingScheme=sim.RandomSelection(ops= [
... sim.MitochondrialGenoTransmitter(),
...]),
... postOps=sim.PyOperator(func=alleleCount, step=10),
... gen = 51
...)
0 [333, 408, 219, 38, 2, 0]
10 [806, 16, 14, 16, 11, 137]
20 [816, 1, 1, 3, 0, 179]
30 [833, 0, 0, 0, 0, 167]
40 [805, 0, 0, 0, 0, 195]
50 [849, 0, 0, 0, 0, 151]
51

now exiting runScriptInteractively...

Download mtDNA_evolve.py

Utility Modules

	Module simuOpt (function simuOpt.setOptions)

	Module simuPOP.utils
	Trajectory simulation (classes Trajectory and TrajectorySimulator)
	Forward-time trajectory simulations (function simulateForwardTrajectory)

	Backward-time trajectory simulations (function simulateBackwardTrajectory).

	Graphical or text-based progress bar (class ProgressBar)

	Display population variables (function viewVars)

	Import simuPOP population from files in GENEPOP, PHYLIP and FSTAT formats (function importPopulation)

	Export simuPOP population to files in STRUCTURE, GENEPOP, FSTAT, Phylip, PED, MAP, MS, and CSV formats (function export and operator Exporter)

	Export simuPOP population in csv format (function saveCSV, deprecated)

	Module simuPOP.demography
	Predefined migration models

	Uniform interface of demographic models

	Demographic models defined by outcomes

	Demographic models defined by population changes (events)

	Predefined demographic models for human populations

	Demographic model without predefined generations to evolve *

	Module simuPOP.sampling
	Introduction

	Sampling individuals randomly (class RandomSampler, functions drawRandomSample and drawRandomSamples)

	Sampling cases and controls (class CaseControlSampler, functions CaseControlSample and CaseControlSamples)

	Sampling Pedigrees (functions indexToID and plotPedigree)

	Sampling affected sibpairs (class AffectedSibpairSampler, functions drawAffectedSibpairSample(s))

	Sampling nuclear families (class NuclearFamilySampler, functions drawNuclearFamilySample and drawNuclearFamilySamples)

	Sampling three-generation families (class ThreeGenFamilySampler, functions drawThreeGenFamilySample and drawThreeGenFamilySamples)

	Sampling different types of samples (class CombinedSampler, functions drawCombinedSample and drawCombinedSamples)

	Sampling from subpopulations and virtual subpopulations *

	Module simuPOP.gsl

Module simuOpt (function simuOpt.setOptions)

Module simuOpt handles options to specify which simuPOP module to load
and how this module should be loaded, using function simuOpt.setOptionswith parameters alleleType (short, long, or binary), optimized
(standard or optimized), gui (whether or not use a graphical user
interface and which graphical toolkit to use), revision (minimal
required version/revision), quiet (with or without banner message, and debug
(which debug code to turn on). These options have been discussed in Example
lst_Use_of_standard_module and
lst_Use_of_optimized_module and other
related sections. Note that most options can be set by environmental variables
and command line options which are sometimes more versatile to use.

Module simuPOP.utils

The simuPOP.utils module provides a few utility functions and classes.
They do not belong to the simuPOP core but are distributed with simuPOP because
they are frequently used and play an important role in some specialized
simulation techniques. Please refer to the simuPOP online cookbook
(http://simupop.sourceforge.net/cookbook) for more utility modules and
functions.

Trajectory simulation (classes Trajectory and TrajectorySimulator)

A forward-time simulation, by its nature, is directly influenced by random
genetic drift. Starting from the same parental generation, allele frequencies in
the offspring generation would vary from simulation to simulation, with perhaps
a predictable mean frequency which is determined by factors such as parental
allele frequency, natural selection, mutation and migration.

Genetic drift is unavoidable and is in many cases the target of theoretical and
simulation studies. However, in certain types of studies, there is often a need
to control the frequencies of certain alleles in the present generation. For
example, if we are studying a particular penetrance model with pre-specified
frequencies of disease predisposing alleles, the simulated populations would
better have consistent allele frequencies at the disease predisposing loci, and
consequently consistent disease prevalence.

simuPOP provides a special offspring generator
ControlledOffspringGenerator and an associated mating scheme called
ControlledRandomMating that can be used to generate offspring
generations conditioning on frequencies of one or more alleles. This offspring
generator essentially uses a reject-sampling algorithm to select (or reject)
offspring according to their genotypes at specified loci. A detailed description
of this algorithm is given in Peng2007a.

The controlled random mating scheme accepts a user-defined trajectory function
that tells the mating scheme the desired allele frequencies at each generation.
Example controlledOffGenerator uses a manually
defined function that raises the frequency of an allele steadily. However, given
known demographic and genetic factors, a trajectory should be simulated
randomly so that it represents a random sample from all possible trajectories
that match the allele frequency requirement. If such a condition is met, the
controlled evolutionary process can be considered as a random process
conditioning on allele frequencies at the present generation. Please refer to
Peng2007a for a detailed discussion about the theoretical requirements of a
valid trajectory simulator.

The simuUtil module provides functions and classes that implement two
trajectory simulation methods that can be used in different situations. The
first class is TrajectorySimulator which takes a demographic model and a
selection model as its input and simulates allele frequency trajectories using a
forward or backward algorithm. The demographic model is given by parameter
N, which can be a constant (e.g. N=1000) for constant population size, a
list of subpopulation sizes (e.g. N=[1000, 2000]) for a structured
population with constant size, or a demographic function that returns population
or subpopulation sizes at each generation. In the last case, subpopulations can
be split or merged with the constrait that subpopulations can be merged into
one, from split from one population.

A fitness model specifies the fitness of genotypes at one or more loci using
parameter fitness. It can be a list of three numbers (e.g. fitness=[1,
1.001, 1.003]), repsenting the fitness of genotype AA, Aa and aa
at one or more loci; or different fitness for genotypes at each locus (e.g.
fitness=[1, 1.001, 1.003, 1, 1, 1.002]), or for each combination or genotype
(interaction). In the last case, values are needed for each
genotype if there are loci. This trajectory simulator also accepts
generation-specific fitness values by accepting a function that returns fitness
values at each generation.

The simulator then simulates trajectories of allele frequencies and return them
as objects of class Trajectory. This object can be used provide a trajectory
function that can be used directly in a ControlledRandomMating mating
scheme (function func()) or provide a list
of PointMutator to introduce mutants at appropriate generations
(function mutators()). If a simulation
failed after specified number of attempts, a None object will be returned.

Forward-time trajectory simulations (function simulateForwardTrajectory)

A forward simulation starts from a specified generation with specified allele
frequencies at one or more loci. The simulator simulates allele frequencies
forward-in-time, until it reaches a specified ending generation. A trajectory
object will be returned if the simulated allele frequencies fall into specified
ranges. Example forwardTrajectory demonstrates how to
use this simulation method to obtain and use a simulated trajectory, for two
unlinked loci under different selection pressure.

Example: Simulation and use of forward-time simulated trajectories.

>>> import simuOpt
>>> simuOpt.setOptions(quiet=True)
>>> import simuPOP as sim
>>> from simuPOP.utils import Trajectory, simulateForwardTrajectory
>>>
>>> traj = simulateForwardTrajectory(N=[2000, 4000], fitness=[1, 0.99, 0.98],
... beginGen=0, endGen=100, beginFreq=[0.2, 0.3],
... endFreq=[[0.1, 0.11], [0.2, 0.21]])
>>> #
>>> #traj.plot('log/forwardTrajectory.png', set_ylim_top=0.5,
>>> # plot_c_sp=['r', 'b'], set_title_label='Simulated Trajectory (forward-time)')
>>> pop = sim.Population(size=[2000, 4000], loci=10, infoFields='fitness')
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.8, 0.2], subPops=0),
... sim.InitGenotype(freq=[0.7, 0.3], subPops=1),
... sim.PyOutput('Sp0: loc2\tloc5\tSp1: loc2\tloc5\n'),
...],
... matingScheme=sim.ControlledRandomMating(
... ops=[sim.Recombinator(rates=0.01)],
... loci=5, alleles=1, freqFunc=traj.func()),
... postOps=[
... sim.Stat(alleleFreq=[2, 5], vars=['alleleFreq_sp'], step=20),
... sim.PyEval(r"'%.2f\t%.2f\t%.2f\t%.2f\n' % (subPop[0]['alleleFreq'][2][1],"
... "subPop[0]['alleleFreq'][5][1], subPop[1]['alleleFreq'][2][1],"
... "subPop[1]['alleleFreq'][5][1])", step=20)
...],
... gen = 101
...)
Sp0: loc2 loc5 Sp1: loc2 loc5
0.19 0.20 0.30 0.29
0.20 0.20 0.29 0.27
0.20 0.14 0.28 0.27
0.17 0.13 0.27 0.26
0.14 0.13 0.31 0.23
0.13 0.10 0.27 0.20
101

now exiting runScriptInteractively...

Download forwardTrajectory.py

Figure fig_forwardTrajectory plots simulated
trajectories of one locus in two subpopulations. The plot function uses either
rpy or matplotlib as the underlying plotting library.

Figure: Simulated trajectories of one locus in two subpopulations

[image: log/forwardTrajectory.png]

Backward-time trajectory simulations (function simulateBackwardTrajectory).

A backward simulation starts from specified frequencies at the present
generation. In the single-allele case, the simulations goes backward-in-time
until an allele gets lost. The length of such a trajectory is random, which is
usually a desired property because the age of a mutant in the present generation
is usually unknown and is assumed to be random.

This trajectory simulation technique is usually used as follows:

	Determine a demographic and a natural selection model using which a forward-
time simulation will be performed.

	Given current disease allele frequencies, simulate trajectories of allele
frequencies at each DSL using a backward approach.

	Evolve a population forward-in-time, using designed demographic and selection
models. A ControlledRandomMating scheme instead of the usual
RandomMating scheme should be used.

Figure fig_backTrajectory plots simulated
trajectories of two unlinked loci.

Figure: Simulated trajectories of two unlinked loci

[image: log/backTrajectory.png]

The trajectory is used in a ControlledRandomMating scheme in the
following evolutionary scenario:

Example: Simulation and use of backward-time simulated trajectories.

>>> import simuPOP as sim
>>> from simuPOP.utils import Trajectory, simulateBackwardTrajectory
>>> from math import exp
>>> def Nt(gen):
... 'An exponential sim.Population growth demographic model.'
... return int((5000) * exp(.00115 * gen))
...
>>> def fitness(gen, sp):
... 'Constant positive selection pressure.'
... return [1, 1.01, 1.02]
...
>>> # simulate a trajectory backward in time, from generation 1000
>>> traj = simulateBackwardTrajectory(N=Nt, fitness=fitness, nLoci=2,
... endGen=1000, endFreq=[0.1, 0.2])
>>> # matplotlib syntax
>>> #traj.plot('log/backTrajectory.png', set_ylim_top=0.3, set_ylim_bottom=0,
>>> # plot_c_loc=['r', 'b'], set_title_label='Simulated Trajectory (backward-time)')
>>>
>>> print('Trajectory simulated with length %s ' % len(traj.traj))
Trajectory simulated with length 834
>>> pop = sim.Population(size=Nt(0), loci=[1]*2)
>>> # save Trajectory function in the sim.population's local namespace
>>> # so that the sim.PyEval operator can access it.
>>> pop.dvars().traj = traj.func()
>>> pop.evolve(
... initOps=[sim.InitSex()],
... preOps=traj.mutators(loci=[0, 1]),
... matingScheme=sim.ControlledRandomMating(loci=[0, 1], alleles=[1, 1],
... subPopSize=Nt, freqFunc=traj.func()),
... postOps=[
... sim.Stat(alleleFreq=[0, 1], begin=500, step=100),
... sim.PyEval(r"'%4d: %.3f (exp: %.3f), %.3f (exp: %.3f)\n' % (gen, alleleFreq[0][1],"
... "traj(gen)[0], alleleFreq[1][1], traj(gen)[1])",
... begin=500, step=100)
...],
... gen=1001 # evolve 1001 generations to reach the end of generation 1000
...)
 500: 0.013 (exp: 0.013), 0.000 (exp: 0.000)
 600: 0.005 (exp: 0.005), 0.003 (exp: 0.003)
 700: 0.011 (exp: 0.011), 0.008 (exp: 0.008)
 800: 0.012 (exp: 0.013), 0.031 (exp: 0.031)
 900: 0.037 (exp: 0.037), 0.092 (exp: 0.092)
1000: 0.101 (exp: 0.100), 0.200 (exp: 0.200)
1001

now exiting runScriptInteractively...

Download backTrajectory.py

Graphical or text-based progress bar (class ProgressBar)

If your simulation takes a while to finish, you could use a progress bar to
indicate its progress. The ProgressBar class is provided for such a purpose.
Basically, you create a ProgressBar project with intended total steps, and
calls its update member function with each progress. Depending on available
graphical toolkit and the global or local GUI settings, a wxPython based
dialog, a Tkinter based dialog, or a text-based dialog will be used. Example
ProgressBar demonstrates how to use a text-based progress
bar. If the progress bar is updated at each step (such as in this example),
function update() can be called without parameter because it updates the
progress bar at an increment of 1 in this case.

Example: Using a text-based progress bar

>>> import simuPOP as sim
>>> from simuPOP.utils import ProgressBar
>>> pop = sim.Population(10000, loci=[10], infoFields='index')
>>> prog = ProgressBar('Setting individual genotype...\n', pop.popSize(), gui=False)
Setting individual genotype...
>>> for idx in range(pop.popSize()):
... # do something to each individaul
... pop.individual(idx).index = idx
... # idx + 1 can be ignored in this case.
... prog.update(idx + 1)
...
....1....2....3....4....5....6....7....8....9.... Done.

now exiting runScriptInteractively...

Download ProgressBar.py

Display population variables (function viewVars)

If a population has a large number of variables, or if you are not sure which
variable to output, you could use function viewVars to view the population
variables in a tree form. If wxPython is available, a dialog could be used to
view the variables interactively. Example viewVars
demonstrates how to use this function. The wxPython-based dialog is displayed in
Figure viewVars.

Example: Using function viewVars to display population variables

import simuPOP as sim
from simuPOP.utils import viewVars
pop = sim.Population([1000, 2000], loci=3)
sim.initGenotype(pop, freq=[0.2, 0.4, 0.4], loci=0)
sim.initGenotype(pop, freq=[0.2, 0.8], loci=2)
sim.stat(pop, genoFreq=[0, 1, 2], haploFreq=[0, 1, 2],
 alleleFreq=range(3),
 vars=['genoFreq', 'genoNum', 'haploFreq', 'alleleNum_sp'])
viewVars(pop.vars())

Download viewVars.py

Figure: Using wxPython to display population variables

[image: Users/bpeng1/simuPOP/simuPOP/doc/figures/viewVars.png]

Import simuPOP population from files in GENEPOP, PHYLIP and FSTAT formats (function importPopulation)

A function importPopulation is provided in the simuPOP.utils module to
import populations from files in GENEPOP, PHYLIP and FSTAT formats.
Because these formats do not support many of the features of a simuPOP
population, this function can only import genotype and basic information of a
population. Because formats GENEPOP and FSTAT formats uses allele 0 to indicate
missing value, true alleles in these formats start at value 1. If you would like
to import alleles with starting value 0, you can use parameter adjust=-1 to
adjust imported values, if you data do not have any missing value.

Export simuPOP population to files in STRUCTURE, GENEPOP, FSTAT, Phylip, PED, MAP, MS, and CSV formats (function export and operator Exporter)

simuPOP uses a program-specific binary format to save and load populations but
you can use the export function to export a simuPOP population in other
formats if you would like to use other programs to analyze simulated
populations. An operator Exporter is also provided so that you could export
populations during evolution. Operator arameters such as output, begin, end,
step, at, reps, and subPops are supported so that you could export subsets of
individuals at multiple generations using different file names (e.g.
output='!''%d.ped'' % gen' to output to different files at different
generations).

Commonly used population genetics file formats such as GENEPOP, FSTAT, Phylip,
MS, and STRUCTURE are supported. Because these formats cannot store all
information in a simuPOP population, export and import operations can lose
information. Also, because the processing application have different
assumptions, some conversion of genotypes might be needed. For example, because
GENEPOP uses allele 0 as missing genotype, function export(format='genepop')
accepts a parameter adjust with default value 1 to export alleles 0, 1
etc to 1, 2, …. The same applies to function importPopulation where some
file formats accepts a parameter adjust (with default value 1) to adjust
allele values. Please refer to the simuPOP reference manual for a detailed list
of acceptable parameters for each format.

Example importExport demonstrates how to import and export
a population in formats FSTAT and STRUCTURE. For the FSTAT format, because the
population is exported with allele values shifted by 1, the imported population
has different alleles than the original population. This can be fixed by adding
parameter adjust=-1 to the importPopulation function.

Example: Save and load a population

>>> import simuPOP as sim
>>> from simuPOP.utils import importPopulation, export
>>> pop = sim.Population([2,4], loci=5, lociNames=['a1', 'a2', 'a3', 'a4', 'a5'],
... infoFields='BMI')
>>> sim.initGenotype(pop, freq=[0.3, 0.5, 0.2])
>>> sim.initSex(pop)
>>> sim.initInfo(pop, [20, 30, 40, 50, 30, 25], infoFields='BMI')
>>> export(pop, format='fstat', output='fstat.txt')
Exporting....1....2....3....4....5....6....7....8....9.... Done.
>>> print(open('fstat.txt').read())
2 5 3 1
a1
a2
a3
a4
a5
1 21 21 23 12 12
1 22 23 22 22 21
2 31 21 22 11 13
2 22 22 33 23 21
2 22 32 33 22 21
2 33 33 22 21 32

>>> export(pop, format='structure', phenotype='BMI', output='stru.txt')
Exporting....1....2....3....4....5....6....7....8....9.... Done.
>>> print(open('stru.txt').read())
a1 a2 a3 a4 a5
-1 1.0 1.0 1.0 1.0
1 1 20 1 1 1 0 0
1 1 20 0 0 2 1 1
2 1 30 1 1 1 1 1
2 1 30 1 2 1 1 0
1 2 40 2 1 1 0 0
1 2 40 0 0 1 0 2
2 2 50 1 1 2 1 1
2 2 50 1 1 2 2 0
3 2 30 1 2 2 1 1
3 2 30 1 1 2 1 0
4 2 25 2 2 1 1 2
4 2 25 2 2 1 0 1

>>> pop1 = importPopulation(format='fstat', filename='fstat.txt')
>>> sim.dump(pop1)
Ploidy: 2 (diploid)
Chromosomes:
1: (AUTOSOME, 5 loci)
 a1 (1), a2 (2), a3 (3), a4 (4), a5 (5)
population size: 6 (2 subpopulations with 2 (1), 4 (2) Individuals)
Number of ancestral populations: 0

SubPopulation 0 (1), 2 Individuals:
 0: MU 22211 | 11322
 1: MU 22222 | 23221
SubPopulation 1 (2), 4 Individuals:
 2: MU 32211 | 11213
 3: MU 22322 | 22331
 4: MU 23322 | 22321
 5: MU 33223 | 33212

now exiting runScriptInteractively...

Download importExport.py

Because coalescent simulations are increasingly used to generate initial
populations in equilibrium stats, importing data in MS format is very useful.
Because MS only simulates haploid sequences with genotype only at segregating
sites, you might have to simulate an even number of sequences and use option
ploidy=2 to import the simulated data as a haploid population. In addition, a
parameter mergeBy is provided to import multiple replicates as multiple
subpopulations or chromosomes. This corresponds to the splitBy parameter when
you export your data in MS format. Example importMS
demonstrates how to use these parameters.

Example: Export and import in MS format

>>> import simuPOP as sim
>>> from simuPOP.utils import importPopulation, export
>>> pop = sim.Population([20,20], loci=[10, 10])
>>> # simulate a population but mutate only a subset of loci
>>> pop.evolve(
... preOps=[
... sim.InitSex(),
... sim.SNPMutator(u=0.1, v=0.01, loci=range(5, 17))
...],
... matingScheme=sim.RandomMating(),
... gen=100
...)
100
>>> # export first chromosome, all individuals
>>> export(pop, format='ms', output='ms.txt')
Exporting....1....2....3....4....5....6....7....8....9.... Done.
>>> # export first chromosome, subpops as replicates
>>> export(pop, format='ms', output='ms_subPop.txt', splitBy='subPop')
Exporting....1....2....3....4....5....6....7....8....9.... Done.
>>> # export all chromosomes, but limit to all males in subPop 1
>>> pop.setVirtualSplitter(sim.SexSplitter())
>>> export(pop, format='ms', output='ms_chrom.txt', splitBy='chrom', subPops=[(1,0)])
Exporting....1....2....3....4....5....6....7....8....9.... Done.
>>> #
>>> print(open('ms_chrom.txt').read())
simuPOP_export 20 2
30164 48394 29292

//
segsites: 5
positions: 6.0 7.0 8.0 9.0 10.0
11110
11111
11110
11111
11011
11111
01111
10111
11111
11111
01111
01111
11011
11111
01111
11011
11101
10111
11111
11111

//
segsites: 7
positions: 1.0 2.0 3.0 4.0 5.0 6.0 7.0
1101111
1110011
1101110
1111111
0111110
1111111
1110001
1111111
0111110
1111111
1111111
1111111
1111111
1011111
1111111
1111111
1011111
1111111
1111111
1011111

>>> # import as haploid sequence
>>> pop = importPopulation(format='ms', filename='ms.txt')
>>> # import as diploid
>>> pop = importPopulation(format='ms', filename='ms.txt', ploidy=2)
>>> # import as a single chromosome
>>> pop = importPopulation(format='ms', filename='ms_subPop.txt', mergeBy='subPop')

now exiting runScriptInteractively...

Download importMS.py

If the file format you are interested in is not supported, you can export data
in csv format and convert the file by yourself. You can also try to write your
own import or export functions as described in the advanced topics section of
this guide.

Export simuPOP population in csv format (function saveCSV, deprecated)

Function saveCSV is provided in the simuPOP.utils module to save (the
present generation of) a simuPOP population in comma separated formats. It
allows you to save individual information fields, sex, affection status and
genotype (in that order). Because this function allows you to output these
information in different formats using parameters infoFormatter,
sexFormatter, affectionFormatter, and genoFormatter, this function
can already be used to export a simuPOP population to formats that are
recognizable by some populat software applications. Example saveCSV creates a small population and demonstrates how to save it in
different formats.

Example: Using function saveCSV to save a simuPOP population in different formats

>>> import simuPOP as sim
>>> from simuPOP.utils import saveCSV
>>> pop = sim.Population(size=[10], loci=[2, 3],
... lociNames=['r11', 'r12', 'r21', 'r22', 'r23'],
... alleleNames=['A', 'B'], infoFields='age')
>>> sim.initSex(pop)
>>> sim.initInfo(pop, [2, 3, 4], infoFields='age')
>>> sim.initGenotype(pop, freq=[0.4, 0.6])
>>> sim.maPenetrance(pop, loci=0, penetrance=(0.2, 0.2, 0.4))
>>> # no filename so output to standard output
>>> saveCSV(pop, infoFields='age')
age, sex, aff, r11_1, r11_2, r12_1, r12_2, r21_1, r21_2, r22_1, r22_2, r23_1, r23_2
2.0, F, A, B, B, B, B, B, A, B, B, B, A
3.0, F, U, B, A, B, A, B, A, A, A, A, B
4.0, M, U, B, B, B, B, B, B, B, B, B, A
2.0, M, U, B, A, B, A, B, B, B, B, B, A
3.0, M, A, B, B, B, B, B, B, A, A, B, A
4.0, M, U, A, B, B, A, B, B, B, B, B, B
2.0, M, U, B, B, B, B, B, B, B, B, A, A
3.0, F, U, B, B, A, A, B, B, A, A, B, B
4.0, F, U, A, B, B, B, B, B, B, A, B, B
2.0, F, A, B, A, A, B, A, A, B, B, B, A
>>> # change affection code and how to output genotype
>>> saveCSV(pop, infoFields='age', affectionFormatter={True: 1, False: 2},
... genoFormatter={(0,0):'AA', (0,1):'AB', (1,0):'AB', (1,1):'BB'})
age, sex, aff, r11, r12, r21, r22, r23
2.0, F, 1, BB, BB, AB, BB, AB
3.0, F, 2, AB, AB, AB, AA, AB
4.0, M, 2, BB, BB, BB, BB, AB
2.0, M, 2, AB, AB, BB, BB, AB
3.0, M, 1, BB, BB, BB, AA, AB
4.0, M, 2, AB, AB, BB, BB, BB
2.0, M, 2, BB, BB, BB, BB, AA
3.0, F, 2, BB, AA, BB, AA, BB
4.0, F, 2, AB, BB, BB, AB, BB
2.0, F, 1, AB, AB, AA, BB, AB
>>> # save to a file
>>> saveCSV(pop, filename='pop.csv', infoFields='age', affectionFormatter={True: 1, False: 2},
... genoFormatter=lambda geno: (geno[0] + 1, geno[1] + 1), sep=' ')
>>> print(open('pop.csv').read())
age sex aff r11_1 r11_2 r12_1 r12_2 r21_1 r21_2 r22_1 r22_2 r23_1 r23_2
2.0 F 1 2 2 2 2 2 1 2 2 2 1
3.0 F 2 2 1 2 1 2 1 1 1 1 2
4.0 M 2 2 2 2 2 2 2 2 2 2 1
2.0 M 2 2 1 2 1 2 2 2 2 2 1
3.0 M 1 2 2 2 2 2 2 1 1 2 1
4.0 M 2 1 2 2 1 2 2 2 2 2 2
2.0 M 2 2 2 2 2 2 2 2 2 1 1
3.0 F 2 2 2 1 1 2 2 1 1 2 2
4.0 F 2 1 2 2 2 2 2 2 1 2 2
2.0 F 1 2 1 1 2 1 1 2 2 2 1

now exiting runScriptInteractively...

Download saveCSV.py

This function is now deprecated with the introduction of function
``export`` and operator ``Exporter``.

Module simuPOP.demography

Predefined migration models

The following functions are defined to generate migration matrixes for popular
migration models.

	migrIslandRates(r, n) returns a migration matrix

for a traditional island model where individuals have equal probability of
migrating to any other subpopulations. This model is also called a migrant-
pool island model.

	migrHierarchicalIslandRates(r1, r2, n) models a hierarchical island
model in which local populations are grouped into neighborhoods within which
there is considerable gene flow and between which there is less gene flow.
 should be a list of group size. is the within-group
migration rate and is the cross-group migration rate. That is to
say, an individual in an island has probability to stay,
 to be a migratant to other islands in the group (migration rate
depending on the size of group), and to be a migrant to other
islands in another group (migration rate depending on the number of islands in
other groups). Both and can vary across groups of
islands. For example, migrHierarchicalIslandRates([r11, r12], r2, [3, 2])
returns a migration matrix

	migrSteppingStoneRates(r, n, circular=False) returns a
migration matrix

and if circular=True, returns

	migr2DSteppingStoneRates(r, m, n, diagonal=False, circular=False)models
a 2D stepping stone model in which local populations are arranged into a lattice
of (rows, columns) patches. The population
thus needs to have subpopulations with subpopulation indexes
counted by row. In this model, an individual in a center patch has a probability
of to stay, and to migrate to its neighbor patches if
diagonal is set to False, or to migrate to 8 neighbors
(including diagnal ones) if range is set to 8. If circular is set to
False, the corner patch has a probability of or (if
range=8) to migrate, and a side patch has a probability or
 to migrate. If circular is set to True, the lattice will be
conceptually connected to a ball so that there is no boundary effect. For
example, for a 3 by 2 lattice

with diagonal=False and circular=False, the migration matrix will be

Many more migration models have been proposed and studied, sometimes under
different names with slightly different definitions. If you cannot find your
model there, it should not be too difficult to construct a migration rate matrix
for it. I will be glad to add such functions to this module if you could provide
a reference and your implementation of the model.

Uniform interface of demographic models

A realistic demographic models can be very complex that involves population
growth, population bottleneck, subdivided populations, migration, population
split and admixture for a typical demographic model for human populations, and
carrying capacity, fecunity, sex distribution and many more factors for more
complex ones (e.g. models for animal populations under continuous habitat). The
goal of this module is to provide a common interface for demographic models,
classes for frequently used demographic models, and several pre-defined
demographic models for human populations. More complex demographic models will
be added if needed.

A demographic model usually consists of the following components:

	An initial population size that is used to initialize a population (the
size parameter of sim.Population)

	One or more operators to split and merge populations (e.g. Operators
SplitSubPops)

	One or more operators to migrate individuals across subpopulations (e.g.
operator Migrator)

	Determine sizes of subpopulations before mating (parameter subPopSize of a
mating scheme)

	Number of generations to evolve (parameter gen of the evolve function)
or operators to terminate the evolution conditionally (e.g. operator
TerminateIf)

Using an object-oriented approach, a demographic model defined in this module
encapsulates all these in a single object. More specifically, a demographic
object model is a callable Python object that

	has attribute model.init_size and model.info_fields to determine the
initial population size and required information fields to construct an initial
population (e.g., sim.Population(size=model.init_size,
infoFields=model.info_fields + ['my_fields']))

	handles population split, merge, migration etc internally before mating when
it is passed to parameter subPopSize of a mating scheme. (e.g.
RandomMating(subPopSize=model))

	has attribute model.num_gens to determine the number of generations to
evolve (e.g. pop.evolve(..., gen=model.num_gens)). The model can optionally
terminate the evolution by returnning an empty offspring population size before
mating.

	provides a function model.plot(filename='', title='') to plot the
demographic function. It by default prints out population sizes whenever
population size changes. If a filename is specified and if module
matplotlib is available, it will plot the demographic model and save it to
filename. A title can be specified for the figure. This function actually
use the demographic model to evolve a haploid population using
RandomSelection mating scheme, which is a good way to test if your
demographic model works properly.

	saves population sizes of evolved generations, which makes it possible to
revert an evolutionary process to an previous state using operator
RevertIf.

A demographic model can be defined in two ways. The first approach is to specify
the size of subpopulations at each generation, and the second approach is to
specify the events that change population sizes. The simuPOP.demography
module provides functions and classes to define demographic models using both
approaches and you can use the one that is most convenient for your model.

Demographic models defined by outcomes

The simuPOP.demography module defines a number of widely used demographic
models, including linear and exponential population growth with carrying
capacity, shrink, split and merge, and bottleneck.

For example,

	InstantChangeModel(T=1000, N0=1000, G=500, NG=2000)

defines an instant population growth model that expands a population of size
from 1000 to 2000 instantly at generation 500

	InstantChangeModel(T=1000, N0=1000, G=[500, 600], NG=[100, 1000])

defines a bottleneck model that introduces a bottleneck of size 100 between
generation 500 and 600 to a population of size 1000

	InstantChangeModel(T=1000, N0=1000, G=500, NG=[[400, 600]])

defines a bottleneck model that split a population of size into two
subpopulations of sizes 400 and 600 at generation 500

	ExponentialGrowthModel(T=100, N0=1000, NT=10000)

expands a population of size 1000 to 10000 in 100 generations

	ExponentialGrowthModel(T=100, N0=[200, 800], r=[0.02, 0.01],
 ops=Migrator(rate=[[0, 0.1], [0.1, 0]])

expands a population of two subpopulation sizes at rate 0.02 and 0.01
for 100 generations, with migration between these two subpopulations. The
initial population will be resized (split if necessary) to two populations of
sizes 200 and 800.

	LinearGrowthModel(N0=(200, 'A'), r=0.02, NT=1000)

expands a population of size 200 at a rate 0f 0.02 (add 4 individuals at
each generation) until it reaches size 1000. Here the initial size is
expressed as a size name tuple, which directs the demographic model to assign
the name A to the initial population. Such named size is acceptable for all
places where population size is needed.

Here we specify only two of the three parameters for linear and exponential
growth models and allow simuPOP to figure out the rest. If all three parameters
are specified, the ending population size will be interpretted as carraying
capacity, namely population growth (or decline of negative rates are specified)
will stop after it reaches the specified size.

A demographic model does not have to have a fixed initial population size. If an
initial population size is not provided, its size will be determined from the
population when it is first applied to. For example

	InstantChangeModel(T=100, G=50, NT=[0.5, 0.5])

split a population into two equally sized subpopulations at generation 50. The
ending population size is set to [0.5, 0.5], which means 50% of the size at
time G.

	InstantChangeModel(T=100, G=50, NT=[None, 100])

forks a population of size 100 from the main population at generation 50.
NT=[None, 100] is equivalent to NT=[1.0, 100] in this case.

	InstantChangeModel(T=0, removEmptySubPops=True)

removes all empty subpopulations from the existing subpopulation. Here we do not
specify an input population size because the the size of the input population
will be kept.

	InstantChangeMoel(T=0, N0=[None, 0, None], removEmptySubPops=True)

removes the second of the three subpopulations while keep other two
subpopulations intact. The input population of this demographic model must have
three subpopulations.

	ExponentialGrowthModel(T=100, NT=[10000, 20000])

expands a population of two subpopulations to sizes 10000 and 20000 in
100 generations. An error will be raised if the population does not have two
subpopulations.

	ExponentialGrowthModel(T=100, N0=[1., 400], NT=[10000, 20000],
 ops=Migrator(rate=[[0, 0.1], [0.1, 0]])

split a population into two subpopulations. The first one keeps all individuals
(100%), the second one with 400 individuals, and then expands them, with
migration, to sizes 10000 and 20000 in 100 generations.

The demography model also defines two models for population admxture. The HI
model (Hybrid Isolation) model creates a separate subpopulation with
and individuals from two specified subpopulations. The CGF
(Continuous Gene Flow) model replaces individuals from the doner
population at each generation, thus keep both the recipient and doner population
constant in size. For example,

	AdmixtureModel(model=('HI', 1, 3, 0.5, 'Admixed'), T=10)

Creates a separate population with 50% of individuals from subpopulation 1 and
50% of individuals from subpopulation 3, regardless if population sizes 1 and 3
have the same number of individuals. An optional name Admixed is assigned to the
new subpopulation. The admixed population will evolve independently for 10
generations.

	AdmixtureModel(model=('CGF', 1, 3, 0.9), T=10)

Replaces 10% of individuals in subpopulation 1 with individuals from
subpopulation 3 for 10 generations.

As you can imagine, these models do not provide a valid init_size to
initialize a population. As a matter of fact, they are mostly stacked to other
demographic models to form more complex demographic models, in model
MultiStageModel. For example,

	MultiStageModel([
 InstantChangeModel(T=1000, N0=1000, G=[500, 600], NG=[100, 1000]),
 ExponentialGrowthModel(T=100, NT=10000)
])

defines a demographic model with a bottleneck followed by exponential population
growth. N0 of the second stage is not specified because it is determined
from its previous stage.

	MultiStageModel([
 LinearGrowthModel(T=100, N0=1000, r=0.01),
 ExponentialGrowthModel(T=100, N0=[0.4, 0.6], r=0.001),
 ExponentialGrowthModel(r=0.01, NT=[2000, 4000]),
 AdmixtureModel(model=('HI', 0, 1, 0.8, 'admixed'), T=10)
])

defines a demographic model that expands a single population linearly for 100
generations, split into two subpopulations and grow exponentially at a rate of
0.001, and growth at a higher rate of 0.01 until they reaches sizes 2000 and
4000 respectively. This stage is tricky because one of the subpopulations will
reach its carrying capacity sooner and keep a contant population size
afterwards. As the last step, the two populations admixed and formed a new
subpopulation called admixed. The model is depicted in figure
fig_multi_stage

Figure: A linear and two stage exponential population growth model, followed by population admixture

[image: log/MultiStage.png]

Example demoModel defines a demographic model use it to
evolve a population. The demographic model is depicted in Figure
fig_demoModel_example.

Example: A demographic model for human population

>>> import simuPOP as sim
>>> from simuPOP.demography import *
>>> model = MultiStageModel([
... InstantChangeModel(T=200,
... # start with an ancestral population of size 1000
... N0=(1000, 'Ancestral'),
... # change population size at 50 and 60
... G=[50, 60],
... # change to population size 200 and back to 1000
... NG=[(200, 'bottleneck'), (1000, 'Post-Bottleneck')]),
... ExponentialGrowthModel(
... T=50,
... # split the population into two subpopulations
... N0=[(400, 'P1'), (600, 'P2')],
... # expand to size 4000 and 5000 respectively
... NT=[4000, 5000])]
...)
>>> #
>>> # model.init_size returns the initial population size
>>> # migrate_to is required for migration
>>> pop = sim.Population(size=model.init_size, loci=1,
... infoFields=model.info_fields)
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5])
...],
... matingScheme=sim.RandomMating(subPopSize=model),
... finalOps=
... sim.Stat(alleleFreq=0, vars=['alleleFreq_sp']),
... gen=model.num_gens
...)
250
>>> # print out population size and frequency
>>> for idx, name in enumerate(pop.subPopNames()):
... print('%s (%d): %.4f' % (name, pop.subPopSize(name),
... pop.dvars(idx).alleleFreq[0][0]))
...
P1 (4000): 0.6185
P2 (5000): 0.7218
>>> # get a visual presentation of the demographic model
>>> model.plot('log/demoModel.png',
... title='A bottleneck + exponential growth demographic model')
A bottleneck + exponential growth demographic model
0: 1000 (Ancestral)
50: 200 (bottleneck)
60: 1000 (Post-Bottleneck)
200: 419 (P1), 626 (P2)
201: 439 (P1), 653 (P2)
202: 459 (P1), 681 (P2)
203: 481 (P1), 711 (P2)
204: 504 (P1), 742 (P2)
205: 527 (P1), 774 (P2)
206: 552 (P1), 807 (P2)
207: 578 (P1), 842 (P2)
208: 605 (P1), 879 (P2)
209: 634 (P1), 917 (P2)
210: 664 (P1), 957 (P2)
211: 695 (P1), 998 (P2)
212: 728 (P1), 1041 (P2)
213: 762 (P1), 1086 (P2)
214: 798 (P1), 1133 (P2)
215: 836 (P1), 1183 (P2)
216: 875 (P1), 1234 (P2)
217: 916 (P1), 1287 (P2)
218: 960 (P1), 1343 (P2)
219: 1005 (P1), 1401 (P2)
220: 1052 (P1), 1462 (P2)
221: 1102 (P1), 1525 (P2)
222: 1154 (P1), 1591 (P2)
223: 1208 (P1), 1660 (P2)
224: 1265 (P1), 1732 (P2)
225: 1325 (P1), 1807 (P2)
226: 1387 (P1), 1885 (P2)
227: 1452 (P1), 1967 (P2)
228: 1521 (P1), 2052 (P2)
229: 1592 (P1), 2141 (P2)
230: 1667 (P1), 2234 (P2)
231: 1746 (P1), 2331 (P2)
232: 1828 (P1), 2432 (P2)
233: 1915 (P1), 2537 (P2)
234: 2005 (P1), 2647 (P2)
235: 2099 (P1), 2761 (P2)
236: 2198 (P1), 2881 (P2)
237: 2302 (P1), 3006 (P2)
238: 2410 (P1), 3136 (P2)
239: 2524 (P1), 3272 (P2)
240: 2643 (P1), 3414 (P2)
241: 2767 (P1), 3562 (P2)
242: 2898 (P1), 3716 (P2)
243: 3034 (P1), 3877 (P2)
244: 3177 (P1), 4045 (P2)
245: 3327 (P1), 4220 (P2)
246: 3484 (P1), 4403 (P2)
247: 3648 (P1), 4593 (P2)
248: 3820 (P1), 4792 (P2)
249: 4000 (P1), 5000 (P2)
Traceback (most recent call last):
 File "/var/folders/ys/gnzk0qbx5wbdgm531v82xxljv5yqy8/T/tmpdvg5jvxd", line 2, in <module>
 #begin_ignore
 File "/Users/bpeng1/anaconda3/envs/sos/lib/python3.6/site-packages/simuPOP/demography.py", line 446, in plot
 region = region.reshape(region.size / 4, 4)
TypeError: 'float' object cannot be interpreted as an integer

now exiting runScriptInteractively...

Download demoModel.py

Figure: A exponential population growth followed by bottleneck demographic model

[image: log/demoModel.png]

Demographic models defined by population changes (events)

Another way to define a demographic model is to specify the events that changes
population sizes. This approach can be easier to use because it conforms with
the way many demographic models are specified, also because the events can be
specified for a subset of subpopulations so you can, for example, split one
subpopulation without worrying about its impact on other subpopulations.

A event-based demographic model is defined using

EventBasedModel(events=[], T=None, N0=None, ops=[], infoFields=[])

whereT and N0 are the duration and initial size of the demographic
model, respectively, and ops is the operators that will be applied to the
population (without checking applicability). Parameter events acepts one or
more of DemographicEvent and its derived classes. For example,

ExpansionEvent(rates=0.05, begin=500)

expands all subpopulations exponentially at a rate of 0.05, and

ExpansionEvent(rates=[0.05, 0.01], capacity=10000, subPops=[0, 2], begin=500)

expands two subpopulations at rates 0.05 and 0.01 respectively, until they reach
10000 individuals in each subpopulation.

ExpansionEvent(slopes=500, subPops=[0, 2], begin=500)

expands the populations linearly by adding 500 individuals to each subpopulation
at each generation. These events happen at each generation starting from
generation 500.

Simiarly, you can split, merge, and resize subpopulations using events
SplitEvent, MergeEvent, and ResizeEvent. For example,

SplitEvent(subPops='AF', sizes=[500, 500], names=['AF', 'EU'], at=-4000)

splits an ancestral population named AF to two populations AF and EU at 4000
generations before the end of the demographic model. The AF population will be
expanded automatically if it does not have 1000 individuals.

Finally, an AdmixtureEvent mix two or more subpopulations by certain
proportions, and either create a new subpopulation or replace an existing
subpopulation. In particular,

AdmixtureEvent(subPops=['MX', 'EU'], at=-10, sizes=[0.4, 0.6], name='MXL')

creates a new admixed population called MXL with 40% of individuals from the MX
population, and the rest from the EU population. The admixture process happens
once and follows an Hybrid Isolation model. Alternatively,

AdmixtureEvent(subPops=['MX', 'EU'], begin=-10, sizes=[0.8, 0.2], toSubPop='MX')

will create an admixed population with 80% MX and 20% EU individuals for 10
generations. Because 20% of the admixed population will be replaced by
individuals from the EU population, this models a continuous gene flow model of
admixture. If you would like to control the exact size of the admixed
population, you can specify the number of individuals as integer numbers instead
of proportions:

AdmixtureEvent(subPops=['MX', 'EU'], begin=-10, sizes=[int(1400*0.8), int(1400*0.2)], toSubPop='MX')

Note that the type of elements in parameter sizes is important, 1.
stands for all subpopulation and 1 stands for one individual from it.

ExampledemoEventModel defines the same model as
demoModel using an event based demographic model. The result
is depicted in Figure fig_demoEventModel_example. These two models look similar but the event-based
model does not have the same final population sizes as the previous model. This
is because the population size of the previous model was calculated by
 whereas the event based model was calculated using
 for each generation, and the integer
rounding error accumulates over time.

Example: A event-based demographic model

>>> import simuPOP as sim
>>> from simuPOP.demography import *
>>> import math
>>> model = EventBasedModel(
... N0=(1000, 'Ancestral'),
... T=250,
... events=[
... ResizeEvent(at=50, sizes=200),
... ResizeEvent(at=60, sizes=1000),
... SplitEvent(sizes=[0.4, 0.6], names=['P1', 'P2'], at=200),
... ExpansionEvent(rates=[math.log(4000/400)/50, math.log(5000/600)/50], begin=200)
...]
...)
>>> #
>>> # model.init_size returns the initial population size
>>> # migrate_to is required for migration
>>> pop = sim.Population(size=model.init_size, loci=1,
... infoFields=model.info_fields)
>>> pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.5, 0.5])
...],
... matingScheme=sim.RandomMating(subPopSize=model),
... finalOps=
... sim.Stat(alleleFreq=0, vars=['alleleFreq_sp']),
... gen=model.num_gens
...)
250
>>> # print out population size and frequency
>>> for idx, name in enumerate(pop.subPopNames()):
... print('%s (%d): %.4f' % (name, pop.subPopSize(name),
... pop.dvars(idx).alleleFreq[0][0]))
...
P1 (4000): 0.6185
P2 (5000): 0.7218
>>> # get a visual presentation of the demographic model
>>> model.plot('log/demoEventModel.png',
... title='A event-based bottleneck + exponential growth demographic model')
A event-based bottleneck + exponential growth demographic model
0: 1000 (Ancestral)
50: 200 (Ancestral)
60: 1000 (Ancestral)
200: 419 (P1), 626 (P2)
201: 439 (P1), 653 (P2)
202: 459 (P1), 681 (P2)
203: 481 (P1), 711 (P2)
204: 504 (P1), 742 (P2)
205: 527 (P1), 774 (P2)
206: 552 (P1), 807 (P2)
207: 578 (P1), 842 (P2)
208: 605 (P1), 879 (P2)
209: 634 (P1), 917 (P2)
210: 664 (P1), 957 (P2)
211: 695 (P1), 998 (P2)
212: 728 (P1), 1041 (P2)
213: 762 (P1), 1086 (P2)
214: 798 (P1), 1133 (P2)
215: 836 (P1), 1183 (P2)
216: 875 (P1), 1234 (P2)
217: 916 (P1), 1287 (P2)
218: 960 (P1), 1343 (P2)
219: 1005 (P1), 1401 (P2)
220: 1052 (P1), 1462 (P2)
221: 1102 (P1), 1525 (P2)
222: 1154 (P1), 1591 (P2)
223: 1208 (P1), 1660 (P2)
224: 1265 (P1), 1732 (P2)
225: 1325 (P1), 1807 (P2)
226: 1387 (P1), 1885 (P2)
227: 1452 (P1), 1967 (P2)
228: 1521 (P1), 2052 (P2)
229: 1592 (P1), 2141 (P2)
230: 1667 (P1), 2234 (P2)
231: 1746 (P1), 2331 (P2)
232: 1828 (P1), 2432 (P2)
233: 1915 (P1), 2537 (P2)
234: 2005 (P1), 2647 (P2)
235: 2099 (P1), 2761 (P2)
236: 2198 (P1), 2881 (P2)
237: 2302 (P1), 3006 (P2)
238: 2410 (P1), 3136 (P2)
239: 2524 (P1), 3272 (P2)
240: 2643 (P1), 3414 (P2)
241: 2767 (P1), 3562 (P2)
242: 2898 (P1), 3716 (P2)
243: 3034 (P1), 3877 (P2)
244: 3177 (P1), 4045 (P2)
245: 3327 (P1), 4220 (P2)
246: 3484 (P1), 4403 (P2)
247: 3648 (P1), 4593 (P2)
248: 3820 (P1), 4792 (P2)
249: 4000 (P1), 5000 (P2)
>>>

now exiting runScriptInteractively...

Download demoEventModel.py

Figure: A event-based demographic model

[image: Users/bpeng1/simuPOP/simuPOP/doc/log/demoEventModel.png]

Predefined demographic models for human populations

The simuPOP.demography module currently defines the following models

	Out of Africa model for YRI, CEU and CHB populations (fig_Out_of_Africa),

OutOfAfricaModel(10000).plot('OutOfAfrica.png')

Figure: Out of Africa model for YRI, CEU, and CHB populations

[image: log/OutOfAfrica.png]

	The settlement of new world model for Mexican American
(fig_Settlement_of_New) (Gutenkunst, 2009, PLoS
Genetics). In this model, the simulated CHB and MX populations are mixed to
produce an admixed population at the last generation.

SettlementOfNewWorldModel(10000).plot('SettlementOfNewWorld.png')

Figure: Settlement of New World model for Mexican America population

[image: log/SettlementOfNewWorld.png]

	The demographic model developed by cosi (Schaffner, 2005, genome research).

CosiModel(20000).plot('Cosi.png')

Figure: Demographic models for African, Asian and European populations (cosi)

[image: log/Cosi.png]

These functions all accept a parameter scale. If specified, it will scale all
population sizes and generation numbers by the specified scaling factor. For
example

CosiModel(20000, scale=10)

will result in a demographic model that evolves 2000 instead of 20000
generations, with all population sizes reduced by a factor of 10. Note that the
burn-in period of the examples above are relatively short and you might need to
use a longer burn-in period (e.g. T=100,000 generations for a burn-in period of
about 80,000 generations).

Demographic model without predefined generations to evolve *

All migration models accept one or more operators that will be applied to the
population before population population changes are applied. The most frequently
application of this operator is to pass a migrator to the model, but we can also
pass an operator to terminate a demographic model under certain conditions. For
example, Example demoTerminate defines a demographic
model that starts with a burn-in stage with indefinite size and will stop if the
average allele frequency at segregating sites exceeds 0.1. It splits to two
equally sized subpopulations and expand rate a rate of 0.01 to size 2000 and
5000 respectively.

Example: A demographic model with a terminator

>>> import simuPOP as sim
simuPOP Version 1.1.9 : Copyright (c) 2004-2016 Bo Peng
Revision 4583 (Oct 10 2018) for Python 3.6.6 (64bit, 0thread)
Random Number Generator is set to mt19937 with random seed 0x81aae4a664e115de.
This is the standard short allele version with 256 maximum allelic states.
For more information, please visit http://simupop.sourceforge.net,
or email simupop-list@lists.sourceforge.net (subscription required).
>>> import simuPOP.demography as demo
>>>
>>> model = demo.MultiStageModel([
... demo.InstantChangeModel(N0=1000,
... ops=[
... sim.Stat(alleleFreq=sim.ALL_AVAIL, numOfSegSites=sim.ALL_AVAIL),
... # terminate if the average allele frequency of segregating sites
... # are more than 0.1
... sim.TerminateIf('sum([x[1] for x in alleleFreq.values() if '
... 'x[1] != 0])/(1 if numOfSegSites==0 else numOfSegSites) > 0.1')
...]
...),
... demo.ExponentialGrowthModel(N0=[0.5, 0.5], r=0.01, NT=[2000, 5000])
...]
...)
>>>
>>> pop = sim.Population(size=model.init_size, loci=100)
>>> pop.evolve(
... initOps=sim.InitSex(),
... preOps=sim.SNPMutator(u=0.001, v=0.001),
... matingScheme=sim.RandomMating(subPopSize=model),
... postOps=[
... sim.Stat(alleleFreq=sim.ALL_AVAIL, numOfSegSites=sim.ALL_AVAIL,
... popSize=True, step=50),
... sim.PyEval(r'"%d: %s, %.3f\n" % (gen, subPopSize, sum([x[1] for x '
... 'in alleleFreq.values() if x[1] != 0])/(1 if numOfSegSites == 0 '
... 'else numOfSegSites))', step=50)
...],
...)
0: [1000], 0.001
50: [1000], 0.047
100: [1000], 0.089
150: [738, 738], 0.128
200: [1218, 1218], 0.166
250: [2000, 2007], 0.199
300: [2000, 3310], 0.230
343
>>>

now exiting runScriptInteractively...

Download demoTerminate.py

Module simuPOP.sampling

Introduction

Sampling, in simuPOP term, is the action of extracting individuals from a large,
potentially multi-generational, population according to certain criteria. the
simuPOP.sampling module provides several classes and functions and allows
you to define more complicated sampling schemes by deriving from its these
class. For example, you can use drawRandomSample(pop, size=100) to select
100 random individuals from a population, or use
drawAffectedSibpairSample(pop, families=100) to select 100 pairs of affected
invididuals with their parents from a multi-generational population, or a age-
structured population with parents and offspring in the same generation.

The simuPOP.sampling module currently support random, case control,
affected sibpair, nuclear family and three-generation family sampling types, and
a combined sampling type that allows you to draw different types of samples. For
each sampling type X, a sampler class and two functions DrawXSample and
DrawXSamples are provided The first function returns a population with all
sampled individuals and the second function returns a list of sample
populations.

If you would like to define your own sampling type, you can derive your sampler
from one of the existing sampler classes. These sampler classes provide member
functions prepareSample, drawSample and drawSamples and you
typically only need to extend prepareSample of an appropriate base class.

Sampling individuals randomly (class RandomSampler, functions drawRandomSample and drawRandomSamples)

Functions drawRandomSample and drawRandomSamples draw random invidiauls
from a given population. If a simple number is given to parameter size,
population structure will be ignored so individuals will be drawn from all
subpopulations. If a list of numbers are given, this function will draw
specified numbers of individuals from each subpopulation. This function does not
need parental information. If your population does not have an ID field, you
will not be able to locate extracted individuals in the original population.

Example randomSample demonstrates how to draw a random
sample from the whole population, and from each subpopulation. Because sample
populations keep the population structure of the source population (this might
change when parameter subPops is used, see a later section for details), we
can use sample.subPopSizes() to check how many individuals are sampled from
each subpopulation.

Example: Draw random samples from a structured population

>>> import simuPOP as sim
>>> from simuPOP.sampling import drawRandomSample
>>> pop = sim.Population([2000]*5, loci=1)
>>> # sample from the whole population
>>> sample = drawRandomSample(pop, sizes=500)
>>> print(sample.subPopSizes())
(104, 105, 110, 81, 100)
>>> # sample from each subpopulation
>>> sample = drawRandomSample(pop, sizes=[100]*5)
>>> print(sample.subPopSizes())
(100, 100, 100, 100, 100)

now exiting runScriptInteractively...

Download randomSample.py

Sampling cases and controls (class CaseControlSampler, functions CaseControlSample and CaseControlSamples)

Functions drawCaseControlSample and drawCaseControlSamples draw cases
(affected individuals) and controls (unaffected invidiauls) from a given
population. If a simple number is given to parameter cases and controls,
population structure will be ignored so individuals will be drawn from all
subpopulations. If a list of numbers are given, this function will draw
specified number of cases and controls from each subpopulation.

Example caseControlSample demonstrates how to draw
multiple case-control samples from a population, and perform case-control
assocition tests using the stat function.

Example: Draw case control samples from a population and perform association test

>>> import simuPOP as sim
>>> from simuPOP.sampling import drawCaseControlSamples
>>> pop = sim.Population([10000], loci=5)
>>> sim.initGenotype(pop, freq=[0.2, 0.8])
>>> sim.maPenetrance(pop, loci=2, penetrance=[0.11, 0.15, 0.20])
>>> # draw multiple case control sample
>>> samples = drawCaseControlSamples(pop, cases=500, controls=500, numOfSamples=5)
>>> for sample in samples:
... sim.stat(sample, association=range(5))
... print(', '.join(['%.6f' % sample.dvars().Allele_ChiSq_p[x] for x in range(5)]))
...
0.694748, 0.333041, 0.001039, 0.078127, 0.774085
0.261750, 0.954592, 0.031830, 0.737788, 0.865679
0.954949, 0.371093, 0.092487, 0.622153, 0.075739
0.654721, 0.433848, 0.002859, 0.696375, 0.956630
0.439721, 1.000000, 0.069651, 0.471087, 0.238199

now exiting runScriptInteractively...

Download caseControlSample.py

Sampling Pedigrees (functions indexToID and plotPedigree)

If your sampling scheme involves parental information, you need to prepare your
population so that it has

	an ID field (usually 'ind_id') that stores a unique ID for each
individual.

	two information fields (usually 'father_id', and 'mother_id') that
stores the ID of parents of each individual. Although simuPOP supports one-
parent Pedigrees, this feature will not be discussed in this guide.

The preferred method to prepare such a population is to add information fields
ind_id, father_id and mother_id to a population and track ID based
Pedigrees during evolution. More specifically, you can use operators
IdTagger and PedigreeTagger to assign IDs and record parental
IDs of each offspring during mating. This method supports age-structured
population when parents and offspring can be stored in the same generation.

You can also use information fields father_idx and mother_idx and
operator ParentsTagger to track indexes of parents in the parental
generations. Before sampling, you can use function
indexToID to add needed information fields and convert
index based parental relationship to ID based relationshop. Because parents have
to stay in ancestral generations, this method does not support age-structured
population.

If you have R and rpy installed on your system, you can install the kinship
library of R and use it to analyze Pedigree. The simuPOP.sampling module
provides a function plotPedigree to use this library to plot Pedigrees.
Example plotPedigree demonstrates how to use function
sampling.indexToID to prepare a pedigree and how to use sampling.DrawPedigree to
plot it.

Figure fig_Pedigree plots a small three-generational
population with 15 individuals at each generation. It is pretty clear that
random mating produces bad pedigree structure because it is common that one
parent would have multiple spouses.

Sampling affected sibpairs (class AffectedSibpairSampler, functions drawAffectedSibpairSample(s))

An affected sibpair family consists of two parents and their affected offspring.
Such families are useful in linkage analysis because of high likelihood of
shared disease predisposing alleles between siblings. simuPOP.sampling
module provides functions drawAffectedSibpairSample and
drawAffectedSibpairSamples to draw such families from a population. Example
sampleAffectedSibpair draws two affected sibpair
from the pedigree created in Example plotPedigree, with
samples plotted in Figure fig_affectedSibpair.

Example: Draw affected sibpairs from a population

>>> import simuPOP as sim
>>> from simuPOP.sampling import indexToID
>>> pop = sim.Population(size=15, loci=5, infoFields=['father_idx', 'mother_idx'], ancGen=2)
>>> pop.evolve(
... preOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=[0.7, 0.3]),
...],
... matingScheme=sim.RandomMating(numOffspring=(sim.UNIFORM_DISTRIBUTION, 2, 4),
... ops=[sim.MendelianGenoTransmitter(), sim.ParentsTagger()]),
... postOps=sim.MaPenetrance(loci=3, penetrance=(0.1, 0.4, 0.7)),
... gen = 5
...)
5
>>> indexToID(pop, reset=True)
>>> # three information fields were added
>>> print(pop.infoFields())
('father_idx', 'mother_idx', 'ind_id', 'father_id', 'mother_id')
>>> # save this population for future use
>>> pop.save('log/pedigree.pop')
>>>
>>> from simuPOP.sampling import drawAffectedSibpairSample
>>> pop = sim.loadPopulation('log/pedigree.pop')
>>> sample = drawAffectedSibpairSample(pop, families=2)
Warning: number of requested Pedigrees 2 is greater than what exists (0).
Warning: not enough non-overlapping Pedigrees are found (requested 2, found 0).

now exiting runScriptInteractively...

Download sampleAffectedSibpair.py

Sampling nuclear families (class NuclearFamilySampler, functions drawNuclearFamilySample and drawNuclearFamilySamples)

A nuclear family consists of two parents and their offspring. Functions
drawNuclearFamilySample and drawNuclearFamilySamples to draw such
families from a population, with restrictions on number of offspring, number of
affected parents and number of affected offspring. Although fixed numbers could
be given, a range with minimal and maximal acceptable numbers are usually
provided. Example sampleNuclearFamily draws two
nuclear families from the pedigree created in Example plotPedigree. The samples are plotted in Figure fig_nuclearFamily.

Example: Draw nuclear families from a population

>>> import simuPOP as sim
>>> from simuPOP.sampling import drawNuclearFamilySample
>>> pop = sim.loadPopulation('log/pedigree.pop')
>>> sample = drawNuclearFamilySample(pop, families=2, numOffspring=(2,4),
... affectedParents=(1,2), affectedOffspring=(1, 3))
Warning: number of requested Pedigrees 2 is greater than what exists (0).
Warning: not enough non-overlapping Pedigrees are found (requested 2, found 0).
>>> # try to separate two families?
>>> sample.asPedigree()
>>> #= sim.Pedigree(sample, loci=sim.ALL_AVAIL, infoFields=sim.ALL_AVAIL)
>>> sample.addInfoFields('ped_id')
>>> # return size of families
>>> sz = sample.identifyFamilies(pedField='ped_id')
>>> print(sz)
()
>>> ped1 = sample.extractIndividuals(IDs=0, idField='ped_id')
>>> # print the ID of all individuals in the first pedigree
>>> print([ind.ind_id for ind in ped1.allIndividuals()])
[]

now exiting runScriptInteractively...

Download sampleNuclearFamily.py

Sampling three-generation families (class ThreeGenFamilySampler, functions drawThreeGenFamilySample and drawThreeGenFamilySamples)

A three-generation family consists of two parents, their common offspring,
offspring’s spouses, and their common offspring (grandchidren). individuals in
sampled families have either no or two parents. Functions
drawThreeGenFamilySample and drawThreeGenFamilySamples to draw such
families from a population, with restrictions on number of offspring, total
number of individuals and number of affected individuals in the Pedigree. These
parameters (numOffspring, pedSize and numAffected) could be a fixed
number of a range with minimal and maximal acceptable numbers. Example
sampleNuclearFamily draws two three generation
families from the pedigree created in Example plotPedigree. The samples are plotted in Figure fig_nuclearFamily.

Example: Draw three-generation families from a population

>>> import simuPOP as sim
>>> from simuPOP.sampling import drawThreeGenFamilySample
>>> pop = sim.loadPopulation('log/pedigree.pop')
>>> sample = drawThreeGenFamilySample(pop, families=2, numOffspring=(1, 3),
... pedSize=(8, 15), numOfAffected=(2, 5))

now exiting runScriptInteractively...

Download sampleThreeGenFamily.py

Sampling different types of samples (class CombinedSampler, functions drawCombinedSample and drawCombinedSamples)

Samples in real world studies sometimes do not have uniform types so it is
useful to draw samples of different types from the same population. Although it
is possible to draw samples using different functions and combine them, handling
of overlapping individuals, namely individuals who are chosen by multiple
samplers, can be a headache. The combined sampler of simuPOP.sampling is
designed to overcome this problem. This sampler takes a list of sampler objects
and apply them to a population sequentially. The extracted sample will not have
overlapping individuals.

Example combinedSampling draws an affected sibpair
family and a nuclear family from the pedigree created in Example
plotPedigree. The samples are plotted in Figure
combinedSampling.

Example: Draw different types of samples from a population

>>> import simuPOP as sim
>>> from simuPOP.sampling import drawCombinedSample, AffectedSibpairSampler, NuclearFamilySampler
>>> pop = sim.loadPopulation('log/pedigree.pop')
>>> sample = drawCombinedSample(pop, samplers = [
... AffectedSibpairSampler(families=1),
... NuclearFamilySampler(families=1, numOffspring=(2,4), affectedParents=(1,2), affectedOffspring=(1,3))
...])
Warning: number of requested Pedigrees 1 is greater than what exists (0).
Warning: not enough non-overlapping Pedigrees are found (requested 1, found 0).
Warning: number of requested Pedigrees 1 is greater than what exists (0).
Warning: not enough non-overlapping Pedigrees are found (requested 1, found 0).

now exiting runScriptInteractively...

Download combinedSampling.py

Sampling from subpopulations and virtual subpopulations *

Virtual subpopulations (VSPs) could be specified in the subPops parameter of
sampling classes and functions. This can be used to limit your samples to
individuals with certain properties. For example, you may want to match the age
of cases and controls in a case-control association study by selecting your
samples from a certain age group. For examples, Example samplingVSP draws 500 cases and 500 controls from two a VSP with individual
ages between 40 and 60.

Example: Draw samples from a virtual subpopulation.

>>> import simuPOP as sim
>>> # create an age-structured population with a disease
>>> import random
>>> pop = sim.Population(10000, loci=10, infoFields='age')
>>> sim.initGenotype(pop, freq=[0.3, 0.7])
>>> sim.initInfo(pop, lambda: random.randint(0, 70), infoFields='age')
>>> pop.setVirtualSplitter(sim.InfoSplitter(cutoff=(40, 60), field='age'))
>>> sim.maPenetrance(pop, loci=5, penetrance=(0.1, 0.2, 0.3))
>>> #
>>> from simuPOP.sampling import drawCaseControlSample
>>> sample = drawCaseControlSample(pop, cases=500, controls=500, subPops=[(0,1)])
>>> ageInSample = sample.indInfo('age')
>>> print(min(ageInSample), max(ageInSample))
40.0 59.0

now exiting runScriptInteractively...

Download samplingVSP.py

If a list of sample sizes is given, specified number of samples will be drawn
from each subpopulation. For example, if you have an age-structured population
when individuals with different ages have different risk to a disease, you might
want to draw affected individuals from different age groups and perform
association analyses. Function drawCaseControlSample cannot be used because
both groups are affected, but you can drawRandomSample from two VSPs defined
by age. Example samplingSeparateVSPs demonstrates
how to use this method.

Example: Sampling separately from different virtual subpopulations

>>> import simuPOP as sim
>>> # create an age-structured population with a disease
>>> import random
>>> pop = sim.Population(10000, loci=10, infoFields='age')
>>> sim.initGenotype(pop, freq=[0.3, 0.7])
>>> sim.initInfo(pop, lambda: random.randint(0, 70), infoFields='age')
>>> pop.setVirtualSplitter(sim.InfoSplitter(cutoff=(20, 40), field='age'))
>>> # different age group has different penetrance
>>> sim.maPenetrance(pop, loci=5, penetrance=(0.1, 0.2, 0.3), subPops=[(0,1)])
>>> sim.maPenetrance(pop, loci=5, penetrance=(0.2, 0.4, 0.6), subPops=[(0,2)])
>>> # count the number of affected individuals in each group
>>> sim.stat(pop, numOfAffected=True, subPops=[(0,1), (0,2)], vars='numOfAffected_sp')
>>> print(pop.dvars((0,1)).numOfAffected, pop.dvars((0,2)).numOfAffected)
668 2215
>>> #
>>> from simuPOP.sampling import drawRandomSample
>>> sample = drawRandomSample(pop, sizes=[500, 500], subPops=[(0,1), (0,2)])
>>> # virtual subpopulations are rearranged to different subpopulations.
>>> print(sample.subPopSizes())
(500, 500)

now exiting runScriptInteractively...

Download samplingSeparateVSPs.py

Module simuPOP.gsl

simuPOP makes use of many functions from the GUN Scientific Library. These
functions are used to generate random number and perform statistical tests
within simuPOP. Although these functions are not part of simuPOP, they can be
useful to users of simuPOP from time to time and it makes sense to expose these
functions directly to users.

Module simuPOP.gsl contains a number of GSL functions. Because only a
small proportion of GSL functions are used in simuPOP, this module is by no
means a comprehensive wrapper of GSL. Please refer to the simuPOP reference
manual for a list of functions included in this module, and the GSL manual for
more details. Because random number generation functions such as
gsl_ran_gamma are already provided in the simuPOP.RNG class (e.g.
getRNG.randGamma), they are not provided in this module.

A real world example

Previous chapters use a lot of examples to demonstrate individual simuPOP
features. However, it might not be clear how to integrate these features in
longer scripts that address real world problems, which may involve larger
populations, more complex genetic and demographic models and may run thousands
of replicates with different parameters. This chapter will show you, step by
step, how to write a complete simuPOP script that has been used in a real-world
research topic.

	Simulation scenario

	Demographic model

	Mutation and selection models

	Output statistics

	Initialize and evolve the population

	Option handling

Simulation scenario

Reich and Lander Reich2001a proposed a population genetics framework to model
the evolution of allelic spectra (the number and population frequency of alleles
at a locus). The model is based on the fact that human population grew quickly
from around 10,000 to 6 billion in 18,000 -150,000 years. His analysis showed
that at the founder population, both common and rare diseases have simple
spectra. After the sudden expansion of population size, the allelic spectra of
simple diseases become complex; while those of complex diseases remained simple.

This example is a simplified version of the simuCDCV.py script that
simulates this evolution process and observe the allelic spectra of both types
of diseases. The complete script is available at
http://simupop.sourceforge.net/cookbookthe simuPOP online cookbook. The results
are published in Peng2007, which has much more detailed discussion about the
simulations, and the parameters used.

Demographic model

The original paper used a very simple instant population growth model. Under the
model assumption, a population with an initial population size
would evolve generations, instantly expand its population size to
 and evolve another generations. Such a model can be
easily implemented as follows:

def ins_expansion(gen):
 'An instant population growth model'
 if gen < G0:
 return N0
 else:
 return N1

Other demographic models could be implemented similarly. For example, an
exponential population growth model that expand the population size from
 to in generations could be defined as

def exp_expansion(gen):
 'An exponential population growth model'
 if gen < G0:
 return N0
 else:
 rate = (math.log(N1) - math.log(N0))/G1
 return int(N0 * math.exp((gen - G0) * rate))

That is to say, we first solve from
 and then calculate
 for a given generation.

There is a problem here: the above definitions treat N0, G0, N1 and
G1 as global variables. This is OK for small scripts but is certainly not a
good idea for larger scripts especially when different parameters will be used.
A better way is to wrap these functions by another function that accept N0,
G0, N1 and G1 as parameters. That is demonstrated in Example
reichDemo where a function demo_model is defined to
return either an instant or an exponential population growth demographic
function.

Example: A demographic function producer

>>> import simuPOP as sim
>>> import math
>>> def demo_model(model, N0=1000, N1=100000, G0=500, G1=500):
... '''Return a demographic function
... model: linear or exponential
... N0: Initial sim.population size.
... N1: Ending sim.population size.
... G0: Length of burn-in stage.
... G1: Length of sim.population expansion stage.
... '''
... def ins_expansion(gen):
... if gen < G0:
... return N0
... else:
... return N1
... rate = (math.log(N1) - math.log(N0))/G1
... def exp_expansion(gen):
... if gen < G0:
... return N0
... else:
... return int(N0 * math.exp((gen - G0) * rate))
... if model == 'instant':
... return ins_expansion
... elif model == 'exponential':
... return exp_expansion
...
>>> # when needed, create a demographic function as follows
>>> demo_func = demo_model('exponential', 1000, 100000, 500, 500)
>>> # sim.population size at generation 700
>>> print(demo_func(700))
6309

now exiting runScriptInteractively...

Download reichDemo.py

Note

The defined demographic functions return the total population size (a number) at
each generation beacuse no subpopulation is considered. A list of subpopulation
sizes should be returned if there are more than one subpopulations.

Mutation and selection models

The thoretical model empolyees an infinite allele model where there is a single
wild type allele and an infinite number of disease alleles. Each mutation would
introduce a new disease allele and there is no back mutation (mutation from
disease allele to wild type allele).

This mutation model can be mimicked by a -allele model with
resaonably large . We initialize all alleles to 0 which is the wild
type () and all other alleles are considered as disease alleles
(). Because an allele in a allele mutation model can mutate
to any other allele with equal probability, since there are many more disease
alleles than the wild type allele. If we choose a smaller (e.g.
), recurrent and back mutations can on longer be ignored but it
would be interesting to simulate such cases because they are more realistic than
the infinite allele model in some cases.

A -allele model can be simulated using the KAlleleMutator
operator which accepts a mutation rate and a maximum allelic state as
parameters.

KAlleleMutator(k=k, rates=mu)

Because there are many possible disease alleles, a multi-allelic selector
(MaSelector) could be used to select against the disease alleles. This
operator accept a single or a list of wild type alleles ([0] in this case)
and treat all other alleles as disease alleles. A penetrance table is needed
which specified the fitness of each individual when they have 0, 1 or 2 disease
alleles respectively. In this example, we assume a recessive model in which only
genotype causes genetic disadvantages. If we assume a selection
pressure parameter , the operator to use is

MaSelector(loci=0, wildtype=0, penetrance=[1, 1, 1-s])

Note that the use of this selector requires a population information field
fitness.

This example uses a single-locus selection model but the complete script allows
the use of different kinds of multi-locus selection model. If we assume a
multiplicative multi-locus selection model where fitness values at different
loci are combined (multiplied), a multi-locus selection model
(MlSelector) could be used as follows:

MlSelector([
 MaSelector(loci=loc1, fitness=[1,1,1-s1], wildtype=0),
 MaSelector(loci=loc2, fitness=[1,1,1-s2], wildtype=0)],
 mode=MULTIPLICATIVE
)

These multi-locus model treat disease alleles at different loci more or less
independently. If more complex multi-locus models (e.g. models involve gene -
gene and/or gene - interaction) are involved, a multi-locus selector that uses a
multi-locus penetrance table could be used.

Output statistics

We first want to output total disease allele frequency of each locus. This is
easy because Stat() operator can calculate allele frequency for us.
What we need to do is use a Stat() operator to calculate allele
frequency and get the result from population variable alleleFreq. Because
allele frequcies add up to one, we can get the total disease allele frequency
using the allele frequency of the wild type allele 0
(). The actual code would look more or
less like this:

Stat(alleleFreq=[0,1]),
PyEval(r'"%.2f" % (1-alleleFreq[0][0])')

We are also interested in the effective number of alleles Reich2001a at a locus.
Because simuPOP does not provide an operator or function to calculate this
statistic, we will have to calculate it manually. Fortunately, this is not
difficult because effective number of alleles can be calculated from existing
allele frequencies, using formula

where is the allele frequency of disease allele .

A quick-and-dirty way to output at a locus (e.g. locus 0) can be:

PyEval('1./sum([(alleleFreq[0][x]/(1-alleleFreq[0][0]))**2 for x in alleleFreq[0].keys() if x != 0])')

but this expression looks complicated and does not handle the case when
. A more robust method would involve the stmts parameter of
PyEval, which will be evaluated before parameter expr:

PyEval(stmts='''if alleleFreq[0][0] == 1:
 ne = 0
else:
 freq = [freq[0][x] for x in alleleFreq[0].keys() if x != 0]
 ne = 1./sum([(f/(1-alleleFreq[0][0])**2 for x in freq])
''', expr=r'"%.3f" % ne')

However, this piece of code does not look nice with the multi-line string, and
the operator is not really reusable (only valid for locus o). It makes sense to
define a function to calculate generally:

def ne(pop, loci):
 ' calculate effective number of alleles at given loci'
 stat(pop, alleleFreq=loci)
 ne = {}
 for loc in loci:
 freq = [y for x,y in pop.dvars().alleleFreq[loc].iteritems() if x != 0]
 sumFreq = 1 - pop.dvars().alleleFreq[loc][0]
 if sumFreq == 0:
 ne[loc] = 0
 else:
 ne[loc] = 1. / sum([(x/sumFreq)**2 for x in freq])
 # save the result to the population.
 pop.dvars().ne = ne
 return True

When it is needed to calculate effective number of alleles, a Python operator
that uses this function can be used. For example, operator

PyOperator(func=ne, param=[0], step=5)
PyEval(r'"%.3f" % ne[0]', step=5)

would calculate effective number of alleles at locus 0 and output it.

The biggest difference between PyEval and PyOperator is that
PyOperator is no longer evaluated in the population’s local namespace.
You will have to get the variables explicitly using the pop.dvars()
function, and the results have to be explicitly saved to the population’s local
namespace.

The final implementation, as a way to demonstrate how to define a new statistics
that hides all the details, defines a new operator by inheriting a class from
PyOperator. The resulting operator could be used as a regular operator
(e.g., ne(loci=[0])). A function Ne is also defined as the function form
of this operator. The code is listed in Example reichstat

Example: A customized operator to calculate effective number of alleles

>>> import simuPOP as sim
>>> class ne(sim.PyOperator):
... '''Define an operator that calculates effective number of
... alleles at given loci. The result is saved in a population
... variable ne.
... '''
... def __init__(self, loci, *args, **kwargs):
... self.loci = loci
... sim.PyOperator.__init__(self, func=self.calcNe, *args, **kwargs)
... #
... def calcNe(self, pop):
... sim.stat(pop, alleleFreq=self.loci)
... ne = {}
... for loc in self.loci:
... freq = pop.dvars().alleleFreq[loc]
... sumFreq = 1 - pop.dvars().alleleFreq[loc][0]
... if sumFreq == 0:
... ne[loc] = 0
... else:
... ne[loc] = 1. / sum([(freq[x]/sumFreq)**2 for x in list(freq.keys()) if x != 0])
... # save the result to the sim.Population.
... pop.dvars().ne = ne
... return True
...
>>> def Ne(pop, loci):
... '''Function form of operator ne'''
... ne(loci).apply(pop)
... return pop.dvars().ne
...
>>> pop = sim.Population(100, loci=[10])
>>> sim.initGenotype(pop, freq=[.2] * 5)
>>> print(Ne(pop, loci=[2, 4]))
{2: 3.9565470135154768, 4: 3.948841408365935}

now exiting runScriptInteractively...

Download reichstat.py

Initialize and evolve the population

With appropriate operators to perform mutation, selection and output statistics,
it is relatively easy to write a simulator to perform a simulation. This
simulator would create a population, initialize alleles with an initial allic
spectrum, and then evolve it according to specified demographic model. During
the evolution, mutation and selection will be applied, statistics will be
calculated and outputed.

Example: Evolve a population subject to mutation and selection

>>> import simuPOP as sim
>>>
>>>
>>> def simulate(model, N0, N1, G0, G1, spec, s, mu, k):
... '''Evolve a sim.Population using given demographic model
... and observe the evolution of its allelic spectrum.
... model: type of demographic model.
... N0, N1, G0, G1: parameters of demographic model.
... spec: initial allelic spectrum, should be a list of allele
... frequencies for each allele.
... s: selection pressure.
... mu: mutation rate.
... k: k for the k-allele model
... '''
... demo_func = demo_model(model, N0, N1, G0, G1)
... pop = sim.Population(size=demo_func(0), loci=1, infoFields='fitness')
... pop.evolve(
... initOps=[
... sim.InitSex(),
... sim.InitGenotype(freq=spec, loci=0)
...],
... matingScheme=sim.RandomMating(subPopSize=demo_func),
... postOps=[
... sim.KAlleleMutator(k=k, rates=mu),
... sim.MaSelector(loci=0, fitness=[1, 1, 1 - s], wildtype=0),
... ne(loci=[0], step=100),
... sim.PyEval(r'"%d: %.2f\t%.2f\n" % (gen, 1 - alleleFreq[0][0], ne[0])',
... step=100),
...],
... gen = G0 + G1
...)
...
>>> simulate('instant', 1000, 10000, 500, 500, [0.9]+[0.02]*5, 0.01, 1e-4, 200)
0: 0.09 4.91
100: 0.12 2.63
200: 0.09 1.22
300: 0.02 2.85
400: 0.02 2.12
500: 0.05 1.02
600: 0.06 1.51
700: 0.08 1.58
800: 0.09 1.80
900: 0.08 1.79

now exiting runScriptInteractively...

Download reichEvolve.py

Option handling

Everything seems to be perfect until you need to

	Run more simulations with different parameters such as initial population
size and mutaion rate. This requires the script to get its parameters from
command line (or a configuration file) and executes in batch mode, perhaps on a
cluster system.

	Allow users who are not familiar with the script to run it. This would better
be achieved by a graphical user interface.

	Allow other Python scripts to import your script and run the simulation
function directly.

Although a number of Python modules such as getopt are available, the
simuPOP simuOpt module is especially designed to allow a simuPOP script
to be run both in batch and in GUI mode, in standard and optimized mode. Example
reich makes use of this module.

Example: A complete simulation script

#!/usr/bin/env python
#
Author: Bo Peng
Purpose: A real world example for simuPOP user's guide.
#
'''
Simulation the evolution of allelic spectra (number and frequencies
of alleles at a locus), under the influence of sim.population expansion,
mutation, and natural selection.
'''
import simuOpt
simuOpt.setOptions(quiet=True, alleleType='long')
import simuPOP as sim
import sys, types, os, math
options = [
 {'name': 'demo',
 'default': 'instant',
 'label': 'Population growth model',
 'description': 'How does a sim.Population grow from N0 to N1.',
 'type': ('chooseOneOf', ['instant', 'exponential']),
 },
 {'name': 'N0',
 'default': 10000,
 'label': 'Initial sim.population size',
 'type': 'integer',
 'description': '''Initial sim.population size. This size will be maintained
 till the end of burnin stage''',
 'validator': simuOpt.valueGT(0)
 },
 {'name': 'N1',
 'default': 100000,
 'label': 'Final sim.population size',
 'type': 'integer',
 'description': 'Ending sim.population size (after sim.population expansion)',
 'validator': simuOpt.valueGT(0)
 },
 {'name': 'G0',
 'default': 500,
 'label': 'Length of burn-in stage',
 'type': 'integer',
 'description': 'Number of generations of the burn in stage.',
 'validator': simuOpt.valueGT(0)
 },
 {'name': 'G1',
 'default': 1000,
 'label': 'Length of expansion stage',
 'type': 'integer',
 'description': 'Number of geneartions of the sim.population expansion stage',
 'validator': simuOpt.valueGT(0)
 },
 {'name': 'spec',
 'default': [0.9] + [0.02]*5,
 'label': 'Initial allelic spectrum',
 'type': 'numbers',
 'description': '''Initial allelic spectrum, should be a list of allele
 frequencies, for allele 0, 1, 2, ... respectively.''',
 'validator': simuOpt.valueListOf(simuOpt.valueBetween(0, 1)),
 },
 {'name': 's',
 'default': 0.01,
 'label': 'Selection pressure',
 'type': 'number',
 'description': '''Selection coefficient for homozygtes (aa) genotype.
 A recessive selection model is used so the fitness values of
 genotypes AA, Aa and aa are 1, 1 and 1-s respectively.''',
 'validator': simuOpt.valueGT(-1),
 },
 {'name': 'mu',
 'default': 1e-4,
 'label': 'Mutation rate',
 'type': 'number',
 'description': 'Mutation rate of a k-allele mutation model',
 'validator': simuOpt.valueBetween(0, 1),
 },
 {'name': 'k',
 'default': 200,
 'label': 'Maximum allelic state',
 'type': 'integer',
 'description': 'Maximum allelic state for a k-allele mutation model',
 'validator': simuOpt.valueGT(1),
 },
]

def demo_model(type, N0=1000, N1=100000, G0=500, G1=500):
 '''Return a demographic function
 type: linear or exponential
 N0: Initial sim.population size.
 N1: Ending sim.population size.
 G0: Length of burn-in stage.
 G1: Length of sim.population expansion stage.
 '''
 rate = (math.log(N1) - math.log(N0))/G1
 def ins_expansion(gen):
 if gen < G0:
 return N0
 else:
 return N1

 def exp_expansion(gen):
 if gen < G0:
 return N0
 else:
 return int(N0 * math.exp((gen - G0) * rate))

 if type == 'instant':
 return ins_expansion
 elif type == 'exponential':
 return exp_expansion

class ne(sim.PyOperator):
 '''Define an operator that calculates effective number of
 alleles at given loci. The result is saved in a population
 variable ne.
 '''
 def __init__(self, loci, *args, **kwargs):
 self.loci = loci
 sim.PyOperator.__init__(self, func=self.calcNe, *args, **kwargs)

 def calcNe(self, pop):
 sim.stat(pop, alleleFreq=self.loci)
 ne = {}
 for loc in self.loci:
 freq = pop.dvars().alleleFreq[loc]
 sumFreq = 1 - pop.dvars().alleleFreq[loc][0]
 if sumFreq == 0:
 ne[loc] = 0
 else:
 ne[loc] = 1. / sum([(freq[x]/sumFreq)**2 for x in list(freq.keys()) if x != 0])
 # save the result to the sim.Population.
 pop.dvars().ne = ne
 return True

def simuCDCV(model, N0, N1, G0, G1, spec, s, mu, k):
 '''Evolve a sim.Population using given demographic model
 and observe the evolution of its allelic spectrum.
 model: type of demographic model.
 N0, N1, G0, G1: parameters of demographic model.
 spec: initial allelic spectrum, should be a list of allele
 frequencies for each allele.
 s: selection pressure.
 mu: mutation rate.
 k: maximum allele for the k-allele model
 '''
 demo_func = demo_model(model, N0, N1, G0, G1)
 print(demo_func(0))
 pop = sim.Population(size=demo_func(0), loci=1, infoFields='fitness')
 pop.evolve(
 initOps=[
 sim.InitSex(),
 sim.InitGenotype(freq=spec, loci=0)
],
 matingScheme=sim.RandomMating(subPopSize=demo_func),
 postOps=[
 sim.KAlleleMutator(rates=mu, k=k),
 sim.MaSelector(loci=0, fitness=[1, 1, 1 - s], wildtype=0),
 ne(loci=(0,), step=100),
 sim.PyEval(r'"%d: %.2f\t%.2f\n" % (gen, 1 - alleleFreq[0][0], ne[0])',
 step=100),
],
 gen = G0 + G1
)
 return pop

if __name__ == '__main__':
 # get parameters
 par = simuOpt.Params(options, __doc__)
 if not par.getParam():
 sys.exit(1)

 if not sum(par.spec) == 1:
 print('Initial allelic spectrum should add up to 1.')
 sys.exit(1)
 # save user input to a configuration file
 par.saveConfig('simuCDCV.cfg')
 #
 simuCDCV(*par.asList())

Download simuCDCV.py

Example reich uses a programming style that is used by almost all
simuPOP scripts. I highly recommend this style because it makes your script
seld-documentary and work well under a variety of environments. A script written
in this style follows the following order:

	First comment block

The first line of the script should always be

#!/usr/bin/env python

This line tells a Unix shell which program should be used to process this script
if the script to set to be executable. This line is ignored under windows. It is
customary to put author and date information at the top of a script as Python
comments.

	Module doc string

The first string in a script is the module docstring, which can be referred by
variable __doc__ in the script. It is a good idea to describe what this
script does in detail here. As you will see later, this docstring will be used
in the simuOpt.getParam() function and be outputed in the usage information
of the script.

	Loading simuPOP and other Python modules

simuPOP and other modules are usually imported after module docstring. This is
where you specify which simuPOP module to use. Although a number of parameters
could be used, usually only alleleType is specified because other parameters
such as gui and optimized should better be controlled from command line.

	Parameter description list

A list of parameter description dictionaries are given here. This list specifies
what parameters will be used in this script and describes the type, default
value, name of command line option, label of the parameter in the parameter
input dialog in detail. Although some directionary items can be ignored, it is a
good practice to give detailed information about each parameter here.

	Helper functions and classes

Helper functions and classes are given before the main simulation function.

	Main simulation function

The main simulation function preforms the main functionality of the whole
script. It is written as a function so that it can be imported and executed by
another script. The parameter processing part of the script would be ignored in
this case.

	Script execution part conditioned by __name__ == '__main__'

The execution part of a script should always be inside of a if __name__ ==
'__main__' block so that the script will not be executed when it is imported
by another script. The first few lines of this execution block are almost always

par = simuOpt.Params(options, __doc__)
if not par.getParam():
 sys.exit(1)

which creates a simuOpt object and tries to get parameters from command line
option, a configuration file, a parameter input dialog or interactive user
input, depending on how this script is executed. Optionally, you can use

par.saveConfig('file.cfg')

to save the current configuration to a file so that the same parameters could be
retrieved later using parameter --config file.cfg.

After simply parameter validation, the main simulation function can be called.
This example uses simuCDCV(*par.asList()) because the parameter list in the
par object match the parameter list of function simuCDCV exactly. If
there are a large number of parameters, it may be better to pass the
simuOpt object directly in the main simulation function.

The script written in this style could be executed in a number of ways.

	If a user executes the script directly, a Tkinter or wxPython dialog will be
displayed for users to input parameters. This parameter is shown in Figure
fig_simuCDCV_dialog.

Figure: Parameter input dialog of the simuCDCV script

[image: Users/bpeng1/simuPOP/simuPOP/doc/figures/simuCDCV.png]

	The help message of this script could be displayed using the Help button of
the parameter input dialog, or using command simuCDCV.py -h.

	Using parameter --gui=False, the script will be run in batch mode. You
can specify parameters using

simuCDCV.py --gui=False --config file.cfg

if a parameter file is available, or use command line options such as

simuCDCV.py --gui=False --demo='instant' --N0=10000 --N1=100000 \
 --G0=500 --G1=500 --spec='[0.9]+[0.02]*5' --s=0.01 \
 --mu='1e-4' --k=200

Note that parameters with useDefault set to True can be ignored if the
default parameter is used. In addition, parameter --optimized could be used
to load the optimized version of a simuPOP module. For this particular
configuration, the optimized module is 30% faster (62s vs. 40s) than the
standard module.

	The simulation function could be imported to another script as follows

from simuCDCV import simuCDCV
simuCDCV(model='instant', N0=10000, N1=10000, G0=500, G1=500,
 spec=[0.9]+[0.02]*5, s=0.01, mu=1e-4, k=200)

document

Front Matter

Abstract

simuPOP is a general-purpose individual-based forward-time population genetics
simulation environment. Unlike coalescent-based programs, simuPOP evolves
populations forward in time, subject to arbitrary number of genetic and
environmental forces such as mutation, recombination, migration and
population/subpopulation size changes. In contrast to competing applications
that use command-line options or configuration files to direct the execution of
a limited number of predefined evolutionary scenarios, users of simuPOP’s
scripting interface could make use of many of its unique features, such as
customized chromosome types, arbitrary nonrandom mating schemes, virtual
subpopulations, information fields and Python operators, to construct and study
almost arbitrarily complex evolutionary scenarios.

simuPOP is provided as a number of Python modules, which consist of a large
number of Python objects and functions, including population, mating schemes,
operators (objects that manipulate populations) and simulators to coordinate the
evolutionary processes. It is the users’ responsibility to write a Python script
to glue these pieces together and form a simulation. At a more user-friendly
level, an increasing number of functions and scripts contributed by simuPOP
users is available in the online simuPOP cookbook. They provide useful functions
for different applications (e.g. load and manipulate HapMap samples, import and
export files from another application) and allow users who are unfamiliar with
simuPOP to perform a large number of simulations ranging from basic population
genetics models to generating datasets under complex evolutionary scenarios.

This document provides complete references to all classes and functions of
simuPOP and its utility modules. Please refer to the simuPOP user’s guide for
a detailed introduction to simuPOP concepts, and a number of examples on how to
use simuPOP to perform various simulations. All resources, including a pdf
version of this guide and a mailing list can be found at the simuPOP homepage
http://simupop.sourceforge.net.

How to cite simuPOP:

Bo Peng and Marek Kimmel (2005) simuPOP: a forward-time population genetics
simulation environment. bioinformatics, 21 (18): 3686-3687.

Bo Peng and Christopher Amos (2008) Forward-time simulations of nonrandom mating
populations using simuPOP. bioinformatics, 24 (11): 1408-1409.

simuPOP Components

	Individual, Population, pedigree and Simulator
	class GenoStruTrait

	class Individual

	class Population

	class Pedigree

	class Simulator

	Virtual splitters
	class BaseVspSplitter

	class SexSplitter

	class AffectionSplitter

	class InfoSplitter

	class ProportionSplitter

	class RangeSplitter

	class GenotypeSplitter

	class CombinedSplitter

	class ProductSplitter

	Mating Schemes
	class MatingScheme

	class HomoMating

	class HeteroMating

	class ConditionalMating

	class PedigreeMating

	class SequentialParentChooser

	class SequentialParentsChooser

	class RandomParentChooser

	class RandomParentsChooser

	class PolyParentsChooser

	class CombinedParentsChooser

	class PyParentsChooser

	class OffspringGenerator

	class ControlledOffspringGenerator

	Pre-defined mating schemes
	class CloneMating

	class RandomSelection

	class RandomMating

	class MonogamousMating

	class PolygamousMating

	class HaplodiploidMating

	class SelfMating

	class HermaphroditicMating

	class ControlledRandomMating

	Utility Classes
	class WithArgs

	class WithMode

	class RNG

	class WeightedSampler

	Global functions
	Function closeOutput

	Function describeEvolProcess

	Function loadPopulation

	Function loadPedigree

	Function moduleInfo

	Function getRNG

	Function setRNG

	Function setOptions

	Function turnOnDebug

	Function turnOffDebug

Individual, Population, pedigree and Simulator

class GenoStruTrait

	
class GenoStruTrait

	All individuals in a population share the same genotypic properties
such as number of chromosomes, number and position of loci, names
of markers, chromosomes, and information fields. These properties
are stored in this GenoStruTrait class and are accessible
from both Individual and Population classes.
Currently, a genotypic structure consists of

	Ploidy, namely the number of homologous sets of chromosomes, of a
population. Haplodiploid population is also supported.

	Number of chromosomes and number of loci on each chromosome.

	Positions of loci, which determine the relative distance between
loci on the same chromosome. No unit is assumed so these
positions can be ordinal (1, 2, 3, …, the default),
in physical distance (bp, kb or mb), or in map
distance (e.g. centiMorgan) depending on applications.

	Names of alleles, which can either be shared by all loci or be
specified for each locus.

	Names of loci and chromosomes.

	Names of information fields attached to each individual.

In addition to basic property access functions, this class provides
some utility functions such as locusByName, which looks up a
locus by its name.

	
GenoStruTrait()

	A GenoStruTrait object is created with the construction
of a Population object and cannot be initialized
directly.

	
absLocusIndex(chrom, locus)

	return the absolute index of locus locus on chromosome
chrom. c.f. chromLocusPair.

	
alleleName(allele, locus=0)

	return the name of allele allele at lcous specified by the
alleleNames parameter of the Population function.
locus could be ignored if alleles at all loci share the same
names. If the name of an allele is unspecified, its value
('0', '1', '2', etc) is returned.

	
alleleNames(locus=0)

	return a list of allele names at locus given by the
alleleNames parameter of the Population function.
locus could be ignored if alleles at all loci share the same
names. This list does not have to cover all possible allele
states of a population so alleleNames()[``*allele*]`` might
fail (use alleleNames(``*allele*)`` instead).

	
chromBegin(chrom)

	return the index of the first locus on chromosome chrom.

	
chromByName(name)

	return the index of a chromosome by its name.

	
chromEnd(chrom)

	return the index of the last locus on chromosome chrom plus 1.

	
chromLocusPair(locus)

	return the chromosome and relative index of a locus using its
absolute index locus. c.f. absLocusIndex.

	
chromName(chrom)

	return the name of a chromosome chrom.

	
chromNames()

	return a list of the names of all chromosomes.

	
chromType(chrom)

	return the type of a chromosome chrom (CUSTOMIZED,
AUTOSOME, CHROMOSOME_X, CHROMOSOME_Y or
MITOCHONDRIAL.

	
chromTypes()

	return the type of all chromosomes (CUSTOMIZED,
AUTOSOME, CHROMOSOME_X, CHROMOSOME_Y, or
MITOCHONDRIAL).

	
indexesOfLoci(loci=ALL_AVAIL)

	return the indexes of loci with positions positions (list of
(chr, pos) pairs). Raise a ValueError if any of the
loci cannot be found.

	
infoField(idx)

	return the name of information field idx.

	
infoFields()

	return a list of the names of all information fields of the
population.

	
infoIdx(name)

	return the index of information field name. Raise an
IndexError if name is not one of the information
fields.

	
lociByNames(names)

	return the indexes of loci with names names. Raise a
ValueError if any of the loci cannot be found.

	
lociDist(locus1, locus2)

	Return the distance between loci locus1 and locus2 on the
same chromosome. A negative value will be returned if locus1
is after locus2.

	
lociNames()

	return the names of all loci specified by the lociNames
parameter of the Population function. An empty list
will be returned if lociNames was not specified.

	
lociPos()

	return the positions of all loci, specified by the lociPos
prameter of the Population function. The default
positions are 1, 2, 3, 4, … on each chromosome.

	
locusByName(name)

	return the index of a locus with name name. Raise a
ValueError if no locus is found. Note that empty
strings are used for loci without name but you cannot lookup
such loci using this function.

	
locusName(locus)

	return the name of locus locus specified by the lociNames
parameter of the Population function. An empty string
will be returned if no name has been given to locus locus.

	
locusPos(locus)

	return the position of locus locus specified by the lociPos
parameter of the Population function.

	
numChrom()

	return the number of chromosomes.

	
numLoci(chrom)

	return the number of loci on chromosome chrom.

	
numLoci()

	return a list of the number of loci on all chromosomes.

	
ploidy()

	return the number of homologous sets of chromosomes, specified
by the ploidy parameter of the Population function.
Return 2 for a haplodiploid population because two sets of
chromosomes are stored for both males and females in such a
population.

	
ploidyName()

	return the ploidy name of this population, can be one of
haploid, diploid, haplodiploid, triploid,
tetraploid or #-ploid where # is the ploidy number.

	
totNumLoci()

	return the total number of loci on all chromosomes.

class Individual

	
class Individual

	A Population consists of individuals with the same
genotypic structure. An Individual object cannot be
created independently, but refences to inidividuals can be
retrieved using member functions of a Population object.
In addition to structural information shared by all individuals in
a population (provided by class GenoStruTrait), the
Individual class provides member functions to get and set
genotype, sex, affection status and information fields of
an individual.

Genotypes of an individual are stored sequentially and can be
accessed locus by locus, or in batch. The alleles are arranged by
position, chromosome and ploidy. That is to say, the first allele
on the first chromosome of the first homologous set is followed by
alleles at other loci on the same chromsome, then markers on the
second and later chromosomes, followed by alleles on the second
homologous set of the chromosomes for a diploid individual. A
consequence of this memory layout is that alleles at the same locus
of a non-haploid individual are separated by
Individual::totNumLoci() loci. It is worth noting that access
to invalid chromosomes, such as the Y chromosomes of female
individuals, is not restricted.

	
Individual()

	An Individual object cannot be created directly. It has
to be accessed from a Population object using functions
such as Population::Individual(idx).

	
affected()

	Return True if this individual is affected.

	
allele(idx, ploidy=-1, chrom=-1)

	return the current allele at a locus, using its absolute index
idx. If a ploidy ploidy and/or a chromosome indexes is
given, idx is relative to the beginning of specified
homologous copy of chromosomes (if chrom=-1) or the beginning
of the specified homologous copy of specified chromosome (if
chrom >= 0).

	
alleleChar(idx, ploidy=-1, chrom=-1)

	return the name of allele(idx, ploidy, chrom). If idx is
invalid (e.g. second homologus copy of chromosome Y), ‘_’ is
returned.

	
alleleLineage(idx, ploidy=-1, chrom=-1)

	return the lineage of the allele at a locus, using its absolute
index idx. If a ploidy ploidy and/or a chromosome indexes is
given, idx is relative to the beginning of specified
homologous copy of chromosomes (if chrom=-1) or the beginning
of the specified homologous copy of specified chromosome (if
chrom >= 0). This function returns 0 for modules without
lineage information.

	
__cmp__(rhs)

	a python function used to compare the individual objects

	
genotype(ploidy=ALL_AVAIL, chroms=ALL_AVAIL)

	return an editable array (a carray object) that represents
all alleles of an individual. If ploidy or chroms is given,
only alleles on the specified chromosomes and homologous copy of
chromosomes will be returned. If multiple chromosomes are
specified, there should not be gaps between chromosomes. This
function ignores type of chromosomes so it will return unused
alleles for sex and mitochondrial chromosomes.

	
info(field)

	Return the value of an information field filed (by index or
name). ind.info(name) is equivalent to ind.name although
the function form allows the use of indexes of information
fieldes.

	
lineage(ploidy=ALL_AVAIL, chroms=ALL_AVAIL)

	return an editable array (a carray_lineage object) that
represents the lineages of all alleles of an individual. If
ploidy or chroms is given, only lineages on the specified
chromosomes and homologous copy of chromosomes will be returned.
If multiple chromosomes are specified, there should not be gaps
between chromosomes. This function ignores type of chromosomes
so it will return lineage of unused alleles for sex and
mitochondrial chromosomes. A None object will be returned
for modules without lineage information.

	
mutants(ploidy=ALL_AVAIL, chroms=ALL_AVAIL)

	return an itertor that iterate through all mutants (non-zero
alleles) of an individual. Each mutant is presented as a tuple
of (index, value) where index is the index of mutant ranging
from zero to totNumLoci() * ploidy() - 1, so you will have to
adjust indexes to check multiple alleles at a locus. If ploidy
or chroms is given, only alleles on the specified chromosomes
and homologous copy of chromosomes will be iterated. If multiple
chromosomes are specified, there should not be gaps between
chromosomes. This function ignores type of chromosomes so it
will return unused alleles for sex and mitochondrial
chromosomes.

	
setAffected(affected)

	set affection status to affected (True or False).

	
setAllele(allele, idx, ploidy=-1, chrom=-1)

	set allele allele to a locus, using its absolute index idx.
If a ploidy ploidy and/or a chromosome indexes are given,
idx is relative to the beginning of specified homologous copy
of chromosomes (if chrom=-1) or the beginning of the specified
homologous copy of specified chromosome (if chrom >= 0).

	
setAlleleLineage(lineage, idx, ploidy=-1, chrom=-1)

	set lineage lineage to an allele, using its absolute index
idx. If a ploidy ploidy and/or a chromosome indexes are
given, idx is relative to the beginning of specified
homologous copy of chromosomes (if chrom=-1) or the beginning
of the specified homologous copy of specified chromosome (if
chrom >= 0). This function does nothing for modules without
lineage information.

	
setGenotype(geno, ploidy=ALL_AVAIL, chroms=ALL_AVAIL)

	Fill the genotype of an individual using a list of alleles
geno. If parameters ploidy and/or chroms are specified,
alleles will be copied to only all or specified chromosomes on
selected homologous copies of chromosomes. geno will be
reused if its length is less than number of alleles to be
filled. This function ignores type of chromosomes so it will set
genotype for unused alleles for sex and mitochondrial
chromosomes.

	
setInfo(value, field)

	set the value of an information field field (by index or name)
to value. ind.setInfo(value, field) is equivalent to
ind.field = value although the function form allows the use
of indexes of information fieldes.

	
setLineage(lineage, ploidy=ALL_AVAIL, chroms=ALL_AVAIL)

	Fill the lineage of an individual using a list of IDs lineage.
If parameters ploidy and/or chroms are specified, lineages
will be copied to only all or specified chromosomes on selected
homologous copies of chromosomes. lineage will be reused if
its length is less than number of allelic lineage to be filled.
This function ignores type of chromosomes so it will set lineage
to unused alleles for sex and mitochondrial chromosomes. It does
nothing for modules without lineage information.

	
setSex(sex)

	set individual sex to MALE or FEMALE.

	
sex()

	return the sex of an individual, 1 for male and 2 for
female.

class Population

	
class Population

	A simuPOP population consists of individuals of the same genotypic
structure, organized by generations, subpopulations and virtual
subpopulations. It also contains a Python dictionary that is used
to store arbitrary population variables.

In addition to genotypic structured related functions provided by
the GenoStruTrait class, the population class provides a
large number of member functions that can be used to

	Create, copy and compare populations.

	Manipulate subpopulations. A population can be divided into
several subpopulations. Because individuals only mate with
individuals within the same subpopulation, exchange of genetic
information across subpopulations can only be done through
migration. A number of functions are provided to access
subpopulation structure information, and to merge and split
subpopulations.

	Define and access virtual subpopulations. A virtual
subpopulation splitter can be assigned to a population, which
defines groups of individuals called virtual subpopulations
(VSP) within each subpopulation.

	Access individuals individually, or through iterators that
iterate through individuals in (virtual) subpopulations.

	Access genotype and information fields of individuals at the
population level. From a population point of view, all genotypes
are arranged sequentially individual by individual. Please refer
to class Individual for an introduction to genotype
arragement of each individual.

	Store and access ancestral generations. A population can save
arbitrary number of ancestral generations. It is possible to
directly access an ancestor, or make an ancestral generation the
current generation for more efficient access.

	Insert or remove loci, resize (shrink or expand) a population,
sample from a population, or merge with other populations.

	Manipulate population variables and evaluate expressions in this
local namespace.

	Save and load a population.

	
Population(size=[], ploidy=2, loci=[], chromTypes=[], lociPos=[], ancGen=0, chromNames=[], alleleNames=[], lociNames=[], subPopNames=[], infoFields=[])

	The following parameters are used to create a population object:

	size

	A list of subpopulation sizes. The length of this list determines the
number of subpopulations of this population. If there is no
subpopulation, size=[popSize] can be written as
size=popSize.

	ploidy

	Number of homologous sets of chromosomes. Default to 2 (diploid).
For efficiency considerations, all chromosomes have the same
number of homologous sets, even if some customized
chromosomes or some individuals (e.g. males in a haplodiploid
population) have different numbers of homologous sets. The
first case is handled by setting chromTypes of each
chromosome. Only the haplodiploid populations are handled for
the second case, for which ploidy=HAPLODIPLOID should be
used.

	loci

	A list of numbers of loci on each chromosome. The length of this
parameter determines the number of chromosomes. If there is
only one chromosome, numLoci instead of [numLoci] can
be used.

	chromTypes

	A list that specifies the type of each chromosome, which can be
AUTOSOME, CHROMOSOME_X, CHROMOSOME_Y, or
CUSTOMIZED. All chromosomes are assumed to be autosomes
if this parameter is ignored. Sex chromosome can only be
specified in a diploid population where the sex of an
individual is determined by the existence of these
chromosomes using the XX (FEMALE) and XY
(MALE) convention. Both sex chromosomes have to be
available and be specified only once. Because chromosomes
X and Y are treated as two chromosomes, recombination
on the pseudo-autosomal regions of the sex chromsomes is not
supported. CUSTOMIZED chromosomes are special chromosomes
whose inheritance patterns are undefined. They rely on user-
defined functions and operators to be passed from parents to
offspring. Multiple customized chromosomes have to be
arranged consecutively.

	lociPos

	Positions of all loci on all chromosome, as a list of float numbers.
Default to 1, 2, … etc on each chromosome.
lociPos should be arranged chromosome by chromosome. If
lociPos are not in order within a chromosome, they will
be re-arranged along with corresponding lociNames (if
specified).

	ancGen

	Number of the most recent ancestral generations to keep during
evolution. Default to 0, which means only the current
generation will be kept. If it is set to -1, all
ancestral generations will be kept in this population (and
exhaust your computer RAM quickly).

	chromNames

	A list of chromosome names. Default to '' for all chromosomes.

	alleleNames

	A list or a nested list of allele names. If a list of alleles is
given, it will be used for all loci in this population. For
example, alleleNames=('A','C','T','G') gives names A,
C, T, and G to alleles 0, 1, 2, and
3 respectively. If a nested list of names is given, it
should specify alleles names for all loci.

	lociNames

	A list of names for each locus. It can be empty or a list of unique
names for each locus. If loci are not specified in order,
loci names will be rearranged according to their position on
the chromosome.

	subPopNames

	A list of subpopulation names. All subpopulations will have name
'' if this parameter is not specified.

	infoFields

	Names of information fields (named float number) that will be attached
to each individual.

	
absIndIndex(idx, subPop)

	return the absolute index of an individual idx in
subpopulation subPop.

	
addChrom(lociPos, lociNames=[], chromName="", alleleNames=[], chromType=AUTOSOME)

	Add chromosome chromName with given type chromType to a
population, with loci lociNames inserted at position
lociPos. lociPos should be ordered. lociNames and
chromName should not exist in the current population. Allele
names could be specified for all loci (a list of names) or
differently for each locus (a nested list of names), using
parameter alleleNames. Empty loci names will be used if
lociNames is not specified. The newly added alleles will have
zero lineage in modules wiht lineage information.

	
addChromFrom(pop)

	Add chromosomes in population pop to the current population.
population pop should have the same number of individuals as
the current population in the current and all ancestral
generations. Chromosomes of pop, if named, should not conflict
with names of existing chromosome. This function merges
genotypes on the new chromosomes from population pop
individual by individual.

	
addIndFrom(pop)

	Add all individuals, including ancestors, in pop to the
current population. Two populations should have the same
genotypic structures and number of ancestral generations.
Subpopulations in population pop are kept.

	
addInfoFields(fields, init=0)

	Add a list of information fields fields to a population and
initialize their values to init. If an information field
alreay exists, it will be re-initialized.

	
addLoci(chrom, pos, lociNames=[], alleleNames=[])

	Insert loci lociNames at positions pos on chromosome
chrom. These parameters should be lists of the same length,
although names may be ignored, in which case empty strings
will be assumed. Single-value input is allowed for parameter
chrom and pos if only one locus is added. Alleles at
inserted loci are initialized with zero alleles. Note that loci
have to be added to existing chromosomes. If loci on a new
chromosome need to be added, function addChrom should be
used. Optionally, allele names could be specified either for all
loci (a single list) or each loci (a nested list). This function
returns indexes of the inserted loci. Newly inserted alleles
will have zero lineage in modules with lineage information.

	
addLociFrom(pop, byName=False)

	Add loci from population pop. By default, chromosomes are
merged by index and names of merged chromosomes of population
pop will be ignored (merge of two chromosomes with different
names will yield a warning). If byName is set to True,
chromosomes in pop will be merged to chromosomes with
identical names. Added loci will be inserted according to their
position. Their position and names should not overlap with any
locus in the current population. population pop should have
the same number of individuals as the current population in the
current and all ancestral generations. Allele lineages are also
copied from pop in modules with lineage information.

	
ancestor(idx, gen, subPop=[])

	Return a reference to individual idx in ancestral generation
gen. The correct individual will be returned even if the
current generation is not the present one (see also
useAncestralGen). If a valid subPop is specified, index
is relative to that subPop. Virtual subpopulation is not
supported. Note that a float idx is acceptable as long as it
rounds closely to an integer.

	
ancestralGens()

	Return the actual number of ancestral generations stored in a
population, which does not necessarily equal to the number set
by setAncestralDepth().

	
clone()

	Create a cloned copy of a population. Note that Python statement
pop1 = pop only creates a reference to an existing
population pop.

	
__cmp__(rhs)

	a python function used to compare the population objects

	
dvars(subPop=[])

	Return a wrapper of Python dictionary returned by
vars(subPop) so that dictionary keys can be accessed as
attributes.

	
extractIndividuals(indexes=[], IDs=[], idField="ind_id", filter=None)

	Extract individuals with given absolute indexes (parameter
indexes), IDs (parameter IDs, stored in information field
idField, default to ind_id), or a filter function
(parameter filter). If a list of absolute indexes are
specified, the present generation will be extracted and form a
one-generational population. If a list of IDs are specified,
this function will look through all ancestral generations and
extract individuals with given ID. Individuals with shared IDs
are allowed. In the last case, a user-defined Python function
should be provided. This function should accept parameter
"ind" or one or more of the information fields. All
individuals, including ancestors if there are multiple ancestral
generations, will be passed to this function. Individuals that
returns True will be extracted. Extracted individuals will
be in their original ancestral generations and subpopulations,
even if some subpopulations or generations are empty. An
IndexError will be raised if an index is out of bound
but no error will be given if an invalid ID is encountered.

	
extractSubPops(subPops=ALL_AVAIL, rearrange=False)

	Extract a list of (virtual) subpopulations from a population and
create a new population. If rearrange is False (default),
structure and names of extracted subpopulations are kept
although extracted subpopulations can have fewer individuals if
they are created from extracted virtual subpopulations. (e.g. it
is possible to extract all male individuals from a subpopulation
using a SexSplitter()). If rearrange is True, each
(virtual) subpopulation in subPops becomes a new subpopulation
in the extracted population in the order at which they are
specified. Because each virtual subpopulation becomes a
subpopulation, this function could be used, for example, to
separate male and female individuals to two subpopulations (
subPops=[(0,0), (0,1)]). If overlapping (virtual)
subpopulations are specified, individuals will be copied
multiple times. This function only extract individuals from the
present generation.

	
genotype(subPop=[])

	Return an editable array of the genotype of all individuals in a
population (if subPop=[], default), or individuals in a
subpopulation subPop. Virtual subpopulation is unsupported.

	
indByID(id, ancGens=ALL_AVAIL, idField="ind_id")

	Return a reference to individual with id stored in information
field idField (default to ind_id). This function by
default search the present and all ancestral generations
(ancGen=ALL_AVAIL), but you can limit the search in specific
generations if you know which generations to search
(ancGens=[0,1] for present and parental generations) or
UNSPECIFIED to search only the current generation. If no
individual with id is found, an IndexError will be
raised. A float id is acceptable as long as it rounds closely
to an integer. Note that this function uses a dynamic searching
algorithm which tends to be slow. If you need to look for
multiple individuals from a static population, you might want to
convert a population object to a pedigree object and use
function Pedigree.indByID.

	
indInfo(field, subPop=[])

	Return the values (as a list) of information field field (by
index or name) of all individuals (if subPop=[], default),
or individuals in a (virtual) subpopulation (if subPop=sp or
(sp, vsp)).

	
individual(idx, subPop=[])

	Return a refernce to individual idx in the population (if
subPop=[], default) or a subpopulation (if subPop=sp).
Virtual subpopulation is not supported. Note that a float idx
is acceptable as long as it rounds closely to an integer.

	
individuals(subPop=[])

	Return an iterator that can be used to iterate through all
individuals in a population (if subPop=[], default), or a
(virtual) subpopulation (subPop=spID or (spID, vspID)).
If you would like to iterate through multiple subpopulations in
multiple ancestral generations, please use function
Population.allIndividuals().

	
lineage(subPop=[])

	Return an editable array of the lineage of alleles for all
individuals in a population (if subPop=[], default), or
individuals in a subpopulation subPop. Virtual subpopulation
is unsupported. This function returns ``None`` for modules
without lineage information.

	
mergeSubPops(subPops=ALL_AVAIL, name="", toSubPop=-1)

	Merge subpopulations subPops. If subPops is ALL_AVAIL
(default), all subpopulations will be merged. subPops do not
have to be adjacent to each other. They will all be merged to
the subpopulation with the smallest subpopulation ID, unless a
subpopulation ID is specified using parameter toSubPop.
Indexes of the rest of the subpopulation may be changed. A new
name can be assigned to the merged subpopulation through
parameter name (an empty name will be ignored). This
function returns the ID of the merged subpopulation.

	
mutants(subPop=[])

	Return an iterator that iterate through mutants of all
individuals in a population (if subPop=[], default), or
individuals in a subpopulation subPop. Virtual subpopulation
is unsupported. Each mutant is presented as a tuple of (index,
value) where index is the index of mutant (from 0 to
totNumLoci()*ploidy()) so you will have to adjust its value to
check multiple alleles at a locus. This function ignores type of
chromosomes so non-zero alleles in unused alleles of sex and
mitochondrial chromosomes are also iterated.

	
numSubPop()

	Return the number of subpopulations in a population. Return 1 if
there is no subpopulation structure.

	
numVirtualSubPop()

	Return the number of virtual subpopulations (VSP) defined by a
VSP splitter. Return 0 if no VSP is defined.

	
popSize(ancGen=-1, sex=ANY_SEX)

	Return the total number of individuals in all subpopulations of
the current generation (default) or the an ancestral generation
ancGen. This function by default returns number of all
individuals (sex=ANY_SEX), but it will return number of
males (if sex=MALE_ONLY), number of females (if
sex=MALE_ONLY), and number of male/female pairs (if
sex=PAIR_ONLY) which is essentially less of the number of
males and females.

	
push(pop)

	Push population pop into the current population. Both
populations should have the same genotypic structure. The
current population is discarded if ancestralDepth (maximum
number of ancestral generations to hold) is zero so no ancestral
generation can be kept. Otherise, the current population will
become the parental generation of pop. If ancGen of a
population is positive and there are already ancGen ancestral
generations (c.f. ancestralGens()), the greatest ancestral
generation will be discarded. In any case, Population*pop*
becomes invalid as all its individuals are absorbed by the
current population.

	
recodeAlleles(alleles, loci=ALL_AVAIL, alleleNames=[])

	Recode alleles at loci (can be a list of loci indexes or
names, or all loci in a population (ALL_AVAIL)) to other
values according to parameter alleles. This parameter can a
list of new allele numbers for alleles 0, 1, 2, …
(allele x will be recoded to newAlleles[x], x
outside of the range of newAlleles will not be recoded,
although a warning will be given if DBG_WARNING is defined)
or a Python function, which should accept one or both parameters
allele (existing allele) and locus (index of locus). The
return value will become the new allele. This function is
intended to recode some alleles without listing all alleles in a
list. It will be called once for each existing allele so it is
not possible to recode an allele to different alleles. A new
list of allele names could be specified for these loci.
Different sets of names could be specified for each locus if a
nested list of names are given. This function recode alleles for
all subpopulations in all ancestral generations.

	
removeIndividuals(indexes=[], IDs=[], idField="ind_id", filter=None)

	remove individual(s) by absolute indexes (parameter index) or
their IDs (parameter IDs), or using a filter function
(paramter filter). If indexes are used, only individuals at
the current generation will be removed. If IDs are used, all
individuals with one of the IDs at information field idField
(default to "ind_id") will be removed. Although "ind_id"
usually stores unique IDs of individuals, this function is
frequently used to remove groups of individuals with the same
value at an information field. An IndexError will be
raised if an index is out of bound, but no error will be given
if an invalid ID is specified. In the last case, a user-defined
function should be provided. This function should accept
parameter "ind" or one or more of the information fields.
All individuals, including ancestors if there are multiple
ancestral generations, will be passed to this function.
Individuals that returns True will be removed. This function
does not affect subpopulation structure in the sense that a
subpopulation will be kept even if all individuals from it are
removed.

	
removeInfoFields(fields)

	Remove information fields fields from a population.

	
removeLoci(loci=UNSPECIFIED, keep=UNSPECIFIED)

	Remove loci (absolute indexes or names) and genotypes at these
loci from the current population. Alternatively, a parameter
keep can be used to specify loci that will not be removed.

	
removeSubPops(subPops)

	Remove (virtual) subpopulation(s) subPops and all their
individuals. This function can be used to remove complete
subpopulations (with shifted subpopulation indexes) or
individuals belonging to virtual subpopulations of a
subpopulation. In the latter case, the subpopulations are kept
even if all individuals have been removed. This function only
handles the present generation.

	
resize(sizes, propagate=False)

	Resize population by giving new subpopulation sizes sizes.
individuals at the end of some subpopulations will be removed if
the new subpopulation size is smaller than the old one. New
individuals will be appended to a subpopulation if the new size
is larger. Their genotypes will be set to zero (default), or be
copied from existing individuals if propagate is set to
True. More specifically, if a subpopulation with 3
individuals is expanded to 7, the added individuals will
copy genotypes from individual 1, 2, 3, and 1
respectively. Note that this function only resizes the current
generation.

	
save(filename)

	Save population to a file filename, which can be loaded by a
global function loadPopulation(filename).

	
setAncestralDepth(depth)

	set the intended ancestral depth of a population to depth,
which can be 0 (does not store any ancestral generation),
-1 (store all ancestral generations), and a positive number
(store depth ancestral generations. If there exists more than
depth ancestral generations (if depth > 0), extra ancestral
generations are removed.

	
setGenotype(geno, subPop=[])

	Fill the genotype of all individuals in a population (if
subPop=[]) or in a (virtual) subpopulation subPop (if
subPop=sp or (sp, vsp)) using a list of alleles geno.
geno will be reused if its length is less than
subPopSize(subPop)*totNumLoci()*ploidy().

	
setIndInfo(values, field, subPop=[])

	Set information field field (specified by index or name) of
all individuals (if subPop=[], default), or individuals in a
(virtual) subpopulation (subPop=sp or (sp, vsp)) to
values. values will be reused if its length is smaller than
the size of the population or (virtual) subpopulation.

	
setInfoFields(fields, init=0)

	Set information fields fields to a population and initialize
them with value init. All existing information fields will be
removed.

	
setLineage(geno, subPop=[])

	Fill the lineage of all individuals in a population (if
subPop=[]) or in a (virtual) subpopulation subPop (if
subPop=sp or (sp, vsp)) using a list of IDs lineage.
lineage will be reused if its length is less than
subPopSize(subPop)*totNumLoci()*ploidy(). This function
returns directly for modules without lineage information.

	
setSubPopByIndInfo(field)

	Rearrange individuals to their new subpopulations according to
their integer values at information field field (value
returned by Individual::info(field)). individuals with
negative values at this field will be removed. Existing
subpopulation names are kept. New subpopulations will have empty
names.

	
setSubPopName(name, subPop)

	Assign a name name to subpopulation subPop. Note that
subpopulation names do not have to be unique.

	
setVirtualSplitter(splitter)

	Set a VSP splitter to the population, which defines the same
VSPs for all subpopulations. If different VSPs are needed for
different subpopulations, a CombinedSplitter can be
used to make these VSPs available to all subpopulations.

	
sortIndividuals(infoFields, reverse=False)

	Sort individuals according to values at specified information
fields (infoFields). Individuals will be sorted at an
increasing order unless reverse is set to true.

	
splitSubPop(subPop, sizes, names=[])

	Split subpopulation subPop into subpopulations of given
sizes, which should add up to the size of subpopulation
subPop or 1, in which case sizes are treated as
proportions. If subPop is not the last subpopulation, indexes
of subpopulations after subPop are shifted. If subPop is
named, the same name will be given to all new subpopulations
unless a new set of names are specified for these
subpopulations. This function returns the IDs of split
subpopulations.

	
subPopBegin(subPop)

	Return the index of the first individual in subpopulation
subPop.

	
subPopByName(name)

	Return the index of the first subpopulation with name name. An
IndexError will be raised if subpopulations are not
named, or if no subpopulation with name name is found. Virtual
subpopulation name is not supported.

	
subPopEnd(subPop)

	Return the index of the last individual in subpopulation
subPop plus 1, so that range(subPopBegin(subPop),
subPopEnd(subPop) can iterate through the index of all
individuals in subpopulation subPop.

	
subPopIndPair(idx)

	Return the subpopulation ID and relative index of an individual,
given its absolute index idx.

	
subPopName(subPop)

	Return the “spName - vspName” (virtual named subpopulation), “”
(unnamed non-virtual subpopulation), “spName” (named
subpopulation) or “vspName” (unnamed virtual subpopulation),
depending on whether subpopulation is named or if subPop is
virtual.

	
subPopNames()

	Return the names of all subpopulations (excluding virtual
subpopulations). An empty string will be returned for unnamed
subpopulations.

	
subPopSizes(ancGen=-1)

	Return the sizes of all subpopulations at the current generation
(default) or specified ancestral generation ancGen. Virtual
subpopulations are not considered.

	
swap(rhs)

	Swap the content of two population objects, which can be handy
in some particular circumstances. For example, you could swap
out a population in a simulator.

	
updateInfoFieldsFrom(fields, pop, fromFields=[], ancGens=ALL_AVAIL)

	Update information fields fields from fromFields of another
population (or Pedigree) pop. Two populations should have the
same number of individuals. If fromFields is not specified, it
is assumed to be the same as fields. If ancGens is not
ALL_AVAIL, only the specified ancestral generations are
updated.

	
useAncestralGen(idx)

	Making ancestral generation idx (0 for current generation,
1 for parental generation, 2 for grand-parental
generation, etc) the current generation. This is an efficient
way to access Population properties of an ancestral generation.
useAncestralGen(0) should always be called afterward to
restore the correct order of ancestral generations.

	
vars(subPop=[])

	return variables of a population as a Python dictionary. If a
valid subpopulation subPop is specified, a dictionary
vars()["subPop"][subPop] is returned. A ValueError
will be raised if key subPop does not exist in vars(), or
if key subPop does not exist in vars()["subPop"].

	
virtualSplitter()

	Return the virtual splitter associated with the population,
None will be returned if there is no splitter.

	
asPedigree(idField='ind_id', fatherField='father_id', motherField='mother_id')

	Convert the existing population object to a pedigree. After this
function pedigree function should magically be usable for this
function.

	
subPopSize(subPop=[], ancGen=-1, sex=ANY_SEX)

	Return the size of a subpopulation (subPopSize(sp)) or a
virtual subpopulation (subPopSize([sp, vsp])) in the current
generation (default) or a specified ancestral generation
ancGen. If no subpop is given, it is the same as
popSize(ancGen, sex). Population and virtual subpopulation
names can be used. This function by default returns number of
all individuals (sex=ANY_SEX), but it will return number of
males (if sex=MALE_ONLY), number of females (if
sex=MALE_ONLY), and number of male/female pairs (if
sex=PAIR_ONLY) which is essentially less of the number of
males and females. <group>2-subpopsize</grouplociList()>

	
allIndividuals(subPops=ALL_AVAIL, ancGens=True)

	Return an iterator that iterat through all (virtual)
subpopulations in all ancestral generations. A list of (virtual)
subpopulations (subPops) and a list of ancestral generations
(ancGens, can be a single number) could be specified to
iterate through only selected subpopulation and generations.
Value ALL_AVAIL is acceptable in the specification of sp
and/or vsp in specifying a virtual subpopulation (sp,
vsp) for the iteration through all or specific virtual
subpopulation in all or specific subpopulations.

	
evolve(initOps=[], preOps=[], matingScheme=MatingScheme(), postOps=[], finalOps=[], gen=-1, dryrun=False)

	Evolve the current population gen generations using mating
scheme matingScheme and operators initOps (applied before
evolution), preOps (applied to the parental population at the
beginning of each life cycle), postOps (applied to the
offspring population at the end of each life cycle) and
finalOps (applied at the end of evolution). More specifically,
this function creates a Simulator using the current
population, call its evolve function using passed parameters
and then replace the current population with the evolved
population. Please refer to function Simulator.evolve for
more details about each parameter.

class Pedigree

	
class Pedigree

	The pedigree class is derived from the population class. Unlike a
population class that emphasizes on individual properties, the
pedigree class emphasizes on relationship between individuals. An
unique ID for all individuals is needed to create a pedigree object
from a population object. Compared to the Population
class, a Pedigree object is optimized for access
individuals by their IDs, regardless of population structure and
ancestral generations. Note that the implementation of some
algorithms rely on the fact that parental IDs are smaller than
their offspring because individual IDs are assigned sequentially
during evolution. Pedigrees with manually assigned IDs should try
to obey such a rule.

	
Pedigree(pop, loci=[], infoFields=[], ancGens=ALL_AVAIL, idField="ind_id", fatherField="father_id", motherField="mother_id", stealPop=False)

	Create a pedigree object from a population, using a subset of
loci (parameter loci, can be a list of loci indexes, names, or
ALL_AVAIL, default to no locus), information fields
(parameter infoFields, default to no information field besides
idField, fatherField and motherField), and ancestral
generations (parameter ancGens, default to all ancestral
generations). By default, information field father_id
(parameter fatherField) and mother_id (parameter
motherField) are used to locate parents identified by
ind_id (parameter idField), which should store an unique
ID for all individuals. Multiple individuls with the same ID are
allowed and will be considered as the same individual, but a
warning will be given if they actually differ in genotype or
information fields. Operators IdTagger and
PedigreeTagger are usually used to assign such IDs,
although function sampling.indexToID could be used to assign
unique IDs and construct parental IDs from index based
relationship recorded by operator ParentsTagger. A
pedigree object could be constructed with one or no parent but
certain functions such as relative tracking will not be
available for such pedigrees. In case that your are no longer
using your population object, you could steal the content from
the population by setting stealPop to True.

	
clone()

	Create a cloned copy of a Pedigree.

	
identifyAncestors(IDs=ALL_AVAIL, subPops=ALL_AVAIL, ancGens=ALL_AVAIL)

	If a list of individuals (IDs) is given, this function traces
backward in time and find all ancestors of these individuals. If
IDs is ALL_AVAIL, ancestors of all individuals in the
present generation will be located. If a list of (virtual)
subpopulations (subPops) or ancestral geneartions (ancGens)
is given, the search will be limited to individuals in these
subpopulations and generations. This could be used to, for
example, find all fathers of IDs. This function returns a list
of IDs, which includes valid specified IDs. Invalid IDs will be
silently ignored. Note that parameters subPops and ancGens
will limit starting IDs if IDs is set to ALL_AVAIL, but
specified IDs will not be trimmed according to these parameters.

	
identifyFamilies(pedField="", subPops=ALL_AVAIL, ancGens=ALL_AVAIL)

	This function goes through all individuals in a pedigree and
group related individuals into families. If an information field
pedField is given, indexes of families will be assigned to
this field of each family member. The return value is a list of
family sizes corresponding to families 0, 1, 2, … etc. If a
list of (virtual) subpopulations (parameter subPops) or
ancestral generations are specified (parameter ancGens), the
search will be limited to individuals in these subpopulations
and generations.

	
identifyOffspring(IDs=[], subPops=ALL_AVAIL, ancGens=ALL_AVAIL)

	This function traces forward in time and find all offspring of
individuals specified in parameter IDs. If a list of (virtual)
subpopulations (subPops) or ancestral geneartions (ancGens)
is given, the search will be limited to individuals in these
subpopulations and generations. This could be used to, for
example, find all male offspring of IDs. This function returns
a list of IDs, which includes valid starting IDs. Invalid IDs
are silently ignored. Note that parameters subPops and
ancGens will limit search result but will not be used to trim
specified IDs.

	
indByID(id)

	Return a reference to individual with id. An
IndexError will be raised if no individual with id is
found. An float id is acceptable as long as it rounds closely
to an integer.

	
individualsWithRelatives(infoFields, sex=[], affectionStatus=[], subPops=ALL_AVAIL, ancGens=ALL_AVAIL)

	Return a list of IDs of individuals who have non-negative values
at information fields infoFields. Additional requirements
could be specified by parameters sex and affectionStatus.
sex can be ANY_SEX (default), MALE_ONLY,
FEMALE_ONLY, SAME_SEX or OPPOSITE_SEX, and
affectionStatus can be AFFECTED, UNAFFECTED or
ANY_AFFECTION_STATUS (default). This function by default
check all individuals in all ancestral generations, but you
could limit the search using parameter subPops (a list of
(virtual) subpopulations) and ancestral generations ancGens.
Relatives fall out of specified subpopulations and ancestral
generaions will be considered invalid.

	
locateRelatives(relType, resultFields=[], sex=ANY_SEX, affectionStatus=ANY_AFFECTION_STATUS, ancGens=ALL_AVAIL)

	This function locates relatives (of type relType) of each
individual and store their IDs in information fields
relFields. The length of relFields determines how many
relatives an individual can have.

Parameter relType specifies what type of relative to locate,
which can be

	SPOUSE locate spouses with whom an individual has at least
one common offspring.

	OUTBRED_SPOUSE locate non-slibling spouses, namely spouses
with no shared parent.

	OFFSPRING all offspring of each individual.

	COMMON_OFFSPRING common offspring between each individual
and its spouse (located by SPOUSE or OUTBRED_SPOUSE).
relFields should consist of an information field for spouse
and m-1 fields for offspring where m is the number of
fields.

	FULLSIBLING siblings with common father and mother,

	SIBLING siblings with at least one common parent.

Optionally, you can specify the sex and affection status of
relatives you would like to locate, using parameters sex and
affectionStatus. sex can be ANY_SEX (default),
MALE_ONLY, FEMALE_ONLY, SAME_SEX or
OPPOSITE_SEX, and affectionStatus can be AFFECTED,
UNAFFECTED or ANY_AFFECTION_STATUS (default). Only
relatives with specified properties will be located.

This function will by default go through all ancestral
generations and locate relatives for all individuals. This can
be changed by setting parameter ancGens to certain ancestral
generations you would like to process.

	
save(filename, infoFields=[], loci=[])

	Save a pedigree to file filename. This function goes through
all individuals of a pedigree and outputs in each line the ID of
individual, IDs of his or her parents, sex ('M' or 'F'),
affection status ('A' or 'U'), values of specified
information fields infoFields and genotypes at specified loci
(parameter loci, which can be a list of loci indexes, names,
or ALL_AVAIL). Allele numbers, instead of their names are
outputed. Two columns are used for each locus if the population
is diploid. This file can be loaded using function
loadPedigree although additional information such as
names of information fields need to be specified. This format
differs from a ````.ped file used in some genetic analysis
software in that there is no family ID and IDs of all
individuals have to be unique. Note that parental IDs will be
set to zero if the parent is not in the pedigree object.
Therefore, the parents of individuals in the top-most ancestral
generation will always be zero.

	
traceRelatives(fieldPath, sex=[], affectionStatus=[], resultFields=[], ancGens=ALL_AVAIL)

	Trace a relative path in a population and record the result in
the given information fields resultFields. This function is
used to locate more distant relatives based on the relatives
located by function locateRelatives. For example, after
siblings and offspring of all individuals are located, you can
locate mother’s sibling’s offspring using a relative path, and
save their indexes in each individuals information fields
resultFields.

A relative path consits of a fieldPath that specifies which
information fields to look for at each step, a sex specifies
sex choices at each generation, and a affectionStatus that
specifies affection status at each generation. fieldPath
should be a list of information fields, sex and
affectionStatus are optional. If specified, they should be a
list of ANY_SEX, MALE_ONLY, FEMALE_ONLY,
SAME_SEX and OppsiteSex for parameter sex, and a list
of UNAFFECTED, AFFECTED and ANY_AFFECTION_STATUS for
parameter affectionStatus.

For example, if fieldPath = [['father_id', 'mother_id'],
['sib1', 'sib2'], ['off1', 'off2']], and sex = [ANY_SEX,
MALE_ONLY, FEMALE_ONLY], this function will locate
father_id and mother_id for each individual, find all
individuals referred by father_id and mother_id, find
informaton fields sib1 and sib2 from these parents and
locate male individuals referred by these two information
fields. Finally, the information fields off1 and off2
from these siblings are located and are used to locate their
female offspring. The results are father or mother’s brother’s
daughters. Their indexes will be saved in each individuals
information fields resultFields. If a list of ancestral
generations is given in parameter ancGens is given, only
individuals in these ancestral generations will be processed.

	
asPopulation()

	Convert the existing pedigree object to a population. This
function will behave like a regular population after this
function call.

class Simulator

	
class Simulator

	A simuPOP simulator is responsible for evolving one or more
populations forward in time, subject to various operators.
Populations in a simulator are created from one or more replicates
of specified populations. A number of functions are provided to
access and manipulate populations, and most importantly, to evolve
them.

	
Simulator(pops, rep=1, stealPops=True)

	Create a simulator with rep (default to 1) replicates of
populations pops, which is a list of populations although a
single population object is also acceptable. Contents of passed
populations are by default moved to the simulator to avoid
duplication of potentially large population objects, leaving
empty populations behind. This behavior can be changed by
setting stealPops to False, in which case populations are
copied to the simulator.

	
add(pop, stealPop=True)

	Add a population pop to the end of an existing simulator. This
function by default moves pop to the simulator, leaving an
empty population for passed population object. If steal is set
to False, the population will be copied to the simulator,
and thus unchanged.

	
clone()

	Clone a simulator, along with all its populations. Note that
Python assign statement simu1 = simu only creates a symbolic
link to an existing simulator.

	
__cmp__(rhs)

	a Pyton function used to compare the simulator objects Note that
mating schemes are not tested.

	
dvars(rep, subPop=[])

	Return a wrapper of Python dictionary returned by vars(rep,
subPop) so that dictionary keys can be accessed as attributes.

	
evolve(initOps=[], preOps=[], matingScheme=MatingScheme, postOps=[], finalOps=[], gen=-1, dryrun=False)

	Evolve all populations gen generations, subject to several
lists of operators which are applied at different stages of an
evolutionary process. Operators initOps are applied to all
populations (subject to applicability restrictions of the
operators, imposed by the rep parameter of these operators)
before evolution. They are used to initialize populations before
evolution. Operators finalOps are applied to all populations
after the evolution.

Operators preOps, and postOps are applied during the life
cycle of each generation. These operators can be applied at all
or some of the generations, to all or some of the evolving
populations, depending the begin, end, step, at and
reps parameters of these operators. These operators are
applied in the order at which they are specified. populations in
a simulator are evolved one by one. At each generation,
operators preOps are applied to the parental generations. A
mating scheme is then used to populate an offspring generation.
For each offspring, his or her sex is determined before during-
mating operators of the mating scheme are used to transmit
parental genotypes. After an offspring generation is
successfully generated and becomes the current generation,
operators postOps are applied to the offspring generation. If
any of the preOps and postOps fails (return False), the
evolution of a population will be stopped. The generation number
of a population, which is the variable "gen" in each
populations local namespace, is increased by one if an offspring
generation has been successfully populated even if a post-mating
operator fails. Another variable "rep" will also be set to
indicate the index of each population in the simulator. Note
that populations in a simulator does not have to have the same
generation number. You could reset a population’s generation
number by changing this variable.

Parameter gen can be set to a non-negative number, which is
the number of generations to evolve. If a simulator starts at
the beginning of a generation g (for example 0), a simulator
will stop at the beginning (instead of the end) of generation
g + gen (for example gen). If gen is negative (default),
the evolution will continue indefinitely, until all replicates
are stopped by operators that return False at some point
(these operators are called terminators). At the end of the
evolution, the generations that each replicates have evolved are
returned. Note that finalOps are applied to all applicable
population, including those that have stopped before others.

If parameter dryrun is set to True, this function will
print a description of the evolutionary process generated by
function describeEvolProcess() and exits.

	
extract(rep)

	Extract the rep-th population from a simulator. This will
reduce the number of populations in this simulator by one.

	
numRep()

	Return the number of replicates.

	
population(rep)

	Return a reference to the rep-th population of a simulator.
The reference will become invalid once the simulator starts
evolving or becomes invalid (removed). If an independent copy of
the population is needed, you can use population.clone() to
create a cloned copy or simulator.extract() to remove the
population from the simulator.

	
populations()

	Return a Python iterator that can be used to iterate through all
populations in a simulator.

	
vars(rep, subPop=[])

	Return the local namespace of the rep-th population,
equivalent to x.Population(rep).vars(subPop).

Virtual splitters

class BaseVspSplitter

	
class BaseVspSplitter

	This class is the base class of all virtual subpopulation (VSP)
splitters, which provide ways to define groups of individuals in a
subpopulation who share certain properties. A splitter defines a
fixed number of named VSPs. They do not have to add up to the whole
subpopulation, nor do they have to be distinct. After a splitter is
assigned to a population, many functions and operators can be
applied to individuals within specified VSPs.

Each VSP has a name. A default name is determined by each splitter
but you can also assign a name to each VSP. The name of a VSP can
be retrieved by function BaseVspSplitter.name() or
Population.subPopName().

Only one VSP splitter can be assigned to a population, which
defined VSPs for all its subpopulations. If different splitters are
needed for different subpopulations, a CombinedSplitter
can be used.

	
BaseVspSplitter(names=[])

	This is a virtual class that cannot be instantiated.

	
clone()

	All VSP splitter defines a clone() function to create an
identical copy of itself.

	
name(vsp)

	Return the name of VSP vsp (an index between 0 and
numVirtualSubPop()).

	
numVirtualSubPop()

	Return the number of VSPs defined by this splitter.

	
vspByName(name)

	Return the index of a virtual subpopulation from its name. If
multiple virtual subpopulations share the same name, the first
vsp is returned.

class SexSplitter

	
class SexSplitter

	This splitter defines two VSPs by individual sex. The first VSP
consists of all male individuals and the second VSP consists of all
females in a subpopulation.

	
SexSplitter(names=[])

	Create a sex splitter that defines male and female VSPs. These
VSPs are named Male and Female unless a new set of names
are specified by parameter names.

	
name(vsp)

	Return "Male" if vsp=0 and "Female" otherwise, unless
a new set of names are specified.

	
numVirtualSubPop()

	Return 2.

class AffectionSplitter

	
class AffectionSplitter

	This class defines two VSPs according individual affection status.
The first VSP consists of unaffected invidiauls and the second VSP
consists of affected ones.

	
AffectionSplitter(names=[])

	Create a splitter that defined two VSPs by affection
status.These VSPs are named Unaffected and Affected
unless a new set of names are specified by parameter names.

	
name(vsp)

	Return "Unaffected" if vsp=0 and "Affected" if
vsp=1, unless a new set of names are specified.

	
numVirtualSubPop()

	Return 2.

class InfoSplitter

	
class InfoSplitter

	This splitter defines VSPs according to the value of an information
field of each indivdiual. A VSP is defined either by a value or a
range of values.

	
InfoSplitter(field, values=[], cutoff=[], ranges=[], names=[])

	Create an infomration splitter using information field field.
If parameter values is specified, each item in this list
defines a VSP in which all individuals have this value at
information field field. If a set of cutoff values are defined
in parameter cutoff, individuals are grouped by intervals
defined by these cutoff values. For example, cutoff=[1,2]
defines three VSPs with v < 1, 1 <= v < 2 and v >=2
where v is the value of an individual at information field
field. If parameter ranges is specified, each range
defines a VSP. For example, ranges=[[1, 3], [2, 5]] defines
two VSPs with 1 <= v < 3 and 2 <= 3 < 5. Of course, only
one of the parameters values, cutoff and ranges should be
defined, and values in cutoff should be distinct, and in an
increasing order. A default set of names are given to each VSP
unless a new set of names is given by parameter names.

	
name(vsp)

	Return the name of a VSP vsp, which is field = value if
VSPs are defined by values in parameter values, or field <
value (the first VSP), v1 <= field < v2 and field >= v
(the last VSP) if VSPs are defined by cutoff values. A user-
specified name, if specified, will be returned instead.

	
numVirtualSubPop()

	Return the number of VSPs defined by this splitter, which is the
length parameter values or the length of cutoff plus one,
depending on which parameter is specified.

class ProportionSplitter

	
class ProportionSplitter

	This splitter divides subpopulations into several VSPs by
proportion.

	
ProportionSplitter(proportions=[], names=[])

	Create a splitter that divides subpopulations by proportions,
which should be a list of float numbers (between 0 and
1) that add up to 1. A default set of names are given to
each VSP unless a new set of names is given by parameter
names.

	
name(vsp)

	Return the name of VSP vsp, which is "Prop p" where
p=propotions[vsp]. A user specified name will be returned if
specified.

	
numVirtualSubPop()

	Return the number of VSPs defined by this splitter, which is the
length of parameter proportions.

class RangeSplitter

	
class RangeSplitter

	This class defines a splitter that groups individuals in certain
ranges into VSPs.

	
RangeSplitter(ranges, names=[])

	Create a splitter according to a number of individual ranges
defined in ranges. For example, RangeSplitter(ranges=[[0,
20], [40, 50]]) defines two VSPs. The first VSP consists of
individuals 0, 1, …, 19, and the sceond VSP
consists of individuals 40, 41, …, 49. Note that a
nested list has to be used even if only one range is defined. A
default set of names are given to each VSP unless a new set of
names is given by parameter names.

	
name(vsp)

	Return the name of VSP vsp, which is "Range [a, b)" where
[a, b) is range ranges[vsp]. A user specified name will
be returned if specified.

	
numVirtualSubPop()

	Return the number of VSPs, which is the number of ranges defined
in parameter ranges.

class GenotypeSplitter

	
class GenotypeSplitter

	This class defines a VSP splitter that defines VSPs according to
individual genotype at specified loci.

	
GenotypeSplitter(loci, alleles, phase=False, names=[])

	Create a splitter that defines VSPs by individual genotype at
loci (can be indexes or names of one or more loci). Each list
in a list allele defines a VSP, which is a list of allowed
alleles at these loci. If only one VSP is defined, the outer
list of the nested list can be ignored. If phase if true, the
order of alleles in each list is significant. If more than one
set of alleles are given, Individuals having either of them is
qualified.

For example, in a haploid population, loci=1, alleles=[0, 1]
defines a VSP with individuals having allele 0 or 1 at
locus 1, alleles=[[0, 1], [2]] defines two VSPs with
indivdiuals in the second VSP having allele 2 at locus
1. If multiple loci are involved, alleles at each locus need
to be defined. For example, VSP defined by loci=[0, 1],
alleles=[0, 1, 1, 1] consists of individuals having alleles
[0, 1] or [1, 1] at loci [0, 1].

In a haploid population, loci=1, alleles=[0, 1] defines a
VSP with individuals having genotype [0, 1] or [1, 0] at
locus 1. alleles[[0, 1], [2, 2]] defines two VSPs with
indivdiuals in the second VSP having genotype [2, 2] at
locus 1. If phase is set to True, the first VSP will
only has individuals with genotype [0, 1]. In the multiple
loci case, alleles should be arranged by haplotypes, for
example, loci=[0, 1], alleles=[0, 0, 1, 1], phase=True
defines a VSP with individuals having genotype -0-0-, -1-1-
at loci 0 and 1. If phase=False (default), genotypes
-1-1-, -0-0-, -0-1- and -1-0- are all allowed.

A default set of names are given to each VSP unless a new set of
names is given by parameter names.

	
name(vsp)

	Return name of VSP vsp, which is "Genotype
loc1,loc2:genotype" as defined by parameters loci and
alleles. A user provided name will be returned if specified.

	
numVirtualSubPop()

	number of virtual subpops of subpopulation sp

class CombinedSplitter

	
class CombinedSplitter

	This splitter takes several splitters and stacks their VSPs
together. For example, if the first splitter defines 3 VSPs and
the second splitter defines 2, the two VSPs from the second
splitter become the fourth (index 3) and the fifth (index
4) VSPs of the combined splitter. In addition, a new set of
VSPs could be defined as the union of one or more of the original
VSPs. This splitter is usually used to define different types of
VSPs to a population.

	
CombinedSplitter(splitters=[], vspMap=[], names=[])

	Create a combined splitter using a list of splitters. For
example, CombinedSplitter([SexSplitter(),
AffectionSplitter()]) defines a combined splitter with four
VSPs, defined by male (vsp 0), female (vsp 1),
unaffected (vsp 2) and affected individuals (vsp 3).
Optionally, a new set of VSPs could be defined by parameter
vspMap. Each item in this parameter is a list of VSPs that
will be combined to a single VSP. For example, vspMap=[(0, 2),
(1, 3)] in the previous example will define two VSPs defined
by male or unaffected, and female or affected individuals. VSP
names are usually determined by splitters, but can also be
specified using parameter names.

	
name(vsp)

	Return the name of a VSP vsp, which is the name a VSP defined
by one of the combined splitters unless a new set of names is
specified. If a vspMap was used, names from different VSPs
will be joined by "or".

	
numVirtualSubPop()

	Return the number of VSPs defined by this splitter, which is the
sum of the number of VSPs of all combined splitters.

class ProductSplitter

	
class ProductSplitter

	This splitter takes several splitters and take their intersections
as new VSPs. For example, if the first splitter defines 3 VSPs
and the second splitter defines 2, 6 VSPs will be defined
by splitting 3 VSPs defined by the first splitter each to two VSPs.
This splitter is usually used to define finer VSPs from existing
VSPs.

	
ProductSplitter(splitters=[], names=[])

	Create a product splitter using a list of splitters. For
example, ProductSplitter([SexSplitter(),
AffectionSplitter()]) defines four VSPs by male unaffected,
male affected, female unaffected, and female affected
individuals. VSP names are usually determined by splitters, but
can also be specified using parameter names.

	
name(vsp)

	Return the name of a VSP vsp, which is the names of indivdual
VSPs separated by a comma, unless a new set of names is
specified for each VSP.

	
numVirtualSubPop()

	Return the number of VSPs defined by this splitter, which is the
sum of the number of VSPs of all combined splitters.

Mating Schemes

class MatingScheme

	
class MatingScheme

	This mating scheme is the base class of all mating schemes. It
evolves a population generation by generation but does not actually
transmit genotype.

	
MatingScheme(subPopSize=[])

	Create a base mating scheme that evolves a population without
transmitting genotypes. At each generation, this mating scheme
creates an offspring generation according to parameter
subPopSize, which can be a list of subpopulation sizes (or a
number if there is only one subpopulation) or a Python function
which will be called at each generation, just before mating, to
determine the subpopulation sizes of the offspring generation.
The function should be defined with one or both parameters of
gen and pop where gen is the current generation
number and pop is the parental population just before
mating. The return value of this function should be a list of
subpopulation sizes for the offspring generation. A single
number can be returned if there is only one subpopulation. The
passed parental population is usually used to determine
offspring population size from parental population size but you
can also modify this population to prepare for mating. A common
practice is to split and merge parental populations in this
function so that you demographic related information and actions
could be implemented in the same function.

class HomoMating

	
class HomoMating

	A homogeneous mating scheme that uses a parent chooser to choose
parents from a prental generation, and an offspring generator to
generate offspring from chosen parents. It can be either used
directly, or within a heterogeneous mating scheme. In the latter
case, it can be applied to a (virtual) subpopulation.

	
HomoMating(chooser, generator, subPopSize=[], subPops=ALL_AVAIL, weight=0)

	Create a homogeneous mating scheme using a parent chooser
chooser and an offspring generator generator.

If this mating scheme is used directly in a simulator, it will
be responsible for creating an offspring population according to
parameter subPopSize. This parameter can be a list of
subpopulation sizes (or a number if there is only one
subpopulation) or a Python function which will be called at each
generation to determine the subpopulation sizes of the offspring
generation. Please refer to class MatingScheme for
details about this parameter.

If this mating shcme is used within a heterogeneous mating
scheme. Parameters subPops and weight are used to determine
which (virtual) subpopulations this mating scheme will be
applied to, and how many offspring this mating scheme will
produce. Please refer to mating scheme HeteroMating for
the use of these two parameters.

class HeteroMating

	
class HeteroMating

	A heterogeneous mating scheme that applies a list of homogeneous
mating schemes to different (virtual) subpopulations.

	
HeteroMating(matingSchemes, subPopSize=[], shuffleOffspring=True, weightBy=ANY_SEX)

	Create a heterogeneous mating scheme that will apply a list of
homogeneous mating schemes matingSchemes to different
(virtual) subpopulations. The size of the offspring generation
is determined by parameter subPopSize, which can be a list of
subpopulation sizes or a Python function that returns a list of
subpopulation sizes at each generation. Please refer to class
MatingScheme for a detailed explanation of this
parameter.

Each mating scheme defined in matingSchemes can be applied to
one or more (virtual) subpopulation. If parameter subPops is
not specified, a mating scheme will be applied to all
subpopulations. If a list of (virtual) subpopulation is
specified, the mating scheme will be applied to specific
(virtual) subpopulations.

If multiple mating schemes are applied to the same
subpopulation, a weight (parameter weight) can be given to
each mating scheme to determine how many offspring it will
produce. The default weight for all mating schemes are 0.
In this case, the number of offspring each mating scheme
produces is proportional to the number of individuals in its
parental (virtual) subpopulation (default to all parents, but
can be father for weightBy=MALE_ONLY, mother for
weightBy=FEMALE_ONLY, or father mother pairs (less of number
of father and mothers) for weightBy=PAIR_ONLY). If all
weights are negative, the numbers of offspring are determined by
the multiplication of the absolute values of the weights and
their respective parental (virtual) subpopulation sizes. If all
weights are positive, the number of offspring produced by each
mating scheme is proportional to these weights, except for
mating schemes with zero parental population size (or no father,
no mother, or no pairs, depending on value of parameter
weightBy). Mating schemes with zero weight in this case will
produce no offspring. If both negative and positive weights are
present, negative weights are processed before positive ones.

A sexual mating scheme might fail if a parental (virtual)
subpopulation has no father or mother. In this case, you can set
weightBy to PAIR_ONLY so a (virtual) subpopulation will
appear to have zero size, and will thus contribute no offspring
to the offspring population. Note that the perceived parental
(virtual) subpopulation size in this mode (and in modes of
MALE_ONLY, FEMALE_ONLY) during the calculation of the
size of the offspring subpopulation will be roughly half of the
actual population size so you might have to use weight=-2 if
you would like to have an offspring subpopulation that is
roughly the same size of the parental (virtual) subpopulation.

If multiple mating schemes are applied to the same
subpopulation, offspring produced by these mating schemes are
shuffled randomly. If this is not desired, you can turn off
offspring shuffling by setting parameter shuffleOffspring to
False.

class ConditionalMating

	
class ConditionalMating

	A conditional mating scheme that applies different mating schemes
according to a condition (similar to operator IfElse). The
condition can be a fixed condition, an expression or a user-defined
function, to determine which mating scheme to be used.

	
ConditionalMating(cond, ifMatingScheme, elseMatingScheme)

	Create a conditional mating scheme that applies mating scheme
ifMatingScheme if the condition cond is True, or
elseMatingScheme if cond is False. If a Python
expression (a string) is given to parameter cond, the
expression will be evalulated in parental population’s local
namespace. When a Python function is specified, it accepts
parameter pop for the parental population. The return value
of this function should be True or False. Otherwise,
parameter cond will be treated as a fixed condition (converted
to True or False) upon which ifMatingScheme or
elseMatingScheme will alway be applied.

class PedigreeMating

	
class PedigreeMating

	This mating scheme evolves a population following an existing
pedigree structure. If the Pedigree object has N
ancestral generations and a present generation, it can be used to
evolve a population for N generations, starting from the
topmost ancestral generation. At the k-th generation, this mating
scheme produces an offspring generation according to subpopulation
structure of the N-k-1 ancestral generation in the pedigree
object (e.g. producing the offspring population of generation 0
according to the N-1 ancestral generation of the pedigree
object). For each offspring, this mating scheme copies individual
ID and sex from the corresponing individual in the pedigree object.
It then locates the parents of each offspring using their IDs in
the pedigree object. A list of during mating operators are then
used to transmit parental genotype to the offspring. The population
being evolved must have an information field 'ind_id'.

	
PedigreeMating(ped, ops, idField="ind_id")

	Creates a pedigree mating scheme that evolves a population
according to Pedigree object ped. The evolved
population should contain individuals with ID (at information
field idField, default to 'ind_id') that match those
individual in the topmost ancestral generation who have
offspring. After parents of each individuals are determined from
their IDs, a list of during-mating operators ops are applied
to transmit genotypes. The return value of these operators are
not checked.

	
parallelizable()

	FIXME: No document

class SequentialParentChooser

	
class SequentialParentChooser

	This parent chooser chooses a parent from a parental (virtual)
subpopulation sequentially. Natural selection is not considered. If
the last parent is reached, this parent chooser will restart from
the beginning of the (virtual) subpopulation.

	
SequentialParentChooser(sexChoice=ANY_SEX)

	Create a parent chooser that chooses a parent from a parental
(virtual) subpopulation sequentially. Parameter choice can be
ANY_SEX (default), MALE_ONLY and FEMALE_ONLY. In the
latter two cases, only male or female individuals are selected.
A RuntimeError will be raised if there is no male or
female individual from the population.

	
chooseParents()

	Return chosen parents from a population if the parent chooser
object is created with a population.

	
initialize(pop, subPop)

	Initialize a parent chooser for subpopulation subPop of
population pop.

class SequentialParentsChooser

	
class SequentialParentsChooser

	This parent chooser chooses two parents (a father and a mother)
sequentially from their respective sex groups. Selection is not considered.
If all fathers (or mothers) are exhausted, this parent chooser will choose
fathers (or mothers) from the beginning of the (virtual) subpopulation
again.

	
SequentialParentsChooser()

	Create a parent chooser that chooses two parents sequentially from a
parental (virtual) subpopulation.

class RandomParentChooser

	
class RandomParentChooser

	This parent chooser chooses a parent randomly from a (virtual)
parental subpopulation. Parents are chosen with or without
replacement. If parents are chosen with replacement, a parent can
be selected multiple times. If individual fitness values are
assigned to individuals (stored in an information field
selectionField (default to "fitness"), individuals will be
chosen at a probability proportional to his or her fitness value.
If parents are chosen without replacement, a parent can be chosen
only once. An RuntimeError will be raised if all parents
are exhausted. Natural selection is disabled in the without-
replacement case.

	
RandomParentChooser(replacement=True, selectionField="fitness", sexChoice=ANY_SEX)

	Create a random parent chooser that choose parents with or
without replacement (parameter replacement, default to
True). If selection is enabled and information field
selectionField exists in the passed population, the
probability that a parent is chosen is proportional to his/her
fitness value stored in selectionField. This parent chooser by
default chooses parent from all individuals (ANY_SEX), but
it can be made to select only male (MALE_ONLY) or female
(FEMALE_ONLY) individuals by setting parameter sexChoice.

	
chooseParents()

	Return chosen parents from a population if the parent chooser
object is created with a population.

	
initialize(pop, subPop)

	Initialize a parent chooser for subpopulation subPop of
population pop.

class RandomParentsChooser

	
class RandomParentsChooser

	This parent chooser chooses two parents, a male and a female,
randomly from a (virtual) parental subpopulation. Parents are
chosen with or without replacement from their respective sex group.
If parents are chosen with replacement, a parent can be selected
multiple times. If individual fitness values are assigned (stored
in information field selectionField, default to "fitness",
the probability that an individual is chosen is proportional to
his/her fitness value among all individuals with the same sex. If
parents are chosen without replacement, a parent can be chosen only
once. An RuntimeError will be raised if all males or
females are exhausted. Natural selection is disabled in the
without-replacement case.

	
RandomParentsChooser(replacement=True, selectionField="fitness")

	Create a random parents chooser that choose two parents with or
without replacement (parameter replacement, default to
True). If selection is enabled and information field
selectionField exists in the passed population, the
probability that a parent is chosen is proportional to his/her
fitness value stored in selectionField.

	
chooseParents()

	Return chosen parents from a population if the parent chooser
object is created with a population.

	
initialize(pop, subPop)

	Initialize a parent chooser for subpopulation subPop of
population pop.

class PolyParentsChooser

	
class PolyParentsChooser

	This parent chooser is similar to random parents chooser but
instead of selecting a new pair of parents each time, one of the
parents in this parent chooser will mate with several spouses
before he/she is replaced. This mimicks multi-spouse mating schemes
such as polygyny or polyandry in some populations. Natural
selection is supported for both sexes.

	
PolyParentsChooser(polySex=MALE, polyNum=1, selectionField="fitness")

	Create a multi-spouse parents chooser where each father (if
polySex is MALE) or mother (if polySex is FEMALE) has
polyNum spouses. The parents are chosen with replacement. If
individual fitness values are assigned (stored to information
field selectionField, default to "fitness"), the
probability that an individual is chosen is proportional to
his/her fitness value among all individuals with the same sex.

	
chooseParents()

	Return chosen parents from a population if the parent chooser
object is created with a population.

	
initialize(pop, subPop)

	Initialize a parent chooser for subpopulation subPop of
population pop.

class CombinedParentsChooser

	
class CombinedParentsChooser

	This parent chooser accepts two parent choosers. It takes one
parent from each parent chooser and return them as father and
mother. Because two parent choosers do not have to choose parents
from the same virtual subpopulation, this parent chooser allows you
to choose parents from different subpopulations.

	
CombinedParentsChooser(fatherChooser, motherChooser, allowSelfing=True)

	Create a Python parent chooser using two parent choosers
fatherChooser and motherChooser. It takes one parent from
each parent chooser and return them as father and mother. If two
valid parents are returned, the first valid parent (father) will
be used for fatherChooser, the second valid parent (mother)
will be used for motherChooser. Although these two parent
choosers are supposed to return a father and a mother
respectively, the sex of returned parents are not checked so it
is possible to return parents with the same sex using this
parents chooser. This choose by default allows the selection of
the same parents as father and mother (self-fertilization),
unless a parameter allowSelfing is used to disable it.

	
chooseParents()

	Return chosen parents from a population if the parent chooser
object is created with a population.

	
initialize(pop, subPop)

	Initialize a parent chooser for subpopulation subPop of
population pop.

class PyParentsChooser

	
class PyParentsChooser

	This parent chooser accepts a Python generator function that
repeatedly yields one or two parents, which can be references to
individual objects or indexes relative to each subpopulation. The
parent chooser calls the generator function with parental
population and a subpopulation index for each subpopulation and
retrieves parents repeatedly using the iterator interface of the
generator function.

This parent chooser does not support virtual subpopulation
directly. However, because virtual subpopulations are defined in
the passed parental population, it is easy to return parents from a
particular virtual subpopulation using virtual subpopulation
related functions.

	
PyParentsChooser(generator)

	Create a Python parent chooser using a Python generator function
parentsGenerator. This function should accept one or both of
parameters pop (the parental population) and subPop (index
of subpopulation) and return the reference or index (relative to
subpopulation) of a parent or a pair of parents repeatedly using
the iterator interface of the generator function.

	
chooseParents()

	Return chosen parents from a population if the parent chooser
object is created with a population.

	
initialize(pop, subPop)

	Initialize a parent chooser for subpopulation subPop of
population pop.

class OffspringGenerator

	
class OffspringGenerator

	An offspring generator generates offspring from parents chosen by
a parent chooser. It is responsible for creating a certain number
of offspring, determinning their sex, and transmitting genotypes
from parents to offspring.

	
OffspringGenerator(ops, numOffspring=1, sexMode=RANDOM_SEX)

	Create a basic offspring generator. This offspring generator
uses ops genotype transmitters to transmit genotypes from
parents to offspring.

A number of during-mating operators (parameter ops) can be
used to, among other possible duties such as setting information
fields of offspring, transmit genotype from parents to
offspring. This general offspring generator does not have any
default during-mating operator but all stock mating schemes use
an offspring generator with a default operator. For example, a
mendelianOffspringGenerator is used by RandomMating
to trasmit genotypes. Note that applicability parameters
begin, step, end, at and reps could be used
in these operators but negative population and generation
indexes are unsupported.

Parameter numOffspring is used to control the number of
offspring per mating event, or in another word the number of
offspring in each family. It can be a number, a Python function
or generator, or a mode parameter followed by some optional
arguments. If a number is given, given number of offspring will
be generated at each mating event. If a Python function is
given, it will be called each time when a mating event happens.
When a generator function is specified, it will be called for
each subpopulation to provide number of offspring for all mating
events during the populating of this subpopulation. Current
generation number will be passed to this function or generator
function if parameter “gen” is used in this function. In the
last case, a tuple (or a list) in one of the following forms can
be given:

	(GEOMETRIC_DISTRIBUTION, p)

	(POISSON_DISTRIBUTION, p), p > 0

	(BINOMIAL_DISTRIBUTION, p, N), 0 < p <=1, N > 0

	(UNIFORM_DISTRIBUTION, a, b), 0 <= a <= b.

In this case, the number of offspring will be determined
randomly following the specified statistical distributions.
Because families with zero offspring are silently ignored, the
distribution of the observed number of offspring per mating
event (excluding zero) follows zero-truncated versions of these
distributions.

Parameter numOffspring specifies the number of offspring per
mating event but the actual surviving offspring can be less than
specified. More spefically, if any during-mating operator
returns False, an offspring will be discarded so the
actually number of offspring of a mating event will be reduced.
This is essentially how during-mating selector works.

Parameter sexMode is used to control the sex of each
offspring. Its default value is usually RANDOM_SEX which
assign MALE or FEMALE to each individual randomly, with
equal probabilities. If NO_SEX is given, offspring sex will
not be changed. sexMode can also be one of

	(PROB_OF_MALES, p) where p is the probability of male
for each offspring,

	(NUM_OF_MALES, n) where n is the number of males in a
mating event. If n is greater than or equal to the number
of offspring in this family, all offspring in this family will
be MALE.

	(NUM_OF_FEMALES, n) where n is the number of females
in a mating event,

	(SEQUENCE_OF_SEX, s1, s2 ...) where s1, s2 etc are
MALE or FEMALE. The sequence will be used for each mating
event. It will be reused if the number of offspring in a
mating event is greater than the length of sequence.

	(GLOBAL_SEQUENCE_OF_SEX, s1, s2, ...) where s1, s2
etc are MALE or FEMALE. The sequence will be used across
mating events. It will be reused if the number of offspring in
a subpopulation is greater than the length of sequence.

Finally, parameter sexMode accepts a function or a generator
function. A function will be called whenever an offspring is
produced. A generator will be created at each subpopulation and
will be used to produce sex for all offspring in this
subpopulation. No parameter is accepted.

class ControlledOffspringGenerator

	
class ControlledOffspringGenerator

	This offspring generator populates an offspring population and
controls allele frequencies at specified loci. At each generation,
expected allele frequencies at these loci are passed from a user
defined allele frequency trajectory function. The offspring
population is populated in two steps. At the first step, only
families with disease alleles are accepted until until the expected
number of disease alleles are met. At the second step, only
families with wide type alleles are accepted to populate the rest
of the offspring generation. This method is described in detail in
“Peng et al, (2007) PLoS Genetics”.

	
ControlledOffspringGenerator(loci, alleles, freqFunc, ops=[], numOffspring=1, sexMode=RANDOM_SEX)

	Create an offspring generator that selects offspring so that
allele frequency at specified loci in the offspring generation
reaches specified allele frequency. At the beginning of each
generation, expected allele frequency of alleles at loci is
returned from a user-defined trajectory function freqFunc.
Parameter loci can be a list of loci indexes, names, or
ALL_AVAIL. If there is no subpopulation, this function should
return a list of frequencies for each locus. If there are
multiple subpopulations, freqFunc can return a list of allele
frequencies for all subpopulations or combined frequencies that
ignore population structure. In the former case, allele
frequencies should be arranged by loc0_sp0, loc1_sp0, …
loc0_sp1, loc1_sp1, …, and so on. In the latter case, overall
expected number of alleles are scattered to each subpopulation
in proportion to existing number of alleles in each
subpopulation, using a multinomial distribution.

After the expected alleles are calculated, this offspring
generator accept and reject families according to their genotype
at loci until allele frequecies reach their expected values.
The rest of the offspring generation is then filled with
families without only wild type alleles at these loci.

This offspring generator is derived from class
OffspringGenerator. Please refer to class OffspringGenerator
for a detailed description of parameters ops, numOffspring
and sexMode.

Pre-defined mating schemes

class CloneMating

	
class CloneMating

	A homogeneous mating scheme that uses a sequential parent chooser and
a clone offspring generator.

	
CloneMating(numOffspring=1, sexMode=None, ops=CloneGenoTransmitter(), subPopSize=[], subPops=ALL_AVAIL, weight=0, selectionField=None)

	Create a clonal mating scheme that clones parents to offspring using
a CloneGenoTransmitter. Please refer to class OffspringGenerator
for parameters ops and numOffspring, and to class HomoMating for
parameters subPopSize, subPops and weight. Parameters sexMode and
selectionField are ignored because this mating scheme does not support
natural selection, and CloneGenoTransmitter copies sex from parents
to offspring. Note that CloneGenoTransmitter by default also copies
all parental information fields to offspring.

class RandomSelection

	
class RandomSelection

	A homogeneous mating scheme that uses a random single-parent parent
chooser with replacement, and a clone offspring generator. This mating
scheme is usually used to simulate the basic haploid Wright-Fisher model
but it can also be applied to diploid populations.

	
RandomSelection(numOffspring=1, sexMode=None, ops=CloneGenoTransmitter(), subPopSize=[], subPops=ALL_AVAIL, weight=0, selectionField='fitness')

	Create a mating scheme that select a parent randomly and copy him or
her to the offspring population. Please refer to class
RandomParentChooser for parameter selectionField, to class
OffspringGenerator for parameters ops and numOffspring, and to
class HomoMating for parameters subPopSize, subPops and weight.
Parameter sexMode is ignored because cloneOffspringGenerator copies
sex from parents to offspring.

class RandomMating

	
class RandomMating

	A homogeneous mating scheme that uses a random parents chooser with
replacement and a Mendelian offspring generator. This mating scheme is
widely used to simulate diploid sexual Wright-Fisher random mating.

	
RandomMating(numOffspring=1, sexMode=RANDOM_SEX, ops=MendelianGenoTransmitter(), subPopSize=[], subPops=ALL_AVAIL, weight=0, selectionField='fitness')

	Creates a random mating ssheme that selects two parents randomly and
transmit genotypes according to Mendelian laws. Please refer to class
RandomParentsChooser for parameter selectionField, to class
OffspringGenerator for parameters ops, sexMode and
numOffspring, and to class HomoMating for parameters
subPopSize, subPops and weight.

class MonogamousMating

	
class MonogamousMating

	A homogeneous mating scheme that uses a random parents chooser without
replacement and a Mendelian offspring generator. It differs from the basic
random mating scheme in that each parent can mate only once so there is no
half-sibling in the population.

	
MonogamousMating(numOffspring=1, sexMode=RANDOM_SEX, ops=MendelianGenoTransmitter(), subPopSize=[], subPops=ALL_AVAIL, weight=0, selectionField=None)

	Creates a monogamous mating scheme that selects each parent only
once. Please refer to class OffspringGenerator for parameters
ops, sexMode and numOffspring, and to class HomoMating for
parameters subPopSize, subPops and weight. Parameter
selectionField is ignored because this mating scheme does not
support natural selection.

class PolygamousMating

	
class PolygamousMating

	A homogeneous mating scheme that uses a multi-spouse parents chooser
and a Mendelian offspring generator. It differs from the basic random
mating scheme in that each parent of sex polySex will have polyNum
spouses.

	
PolygamousMating(polySex=MALE, polyNum=1, numOffspring=1, sexMode=RANDOM_SEX, ops=MendelianGenoTransmitter(), subPopSize=[], subPops=ALL_AVAIL, weight=0, selectionField='fitness')

	Creates a polygamous mating scheme that each parent mates with
multiple spouses. Please refer to class PolyParentsChooser for
parameters polySex, polyNum and selectionField, to class
OffspringGenerator for parameters ops, sexMode and
numOffspring, and to class HomoMating for parameters
subPopSize, subPops and weight.

class HaplodiploidMating

	
class HaplodiploidMating

	A homogeneous mating scheme that uses a random parents chooser with
replacement and a haplodiploid offspring generator. It should be used
in a haplodiploid population where male individuals only have one set
of homologous chromosomes.

	
HaplodiploidMating(numOffspring=1.0, sexMode=RANDOM_SEX, ops=HaplodiploidGenoTransmitter(), subPopSize=[], subPops=ALL_AVAIL, weight=0, selectionField='fitness')

	Creates a mating scheme in haplodiploid populations. Please refer
to class RandomParentsChooser for parameter selectionField, to
class OffspringGenerator for parameters ops, sexMode and
numOffspring, and to class HomoMating for parameters
subPopSize, subPops and weight.

class SelfMating

	
class SelfMating

	A homogeneous mating scheme that uses a random single-parent parent
chooser with or without replacement (parameter replacement) and a
selfing offspring generator. It is used to mimic self-fertilization
in certain plant populations.

	
SelfMating(replacement=True, numOffspring=1, sexMode=RANDOM_SEX, ops=SelfingGenoTransmitter(), subPopSize=[], subPops=ALL_AVAIL, weight=0, selectionField='fitness')

	Creates a selfing mating scheme where two homologous copies of
parental chromosomes are transmitted to offspring according to
Mendelian laws. Please refer to class RandomParentChooser for
parameter replacement and selectionField, to class
OffspringGenerator for parameters ops, sexMode and
numOffspring, and to class HomoMating for parameters
subPopSize, subPops and weight.

class HermaphroditicMating

	
class HermaphroditicMating

	A hermaphroditic mating scheme that chooses two parents randomly
from the population regardless of sex. The parents could be chosen
with or without replacement (parameter replacement). Selfing (if
the same parents are chosen) is allowed unless allowSelfing is
set to False

	
HermaphroditicMating(replacement=True, allowSelfing=True, numOffspring=1, sexMode=RANDOM_SEX, ops=MendelianGenoTransmitter(), subPopSize=[], subPops=ALL_AVAIL, weight=0, selectionField='fitness')

	Creates a hermaphroditic mating scheme where individuals can
serve as father or mother, or both (self-fertilization). Please
refer to class CombinedParentsChooser for parameter allowSelfing``,
to :class:`RandomParentChooser` for parameter *replacement and
selectionField, to class OffspringGenerator for parameters ops,
sexMode and numOffspring, and to class HomoMating for parameters
subPopSize, subPops and weight.

class ControlledRandomMating

	
class ControlledRandomMating

	A homogeneous mating scheme that uses a random sexual parents chooser
with replacement and a controlled offspring generator using Mendelian
genotype transmitter. It falls back to a regular random mating scheme
if there is no locus to control or no trajectory is defined.

	
ControlledRandomMating(loci=[], alleles=[], freqFunc=None, numOffspring=1, sexMode=RANDOM_SEX, ops=MendelianGenoTransmitter(), subPopSize=[], subPops=ALL_AVAIL, weight=0, selectionField='fitness')

	Creates a random mating scheme that controls allele frequency at
loci loci. At each generation, function freqFunc will be called to
called to obtain intended frequencies of alleles alleles at loci
loci. The controlled offspring generator will control the acceptance
of offspring so that the generation reaches desired allele frequencies
at these loci. If loci is empty or freqFunc is None, this mating
scheme works identically to a RandomMating scheme. Rationals and
applications of this mating scheme is described in details in a paper Peng
et al, 2007 (PLoS Genetics). Please refer to class RandomParentsChooser
for parameters selectionField, to class ControlledOffspringGenerator
for parameters loci, alleles, freqFunc, to class
OffspringGenerator for parameters ops, sexMode and numOffspring,
and to class HomoMating for parameters subPopSize, subPops and
weight.

Utility Classes

class WithArgs

	
class WithArgs

	This class wraps around a user-provided function and provides an
attribute args so that simuPOP knows which parameters to send to the
function. This is only needed if the function can not be defined with
allowed parameters.

	
WithArgs(func, args)

	Return a callable object that wraps around function func.
Parameter args should be a list of parameter names.

class WithMode

	
class WithMode

	This class wraps around a user-provided output string, function
or file handle (acceptable by parameter output of operators) so
that simuPOP knows which mode the output should be written to. For
example, if the output of the operator is a binary compressed stream,
WithMode(output, 'b') could be used to tell the operators to
output bytes instead of string. This is most needed for Python 3
because files in Python 2 accepts string even if they are opened in
binary mode.

	
WithMode(output, mode='')

	Return an object that wraps around output and tells simuPOP
to output string in mode. This class currently only support
mode='' for text mode and mode='b' for binary output.

class RNG

	
class RNG

	This random number generator class wraps around a number of random
number generators from GNU Scientific Library. You can obtain and
change the RNG used by the current simuPOP module through the
getRNG() function, or create a separate random number generator
and use it in your script.

	
RNG(name=None, seed=0)

	Create a RNG object using specified name and seed. If rng is
not given, environmental variable GSL_RNG_TYPE will be used
if it is available. Otherwise, generator mt19937 will be
used. If seed is not given, /dev/urandom, /dev/random,
or other system random number source will be used to guarantee
that random seeds are used even if more than one simuPOP
sessions are started simultaneously. Names of supported random
number generators are available from
moduleInfo()['availableRNGs'].

	
name()

	Return the name of the current random number generator.

	
randBinomial(n, p)

	Generate a random number following a binomial distribution with
parameters n and p.

	
randChisq(nu)

	Generate a random number following a Chi-squared distribution
with nu degrees of freedom.

	
randExponential(mu)

	Generate a random number following a exponential distribution
with parameter mu.

	
randGamma(a, b)

	Generate a random number following a gamma distribution with a
shape parameters a and scale parameter b.

	
randGeometric(p)

	Generate a random number following a geometric distribution with
parameter p.

	
randInt(n)

	return a random number in the range of [0, 1, 2, ... n-1]

	
randMultinomial(N, p)

	Generate a random number following a multinomial distribution
with parameters N and p (a list of probabilities).

	
randNormal(mu, sigma)

	Generate a random number following a normal distribution with
mean mu and standard deviation sigma.

	
randPoisson(mu)

	Generate a random number following a Poisson distribution with
parameter mu.

	
randTruncatedBinomial(n, p)

	Generate a positive random number following a zero-truncated
binomial distribution with parameters n and p.

	
randTruncatedPoisson(mu)

	Generate a positive random number following a zero-truncated
Poisson distribution with parameter mu.

	
randUniform()

	Generate a random number following a rng_uniform [0, 1)
distribution.

	
seed()

	Return the seed used to initialize the RNG. This can be used to
repeat a previous session.

	
set(name=None, seed=0)

	Replace the existing random number generator using RNG*name*
with seed seed. If seed is 0, a random seed will be used. If
name is empty, use the existing RNG but reset the seed.

class WeightedSampler

	
class WeightedSampler

	A random number generator that returns 0, 1, …, k-1
with probabilites that are proportional to their weights. For
example, a weighted sampler with weights 4, 3, 2 and
1 will return numbers 0, 1, 2 and 3 with
probabilities 0.4, 0.3, 0.2 and 0.1, respectively.
If an additional parameter N is specified, the weighted sampler
will return exact proportions of numbers if N numbers are
returned. The version without additional parameter is similar to
the sample(prob, replace=FALSE) function of the R statistical
package.

	
WeightedSampler(weights=[], N=0)

	Creates a weighted sampler that returns 0, 1, …
k-1 when a list of k weights are specified (weights).
weights do not have to add up to 1. If a non-zero N is
specified, exact proportions of numbers will be returned in N
returned numbers.

	
draw()

	Returns a random number between 0 and k-1 with
probabilities that are proportional to specified weights.

	
drawSamples(n=1)

	Returns a list of n random numbers

Global functions

Function closeOutput

	
closeOutput(output="")

	Output files specified by '>' are closed immediately after they
are written. Those specified by '>>' and '>>>' are closed
by a simulator after Simulator.evolve(). However, these files
will be kept open if the operators are applied directly to a
population using the operators’ function form. In this case,
function closeOutput can be used to close a specific file
output, and close all unclosed files if output is unspecified.
An exception will be raised if output does not exist or it has
already been closed.

Function describeEvolProcess

	
describeEvolProcess(initOps=[], preOps=[], matingScheme=MatingScheme, postOps=[], finalOps=[], gen=-1, numRep=1)

	This function takes the same parameters as Simulator.evolve
and output a description of how an evolutionary process will be
executed. It is recommended that you call this function if you have
any doubt how your simulation will proceed.

Function loadPopulation

	
loadPopulation(file)

	load a population from a file saved by Population::save().

Function loadPedigree

	
loadPedigree(file, idField="ind_id", fatherField="father_id", motherField="mother_id", ploidy=2, loci=[], chromTypes=[], lociPos=[], chromNames=[], alleleNames=[], lociNames=[], subPopNames=[], infoFields=[])

	Load a pedigree from a file saved by operator
PedigreeTagger or function Pedigree.save. This
file contains the ID of each offspring and their parent(s) and
optionally sex (‘M’ or ‘F’), affection status (‘A’ or ‘U’), values
of information fields and genotype at some loci. IDs of each
individual and their parents are loaded to information fields
idField, fatherField and motherField. Only numeric IDs are
allowed, and individual IDs must be unique across all generations.

Because this file does not contain generation information,
generations to which offspring belong are determined by the parent-
offspring relationships. Individuals without parents are assumed to
be in the top-most ancestral generation. This is the case for
individuals in the top-most ancestral generation if the file is
saved by function Pedigree.save(), and for individuals who only
appear as another individual’s parent, if the file is saved by
operator PedigreeTagger. The order at which offsprng is
specified is not important because this function essentially
creates a top-most ancestral generation using IDs without parents,
and creates the next generation using offspring of these parents,
and so on until all generations are recreated. That is to say, if
you have a mixture of pedigrees with different generations, they
will be lined up from the top most ancestral generation.

If individual sex is not specified, sex of of parents are
determined by their parental roles (father or mother) but the sex
of individuals in the last generation can not be determined so they
will all be males. If additional information fields are given,
their names have to be specified using parameter infoFields. The
rest of the columns are assued to be alleles, arranged ploidy
consecutive columns for each locus. If paraemter loci is not
specified, the number of loci is calculated by number of columns
divided by ploidy (default to 2). All loci are assumed to be on
one chromosome unless parameter loci is used to specified number
of loci on each chromosome. Additional parameters such as ploidy,
chromTypes, lociPos, chromNames, alleleNames, lociNames
could be used to specified the genotype structured of the loaded
pedigree. Please refer to class Population for details
about these parameters.

Function moduleInfo

	
moduleInfo()

	Return a dictionary with information regarding the currently loaded
simuPOP module. This dictionary has the following keys:

	revision: revision number.

	version: simuPOP version string.

	optimized: Is this module optimized (True or False).

	alleleType: Allele type of the module (short, long or
binary).

	maxAllele: the maximum allowed allele state, which is 1
for binary modules, 255 for short modules and 65535 for
long modules.

	compiler: the compiler that compiles this module.

	date: date on which this module is compiled.

	python: version of python.

	platform: platform of the module.

	wordsize: size of word, can be either 32 or 64.

	alleleBits: the number of bits used to store an allele

	maxNumSubPop: maximum number of subpopulations.

	maxIndex: maximum index size (limits population size * total
number of marker).

	debug: A dictionary with debugging codes as keys and the
status of each debugging code (True or False) as their
values.

Function getRNG

	
getRNG()

	return the currently used random number generator

Function setRNG

	
setRNG(name='', seed=0)

	Set random number generator. This function is obsolete but is provided
for compatibility purposes. Please use setOptions instead

Function setOptions

	
setOptions(numThreads=-1, name=None, seed=0)

	First argument is to set number of thread in openMP. The number of
threads can be be positive, integer (number of threads) or 0, which
implies all available cores, or a number set by environmental
variable OMP_NUM_THREADS. Second and third argument is to set
the type or seed of existing random number generator using
RNG*name* with seed. If using openMP, it sets the type or seed of
random number generator of each thread.

Function turnOnDebug

	
turnOnDebug(code="")

	Set debug code code. More than one code could be specified using
a comma separated string. Name of available codes are available
from moduleInfo()['debug'].keys().

Function turnOffDebug

	
turnOffDebug(code="DBG_ALL")

	Turn off debug code code. More than one code could be specified
using a comma separated string. Default to turn off all debug
codes.

Operator References

	Base class for all operators
	class BaseOperator

	Initialization
	class InitSex

	class InitInfo

	class InitGenotype

	class InitLineage

	Expression and Statements
	class PyOutput

	class PyEval

	class PyExec

	class InfoEval

	class InfoExec

	Demographic models
	class Migrator

	class BackwardMigrator

	class SplitSubPops

	class MergeSubPops

	class ResizeSubPops

	Genotype transmitters
	class GenoTransmitter

	class CloneGenoTransmitter

	class MendelianGenoTransmitter

	class SelfingGenoTransmitter

	class HaplodiploidGenoTransmitter

	class MitochondrialGenoTransmitter

	class Recombinator

	Mutation
	class BaseMutator

	class MatrixMutator

	class KAlleleMutator

	class StepwiseMutator

	class PyMutator

	class MixedMutator

	class ContextMutator

	class PointMutator

	class SNPMutator

	class AcgtMutator

	Penetrance
	class BasePenetrance

	class MapPenetrance

	class MaPenetrance

	class MlPenetrance

	class PyPenetrance

	class PyMlPenetrance

	Quantitative Trait
	class BaseQuanTrait

	class PyQuanTrait

	Natural selection
	class BaseSelector

	class MapSelector

	class MaSelector

	class MlSelector

	class PySelector

	class PyMlSelector

	Tagging operators
	class IdTagger

	class InheritTagger

	class SummaryTagger

	class ParentsTagger

	class OffspringTagger

	class PedigreeTagger

	class PyTagger

	Statistics Calculation
	class Stat

	Conditional operators
	class IfElse

	class TerminateIf

	class DiscardIf

	The Python operator
	class PyOperator

	Miscellaneous operators
	class NoneOp

	class Dumper

	class SavePopulation

	class Pause

	class TicToc

	Function form of operators
	Function acgtMutate

	Function contextMutate

	Function discardIf

	Function dump

	Function infoEval

	Function infoExec

	Function initGenotype

	Function initInfo

	Function initSex

	Function kAlleleMutate

	Function maPenetrance

	Function mapPenetrance

	Function matrixMutate

	Function mergeSubPops

	Function migrate

	Function backwardMigrate

	Function mixedMutate

	Function mlPenetrance

	Function pointMutate

	Function pyEval

	Function pyExec

	Function pyMutate

	Function pyPenetrance

	Function pyMlPenetrance

	Function pyQuanTrait

	Function resizeSubPops

	Function snpMutate

	Function splitSubPops

	Function stat

	Function stepwiseMutate

	Function tagID

Base class for all operators

class BaseOperator

	
class BaseOperator

	Operators are objects that act on populations. They can be applied
to populations directly using their function forms, but they are
usually managed and applied by a simulator. In the latter case,
operators are passed to the evolve function of a simulator, and
are applied repeatedly during the evolution of the simulator.

The BaseOperator class is the base class for all operators. It
defines a common user interface that specifies at which
generations, at which stage of a life cycle, to which populations
and subpopulations an operator is applied. These are achieved by a
common set of parameters such as begin, end, step,
at, stage for all operators. Note that a specific operator
does not have to honor all these parameters. For example, a
Recombinator can only be applied during mating so it ignores the
stage parameter.

An operator can be applied to all or part of the generations during
the evolution of a simulator. At the beginning of an evolution, a
simulator is usually at the beginning of generation 0. If it
evolves 10 generations, it evolves generations 0, 1,
,,,., and 9 (10 generations) and stops at the begging of
generation 10. A negative generation number a has
generation number 10 + a, with -1 referring to the last evolved
generation 9. Note that the starting generation number of a
simulator can be changed by its setGen() member function.

Output from an operator is usually directed to the standard output
(sys.stdout). This can be configured using a output
specification string, which can be '' for no output, '>'
standard terminal output (default), a filename prefixed by one or
more '>' characters or a Python expression indicated by a
leading exclamation mark ('!expr'). In the case of
'>filename' (or equivalently 'filename'), the output from
an operator is written to this file. However, if two operators
write to the same file filename, or if an operator writes to
this file more than once, only the last write operation will
succeed. In the case of '>>filename', file filename will be
opened at the beginning of the evolution and closed at the end.
Outputs from multiple operators are appended. >>>filename works
similar to >>filename but filename, if it already exists at
the beginning of an evolutionary process, will not be cleared. If
the output specification is prefixed by an exclamation mark, the
string after the mark is considered as a Python expression. When an
operator is applied to a population, this expression will be
evaluated within the population’s local namespace to obtain a
population specific output specification. As an advanced feature, a
Python function can be assigned to this parameter. Output strings
will be sent to this function for processing. Lastly, if the output
stream only accept a binary output (e.g. a gzip stream),
WithMode(output, 'b') should be used to let simuPOP convert
string to bytes before writing to the output.

	
BaseOperator(output, begin, end, step, at, reps, subPops, infoFields)

	The following parameters can be specified by all operators.
However, an operator can ignore some parameters and the exact
meaning of a parameter can vary.

	output

	A string that specifies how output from an operator is written, which
can be '' (no output), '>' (standard output),
'filename' prefixed by one or more ‘>’, or an Python
expression prefixed by an exclamation mark ('!expr'). If
a file object, or any Python object with a write
function is provided, the output will be write to this file.
Alternatively, a Python function or a file object (any Python
object with a write function) can be given which will be
called with a string of output content. A global function
WithMode can be used to let simuPOP output bytes
instead of string.

	begin

	The starting generation at which an operator will be applied. Default
to 0. A negative number is interpreted as a generation
counted from the end of an evolution (-1 being the last
evolved generation).

	end

	The last generation at which an operator will be applied. Default to
-1, namely the last generation.

	step

	The number of generations between applicable generations. Default to
1.

	at

	A list of applicable generations. Parameters begin, end, and
step will be ignored if this parameter is specified. A
single generation number is also acceptable.

	reps

	A list of applicable replicates. A common default value ALL_AVAIL
is interpreted as all replicates in a simulator. Negative
indexes such as -1 (last replicate) is acceptable.
rep=idx can be used as a shortcut for rep=[idx].

	subPops

	A list of applicable (virtual) subpopulations, such as subPops=[sp1,
sp2, (sp2, vsp1)]. subPops=[sp1] can be simplied as
subPops=sp1. Negative indexes are not supported. A common
default value (ALL_AVAIL) of this parameter reprents all
subpopulations of the population being aplied. Suport for
this parameter vary from operator to operator and some
operators do not support virtual subpopulations at all.
Please refer to the reference manual of individual operators
for their support for this parameter.

	infoFields

	A list of information fields that will be used by an operator. You
usually do not need to specify this parameter because
operators that use information fields usually have default
values for this parameter.

	
apply(pop)

	Apply an operator to population pop directly, without checking
its applicability.

	
clone()

	Return a cloned copy of an operator. This function is available
to all operators.

Initialization

class InitSex

	
class InitSex

	This operator initializes sex of individuals, either randomly or
use a list of sexes.

	
InitSex(maleFreq=0.5, maleProp=-1, sex=[], begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

	Create an operator that initializes individual sex to MALE
or FEMALE. By default, it assigns sex to individuals
randomly, with equal probability of having a male or a female.
This probabability can be adjusted through parameter maleFreq
or be made to exact proportions by specifying parameter
maleProp. Alternatively, a fixed sequence of sexes can be
assigned. For example, if sex=[MALE, FEMALE], individuals
will be assigned MALE and FEMALE successively. Parameter
maleFreq or maleProp are ignored if sex is given. If a
list of (virtual) subpopulation is specified in parameter
subPop, only individuals in these subpopulations will be
initialized. Note that the sex sequence, if used, is assigned
repeatedly regardless of (virtual) subpopulation boundaries so
that you can assign sex to all individuals in a population.

class InitInfo

	
class InitInfo

	This operator initializes given information fields with a sequence
of values, or a user-provided function such as random.random.

	
InitInfo(values, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

	Create an operator that initialize individual information fields
infoFields using a sequence of values or a user-defined
function. If a list of values are given, it will be used
sequentially for all individuals. The values will be reused if
its length is less than the number of individuals. The values
will be assigned repeatedly regardless of subpopulation
boundaries. If a Python function is given, it will be called,
without any argument, whenever a value is needed. If a list of
(virtual) subpopulation is specified in parameter subPop, only
individuals in these subpopulations will be initialized.

class InitGenotype

	
class InitGenotype

	This operator assigns alleles at all or part of loci with given
allele frequencies, proportions or values. This operator
initializes all chromosomes, including unused genotype locations
and customized chromosomes.

	
InitGenotype(freq=[], genotype=[], prop=[], haplotypes=[], genotypes=[], loci=ALL_AVAIL, ploidy=ALL_AVAIL, begin=0, end=1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

	This function creates an initializer that initializes individual
genotypes with random alleles, genotypes, or haplotypes with
specified frequencies (parameter freq) or proportions
(parameter prop). If parameter genotypes or haplotypes is
not specified, freq specifies the allele frequencies of
alleles 0, 1, 2… respectively. Alternatively, you
can use parameter prop to specified the exact proportions of
alleles 0, 1, …, although alleles with small
proportions might not be assigned at all.

Values of parameter prob or prop should add up to 1. In
addition to a vector, parameter prob and prop can also be a
function that accepts optional parameters loc, subPop or
vsp and returns a list of requencies for alleles 0, 1,
etc, or a number for frequency of allele 0 as a speciail
case for each locus, subpopulation (parameter subPop), or
virtual subpopulations (parameter vsp, pass as a tuple).

If parameter genotypes is specified, it should contain a list
of genotypes (alleles on different strand of chromosomes) with
length equal to population ploidy. Parameter prob and prop
then specifies frequencies or proportions of each genotype,
which can vary for each subpopulation but not each locus if the
function form of parameters is used.

If parameter haplotypes is specified, it should contain a list
of haplotypes (alleles on the same strand of chromosome) and
parameter prob or prop specifies frequencies or proportions
of each haplotype.

If loci, ploidy and/or subPop are specified, only
specified loci, ploidy, and individuals in these (virtual)
subpopulations will be initialized. Parameter loci can be a
list of loci indexes, names or ALL_AVAIL. If the length of a
haplotype is not enough to fill all loci, the haplotype will be
reused. If a list (or a single) haplotypes are specified without
freq or prop, they are used with equal probability.

In the last case, if a sequence of genotype is specified through
parameter genotype (not genotypes), it will be used
repeatedly to initialize all alleles sequentially. This works
similar to function Population.setGenotype() except that you
can limit the initialization to certain loci and ploidy.

class InitLineage

	
class InitLineage

	This operator assigns lineages at all or part of loci with given
values. This operator initializes all chromosomes, including unused
lineage locations and customized chromosomes.

	
InitLineage(lineage=[], mode=PER_ALLELE, loci=ALL_AVAIL, ploidy=ALL_AVAIL, begin=0, end=1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=["ind_id"])

	This function creates an initializer that initializes lineages
with either a specified set of values or from the field
infoFields (default to ind_id), whose value will be saved
as the lineage of modified alleles. If a list of values is
specified in parameter lineage, each value in this list is
applied to one or more alleles so that each allele
(PER_ALLELE, default mode), alleles on each chromosome
(PER_CHROMOSOME), on chromosomes of each ploidy
(PER_PLOIDY), or for each individual (PER_INDIVIDUAL)
have the same lineage. A single value is allowed and values in
lineage will be re-used if not enough values are provided. If
an empty list is provided, values 1, 2, 3, .. will be used to
provide an unique identify for each allele, genotype,
chromosome, etc. If a valid field is specified (default to
ind_id), the value of this field will be used for all
alleles of each individual if mode is set to FROM_INFO, or
be adjusted to produce positive values for alleles on the frist
ploidy, and negative values for the second ploidy (and so on) if
mode equals to FROM_INFO_SIGNED. If loci, ploidy
and/or subPops are specified, only specified loci, ploidy, and
individuals in these (virtual) subpopulations will be
initialized.

Expression and Statements

class PyOutput

	
class PyOutput

	This operator outputs a given string when it is applied to a
population.

	
PyOutput(msg="", output=">", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

	Creates a PyOutput operator that outputs a string msg
to output (default to standard terminal output) when it is
applied to a population. Please refer to class
BaseOperator for a detailed description of common
operator parameters such as stage, begin and output.

class PyEval

	
class PyEval

	A PyEval operator evaluates a Python expression in a
population’s local namespace when it is applied to this population.
The result is written to an output specified by parameter output.

	
PyEval(expr="", stmts="", exposePop="", output=">", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=Py_False, infoFields=[])

	Create a PyEval operator that evaluates a Python
expression expr in a population’s local namespaces when it is
applied to this population. This namespace can either be the
population’s local namespace (pop.vars()), or namespaces
subPop[sp] for (virtual) subpop (pop.vars(subpop)) in
specified subPops. If Python statements stmts is given (a
single or multi-line string), the statement will be executed
before expr. If exposePop is set to an non-empty string, the
current population will be exposed in its own local namespace as
a variable with this name. This allows the execution of
expressions such as 'pop.individual(0).allele(0)'. The
result of expr will be sent to an output stream specified by
parameter output. The exposed population variable will be
removed after expr is evaluated. Please refer to class
BaseOperator for other parameters.

Note

Although the statements and expressions are evaluated in a
population’s local namespace, they have access to a global
namespace which is the module global namespace. It is
therefore possible to refer to any module variable in these
expressions. Such mixed use of local and global variables is,
however, strongly discouraged.

class PyExec

	
class PyExec

	This operator executes given Python statements in a population’s
local namespace when it is applied to this population.

	
PyExec(stmts="", exposePop="", output=">", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=Py_False, infoFields=[])

	Create a PyExec operator that executes statements
stmts in a population’s local namespace when it is applied to
this population. This namespace can either be the population’s
local namespace (pop.vars()), or namespaces subPop[sp]
for each (virtual) subpop (pop.vars(subpop)) in specified
subPops. If exposePop is given, current population will be
exposed in its local namespace as a variable named by
exposePop. Although multiple statements can be executed, it is
recommended that you use this operator to execute short
statements and use PyOperator for more complex once.
Note that exposed population variables will be removed after the
statements are executed.

class InfoEval

	
class InfoEval

	Unlike operator PyEval and PyExec that work at
the population level, in a population’s local namespace, operator
InfoEval works at the individual level, working with
individual information fields. When this operator is applied to a
population, information fields of eligible individuals are put into
the local namespace of the population. A Python expression is then
evaluated for each individual. The result is written to an output.

	
InfoEval(expr="", stmts="", usePopVars=False, exposeInd="", output=">", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

	Create an operator that evaluate a Python expression expr
using individual information fields and population variables as
variables. If exposeInd is not empty, the individual itself
will be exposed in the population’s local namespace as a
variable with name specified by exposeInd.

A Python expression (expr) is evaluated for each individual.
The results are converted to strings and are written to an
output specified by parameter output. Optionally, a statement
(or several statements separated by newline) can be executed
before expr is evaluated. The evaluation of this statement may
change the value of information fields.

Parameter usePopVars is obsolete because population variables
are always usable in such expressions.

class InfoExec

	
class InfoExec

	Operator InfoExec is similar to InfoEval in that
it works at the individual level, using individual information
fields as variables. This is usually used to change the value of
information fields. For example, "b=a*2" will set the value of
information field b to a*a for all individuals.

	
InfoExec(stmts="", usePopVars=False, exposeInd="", output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

	Create an operator that executes Python statements stmts using
individual information fields and population variables as
variables. If exposeInd is not empty, the individual itself
will be exposed in the population’s local namespace as a
variable with name specified by exposeInd.

One or more python statements (stmts) are executed for each
individual. Information fields of these individuals are then
updated from the corresponding variables. For example, a=1
will set information field a of all individuals to 1,
a=b will set information field a of all individuals to
information field b or a population variable b if b
is not an information field but a population variable, and
a=ind.sex() will set information field a of all
individuals to its sex (needs exposeInd='ind'.

Parameter usePopVars is obsolete because population variables
will always be usable.

Demographic models

class Migrator

	
class Migrator

	This operator migrates individuals from (virtual) subpopulations to
other subpopulations, according to either pre-specified destination
subpopulation stored in an information field, or randomly according
to a migration matrix.

In the former case, values in a specified information field
(default to migrate_to) are considered as destination
subpopulation for each individual. If subPops is given, only
individuals in specified (virtual) subpopulations will be migrated
where others will stay in their original subpopulation. Negative
values are not allowed in this information field because they do
not represent a valid destination subpopulation ID.

In the latter case, a migration matrix is used to randomly assign
destination subpoulations to each individual. The elements in this
matrix can be probabilities to migrate, proportions of individuals
to migrate, or exact number of individuals to migrate.

By default, the migration matrix should have m by m
elements if there are m subpopulations. Element (i, j) in
this matrix represents migration probability, rate or count from
subpopulation i to j. If subPops (length m) and/or
toSubPops (length n) are given, the matrix should have m
by n elements, corresponding to specified source and
destination subpopulations. Subpopulations in subPops can be
virtual subpopulations, which makes it possible to migrate, for
example, males and females at different rates from a subpopulation.
If a subpopulation in toSubPops does not exist, it will be
created. In case that all individuals from a subpopulation are
migrated, the empty subpopulation will be kept.

If migration is applied by probability, the row of the migration
matrix corresponding to a source subpopulation is intepreted as
probabilities to migrate to each destination subpopulation. Each
individual’s detination subpopulation is assigned randomly
according to these probabilities. Note that the probability of
staying at the present subpopulation is automatically calculated so
the corresponding matrix elements are ignored.

If migration is applied by proportion, the row of the migration
matrix corresponding to a source subpopulation is intepreted as
proportions to migrate to each destination subpopulation. The
number of migrants to each destination subpopulation is determined
before random indidividuals are chosen to migrate.

If migration is applied by counts, the row of the migration matrix
corresponding to a source subpopulation is intepreted as number of
individuals to migrate to each detination subpopulation. The
migrants are chosen randomly.

This operator goes through all source (virtual) subpopulations and
assign detination subpopulation of each individual to an
information field. Unexpected results may happen if individuals
migrate from overlapping virtual subpopulations.

	
Migrator(rate=[], mode=BY_PROBABILITY, toSubPops=ALL_AVAIL, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=["migrate_to"])

	Create a Migrator that moves individuals from source (virtual)
subpopulations subPops (default to migrate from all
subpopulations) to destination subpopulations toSubPops
(default to all subpopulations), according to existing values in
an information field infoFields*[0], or randomly according to a
migration matrix *rate. In the latter case, the size of the
matrix should match the number of source and destination
subpopulations.

Depending on the value of parameter mode, elements in the
migration matrix (rate) are interpreted as either the
probabilities to migrate from source to destination
subpopulations (mode = BY_PROBABILITY), proportions of
individuals in the source (virtual) subpopulations to the
destination subpopulations (mode = BY_PROPORTION), numbers
of migrants in the source (virtual) subpopulations (mode =
BY_COUNTS), or ignored completely (mode =
BY_IND_INFO). In the last case, parameter subPops is
respected (only individuals in specified (virtual)
subpopulations will migrate) but toSubPops is ignored.

Please refer to operator BaseOperator for a detailed
explanation for all parameters.

class BackwardMigrator

	
class BackwardMigrator

	This operator migrates individuals between all available or
specified subpopulations, according to a backward migration matrix.
It differs from Migrator in how migration matrixes are
interpreted. Due to the limit of this model, this operator does not
support migration by information field, migration by count (mode
= BY_COUNT), migration from virtual subpopulations, migration
between different number of subpopulations, and the creation of new
subpopulation, as operator Migrator provides.

In contrast to a forward migration matrix where m_{ij} is
considered the probability (proportion or count) of individuals
migrating from subpopulation i to j, elements in a reverse
migration matrix m_{ij} is considered the probability (proportion
or count) of individuals migrating from subpopulation j to
i, namely the probability (proportion or count) of individuals
originats from subpopulation j.

If migration is applied by probability, the row of the migration
matrix corresponding to a destination subpopulation is intepreted
as probabilities to orignate from each source subpopulation. Each
individual’s source subpopulation is assigned randomly according to
these probabilities. Note that the probability of originating from
the present subpopulation is automatically calculated so the
corresponding matrix elements are ignored.

If migration is applied by proportion, the row of the migration
matrix corresponding to a destination subpopulation is intepreted
as proportions to originate from each source subpopulation. The
number of migrants from each source subpopulation is determined
before random indidividuals are chosen to migrate.

Unlike the forward migration matrix that describes how migration
should be performed, the backward migration matrix describes the
result of migration. The underlying forward migration matrix is
calculated at each generation and is in theory not the same across
generations.

This operator calculates the corresponding forward migration matrix
from backward matrix and current population size. This process is
not always feasible so an error will raise if no valid ending
population size or forward migration matrix could be determined.
Please refer to the simuPOP user’s guide for an explanation of the
theory behind forward and backward migration matrices.

	
BackwardMigrator(rate=[], mode=BY_PROBABILITY, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=["migrate_to"])

	Create a BackwardMigrator that moves individuals between
subPop subpopulations randomly according to a backward
migration matrix rate. The size of the matrix should match the
number of subpopulations.

Depending on the value of parameter mode, elements in the
migration matrix (rate) are interpreted as either the
probabilities to originate from source subpopulations (mode =
BY_PROBABILITY) or proportions of individuals originate from
the source (virtual) subpopulations (mode =
BY_PROPORTION). Migration by count is not supported by this
operator.

Please refer to operator BaseOperator for a detailed
explanation for all parameters.

class SplitSubPops

	
class SplitSubPops

	Split a given list of subpopulations according to either sizes of
the resulting subpopulations, proportion of individuals, or an
information field. The resulting subpopulations will have the same
name as the original subpopulation.

	
SplitSubPops(subPops=ALL_AVAIL, sizes=[], proportions=[], names=[], randomize=True, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, infoFields=[])

	Split a list of subpopulations subPops into finer
subpopulations. A single subpopulation is acceptable but virtual
subpopulations are not allowed. All subpopulations will be split
if subPops is not specified.

The subpopulations can be split in three ways:

	If parameter sizes is given, each subpopulation will be
split into subpopulations with given size. The sizes should
add up to the size of all orignal subpopulations.

	If parameter proportions is given, each subpopulation will
be split into subpopulations with corresponding proportion of
individuals. proportions should add up to 1.

	If an information field is given (parameter infoFields),
individuals having the same value at this information field
will be grouped into a subpopulation. The number of resulting
subpopulations is determined by the number of distinct values
at this information field.

If parameter randomize is True (default), individuals
will be randomized before a subpopulation is split. This is
designed to remove artificial order of individuals introduced
by, for example, some non- random mating schemes. Note that,
however, the original individual order is not guaranteed even if
this parameter is set to False.

Unless the last subpopulation is split, the indexes of existing
subpopulations will be changed. If a subpopulation has a name,
this name will become the name for all subpopulations separated
from this subpopulation. Optionally, you can assign names to the
new subpopulations using a list of names specified in parameter
names. Because the same set of names will be used for all
subpopulations, this parameter is not recommended when multiple
subpopulations are split.

Please refer to operator BaseOperator for a detailed
explanation for all parameters.

Note

Unlike operator Migrator, this operator does not
require an information field such as migrate_to.

class MergeSubPops

	
class MergeSubPops

	This operator merges subpopulations subPops to a single
subpopulation. If subPops is ignored, all subpopulations will
be merged. Virtual subpopulations are not allowed in subPops.

	
MergeSubPops(subPops=ALL_AVAIL, name="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, infoFields=[])

	Create an operator that merges subpopulations subPops to a
single subpopulation. If subPops is not given, all
subpopulations will be merged. The merged subpopulation will
take the name of the first subpopulation being merged unless a
new name is given.

Please refer to operator BaseOperator for a detailed
explanation for all parameters.

class ResizeSubPops

	
class ResizeSubPops

	This operator resizes subpopulations to specified sizes.
individuals are added or removed depending on the new subpopulation
sizes.

	
ResizeSubPops(subPops=ALL_AVAIL, sizes=[], proportions=[], propagate=True, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, infoFields=[])

	Resize given subpopulations subPops to new sizes size, or
sizes proportional to original sizes (parameter proportions).
All subpopulations will be resized if subPops is not
specified. If the new size of a subpopulation is smaller than
its original size, extra individuals will be removed. If the new
size is larger, new individuals with empty genotype will be
inserted, unless parameter propagate is set to True
(default). In this case, existing individuals will be copied
sequentially, and repeatedly if needed.

Please refer to operator BaseOperator for a detailed
explanation for all parameters.

Genotype transmitters

class GenoTransmitter

	
class GenoTransmitter

	This during mating operator is the base class of all genotype
transmitters. It is made available to users because it provides a
few member functions that can be used by derived transmitters, and
by customized Python during mating operators.

	
GenoTransmitter(output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

	Create a base genotype transmitter.

	
clearChromosome(ind, ploidy, chrom)

	Clear (set alleles to zero) chromosome chrom on the ploidy-
th homologous set of chromosomes of individual ind. It is
equivalent to ind.setGenotype([0], ploidy, chrom), except
that it also clears allele lineage if it is executed in a module
with lineage allele type.

	
copyChromosome(parent, parPloidy, offspring, ploidy, chrom)

	Transmit chromosome chrom on the parPloidy set of homologous
chromosomes from parent to the ploidy set of homologous
chromosomes of offspring. It is equivalent to
offspring.setGenotype(parent.genotype(parPloidy, chrom),
polidy, chrom), except that it also copies allelic lineage
when it is executed in a module with lineage allele type.

	
copyChromosomes(parent, parPloidy, offspring, ploidy)

	Transmit the parPloidy set of homologous chromosomes from
parent to the ploidy set of homologous chromosomes of
offspring. Customized chromosomes are not copied. It is
equivalent to
offspring.setGenotype(parent.genotype(parPloidy), ploidy),
except that it also copies allelic lineage when it is executed
in a module with lineage allele type.

class CloneGenoTransmitter

	
class CloneGenoTransmitter

	This during mating operator copies parental genotype directly to
offspring. This operator works for all mating schemes when one or
two parents are involved. If both parents are passed, maternal
genotype are copied. In addition to genotypes on all non-customized
or specified chromosomes, sex and information fields are by default
also coped copied from parent to offspring.

	
CloneGenoTransmitter(output="", chroms=ALL_AVAIL, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=ALL_AVAIL)

	Create a clone genotype transmitter (a during-mating operator)
that copies genotypes from parents to offspring. If two parents
are specified, genotypes are copied maternally. After genotype
transmission, offspring sex and affection status is copied from
the parent even if sex has been determined by an offspring
generator. All or specified information fields (parameter
infoFields, default to ALL_AVAIL) will also be copied from
parent to offspring. Parameters subPops is ignored. This
operator by default copies genotypes on all autosome and sex
chromosomes (excluding customized chromosomes), unless a
parameter chroms is used to specify which chromosomes to copy.
This operator also copies allelic lineage when it is executed in
a module with lineage allele type.

class MendelianGenoTransmitter

	
class MendelianGenoTransmitter

	This Mendelian offspring generator accepts two parents and pass
their genotypes to an offspring following Mendel’s laws. Sex
chromosomes are handled according to the sex of the offspring,
which is usually determined in advance by an offspring generator.
Customized chromosomes are not handled.

	
MendelianGenoTransmitter(output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

	Create a Mendelian genotype transmitter (a during-mating
operator) that transmits genotypes from parents to offspring
following Mendel’s laws. Autosomes and sex chromosomes are
handled but customized chromosomes are ignored. Parameters
subPops and infoFields are ignored. This operator also
copies allelic lineage when it is executed in a module with
lineage allele type.

	
transmitGenotype(parent, offspring, ploidy)

	Transmit genotype from parent to offspring, and fill the
ploidy homologous set of chromosomes. This function does not
set genotypes of customized chromosomes and handles sex
chromosomes properly, according to offspring sex and ploidy.

class SelfingGenoTransmitter

	
class SelfingGenoTransmitter

	A genotype transmitter (during-mating operator) that transmits
parental genotype of a parent through self-fertilization. That is
to say, the offspring genotype is formed according to Mendel’s
laws, only that a parent serves as both maternal and paternal
parents.

	
SelfingGenoTransmitter(output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

	Create a self-fertilization genotype transmitter that transmits
genotypes of a parent to an offspring through self-
fertilization. Cutsomized chromosomes are not handled.
Parameters subPops and infoFields are ignored. This operator
also copies allelic lineage when it is executed in a module with
lineage allele type.

class HaplodiploidGenoTransmitter

	
class HaplodiploidGenoTransmitter

	A genotype transmitter (during-mating operator) for haplodiploid
populations. The female parent is considered as diploid and the
male parent is considered as haploid (only the first homologous
copy is valid). If the offspring is FEMALE, she will get a
random copy of two homologous chromosomes of her mother, and get
the only paternal copy from her father. If the offspring is
MALE, he will only get a set of chromosomes from his mother.

	
HaplodiploidGenoTransmitter(output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

	Create a haplodiploid genotype transmitter (during-mating
operator) that transmit parental genotypes from parents to
offspring in a haplodiploid population. Parameters subPops and
infoFields are ignored. This operator also copies allelic
lineage when it is executed in a module with lineage allele
type.

class MitochondrialGenoTransmitter

	
class MitochondrialGenoTransmitter

	This geno transmitter transmits the first homologous copy of a
Mitochondrial chromosome. If no mitochondrial chromosome is
present, it assumes that the first homologous copy of several (or
all) Customized chromosomes are copies of mitochondrial
chromosomes. This operator transmits the mitochondrial chromosome
from the female parent to offspring for sexsual reproduction, and
any parent to offspring for asexual reproduction. If there are
multiple chromosomes, the organelles are selected randomly. If this
transmitter is applied to populations with more than one homologous
copies of chromosomes, it transmits the first homologous copy of
chromosomes and clears alleles (set to zero) on other homologous
copies.

	
MitochondrialGenoTransmitter(output="", chroms=ALL_AVAIL, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

	Createa a mitochondrial genotype transmitter that treats the
Mitochondiral chromosome, or Customized chromosomes if no
Mitochondrial chromosome is specified, or a list of chromosomes
specified by chroms, as human mitochondrial chromosomes. These
chromosomes should have the same length and the same number of
loci. This operator transmits these chromosomes randomly from
the female parent to offspring of both sexes. It also copies
allelic lineage when it is executed in a module with lineage
allele type.

class Recombinator

	
class Recombinator

	A genotype transmitter (during-mating operator) that transmits
parental chromosomes to offspring, subject to recombination and
gene conversion. This can be used to replace
MendelianGenoTransmitter and
SelfingGenoTransmitter. It does not work in haplodiploid
populations, although a customized genotype transmitter that makes
uses this operator could be defined. Please refer to the simuPOP
user’s guide or online cookbook for details.

Recombination could be applied to all adjacent markers or after
specified loci. Recombination rate between two adjacent markers
could be specified directly, or calculated using physical distance
between them. In the latter case, a recombination intensity is
multiplied by physical distance between markers.

Gene conversion is interpreted as double-recombination events. That
is to say, if a recombination event happens, it has a certain
probability (can be 1) to become a conversion event, namely
triggering another recombination event down the chromosome. The
length of the converted chromosome can be controlled in a number of
ways.

Note

simuPOP does not assume any unit to loci positions so
recombination intensity could be explained differntly (e.g.
cM/Mb, Morgan/Mb) depending on your intepretation of loci
positions. For example, if basepair is used for loci position,
intensity=10^-8 indicates 10^-8 per basepair, which is
equivalent to 10^-2 per Mb or 1 cM/Mb. If Mb is used for
physical positions, the same recombination intensity could be
achieved by intensity=0.01.

	
Recombinator(rates=[], intensity=-1, loci=ALL_AVAIL, convMode=NO_CONVERSION, output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

	Create a Recombinator (a mendelian genotype transmitter with
recombination and gene conversion) that passes genotypes from
parents (or a parent in case of self-fertilization) to
offspring.

Recombination happens by default between all adjacent markers
but can be limited to a given set of loci, which can be a list
of loci indexes, names, list of chromosome position pairs,
ALL_AVAIL, or a function with optional parameter pop
that will be called at each ganeeration to determine indexes of
loci. Each locus in this list specifies a recombination point
between the locus and the locus immediately after it. Loci
that are the last locus on each chromosome are ignored.

If a single recombination rate (parameter rates) is specified,
it will used for all loci (all loci or loci specified by
parameter loci), regardless of physical distances between
adjacent loci.

If a list of recombination rates are specified in rates,
different recombination rates could be applied after a list of
specified loci (between loci and their immediate neighbor to the
right). The loci should be specified by parameter loci as a
list with the same length as rates, or ALL_AVAIL (default)
in which case the length of rates should equal to the total
number of loci. Note that recombination rates specified for the
last locus on each chromosome are ignored because simuPOP
assumes free recombination between chromosomes.

A recombination intensity (intensity) can be used to specify
recombination rates that are proportional to physical distances
between adjacent markers. If the physical distance between two
markers is d, the recombination rate between them will be
intensity * d. No unit is assume for loci position and
recombination intensity.

Gene conversion is controlled using parameter convMode, which
can be

	NoConversion: no gene conversion (default).

	(NUM_MARKERS, prob, n): With probability prob, convert a
fixed number (n) of markers if a recombination event
happens.

	(GEOMETRIC_DISTRIBUTION, prob, p): With probability
prob, convert a random number of markers if a recombination
event happens. The number of markes converted follows a
geometric distribution with probability p.

	(TRACT_LENGTH, prob, n): With probability prob, convert
a region of fixed tract length (n) if a recombination event
happens. The actual number of markers converted depends on
loci positions of surrounding loci. The starting position of
this tract is the middle of two adjacent markers. For example,
if four loci are located at 0, 1, 2, 3 respectively, a
conversion event happens between 0 and 1, with a tract
length 2 will start at 0.5 and end at 2.5, covering the second
and third loci.

	(EXPONENTIAL_DISTRIBUTION, prob, p): With probability
prob, convert a region of random tract length if a
recombination event happens. The distribution of tract length
follows a exponential distribution with probability p. The
actual number of markers converted depends on loci positions
of surrounding loci.

simuPOP uses this probabilistic model of gene conversion because
when a recombination event happens, it may become a
recombination event if the if the Holliday junction is
resolved/repaired successfully, or a conversion event if the
junction is not resolved/repaired. The probability, however, is
more commonly denoted by the ratio of conversion to
recombination events in the literature. This ratio varies
greatly from study to study, ranging from 0.1 to 15 (Chen et al,
Nature Review Genetics, 2007). This translate to 0.1/0.9~0.1 to
15/16~0.94 of the gene conversion probability.

A Recombinator usually does not send any output.
However, if an information field is given (parameter
infoFields), this operator will treat this information field
as an unique ID of parents and offspring and output all
recombination events in the format of offspring_id parent_id
starting_ploidy loc1 loc2 ... `` where ``starting_ploidy
indicates which homologous copy genotype replication starts from
(0 or 1), loc1, loc2 etc are loci after which
recombination events happens. If there are multiple chromosomes
on the genome, you will see a lot of (fake) recombination events
because of independent segregation of chromosomes. Such a record
will be generated for each set of homologous chromosomes so an
diploid offspring will have two lines of output. Note that
individual IDs need to be set (using a IdTagger
operator) before this Recombinator is applied.

In addition to genotypes, this operator also copies alleleic
lineage if it is executed in a module with lineage allele type.

Note

There is no recombination between sex chromosomes
(Chromosomes X and Y), although recombination is possible
between pesudoautosomal regions on these chromosomes. If such
a feature is required, you will have to simulate the
pesudoautosomal regions as separate chromosomes.

	
transmitGenotype(parent, offspring, ploidy)

	This function transmits genotypes from a parent to the
ploidy-th homologous set of chromosomes of an offspring. It
can be used, for example, by a customized genotype transmitter
to use sex-specific recombination rates to transmit parental
genotypes to offspring.

Mutation

class BaseMutator

	
class BaseMutator

	Class mutator is the base class of all mutators. It handles all
the work of picking an allele at specified loci from certain
(virtual) subpopulation with certain probability, and calling a
derived mutator to mutate the allele. Alleles can be changed before
and after mutation if existing allele numbers do not match those of
a mutation model.

	
BaseMutator(rates=[], loci=ALL_AVAIL, mapIn=[], mapOut=[], context=0, output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=["ind_id"], lineageMode=FROM_INFO)

	A mutator mutates alleles from one state to another with given
probability. This base mutator does not perform any mutation but
it defines common behaviors of all mutators.

By default, a mutator mutates all alleles in all populations of
a simulator at all generations. A number of parameters can be
used to restrict mutations to certain generations (parameters
begin, end, step and at), replicate populations
(parameter rep), (virtual) subpopulations (parameter
subPops) and loci (parameter loci). Parameter loci can be
a list of loci indexes, names, list of chromosome position
pairs, ALL_AVAIL, or a function with optional parameter
pop that will be called at each ganeeration to determine
indexes of loci. Please refer to class BaseOperator for
a detailed explanation of these parameters.

Parameter rate or its equivalence specifies the probability
that a a mutation event happens. The exact form and meaning of
rate is mutator-specific. If a single rate is specified, it
will be applied to all loci. If a list of mutation rates are
given, they will be applied to each locus specified in parameter
loci. Note that not all mutators allow specification of
multiple mutation rate, especially when the mutation rate itself
is a list or matrix.

Alleles at a locus are non-negative numbers 0, 1, … up to the
maximum allowed allele for the loaded module (1 for binary, 255
for short and 65535 for long modules). Whereas some general
mutation models treat alleles as numbers, other models assume
specific interpretation of alleles. For example, an
AcgtMutator assumes alleles 0, 1, 2 and
3 as nucleotides A, C, G and T. Using a
mutator that is incompatible with your simulation will certainly
yield erroneous results.

If your simulation assumes different alleles with a mutation
model, you can map an allele to the allele used in the model and
map the mutated allele back. This is achieved using a mapIn
list with its i-th item being the corresponding allele of
real allele i, and a mapOut list with its i-th item
being the real allele of allele i assumed in the model. For
example mapIn=[0, 0, 1] and mapOut=[1, 2] would allow
the use of a SNPMutator to mutate between alleles 1 and
2, instead of 0 and 1. Parameters mapIn and mapOut also
accept a user-defined Python function that returns a
corresponding allele for a given allele. This allows easier
mapping between a large number of alleles and advanced models
such as random emission of alleles.

If a valid information field is specified for parameter
infoFields (default to ind_id) for modules with lineage
allele type, the lineage of the mutated alleles will be the ID
(stored in the first field of infoFields) of individuals that
harbor the mutated alleles if lineageMode is set to
FROM_INFO (default). If lineageMode is set to
FROM_INFO_SIGNED, the IDs will be assigned a sign depending
on the ploidy the mutation happens (1 for ploidy 0, -1 for
ploidy 1, etc). The lineage information will be transmitted
along with the alleles so this feature allows you to track the
source of mutants during evolution.A

A mutator by default does not produce any output. However, if an
non-empty output is specified, the operator will output
generation number, locus, ploidy, original allele, mutant, and
values of all information field specified by parameter
infoFields (e.g. individual ID if ind_id is specified).

Some mutation models are context dependent. Namely, how an
allele mutates will depend on its adjecent alleles. Whereas most
simuPOP mutators are context independent, some of them accept a
parameter context which is the number of alleles to the left
and right of the mutated allele. For example context=1 will
make the alleles to the immediate left and right to a mutated
allele available to a mutator. These alleles will be mapped in
if parameter mapIn is defined. How exactly a mutator makes use
of these information is mutator dependent.

class MatrixMutator

	
class MatrixMutator

	A matrix mutator mutates alleles 0, 1, …, n-1 using a
n by n matrix, which specifies the probability at which
each allele mutates to another. Conceptually speaking, this mutator
goes through all mutable allele and mutate it to another state
according to probabilities in the corresponding row of the rate
matrix. Only one mutation rate matrix can be specified which will
be used for all specified loci. #

	
MatrixMutator(rate, loci=ALL_AVAIL, mapIn=[], mapOut=[], output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=["ind_id"], lineageMode=FROM_INFO)

	Create a mutator that mutates alleles 0, 1, …, n-1
using a n by n matrix rate. Item (i,j) of this
matrix specifies the probability at which allele i mutates to
allele j. Diagnal items (i, i) are ignored because they
are automatically determined by other probabilities. Only one
mutation rate matrix can be specified which will be used for all
loci in the applied population, or loci specified by parameter
loci. If alleles other than 0, 1, …, n-1 exist
in the population, they will not be mutated although a warning
message will be given if debugging code DBG_WARNING is
turned on. Please refer to classes mutator and
BaseOperator for detailed explanation of other
parameters.

class KAlleleMutator

	
class KAlleleMutator

	This mutator implements a k-allele mutation model that assumes
k allelic states (alleles 0, 1, 2, …, k-1) at each locus.
When a mutation event happens, it mutates an allele to any other
states with equal probability.

	
KAlleleMutator(k, rates=[], loci=ALL_AVAIL, mapIn=[], mapOut=[], output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=["ind_id"], lineageMode=FROM_INFO)

	Create a k-allele mutator that mutates alleles to one of the
other k-1 alleles with equal probability. This mutator by
default applies to all loci unless parameter loci is
specified. A single mutation rate will be used for all loci if a
single value of parameter rates is given. Otherwise, a list of
mutation rates can be specified for each locus in parameter
loci. If the mutated allele is larger than or equal to k,
it will not be mutated. A warning message will be displayed if
debugging code DBG_WARNING is turned on. Please refer to
classes mutator and BaseOperator for descriptions
of other parameters.

class StepwiseMutator

	
class StepwiseMutator

	A stepwise mutation model treats alleles at a locus as the number
of tandem repeats of microsatellite or minisatellite markers. When
a mutation event happens, the number of repeats (allele) either
increase or decrease. A standard stepwise mutation model increases
of decreases an allele by 1 with equal probability. More complex
models (generalized stepwise mutation model) are also allowed. Note
that an allele cannot be mutated beyond boundaries (0 and maximum
allowed allele).

	
StepwiseMutator(rates=[], loci=ALL_AVAIL, incProb=0.5, maxAllele=0, mutStep=[], mapIn=[], mapOut=[], output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=["ind_id"], lineageMode=FROM_INFO)

	Create a stepwise mutation mutator that mutates an allele by
increasing or decreasing it. This mutator by default applies to
all loci unless parameter loci is specified. A single mutation
rate will be used for all loci if a single value of parameter
rates is given. Otherwise, a list of mutation rates can be
specified for each locus in parameter loci.

When a mutation event happens, this operator increases or
decreases an allele by mutStep steps. Acceptable input of
parameter mutStep include

	A number: This is the default mode with default value 1.

	(GEOMETRIC_DISTRIBUTION, p): The number of steps follows a
a geometric distribution with parameter p.

	A Python function: This user defined function accepts the
allele being mutated and return the steps to mutate.

The mutation process is usually neutral in the sense that
mutating up and down is equally likely. You can adjust parameter
incProb to change this behavior.

If you need to use other generalized stepwise mutation models,
you can implement them using a PyMutator. If
performance becomes a concern, I may add them to this operator
if provided with a reliable reference.

class PyMutator

	
class PyMutator

	This hybrid mutator accepts a Python function that determines how
to mutate an allele when an mutation event happens.

	
PyMutator(rates=[], loci=ALL_AVAIL, func=None, context=0, mapIn=[], mapOut=[], output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=["ind_id"], lineageMode=FROM_INFO)

	Create a hybrid mutator that uses a user-provided function to
mutate an allele when a mutation event happens. This function
(parameter func) accepts the allele to be mutated as parameter
allele, locus index locus, and optional array of alleles
as parameter context, which are context alleles the left
and right of the mutated allele. Invalid context alleles (e.g.
left allele to the first locus of a chromosome) will be marked
by -1. The return value of this function will be used to mutate
the passed allele. The passed, returned and context alleles
might be altered if parameter mapIn and mapOut are used.
This mutator by default applies to all loci unless parameter
loci is specified. A single mutation rate will be used for all
loci if a single value of parameter rates is given. Otherwise,
a list of mutation rates can be specified for each locus in
parameter loci. Please refer to classes mutator and
BaseOperator for descriptions of other parameters.

class MixedMutator

	
class MixedMutator

	This mixed mutator accepts a list of mutators and use one of them
to mutate an allele when an mutation event happens.

	
MixedMutator(rates=[], loci=ALL_AVAIL, mutators=[], prob=[], mapIn=[], mapOut=[], context=0, output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=["ind_id"], lineageMode=FROM_INFO)

	Create a mutator that randomly chooses one of the specified
mutators to mutate an allele when a mutation event happens.
The mutators are choosen according to a list of probabilities
(parameter prob) that should add up to 1. The passed and
returned alleles might be changed if parameters mapIn and
mapOut are used. Most parameters, including loci, mapIn,
mapOut, rep, and subPops of mutators specified in
parameter mutators are ignored. This mutator by default
applies to all loci unless parameter loci is specified. Please
refer to classes mutator and BaseOperator for
descriptions of other parameters.

class ContextMutator

	
class ContextMutator

	This context-dependent mutator accepts a list of mutators and use
one of them to mutate an allele depending on the context of the
mutated allele.

	
ContextMutator(rates=[], loci=ALL_AVAIL, mutators=[], contexts=[], mapIn=[], mapOut=[], output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=["ind_id"], lineageMode=FROM_INFO)

	Create a mutator that choose one of the specified mutators to
mutate an allele when a mutation event happens. The mutators are
choosen according to the context of the mutated allele, which is
specified as a list of alleles to the left and right of an
allele (parameter contexts). For example, contexts=[(0,0),
(0,1), (1,1)] indicates which mutators should be used to
mutate allele X in the context of 0X0, 0X1, and
1X1. A context can include more than one alleles at both
left and right sides of a mutated allele but all contexts should
have the same (even) number of alleles. If an allele does not
have full context (e.g. when a locus is the first locus on a
chromosome), unavailable alleles will be marked as -1. There
should be a mutator for each context but an additional mutator
can be specified as the default mutator for unmatched contexts.
If parameters mapIn is specified, both mutated allele and its
context alleles will be mapped. Most parameters, including
loci, mapIn, mapOut, rep, and subPops of mutators
specified in parameter mutators are ignored. This mutator by
default applies to all loci unless parameter loci is
specified. Please refer to classes mutator and
BaseOperator for descriptions of other parameters.

class PointMutator

	
class PointMutator

	A point mutator is different from all other mutators because
mutations in this mutator do not happen randomly. Instead, it
happens to specific loci and mutate an allele to a specific state,
regardless of its original state. This mutator is usually used to
introduce a mutant to a population.

	
PointMutator(loci, allele, ploidy=0, inds=[], output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=0, infoFields=["ind_id"], lineageMode=FROM_INFO)

	Create a point mutator that mutates alleles at specified loci
to a given allele of individuals inds. If there are multiple
alleles at a locus (e.g. individuals in a diploid population),
only the first allele is mutated unless indexes of alleles are
listed in parameter ploidy. This operator is by default
applied to individuals in the first subpopulation but you can
apply it to a different or more than one (virtual)
subpopulations using parameter subPops (AllAvail is also
accepted). Please refer to class BaseOperator for
detailed descriptions of other parameters.

class SNPMutator

	
class SNPMutator

	A mutator model that assumes two alleles 0 and 1 and accepts mutation
rate from 0 to 1, and from 1 to 0 alleles.

	
SNPMutator(u=0, v=0, loci=True, mapIn=[], mapOut=[], output='', begin=0, end=-1, step=1, at=[], reps=True, subPops=ALL_AVAIL, infoFields=['ind_id'], lineageMode=115)

	Return a MatrixMutator with proper mutate matrix for a two-allele
mutation model using mutation rate from allele 0 to 1 (parameter u)
and from 1 to 0 (parameter v)

class AcgtMutator

	
class AcgtMutator

	This mutation operator assumes alleles 0, 1, 2, 3 as nucleotides A,
C, G and T and use a 4 by 4 mutation rate matrix to mutate them.
Although a general model needs 12 parameters, less parameters are needed
for specific nucleotide mutation models (parameter model). The length
and meaning of parameter rate is model dependent.

	
AcgtMutator(rate=[], model='general', loci=True, mapIn=[], mapOut=[], output='', begin=0, end=-1, step=1, at=[], reps=True, subPops=ALL_AVAIL, infoFields=['ind_id'], lineageMode=115)

	Create a mutation model that mutates between nucleotides A,
C, G, and T (alleles are coded in that order as 0, 1, 2
and 3). Currently supported models are Jukes and Cantor 1969 model
(JC69), Kimura’s 2-parameter model (K80), Felsenstein 1981
model (F81), Hasgawa, Kishino and Yano 1985 model (HKY85),
Tamura 1992 model (T92), Tamura and Nei 1993 model (TN93),
Generalized time reversible model (GTR), and a general model
(general) with 12 parameters. Please refer to the simuPOP user’s
guide for detailed information about each model.

Penetrance

class BasePenetrance

	
class BasePenetrance

	A penetrance model models the probability that an individual has a
certain disease provided that he or she has certain genetic
(genotype) and environmental (information field) riske factors. A
penetrance operator calculates this probability according to
provided information and set his or her affection status randomly.
For example, an individual will have probability 0.8 to be affected
if the penetrance is 0.8. This class is the base class to all
penetrance operators and defines a common interface for all
penetrance operators.

A penetrance operator can be applied at any stage of an
evolutionary cycle. If it is applied before or after mating, it
will set affection status of all parents and offspring,
respectively. If it is applied during mating, it will set the
affection status of each offspring. You can also apply a penetrance
operator to an individual using its applyToIndividual member
function.

By default, a penetrance operator assigns affection status of
individuals but does not save the actual penetrance value. However,
if an information field is specified, penetrance values will be
saved to this field for future analysis.

When a penetrance operator is applied to a population, it is only
applied to the current generation. You can, however, use parameter
ancGens to set affection status for all ancestral generations
(ALL_AVAIL), or individuals in specified generations if a list
of ancestral generations is specified. Note that this parameter is
ignored if the operator is applied during mating.

	
BasePenetrance(ancGens=UNSPECIFIED, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

	Create a base penetrance operator. This operator assign
individual affection status in the present generation (default).
If ALL_AVAIL or a list of ancestral generations are spcified
in parameter ancGens, individuals in specified ancestral
generations will be processed. A penetrance operator can be
applied to specified (virtual) subpopulations (parameter
subPops) and replicates (parameter reps). If an informatio
field is given, penetrance value will be stored in this
information field of each individual.

	
apply(pop)

	set penetrance to all individuals and record penetrance if
requested

	
applyToIndividual(ind, pop=None)

	Apply the penetrance operator to a single individual ind and
set his or her affection status. A population reference can be
passed if the penetrance model depends on population properties
such as generation number. This function returns the affection
status.

class MapPenetrance

	
class MapPenetrance

	This penetrance operator assigns individual affection status using
a user-specified penetrance dictionary.

	
MapPenetrance(loci, penetrance, ancGens=UNSPECIFIED, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

	Create a penetrance operator that get penetrance value from a
dictionary penetrance with genotype at loci as keys, and
penetrance as values. For each individual, genotypes at loci
are collected one by one (e.g. p0_loc0, p1_loc0, p0_loc1,
p1_loc1… for a diploid individual) and are looked up in the
dictionary. Parameter loci can be a list of loci indexes,
names, list of chromosome position pairs, ALL_AVAIL, or a
function with optional parameter pop that will be called at
each ganeeration to determine indexes of loci. If a genotype
cannot be found, it will be looked up again without phase
information (e.g. (1,0) will match key (0,1)). If the
genotype still can not be found, a ValueError will be
raised. This operator supports sex chromosomes and haplodiploid
populations. In these cases, only valid genotypes should be used
to generator the dictionary keys.

class MaPenetrance

	
class MaPenetrance

	This operator is called a ‘multi-allele’ penetrance operator
because it groups multiple alleles into two groups: wildtype and
non-wildtype alleles. Alleles in each allele group are assumed to
have the same effect on individual penetrance. If we denote all
wildtype alleles as A, and all non-wildtype alleles a, this
operator assign Individual penetrance according to genotype
AA, Aa, aa in the diploid case, and A and a in
the haploid case.

	
MaPenetrance(loci, penetrance, wildtype=0, ancGens=UNSPECIFIED, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

	Creates a multi-allele penetrance operator that groups multiple
alleles into a wildtype group (with alleles wildtype, default
to [0]), and a non-wildtype group. A list of penetrance
values is specified through parameter penetrance, for
genotypes at one or more loci. Parameter loci can be a list
of loci indexes, names, list of chromosome position pairs,
ALL_AVAIL, or a function with optional parameter pop
that will be called at each ganeeration to determine indexes of
loci. If we denote wildtype alleles using capital letters A,
B … and non-wildtype alleles using small letters a,
b …, the penetrance values should be for

	genotypes A and a for the haploid single-locus case,

	genotypes AB, Ab, aB and bb for haploid
two=locus cases,

	genotypes AA, Aa and aa for diploid single-locus
cases,

	genotypes AABB, AABb, AAbb, AaBB, AaBb,
Aabb, aaBB, aaBb, and aabb for diploid two-
locus cases,

	and in general 2**n for diploid and 3**n for haploid cases if
there are n loci.

This operator does not support haplodiploid populations and sex
chromosomes.

class MlPenetrance

	
class MlPenetrance

	This penetrance operator is created by a list of penetrance
operators. When it is applied to an individual, it applies these
penetrance operators to the individual, obtain a list of penetrance
values, and compute a combined penetrance value from them and
assign affection status accordingly. ADDITIVE, multiplicative, and
a heterogeneour multi-locus model are supported. Please refer to
Neil Rish (1989) “Linkage Strategies for

Genetically Complex Traits” for some analysis of these models.

	
MlPenetrance(ops, mode=MULTIPLICATIVE, ancGens=UNSPECIFIED, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

	Create a multiple-locus penetrance operator from a list
penetrance operator ops. When this operator is applied to an
individual (parents when used before mating and offspring when
used during mating), it applies these operators to the
individual and obtain a list of (usually single-locus)
penetrance values. These penetrance values are combined to a
single penetrance value using

	Prod(f_i), namely the product of individual penetrance if
mode = MULTIPLICATIVE,

	sum(f_i) if mode = ADDITIVE, and

	1-Prod(1 - f_i) if mode = HETEROGENEITY

0 or 1 will be returned if the combined penetrance value is less
than zero or greater than 1.

Applicability parameters (begin, end, step, at, reps, subPops)
could be used in both MlSelector and selectors in
parameter ops, but parameters in MlSelector will be
interpreted first.

class PyPenetrance

	
class PyPenetrance

	This penetrance operator assigns penetrance values by calling a
user provided function. It accepts a list of loci (parameter
loci), and a Python function func which should be defined
with one or more of parameters geno, mut, gen, ind,
pop, or names of information fields. When this operator is
applied to a population, it passes genotypes or mutants (non-zero
alleles) at specified loci at specified loci, generation number, a
reference to an individual, a reference to the current population
(usually used to retrieve population variables) and values at
specified information fields to respective parameters of this
function. Genotypes of each individual are passed as a tuple of
alleles arranged locus by locus (in the order of A1,A2,B1,B2 for
loci A and B). Mutants are passed as a default dictionary of loci
index (with respect to all genotype of individuals, not just the
first ploidy) and alleles. The returned penetrance values will be
used to determine the affection status of each individual.

	
PyPenetrance(func, loci=[], ancGens=UNSPECIFIED, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

	Create a Python hybrid penetrance operator that passes genotype
at specified loci, values at specified information fields (if
requested), and a generation number to a user-defined function
func. Parameter loci can be a list of loci indexes, names,
list of chromosome position pairs, ALL_AVAIL, or a function
with optional parameter pop that will be called at each
ganeeration to determine indexes of loci. The return value will
be treated as Individual penetrance.

class PyMlPenetrance

	
class PyMlPenetrance

	This penetrance operator is a multi-locus Python penetrance
operator that assigns penetrance values by combining locus and
genotype specific penetrance values. It differs from a
PyPenetrance in that the python function is responsible
for penetrance values values for each gentoype type at each locus,
which can potentially be random, and locus or gentoype-specific.

	
PyMlPenetrance(func, mode=MULTIPLICATIVE, loci=ALL_AVAIL, ancGens=UNSPECIFIED, output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

	Create a penetrance operator that assigns individual affection
status according to penetrance values combined from locus-
specific penetrance values that are determined by a Python call-
back function. The callback function accepts parameter loc,
alleles (both optional) and returns location- or genotype-
specific penetrance values that can be constant or random. The
penetrance values for each genotype will be cached so the same
penetrance values will be assigned to genotypes with previously
assigned values. Note that a function that does not examine the
genotype naturally assumes a dominant model where genotypes with
one or two mutants have the same penetrance value. Because
genotypes at a locus are passed separately and in no particular
order, this function is also responsible for assigning
consistent fitness values for genotypes at the same locus (a
class is usually used). This operator currently ignores
chromosome types so unused alleles will be passed for loci on
sex or mitochondrial chromosomes. This operator also ignores the
phase of genotype so genotypes (a,b) and (b,a) are assumed to
have the same fitness effect.

Individual penetrance will be combined in ADDITIVE,
MULTIPLICATIVE, or HETEROGENEITY mode from penetrance
values of loci with at least one non-zero allele (See
MlPenetrance for details).

Quantitative Trait

class BaseQuanTrait

	
class BaseQuanTrait

	A quantitative trait in simuPOP is simply an information field. A
quantitative trait model simply assigns values to one or more
information fields (called trait fields) of each individual
according to its genetic (genotype) and environmental (information
field) factors. It can be applied at any stage of an evolutionary
cycle. If a quantitative trait operator is applied before or after
mating, it will set the trait fields of all parents and offspring.
If it is applied during mating, it will set the trait fields of
each offspring.

When a quantitative trait operator is applied to a population, it
is only applied to the current generation. You can, however, use
parameter ancGen=-1 to set the trait field of all ancestral
generations, or a generation index to apply to only ancestral
generation younger than ancGen. Note that this parameter is
ignored if the operator is applied during mating.

	
BaseQuanTrait(ancGens=UNSPECIFIED, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

	Create a base quantitative trait operator. This operator assigns
one or more quantitative traits to trait fields in the present
generation (default). If ALL_AVAIL or a list of ancestral
generations are specified, this operator will be applied to
individuals in these generations as well. A quantitative trait
operator can be applied to specified (virtual) subpopulations
(parameter subPops) and replicates (parameter reps).

	
apply(pop)

	set qtrait to all individual

class PyQuanTrait

	
class PyQuanTrait

	This quantitative trait operator assigns a trait field by calling a
user provided function. It accepts a list of loci (parameter
loci), and a Python function func which should be defined
with one or more of parameters geno, mut, gen, ind,
or names of information fields. When this operator is applied to a
population, it passes genotypes or mutants (non-zero alleles) of
each individual at specified loci, generation number, a reference
to an individual, and values at specified information fields to
respective parameters of this function. Genotypes of each
individual are passed as a tuple of alleles arranged locus by locus
(in the order of A1,A2,B1,B2 for loci A and B). Mutants are passed
as a default dictionary of loci index (with respect to all genotype
of individuals, not just the first ploidy) and alleles. The return
values will be assigned to specified trait fields.

	
PyQuanTrait(func, loci=[], ancGens=UNSPECIFIED, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

	Create a Python hybrid quantitative trait operator that passes
genotype at specified loci, optional values at specified
information fields (if requested), and an optional generation
number to a user-defined function func. Parameter loci can
be a list of loci indexes, names, or ALL_AVAIL. The return
value will be assigned to specified trait fields (infoField).
If only one trait field is specified, a number or a sequence of
one element is acceptable. Otherwise, a sequence of values will
be accepted and be assigned to each trait field.

Natural selection

class BaseSelector

	
class BaseSelector

	This class is the base class to all selectors, namely operators
that perform natural selection. It defines a common interface for
all selectors.

A selector can be applied before mating or during mating. If a
selector is applied to one or more (virtual) subpopulations of a
parental population before mating, it sets individual fitness
values to all involved parents to an information field (default to
fitness). When a mating scheme that supports natural selection is
applied to the parental population, it will select parents with
probabilities that are proportional to individual fitness stored in
an information field (default to fitness). Individual fitness is
considered relative fitness and can be any non-negative number.
This simple process has some implications that can lead to advanced
usages of natural selection in simuPOP:

	It is up to the mating scheme how to handle individual fitness.
Some mating schemes do not support natural selection at all.

	A mating scheme performs natural selection according to fitness
values stored in an information field. It does not care how these
values are set. For example, fitness values can be inherited from
a parent using a tagging operator, or set directly using a Python
operator.

	A mating scheme can treat any information field as fitness field.
If an specified information field does not exist, or if all
individuals have the same fitness values (e.g. 0), the mating
scheme selects parents randomly.

	Multiple selectors can be applied to the same parental
generation. individual fitness is determined by the last fitness
value it is assigned.

	A selection operator can be applied to virtual subpopulations and
set fitness values only to part of the individuals.

	individuals with zero fitness in a subpopulation with anyone
having a positive fitness value will not be selected to produce
offspring. This can sometimes lead to unexpected behaviors. For
example, if you only assign fitness value to part of the
individuals in a subpopulation, the rest of them will be
effectively discarded. If you migrate individuals with valid
fitness values to a subpopulation with all individuals having
zero fitness, the migrants will be the only mating parents.

	It is possible to assign multiple fitness values to different
information fields so that different homogeneous mating schemes
can react to different fitness schemes when they are used in a
heterogeneous mating scheme.

	You can apply a selector to the offspring generation using the
postOps parameter of Simulator.evolve, these fitness
values will be used when the offspring generation becomes
parental generation in the next generation.

Alternatively, a selector can be used as a during mating operator.
In this case, it caculates fitness value for each offspring which
will be treated as absolute fitness, namely the probability for
each offspring to survive. This process uses the fact that an
individual will be discarded when any of the during mating
operators returns False. It is important to remember that:

	individual fitness needs to be between 0 and 1 in this case.

	Fitness values are not stored so the population does not need an
information field fitness.

	This method applies natural selection to offspring instead of
parents. These two implementation can be identical or different
depending on the mating scheme used.

	Seleting offspring is less efficient than the selecting parents,
especially when fitness values are low.

	Parameter subPops are applied to the offspring population and
is used to judge if an operator should be applied. It thus does
not make sense to apply a selector to a virtual subpopulation
with affected individuals.

	
BaseSelector(output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=ALL_AVAIL)

	Create a base selector object. This operator should not be
created directly.

class MapSelector

	
class MapSelector

	This selector assigns individual fitness values using a user-
specified dictionary. This operator can be applied to populations
with arbitrary number of homologous chromosomes.

	
MapSelector(loci, fitness, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=ALL_AVAIL)

	Create a selector that assigns individual fitness values using a
dictionary fitness with genotype at loci as keys, and
fitness as values. Parameter loci can be a list of indexes,
loci names, list of chromosome position pairs, ALL_AVAIL, or
a function with optional parameter pop that will be called
at each ganeeration to determine indexes of loci. For each
individual (parents if this operator is applied before mating,
and offspring if this operator is applied during mating),
genotypes at loci are collected one by one (e.g. p0_loc0,
p1_loc0, p0_loc1, p1_loc1… for a diploid individual, with
number of alleles varying for sex and mitochondrial DNAs) and
are looked up in the dictionary. If a genotype cannot be found,
it will be looked up again without phase information (e.g.
(1,0) will match key (0,1)). If the genotype still can
not be found, a ValueError will be raised. This
operator supports sex chromosomes and haplodiploid populations.
In these cases, only valid genotypes should be used to generator
the dictionary keys.

class MaSelector

	
class MaSelector

	This operator is called a ‘multi-allele’ selector because it groups
multiple alleles into two groups: wildtype and non-wildtype
alleles. Alleles in each allele group are assumed to have the same
effect on individual fitness. If we denote all wildtype alleles as
A, and all non-wildtype alleles a, this operator assign
individual fitness according to genotype AA, Aa, aa in
the diploid case, and A and a in the haploid case.

	
MaSelector(loci, fitness, wildtype=0, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=ALL_AVAIL)

	Creates a multi-allele selector that groups multiple alleles
into a wildtype group (with alleles wildtype, default to
[0]), and a non-wildtype group. A list of fitness values is
specified through parameter fitness, for genotypes at one or
more loci. Parameter loci can be a list of indexes, loci
names , list of chromosome position pairs, ALL_AVAIL, or a
function with optional parameter pop that will be called at
each ganeeration to determine indexes of loci. If we denote
wildtype alleles using capital letters A, B … and non-
wildtype alleles using small letters a, b …, the
fitness values should be for

	genotypes A and a for the haploid single-locus case,

	genotypes AB, Ab, aB and bb for haploid
two=locus cases,

	genotypes AA, Aa and aa for diploid single-locus
cases,

	genotypes AABB, AABb, AAbb, AaBB, AaBb,
Aabb, aaBB, aaBb, and aabb for diploid two-
locus cases,

	and in general 2**n for diploid and 3**n for haploid cases if
there are n loci.

This operator does not support haplodiploid populations, sex and
mitochondrial chromosomes.

class MlSelector

	
class MlSelector

	This selector is created by a list of selectors. When it is applied
to an individual, it applies these selectors to the individual,
obtain a list of fitness values, and compute a combined fitness
value from them. ADDITIVE, multiplicative, and a heterogeneour
multi-locus model are supported.

	
MlSelector(ops, mode=MULTIPLICATIVE, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=ALL_AVAIL)

	Create a multiple-locus selector from a list selection operator
selectors. When this operator is applied to an individual
(parents when used before mating and offspring when used during
mating), it applies these operators to the individual and obtain
a list of (usually single-locus) fitness values. These fitness
values are combined to a single fitness value using

	Prod(f_i), namely the product of individual fitness if
mode = MULTIPLICATIVE,

	1-sum(1 - f_i) if mode = ADDITIVE,

	1-Prod(1 - f_i) if mode = HETEROGENEITY, and

	exp(- sum(1 - f_i)) if mode = EXPONENTIAL,

zero will be returned if the combined fitness value is less than
zero.

Applicability parameters (begin, end, step, at, reps, subPops)
could be used in both MlSelector and selectors in
parameter ops, but parameters in MlSelector will be
interpreted first.

class PySelector

	
class PySelector

	This selector assigns fitness values by calling a user provided
function. It accepts a list of loci (parameter loci) and a Python
function func which should be defined with one or more of
parameters geno, mut, gen, ind, pop or names of
information fields. Parameter loci can be a list of loci indexes,
names, list of chromosome position pairs, ALL_AVAIL, or a
function with optional parameter pop that will be called at
each ganeeration to determine indexes of loci. When this operator
is applied to a population, it passes genotypes or mutants at
specified loci, generation number, a reference to an individual, a
reference to the current population (usually used to retrieve
population variable), and values at specified information fields to
respective parameters of this function. Genotypes are passed as a
tuple of alleles arranged locus by locus (in the order of
A1,A2,B1,B2 for loci A and B). Mutants are passed as a default
dictionary of loci index (with respect to all genotype of
individuals, not just the first ploidy) and alleles. The returned
value will be used to determine the fitness of each individual.

	
PySelector(func, loci=[], begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, output="", subPops=ALL_AVAIL, infoFields=ALL_AVAIL)

	Create a Python hybrid selector that passes genotype at
specified loci, values at specified information fields (if
requested) and a generation number to a user-defined function
func. The return value will be treated as individual fitness.

class PyMlSelector

	
class PyMlSelector

	This selector is a multi-locus Python selector that assigns fitness
to individuals by combining locus and genotype specific fitness
values. It differs from a PySelector in that the python
function is responsible for assigning fitness values for each
gentoype type at each locus, which can potentially be random, and
locus or gentoype-specific.

	
PyMlSelector(func, mode=EXPONENTIAL, loci=ALL_AVAIL, output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=ALL_AVAIL)

	Create a selector that assigns individual fitness values by
combining locus-specific fitness values that are determined by a
Python call-back function. The callback function accepts
parameter loc, alleles (both optional) and returns location-
or genotype-specific fitness values that can be constant or
random. The fitness values for each genotype will be cached so
the same fitness values will be assigned to genotypes with
previously assigned values. Note that a function that does not
examine the genotype naturally assumes a dominant model where
genotypes with one or two mutants have the same fitness effect.
Because genotypes at a locus are passed separately and in no
particular order, this function is also responsible for
assigning consistent fitness values for genotypes at the same
locus (a class is usually used). This operator currently ignores
chromosome types so unused alleles will be passed for loci on
sex or mitochondrial chromosomes. It also ignores phase of
genotype so it will use the same fitness value for genotype
(a,b) and (b,a).

Individual fitness will be combined in ADDITIVE,
MULTIPLICATIVE, HETEROGENEITY, or EXPONENTIAL mode
from fitness values of loci with at least one non-zero allele
(See MlSelector for details). If an output is given,
location, genotype, fitness and generation at which the new
genotype is assgined the value will be written to the output, in
the format of ‘loc a1 a2 fitness gen’ for loci on autosomes of
diploid populations.

Tagging operators

class IdTagger

	
class IdTagger

	An IdTagger gives a unique ID for each individual it is applies
to. These ID can be used to uniquely identify an individual in a
multi-generational population and be used to reliably reconstruct a
Pedigree.

To ensure uniqueness across populations, a single source of ID is
used for this operator. individual IDs are assigned consecutively
starting from 1. Value 1 instead of 0 is used because most software
applications use 0 as missing values for parentship. If you would
like to reset the sequence or start from a different number, you
can call the reset(startID) function of any IdTagger.

An IdTagger is usually used during-mating to assign ID to
each offspring. However, if it is applied directly to a population,
it will assign unique IDs to all individuals in this population.
This property is usually used in the preOps parameter of
function Simulator.evolve to assign initial ID to a
population.

	
IdTagger(begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, output="", infoFields=["ind_id"])

	Create an IdTagger that assign an unique ID for each
individual it is applied to. The IDs are created sequentially
and are stored in an information field specified in parameter
infoFields (default to ind_id). This operator is
considered a during-mating operator but it can be used to set ID
for all individuals of a population when it is directly applied
to the population.

	
reset(startID=1)

	Reset the global individual ID number so that IdTaggers will
start from id (default to 1) again.

class InheritTagger

	
class InheritTagger

	An inheritance tagger passes values of parental information
field(s) to the corresponding fields of offspring. If there are two
parental values from parents of a sexual mating event, a parameter
mode is used to specify how to assign offspring information
fields.

	
InheritTagger(mode=PATERNAL, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, output="", infoFields=[])

	Creates an inheritance tagger that passes values of parental
information fields (parameter infoFields) to the corresponding
fields of offspring. If there is only one parent, values at the
specified information fields are copied directly. If there are
two parents, parameter mode specifies how to pass them to an
offspring. More specifically,

	mode=MATERNAL Passing the value from mother.

	mode=PATERNAL Passing the value from father.

	mode=MEAN Passing the average of two values.

	mode=MAXIMUM Passing the maximum value of two values.

	mode=MINIMUM Passing the minimum value of two values.

	mode=SUMMATION Passing the summation of two values.

	mode=MULTIPLICATION Passing the multiplication of two
values.

An RuntimeError will be raised if any of the parents
does not exist. This operator does not support parameter
subPops and does not output any information.

class SummaryTagger

	
class SummaryTagger

	A summary tagger summarize values of one or more parental
information field to another information field of an offspring. If
mating is sexual, two sets of parental values will be involved.

	
SummaryTagger(mode=MEAN, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, output="", infoFields=[])

	Creates a summary tagger that summarize values of one or more
parental information field (infoFields*[:-1]) to an offspring
information field (*infoFields*[-1]). A parameter *mode
specifies how to pass summarize parental values. More
specifically,

	mode=MEAN Passing the average of values.

	mode=MAXIMUM Passing the maximum value of values.

	mode=Minumum Passing the minimum value of values.

	mode=SUMMATION Passing the sum of values.

	mode=MULTIPLICATION Passing the multiplication of values.

This operator does not support parameter subPops and does not
output any information.

class ParentsTagger

	
class ParentsTagger

	This tagging operator records the indexes of parents (relative to
the parental generation) of each offspring in specified information
fields (default to father_idx and mother_idx). Only one
information field should be specified if an asexsual mating scheme
is used so there is one parent for each offspring. Information
recorded by this operator is intended to be used to look up parents
of each individual in multi-generational Population.

	
ParentsTagger(begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, output="", infoFields=["father_idx", "mother_idx"])

	Create a parents tagger that records the indexes of parents of
each offspring when it is applied to an offspring during-mating.
If two information fields are specified (parameter infoFields,
with default value ['father_idx', 'mother_idx']), they are
used to record the indexes of each individual’s father and
mother. Value -1 will be assigned if any of the parent is
missing. If only one information field is given, it will be used
to record the index of the first valid parent (father if both
parents are valid). This operator ignores parameters output
and subPops.

class OffspringTagger

	
class OffspringTagger

	This tagging operator records the indexes of offspring within a
family (sharing the same parent or parents) in specified
information field (default to offspring_idx). This tagger can
be used to control the number of offspring during mating.

	
OffspringTagger(begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, output="", infoFields=ALL_AVAIL)

	Create an offspring tagger that records the indexes of offspring
within a family. The index is determined by successful
production of offspring during a mating events so the it does
not increase the index if a previous offspring is discarded, and
it resets index even if adjacent families share the same
parents. This operator ignores parameters stage, output, and
subPops.

class PedigreeTagger

	
class PedigreeTagger

	This tagging operator records the ID of parents of each offspring
in specified information fields (default to father_id and
mother_id). Only one information field should be specified if
an asexsual mating scheme is used so there is one parent for each
offspring. Information recorded by this operator is intended to be
used to record full pedigree information of an evolutionary
process.

	
PedigreeTagger(idField="ind_id", output="", outputFields=[], outputLoci=[], begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=["father_id", "mother_id"])

	Create a pedigree tagger that records the ID of parents of each
offspring when it is applied to an offspring during-mating. If
two information fields are specified (parameter infoFields,
with default value ['father_id', 'mother_id']), they are
used to record the ID of each individual’s father and mother
stored in the idField (default to ind_id) field of the
parents. Value -1 will be assigned if any of the parent is
missing. If only one information field is given, it will be used
to record the ID of the first valid parent (father if both
pedigree are valid).

This operator by default does not send any output. If a valid
output stream is given (should be in the form of
'>>filename' so that output will be concatenated), this
operator will output the ID of offspring, IDs of his or her
parent(s), sex and affection status of offspring, and values at
specified information fields (outputFields) and loci
(outputLoci) in the format of off_id father_id mother_id M/F
A/U fields genotype. father_id or mother_id will be
ignored if only one parent is involved. This file format can be
loaded using function loadPedigree.

Because only offspring will be outputed, individuals in the top-
most ancestral generation will not be outputed. This is usually
not a problem because individuals who have offspring in the next
generation will be constructed by function loadPedigree,
although their information fields and genotype will be missing.
If you would like to create a file with complete pedigree
information, you can apply this operator before evolution in the
initOps parameter of functions Population.evolve or
Simulator.evolve. This will output all individuals in
the initial population (the top-most ancestral population after
evolution) in the same format. Note that sex, affection status
and genotype can be changed by other operators so this operator
should usually be applied after all other operators are applied.

class PyTagger

	
class PyTagger

	A Python tagger takes some information fields from both parents,
pass them to a user provided Python function and set the offspring
individual fields with the return values.

	
PyTagger(func=None, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, output="", infoFields=[])

	Create a hybrid tagger that provides an user provided function
func with values of specified information fields (determined
by parameter names of this function) of parents and assign
corresponding information fields of offspring with its return
value. If more than one parent are available, maternal values
are passed after paternal values. For example, if a function
func(A, B) is passed, this operator will send two tuples
with parental values of information fields 'A' and 'B'
to this function and assign its return values to fields 'A'
and 'B' of each offspring. The return value of this function
should be a list, although a single value will be accepted if
only one information field is specified. This operator ignores
parameters stage, output and subPops.

Statistics Calculation

class Stat

	
class Stat

	Operator Stat calculates various statistics of the
population being applied and sets variables in its local namespace.
Other operators or functions can retrieve results from or evalulate
expressions in this local namespace after Stat is applied.

	
Stat(popSize=False, numOfMales=False, numOfAffected=False, numOfSegSites=[], numOfMutants=[], alleleFreq=[], heteroFreq=[], homoFreq=[], genoFreq=[], haploFreq=[], haploHeteroFreq=[], haploHomoFreq=[], sumOfInfo=[], meanOfInfo=[], varOfInfo=[], maxOfInfo=[], minOfInfo=[], LD=[], association=[], neutrality=[], structure=[], HWE=[], inbreeding=[], effectiveSize=[], vars=ALL_AVAIL, suffix="", output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

	Create a Stat operator that calculates specified
statistics of a population when it is applied to this
population. This operator can be applied to specified replicates
(parameter rep) at specified generations (parameter begin,
end, step, and at). This operator does not produce any
output (ignore parameter output) after statistics are
calculated. Instead, it stores results in the local namespace of
the population being applied. Other operators can retrieve these
variables or evalulate expression directly in this local
namespace. Please refer to operator BaseOperator for a
detailed explanation of these common operator parameters.

Stat supports parameter subPops. It usually calculate
the same set of statistics for all subpopulations
(subPops=subPopList()). If a list of (virtual)
subpopulations are specified, statistics for only specified
subpopulations will be calculated. However, different statistics
treat this parameter differently and it is very important to
check its reference before you use subPops for any statistics.

Calculated statistics are saved as variables in a population’s
local namespace. These variables can be numbers, lists or
dictionaries and can be retrieved using functions
Population.vars() or Population.dvars(). A special
default dictionary (defdict) is used for dictionaries
whose keys are determined dynamically. Accessing elements of
such a dictionary with an invalid key will yield value 0 instead
of a KeyError. If the same variables are calculated for one
or more (virtual) subpopulation, the variables are stored in
vars()['subPop'][sp]['var'] where sp is a subpopulation ID
(sp) or a tuple of virtual subpopulation ID ((sp, vsp)).
Population.vars(sp) and Population.dvars(sp) provide
shortcuts to these variables.

Operator Stat outputs a number of most useful variables for
each type of statistic. For example, alleleFreq calculates
both allele counts and allele frequencies and it by default sets
variable alleleFreq (dvars().alleleFreq) for all or
specified subpopulations. If this does not fit your need, you
can use parameter vars to output additional parameters, or
limit the output of existing parameters. More specifically, for
this particular statistic, the available variables are
'alleleFreq', 'alleleNum', 'alleleFreq_sp'
('alleleFreq' in each subpopulation), and 'alleleNum_sp'
('alleleNum' in each subpopulation). You can set
vars=['alleleNum_sp'] to output only subpopulation specific
allele count. An optional suffix (parameter suffix) can be
used to append a suffix to default parameter names. This
parameter can be used, for example, to calculate and store the
same statistics for different subpopulations (e.g. pairwise
Fst).

Operator Stat supports the following statistics:

popSize: If popSize=True, number of individuals in all or
specified subpopulations (parameter subPops) will be set to
the following variables:

	popSize (default): Number of individuals in all or
specified subpopulations. Because subPops does not have to
cover all individuals, it may not be the actual population
size.

	popSize_sp: Size of (virtual) subpopulation sp.

	subPopSize (default): A list of (virtual) subpopulation
sizes. This variable is easier to use than accessing popSize
from each (virtual) subpopulation.

numOfMales: If numOfMales=True, number of male individuals
in all or specified (virtual) subpopulations will be set to the
following variables:

	numOfMales (default): Total number of male individuals in
all or specified (virtual) subpopulations.

	numOfFemales (default): Total number of female individuals
in all or specified (virtual) subpopulations.

	propOfMales: Proportion of male individuals.

	propOfFemales: Proportion of female individuals.

	numOfMales_sp: Number of male individuals in each
(virtual) subpopulation.

	numOfFemales_sp: Number of female individuals in each
(virtual) subpopulation.

	propOfMales_sp: Proportion of male individuals in each
(virtual) subpopulation.

	propOfFemales_sp: Proportion of female individuals in each
(virtual) subpopulation.

numOfAffected: If numOfAffected=True, number of affected
individuals in all or specified (virtual) subpopulations will be
set to the following variables:

	numOfAffected (default): Total number of affected
individuals in all or specified (virtual) subpopulations.

	numOfUnaffected (default): Total number of unaffected
individuals in all or specified (virtual) subpopulations.

	propOfAffected: Proportion of affected individuals.

	propOfUnaffected: Proportion of unaffected individuals.

	numOfAffected_sp: Number of affected individuals in each
(virtual) subpopulation.

	numOfUnaffected_sp: Number of unaffected individuals in
each (virtual) subpopulation.

	propOfAffected_sp: Proportion of affected individuals in
each (virtual) subpopulation.

	propOfUnaffected_sp: Proportion of unaffected individuals
in each (virtual) subpopulation.

numOfSegSites: Parameter numOfSegSites accepts a list of
loci (loci indexes, names, or ALL_AVAIL) and count the
number of loci with at least two different alleles (segregating
sites) or loci with only one non-zero allele (no zero allele,
not segragating) for individuals in all or specified (virtual)
subpopulations. This parameter sets variables

	numOfSegSites (default): Number of segregating sites in
all or specified (virtual) subpopulations.

	numOfSegSites_sp: Number of segregating sites in each
(virtual) subpopulation.

	numOfFixedSites: Number of sites with one non-zero allele
in all or specified (virtual) subpopulations.

	numOfFixedSites_sp: Number of sites with one non-zero
allele in in each (virtual) subpopulations.

	segSites: A list of segregating sites in all or specified
(virtual) subpopulations.

	segSites_sp: A list of segregating sites in each (virtual)
subpopulation.

	fixedSites: A list of sites with one non-zero allele in
all or specified (virtual) subpopulations.

	fixedSites_sp: A list of sites with one non-zero allele in
in each (virtual) subpopulations.

numOfMutants: Parameter numOfMutants accepts a list of
loci (loci indexes, names, or ALL_AVAIL) and count the
number of mutants (non-zero alleles) for individuals in all or
specified (virtual) subpopulations. It sets variables

	numOfMutants (default): Number of mutants in all or
specified (virtual) subpopulations.

	numOfMutants_sp: Number of mutants in each (virtual)
subpopulations.

alleleFreq: This parameter accepts a list of loci (loci
indexes, names, or ALL_AVAIL), at which allele frequencies
will be calculated. This statistic outputs the following
variables, all of which are dictionary (with loci indexes as
keys) of default dictionaries (with alleles as keys). For
example, alleleFreq[loc][a] returns 0 if allele a does
not exist.

	alleleFreq (default): alleleFreq[loc][a] is the
frequency of allele a at locus loc for all or specified
(virtual) subpopulations.

	alleleNum (default): alleleNum[loc][a] is the number
of allele a at locus loc for all or specified (virtual)
subpopulations.

	alleleFreq_sp: Allele frequency in each (virtual)
subpopulation.

	alleleNum_sp: Allele count in each (virtual)
subpopulation.

heteroFreq and homoFreq: These parameters accept a list
of loci (by indexes or names), at which the number and frequency
of homozygotes and/or heterozygotes will be calculated. These
statistics are only available for diploid populations. The
following variables will be outputted:

	heteroFreq (default for parameter heteroFreq): A
dictionary of proportion of heterozygotes in all or specified
(virtual) subpopulations, with loci indexes as dictionary
keys.

	homoFreq (default for parameter homoFreq): A dictionary
of proportion of homozygotes in all or specified (virtual)
subpopulations.

	heteroNum: A dictionary of number of heterozygotes in all
or specified (virtual) subpopulations.

	homoNum: A dictionary of number of homozygotes in all or
specified (virtual) subpopulations.

	heteroFreq_sp: A dictionary of proportion of heterozygotes
in each (virtual) subpopulation.

	homoFreq_sp: A dictionary of proportion of homozygotes in
each (virtual) subpopulation.

	heteroNum_sp: A dictionary of number of heterozygotes in
each (virtual) subpopulation.

	homoNum_sp: A dictionary of number of homozygotes in each
(virtual) subpopulation.

genoFreq: This parameter accept a list of loci (by indexes
or names) at which number and frequency of all genotypes are
outputed as a dictionary (indexed by loci indexes) of default
dictionaries (indexed by tuples of possible indexes). This
statistic is available for all population types with genotype
defined as ordered alleles at a locus. The length of genotype
equals the number of homologous copies of chromosomes (ploidy)
of a population. Genotypes for males or females on sex
chromosomes or in haplodiploid populations will have different
length. Because genotypes are ordered, (1, 0) and (0, 1)
(two possible genotypes in a diploid population) are considered
as different genotypes. This statistic outputs the following
variables:

	genoFreq (default): A dictionary (by loci indexes) of
default dictionaries (by genotype) of genotype frequencies.
For example, genoFreq[1][(1, 0)] is the frequency of
genotype (1, 0) at locus 1.

	genoNum (default): A dictionary of default dictionaries of
genotype counts of all or specified (virtual) subpopulations.

	genoFreq_sp: genotype frequency in each specified
(virtual) subpopulation.

	genoFreq_sp: genotype count in each specified (virtual)
subpopulation.

haploFreq: This parameter accepts one or more lists of loci
(by index) at which number and frequency of haplotypes are
outputted as default dictionaries. [(1,2)] can be
abbreviated to (1,2). For example, using parameter
haploFreq=(1,2,4), all haplotypes at loci 1, 2 and
4 are counted. This statistic saves results to dictionary
(with loci index as keys) of default dictionaries (with
haplotypes as keys) such as haploFreq[(1,2,4)][(1,1,0)]
(frequency of haplotype (1,1,0) at loci (1,2,3)). This
statistic works for all population types. Number of haplotypes
for each individual equals to his/her ploidy number.
Haplodiploid populations are supported in the sense that the
second homologous copy of the haplotype is not counted for male
individuals. This statistic outputs the following variables:

	haploFreq (default): A dictionary (with tuples of loci
indexes as keys) of default dictionaries of haplotype
frequencies. For example, haploFreq[(0, 1)][(1,1)] records
the frequency of haplotype (1,1) at loci (0, 1) in all
or specified (virtual) subpopulations.

	haploNum (default): A dictionary of default dictionaries
of haplotype counts in all or specified (virtual)
subpopulations.

	haploFreq_sp: Halptype frequencies in each (virtual)
subpopulation.

	haploNum_sp: Halptype count in each (virtual)
subpopulation.

haploHeteroFreq and haploHomoFreq: These parameters
accept a list of haplotypes (list of loci), at which the number
and frequency of haplotype homozygotes and/or heterozygotes will
be calculated. Note that these statistics are observed count
of haplotype heterozygote. The following variables will be
outputted:

	haploHeteroFreq (default for parameter haploHeteroFreq):
A dictionary of proportion of haplotype heterozygotes in all
or specified (virtual) subpopulations, with haplotype indexes
as dictionary keys.

	haploHomoFreq (default for parameter haploHomoFreq): A
dictionary of proportion of homozygotes in all or specified
(virtual) subpopulations.

	haploHeteroNum: A dictionary of number of heterozygotes in
all or specified (virtual) subpopulations.

	haploHomoNum: A dictionary of number of homozygotes in all
or specified (virtual) subpopulations.

	haploHeteroFreq_sp: A dictionary of proportion of
heterozygotes in each (virtual) subpopulation.

	haploHomoFreq_sp: A dictionary of proportion of
homozygotes in each (virtual) subpopulation.

	haploHeteroNum_sp: A dictionary of number of heterozygotes
in each (virtual) subpopulation.

	haploHomoNum_sp: A dictionary of number of homozygotes in
each (virtual) subpopulation.

sumOfinfo, meanOfInfo, varOfInfo, maxOfInfo and
minOfInfo: Each of these five parameters accepts a list of
information fields. For each information field, the sum, mean,
variance, maximum or minimal (depending on the specified
parameter(s)) of this information field at iddividuals in all or
specified (virtual) subpopulations will be calculated. The
results will be put into the following population variables:

	sumOfInfo (default for sumOfInfo): A dictionary of the
sum of specified information fields of individuals in all or
specified (virtual) subpopulations. This dictionary is indexed
by names of information fields.

	meanOfInfo (default for meanOfInfo): A dictionary of the
mean of information fields of all individuals.

	varOfInfo (default for varOfInfo): A dictionary of the
sample variance of information fields of all individuals.

	maxOfInfo (default for maxOfInfo): A dictionary of the
maximum value of information fields of all individuals.

	minOfInfo (default for minOfInfo): A dictionary of the
minimal value of information fields of all individuals.

	sumOfInfo_sp: A dictionary of the sum of information
fields of individuals in each subpopulation.

	meanOfInfo_sp: A dictionary of the mean of information
fields of individuals in each subpopulation.

	varOfInfo_sp: A dictionary of the sample variance of
information fields of individuals in each subpopulation.

	maxOfInfo_sp: A dictionary of the maximum value of
information fields of individuals in each subpopulation.

	minOfInfo_sp: A dictionary of the minimal value of
information fields of individuals in each subpopulation.

LD: Parameter LD accepts one or a list of loci pairs
(e.g. LD=[[0,1], [2,3]]) with optional primary alleles at
both loci (e.g. LD=[0,1,0,0]). For each pair of loci, this
operator calculates linkage disequilibrium and optional
association statistics between two loci. When primary alleles
are specified, signed linkage disequilibrium values are
calculated with non-primary alleles are combined. Otherwise,
absolute values of diallelic measures are combined to yield
positive measure of LD. Association measures are calculated from
a m by n contigency of haplotype counts (m=n=2 if
primary alleles are specified). Please refer to the simuPOP
user’s guide for detailed information. This statistic sets the
following variables:

	LD (default) Basic LD measure for haplotypes in all or
specified (virtual) subpopulations. Signed if primary alleles
are specified.

	LD_prime (default) Lewontin’s D’ measure for haplotypes in
all or specified (virtual) subpopulations. Signed if primary
alleles are specified.

	R2 (default) Correlation LD measure for haplotypes in all
or specified (virtual) subpopulations.

	LD_ChiSq ChiSq statistics for a contigency table with
frequencies of haplotypes in all or specified (virtual)
subpopulations.

	LD_ChiSq_p Single side p-value for the ChiSq statistic.
Degrees of freedom is determined by number of alleles at both
loci and the specification of primary alleles.

	CramerV Normalized ChiSq statistics.

	LD_sp Basic LD measure for haplotypes in each (virtual)
subpopulation.

	LD_prime_sp Lewontin’s D’ measure for haplotypes in each
(virtual) subpopulation.

	R2_sp R2 measure for haplotypes in each (virtual)
subpopulation.

	LD_ChiSq_sp ChiSq statistics for each (virtual)
subpopulation.

	LD_ChiSq_p_sp p value for the ChiSq statistics for each
(virtual) subpopulation.

	CramerV_sp Cramer V statistics for each (virtual)
subpopulation.

association: Parameter association accepts a list of
loci, which can be a list of indexes, names, or ALL_AVAIL.
At each locus, one or more statistical tests will be performed
to test association between this locus and individual affection
status. Currently, simuPOP provides the following tests:

	An allele-based Chi-square test using alleles counts. This
test can be applied to loci with more than two alleles, and to
haploid populations.

	A genotype-based Chi-square test using genotype counts. This
test can be applied to loci with more than two alleles (more
than 3 genotypes) in diploid populations. aA and Aa
are considered to be the same genotype.

	A genotype-based Cochran-Armitage trend test. This test can
only be applied to diallelic loci in diploid populations. A
codominant model is assumed.

This statistic sets the following variables:

	Allele_ChiSq A dictionary of allele-based Chi-Square
statistics for each locus, using cases and controls in all or
specified (virtual) subpopulations.

	Allele_ChiSq_p (default) A dictionary of p-values of the
corresponding Chi-square statistics.

	Geno_ChiSq A dictionary of genotype-based Chi-Square
statistics for each locus, using cases and controls in all or
specified (virtual) subpopulations.

	Geno_ChiSq_p A dictionary of p-values of the
corresponding genotype-based Chi-square test.

	Armitage_p A dictionary of p-values of the Cochran-
Armitage tests, using cases and controls in all or specified
(virtual) subpopulations.

	Allele_ChiSq_sp A dictionary of allele-based Chi-Square
statistics for each locus, using cases and controls from each
subpopulation.

	Allele_ChiSq_p_sp A dictionary of p-values of allele-based
Chi-square tests, using cases and controls from each (virtual)
subpopulation.

	Geno_ChiSq_sp A dictionary of genotype-based Chi-Square
tests for each locus, using cases and controls from each
subpopulation.

	Geno_ChiSq_p_sp A dictionary of p-values of genotype-based
Chi-Square tests, using cases and controls from each
subpopulation.

	Armitage_p_sp A dictionary of p-values of the Cochran-
Armitage tests, using cases and controls from each
subpopulation.

neutrality: This parameter performs neutrality tests
(detection of natural selection) on specified loci, which can be
a list of loci indexes, names or ALL_AVAIL. It currently
only outputs Pi, which is the average number of pairwise
difference between loci. This statistic outputs the following
variables:

	Pi Mean pairwise difference between all sequences from all
or specified (virtual) subpopulations.

	Pi_sp Mean paiewise difference between all sequences in
each (virtual) subpopulation.

structure: Parameter structure accepts a list of loci at
which statistics that measure population structure are
calculated. structure accepts a list of loci indexes, names or
ALL_AVAIL. This parameter currently supports the following
statistics:

	Weir and Cockerham’s Fst (1984). This is the most widely used
estimator of Wright’s fixation index and can be used to
measure Population differentiation. However, this method is
designed to estimate Fst from samples of larger populations
and might not be appropriate for the calculation of Fst of
large populations.

	Nei’s Gst (1973). The Gst estimator is another estimator for
Wright’s fixation index but it is extended for multi-allele
(more than two alleles) and multi-loci cases. This statistics
should be used if you would like to obtain a true Fst value
of a large Population. Nei’s Gst uses only allele frequency
information so it is available for all population type
(haploid, diploid etc). Weir and Cockerham’s Fst uses
heterozygosity frequency so it is best for autosome of diploid
populations. For non-diploid population, sex, and
mitochondrial DNAs, simuPOP uses expected heterozygosity (1 -
sum p_i^2) when heterozygosity is needed. These statistics
output the following variables:

	F_st (default) The WC84 Fst statistic estimated for all
* specified loci.

	F_is The WC84 Fis statistic estimated for all specified
loci.

	F_it The WC84 Fit statistic estimated for all specified
loci.

	f_st A dictionary of locus level WC84 Fst values.

	f_is A dictionary of locus level WC84 Fis values.

	f_it A dictionary of locus level WC84 Fit values.

	G_st Nei’s Gst statistic estimated for all specified loci.

	g_st A dictionary of Nei’s Gst statistic estimated for
each locus.

HWE: Parameter HWE accepts a list of loci at which exact
two-side tests for Hardy-Weinberg equilibrium will be performed.
This statistic is only available for diallelic loci in diploid
populations. HWE can be a list of loci indexes, names or
ALL_AVAIL. This statistic outputs the following variables:

	HWE (default) A dictionary of p-values of HWE tests using
genotypes in all or specified (virtual) subpopulations.

	HWE_sp A dictionary of p-values of HWS tests using
genotypes in each (virtual) subpopulation.

inbreeding: Inbreeding measured by Identitcal by Decent (and
by State). This statistics go through all loci of individuals in
a diploid population and calculate the number and proportions of
alleles that are identitcal by decent and by state. Because
ancestral information is only available in lineage module,
variables IBD_freq are always set to zero in other modules. Loci
on sex and mitochondrial chromosomes, and non-diploid
populations are currently not supported. This statistic outputs
the following variables:

	IBD_freq (default) The frequency of IBD pairs among all
allele pairs. To use this statistic, the population must be
initialized by operator InitLineage() to assign each ancestral
allele an unique identify.

	IBS_freq (default) The proportion of IBS pairs among all
allele pairs.

	IBD_freq_sp frequency of IBD in each (virtual)
subpopulations.

	IBS_freq_sp frequency of IBS in each (virtual)
subpopulations.

effectiveSize: Parameter effectiveSize accepts a list of
loci at which the effective population size for the whole or
specified (virtual) subpopulations is calculated.
effectiveSize can be a list of loci indexes, names or
ALL_AVAIL. Parameter subPops is usually used to define
samples from which effective sizes are estimated. This statistic
allows the calculation of true effective size based on number of
gametes each parents transmit to the offspring population (per-
locus before and after mating), and estimated effective size
based on sample genotypes. Due to the temporal natural of some
methods, more than one Stat operators might be needed to
calculate effective size. The vars parameter specified which
method to use and which variable to set. Acceptable values
include:

	Ne_demo_base When this variable is set before mating, it
stores IDs of breeding parents and, more importantly, assign
an unique lineage value to alleles at specified loci of each
individual. This feature is only available for lineage
modules and will change lineage values at specified loci of
all individuals.

	Ne_demo_base_sp Pre-mating information for each (virtual)
subpopulation, used by variable Ne_demo_sp.

	Ne_demo A dictionary of locus-specific demographic
effective population size, calculated using number of gemetes
each parent transmits to the offspring population. The method
is vased on Crow & Denniston 1988 (Ne = KN-1/k-1+Vk/k) and
need variable Ne_demo_base set before mating. Effective
size estimated from this formula is model dependent and might
not be applicable to your mating schemes.

	Ne_demo_sp Calculate subpopulation-specific effective
size.

	Ne_temporal_base When this variable is set in parameter
vars, the Stat operator saves baseline allele frequencies
and other information in this variable, which are used by
temporary methods to estimate effective population size
according to changes in allele frequency between the baseline
and present generations. This variable could be set repeatedly
to change baselines.

	Ne_temporal_base_sp Set baseline information for each
(virtual) subpopulation specified.

	Ne_tempoFS_P1 Effective population size, 2.5% and 97.5%
confidence interval for sampling plan 1 as a list of size 3,
estimated using a temporal method as described in Jorde &
Ryman (2007), and as implemented by software tempoFS
(http://www.zoologi.su.se/~ryman/). This variable is set to
census population size if no baseline has been set, and to the
temporal effective size between the present and the baseline
generation otherwise. This method uses population size or sum
of subpopulation sizes of specified (virtual) subpopulations
as census population size for the calculation based on plan 1.

	Ne_tempoFS_P2 Effective population size, 2.5% and 97.5%
confidence interval for sampling plan 2 as a list of size 6,
estimated using a temporal method as described in Jorde &
Ryman (2007). This variable is set to census population size
no baseline has been set, and to the temporal effective size
between the present and the baseline generation otherwise.
This method assumes that the sample is drawn from an
infinitely-sized population.

	Ne_tempoFS deprecated, use Ne_tempoFS_P2 instead.

	Ne_tempoFS_P1_sp Estimate effective size of each (virtual)
subpopulation using method Jorde & Ryman 2007, assuming
sampling plan 1. The census population sizes for sampling plan
1 are the sizes for each subpopulation that contain the
specified (virtual) subpopulations.

	Ne_tempoFS_P2_sp Estimate effective size of each (virtual)
subpopulation using method Jorde & Ryman 2007, assuming
sampling plan 2.

	Ne_tempoFS_sp deprecated, use Ne_tempoFS_P2_sp
instead.

	Ne_waples89_P1 Effective population size, 2.5% and 97.5%
confidence interval for sampling plan 1 as a list of size 6,
estimated using a temporal method as described in Waples 1989,
Genetics. Because this is a temporal method, Ne_waples89
estimates effective size between the present and the baseline
generation set by variable Ne_temporal_base. Census
population size will be resutned if no baseline has been set.
This method uses population size or sum of subpopulation sizes
of specified (virtual) subpopulations as census population
size for the calculation based on plan 1.

	Ne_waples89_P2 Effective population size, 2.5% and 97.5%
confidence interval for sampling plan 2 as a list of size 6,
estimated using a temporal method as described in Waples 1989,
Genetics. Because this is a temporal method, Ne_waples89
estimates effective size between the present and the baseline
generation set by variable Ne_temporal_base. Census
population size will be returned if no baseline has been set.

	Ne_waples89_P1_sp Estimate effective size for each
(virtual) subpopulation using method Waples 89, assuming
sampling plan 1. The census population sizes are the sizes for
each subpopulation that contain the specified (virtual)
subpopulation.

	Ne_waples89_P2_sp Estimate effective size for each
(virtual) subpopulation using method Waples 89, assuming
sampling plan 2.

	Ne_waples89_sp deprecated, use Ne_waples89_P2_sp
instead.

	Ne_LD Lists of length three for effective population size,
2.5% and 97.% confidence interval for cutoff allele frequency
0., 0.01, 0.02 and 0.05 (as dictionary keys), using a
parametric method, estimated from linkage disequilibrim
information of one sample, using LD method developed by Waples
& Do 2006 (LDNe). This method assumes unlinked loci and uses
LD measured from genotypes at loci. Because this is a sample
based method, it should better be applied to a random sample
of the population. 95% CI is calculated using a Jackknife
estimated effective number of independent alleles. Please
refer to relevant papers and the LDNe user’s guide for
details.

	Ne_LD_sp Estimate LD-based effective population size for
each specified (virtual) subpopulation.

	Ne_LD_mono A version of Ne_LD that assumes monogamy (see
Waples 2006 for details.

	Ne_LD_mono_sp Ne_LD_mono calculated for each (virtual)
subpopulation.

Conditional operators

class IfElse

	
class IfElse

	This operator uses a condition, which can be a fixed condition, an
expression or a user-defined function, to determine which operators
to be applied when this operator is applied. A list of if-operators
will be applied when the condition is True. Otherwise a list of
else-operators will be applied.

	
IfElse(cond, ifOps=[], elseOps=[], output=">", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

	Create a conditional operator that will apply operators ifOps
if condition cond is met and elseOps otherwise. If a Python
expression (a string) is given to parameter cond, the
expression will be evalulated in each population’s local
namespace when this operator is applied. When a Python function
is specified, it accepts parameter pop when it is applied to
a population, and one or more parameters pop, off,
dad or mom when it is applied during mating. The return
value of this function should be True or False.
Otherwise, parameter cond will be treated as a fixed condition
(converted to True or False) upon which one set of
operators is always applied. The applicability of ifOps and
elseOps are controlled by parameters begin, end, step,
at and rep of both the IfElse operator and
individual operators but ifOps and elseOps opeartors does
not support negative indexes for replicate and generation
numbers.

class TerminateIf

	
class TerminateIf

	This operator evaluates an expression in a population’s local
namespace and terminate the evolution of this population, or the
whole simulator, if the return value of this expression is
True. Termination caused by an operator will stop the execution
of all operators after it. The generation at which the population
is terminated will be counted in the evolved generations (return
value from Simulator::evolve) if termination happens after
mating.

	
TerminateIf(condition="", stopAll=False, message="", output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

	Create a terminator with an expression condition, which will
be evalulated in a population’s local namespace when the
operator is applied to this population. If the return value of
condition is True, the evolution of the population will be
terminated. If stopAll is set to True, the evolution of
all replicates of the simulator will be terminated. If this
operator is allowed to write to an output (default to “”), the
generation number, proceeded with an optional message.

class DiscardIf

	
class DiscardIf

	This operator discards individuals according to either an
expression that evaluates according to individual information
field, or a Python function that accepts individual and its
information fields.

	
DiscardIf(cond, exposeInd="", output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

	Create an operator that discard individuals according to an
expression or the return value of a Python function (parameter
cond). This operator can be applied to a population before or
after mating, or to offspring during mating. If an expression is
passed to cond, it will be evalulated with each individual’s
information fields (see operator InfoEval for details).
If exposeInd is non-empty, individuals will be available for
evaluation in the expression as an variable with name spacied by
exposeInd. If the expression is evaluated to be True,
individuals (if applied before or after mating) or offspring (if
applied during mating) will be removed or discard. Otherwise the
return value should be either False (not discard), or a
float number between 0 and 1 as the probability that the
individual is removed. If a function is passed to cond, it
should accept paramters ind and pop or names of information
fields when it is applied to a population (pre or post mating),
or parameters off, dad, mom, pop (parental population),
or names of information fields if the operator is applied during
mating. Individuals will be discarded if this function returns
True or at a probability if a float number between 0 and 1
is returned. A constant expression (e.g. True, False,
0.4) is also acceptable, with the last example
(cond=0.1) that removes 10% of individuals at randomly. This
operator supports parameter subPops and will remove only
individuals belonging to specified (virtual) subpopulations.

The Python operator

class PyOperator

	
class PyOperator

	An operator that calls a user-defined function when it is applied
to a population (pre- or post-mating) or offsprings (during-
mating). The function can have have parameters pop when the
operator is applied pre- or post-mating, pop, off, dad, mom
when the operator is applied during-mating. An optional parameter
can be passed if parameter param is given. In the during-mating
case, parameters pop, dad and mom can be ignored if
offspringOnly is set to True.

	
PyOperator(func, param=None, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

	Create a pure-Python operator that calls a user-defined function
when it is applied. If this operator is applied before or after
mating, your function should have form func(pop) or
func(pop, param) where pop is the population to which
the operator is applied, param is the value specified in
parameter param. param will be ignored if your function
only accepts one parameter. Althernatively, the function should
have form func(ind) with optional parameters pop and
param. In this case, the function will be called for all
individuals, or individuals in subpopulations subPops.
Individuals for which the function returns False will be
removed from the population. This operator can therefore perform
similar functions as operator DiscardIf.

If this operator is applied during mating, your function should
accept parameters pop, off (or ind), dad,
mom and param where pop is the parental population,
and off or ind, dad, and mom are offspring and
their parents for each mating event, and param is an
optional parameter. If subPops are provided, only offspring in
specified (virtual) subpopulations are acceptable.

This operator does not support parameters output, and
infoFields. If certain output is needed, it should be handled
in the user defined function func. Because the status of files
used by other operators through parameter output is
undetermined during evolution, they should not be open or closed
in this Python operator.

Miscellaneous operators

class NoneOp

	
class NoneOp

	This operator does nothing when it is applied to a population. It
is usually used as a placeholder when an operator is needed
syntactically.

	
NoneOp(output=">", begin=0, end=0, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

	Create a NoneOp.

class Dumper

	
class Dumper

	This operator dumps the content of a population in a human readable
format. Because this output format is not structured and can not be
imported back to simuPOP, this operator is usually used to dump a
small population to a terminal for demonstration and debugging
purposes.

	
Dumper(genotype=True, structure=True, ancGens=UNSPECIFIED, width=1, max=100, loci=[], output=">", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=ALL_AVAIL)

	Create a operator that dumps the genotype structure (if
structure is True) and genotype (if genotype is
True) to an output (default to standard terminal output).
Because a population can be large, this operator will only
output the first 100 (parameter max) individuals of the
present generation (parameter ancGens). All loci will be
outputed unless parameter loci are used to specify a subset of
loci. This operator by default output values of all information
fields unless parameter infoFields is used to specify a subset
of info fields to display. If a list of (virtual) subpopulations
are specified, this operator will only output individuals in
these outputs. Please refer to class BaseOperator for a
detailed explanation for common parameters such as output and
stage.

class SavePopulation

	
class SavePopulation

	An operator that save populations to specified files.

	
SavePopulation(output="", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

	Create an operator that saves a population to output when it
is applied to the population. This operator supports all output
specifications ('', 'filename', 'filename' prefixed
by one or more ‘>’ characters, and '!expr') but output from
different operators will always replace existing files
(effectively ignore ‘>’ specification). Parameter subPops is
ignored. Please refer to class BaseOperator for a
detailed description about common operator parameters such as
stage and begin.

class Pause

	
class Pause

	This operator pauses the evolution of a simulator at given
generations or at a key stroke. When a simulator is stopped, you
can go to a Python shell to examine the status of an evolutionary
process, resume or stop the evolution.

	
Pause(stopOnKeyStroke=False, prompt=True, output=">", begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

	Create an operator that pause the evolution of a population when
it is applied to this population. If stopOnKeyStroke is
False (default), it will always pause a population when it
is applied, if this parameter is set to True, the operator
will pause a population if any key has been pressed. If a
specific character is set, the operator will stop when this key
has been pressed. This allows, for example, the use of several
pause operators to pause different populations.

After a population has been paused, a message will be displayed
(unless prompt is set to False) and tells you how to
proceed. You can press 's' to stop the evolution of this
population, 'S' to stop the evolution of all populations, or
'p' to enter a Python shell. The current population will be
available in this Python shell as "pop_X_Y" when X is
generation number and Y is replicate number. The evolution
will continue after you exit this interactive Python shell.

Note

Ctrl-C will be intercepted even if a specific character is
specified in parameter stopOnKeyStroke.

class TicToc

	
class TicToc

	This operator, when called, output the difference between current
and the last called clock time. This can be used to estimate
execution time of each generation. Similar information can also be
obtained from turnOnDebug("DBG_PROFILE"), but this operator has
the advantage of measuring the duration between several generations
by setting step parameter. As an advanced feature that mainly
used for performance testing, this operator accepts a parameter
stopAfter (seconds), and will stop the evolution of a population
if the overall time exceeds stopAfter. Note that elapsed time is
only checked when this operator is applied to a population so it
might not be able to stop the evolution process right after
stopAfter seconds. This operator can also be applied during
mating. Note that to avoid excessive time checking, this operator
does not always check system time accurately.

	
TicToc(output=">", stopAfter=0, begin=0, end=-1, step=1, at=[], reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

	Create a TicToc operator that outputs the elapsed since
the last time it was applied, and the overall time since the
first time this operator is applied.

Function form of operators

Function acgtMutate

	
acgtMutate(pop, *args, **kwargs)

	Function form of operator AcgtMutator

Function contextMutate

	
contextMutate(pop, *args, **kwargs)

	Function form of operator ContextMutator

Function discardIf

	
discardIf(pop, *args, **kwargs)

	Apply operator DiscardIf to population pop to remove individuals according
to an expression or a Python function.

Function dump

	
dump(pop, *args, **kwargs)

	Apply operator Dumper to population pop.

Function infoEval

	
infoEval(pop, *args, **kwargs)

	Evaluate expr for each individual, using information fields as variables.
Please refer to operator InfoEval for details.

Function infoExec

	
infoExec(pop, *args, **kwargs)

	Execute stmts for each individual, using information fields as variables.
Please refer to operator InfoExec for details.

Function initGenotype

	
initGenotype(pop, *args, **kwargs)

	Apply operator InitGenotype to population pop.

Function initInfo

	
initInfo(pop, *args, **kwargs)

	Apply operator InitInfo to population pop.

Function initSex

	
initSex(pop, *args, **kwargs)

	Apply operator InitSex to population pop.

Function kAlleleMutate

	
kAlleleMutate(pop, *args, **kwargs)

	Function form of operator KAlleleMutator

Function maPenetrance

	
maPenetrance(pop, loci, penetrance, wildtype=0, ancGens=True, *args, **kwargs)

	Apply opertor MaPenetrance to population pop. Unlike the
operator form of this operator that only handles the current generation,
this function by default assign affection status to all generations.

Function mapPenetrance

	
mapPenetrance(pop, loci, penetrance, ancGens=True, *args, **kwargs)

	Apply opertor MapPenetrance to population pop. Unlike the
operator form of this operator that only handles the current generation,
this function by default assign affection status to all generations.

Function matrixMutate

	
matrixMutate(pop, *args, **kwargs)

	Function form of operator MatrixMutator

Function mergeSubPops

	
mergeSubPops(pop, *args, **kwargs)

	Merge subpopulations subPops of population pop into a single
subpopulation. Please refer to the operator form of this funciton
(MergeSubPops) for details

Function migrate

	
migrate(pop, *args, **kwargs)

	Function form of operator Migrator.

Function backwardMigrate

	
backwardMigrate(pop, *args, **kwargs)

	Function form of operator BackwardMigrator.

Function mixedMutate

	
mixedMutate(pop, *args, **kwargs)

	Function form of operator MixedMutator

Function mlPenetrance

	
mlPenetrance(pop, ops, mode, ancGens=True, *args, **kwargs)

	Apply opertor MapPenetrance to population pop. Unlike the
operator form of this operator that only handles the current generation,
this function by default assign affection status to all generations.

Function pointMutate

	
pointMutate(pop, *args, **kwargs)

	Function form of operator PointMutator

Function pyEval

	
pyEval(pop, *args, **kwargs)

	Evaluate statements stmts (optional) and expression expr in
population pop’s local namespace and return the result of expr.
If exposePop is given, population pop will be exposed in its local
namespace as a variable with a name specified by exposePop. Unlike its
operator counterpart, this function returns the result of expr rather
than writting it to an output.

Function pyExec

	
pyExec(pop, *args, **kwargs)

	Execute stmts in population pop’s local namespace.

Function pyMutate

	
pyMutate(pop, *args, **kwargs)

	Function form of operator PyMutator

Function pyPenetrance

	
pyPenetrance(pop, func, loci=[], ancGens=True, *args, **kwargs)

	Apply opertor PyPenetrance to population pop. Unlike the
operator form of this operator that only handles the current generation,
this function by default assign affection status to all generations.

Function pyMlPenetrance

	
pyMlPenetrance(pop, func, mode, loci=[], ancGens=True, *args, **kwargs)

	Apply opertor PyMlPenetrance to population pop. Unlike the
operator form of this operator that only handles the current generation,
this function by default assign affection status to all generations.

Function pyQuanTrait

	
pyQuanTrait(pop, func, loci=[], ancGens=True, *args, **kwargs)

	Apply opertor PyQuanTrait to population pop. Unlike the
operator form of this operator that only handles the current generation,
this function by default assign affection status to all generations.

Function resizeSubPops

	
resizeSubPops(pop, *args, **kwargs)

	Resize subpopulations subPops of population pop into new sizes
size. Individuals will be added or removed accordingly. Please refer to
the operator form of this funciton (ResizeSubPops) for details

Function snpMutate

	
snpMutate(pop, *args, **kwargs)

	Function form of operator SNPMutator

Function splitSubPops

	
splitSubPops(pop, *args, **kwargs)

	Split subpopulations (subPops) of population pop according to either
sizes or proportions of the resulting subpopulations, or an information
field. Please refer to the operator form of this function (splitSubPop)
for details.

Function stat

	
stat(pop, *args, **kwargs)

	Apply operator Stat with specified parameters to population pop.
Resulting statistics could be accessed from the local namespace of pop
using functions pop.vars() or pop.dvars()

Function stepwiseMutate

	
stepwiseMutate(pop, *args, **kwargs)

	Function form of operator StepwiseMutator

Function tagID

	
tagID(pop, reset=False, *args, **kwargs)

	Apply operator IdTagger to population pop to assign a unique ID
to all individuals in the population. Individuals ID will starts from a
system wide index. You can reset this start ID using parameter reset
which can be True (reset to 1) or a non-negative number (start from
this number).

Utility Modules

	Module simuOpt
	Function setOptions

	Module simuPOP.utils
	class Trajectory

	class TrajectorySimulator

	Function simulateForwardTrajectory

	Function simulateBackwardTrajectory

	class ProgressBar

	Function viewVars

	Function saveCSV

	class Exporter

	Function importPopulation

	Function export

	Module simuPOP.demography
	Function migrIslandRates

	Function migrHierarchicalIslandRates

	Function migrSteppingStoneRates

	Function migrtwoDSteppingStoneRates

	class EventBasedModel

	class DemographicEvent

	class ExpansionEvent

	class ResizeEvent

	class SplitEvent

	class MergeEvent

	class AdmixtureEvent

	class InstantChangeModel

	class ExponentialGrowthModel

	class LinearGrowthModel

	class MultiStageModel

	class OutOfAfricaModel

	class SettlementOfNewWorldModel

	class CosiModel

	Module simuPOP.sampling
	class BaseSampler

	class RandomSampler

	Function drawRandomSample

	Function drawRandomSamples

	class CaseControlSampler

	Function drawCaseControlSample

	Function drawCaseControlSamples

	class PedigreeSampler

	class AffectedSibpairSampler

	Function drawAffectedSibpairSample

	Function drawAffectedSibpairSamples

	class NuclearFamilySampler

	Function drawNuclearFamilySample

	Function drawNuclearFamilySamples

	class ThreeGenFamilySampler

	Function drawThreeGenFamilySample

	Function drawThreeGenFamilySamples

	class CombinedSampler

	Function drawCombinedSample

	Function drawCombinedSamples

	Module simuPOP.gsl

Module simuOpt

Module simuOpt provides a function simuOpt.setOptions to control which
simuPOP module to load, and how it is loaded, and a class simuOpt.Params
that helps users manage simulation parameters.

When simuPOP is loaded, it checkes a few environmental variables
(SIMUOPTIMIZED, SIMUALLELETYPE, and SIMUDEBUG) to determine which
simuPOP module to load, and how to load it. More options can be set using the
simuOpt.setOptions function. For example, you can suppress the banner
message when simuPOP is loaded and require a minimal version of simuPOP for
your script. simuPOP recognize the following commandline arguments

	--optimized

	Load the optimized version of a simuPOP module.

	--gui=None|batch|interactive|True|wxPython|Tkinter

	Whether or not use a graphical toolkit and which one to use.
--gui=batch is usually used to run a script in batch mode (do not start
a parameter input dialog and use all default values unless a parameter is
specified from command line or a configuraiton file. If
--gui=interactive, an interactive shell will be used to solicit input
from users. Otherwise, simuPOP will try to use a graphical parameter input
dialog, and falls to an interactive mode when no graphical Toolkit is
available. Please refer to parameter gui for simuOpt.setOptions
for details.

class params.Params provides a powerful way to handle commandline
arguments. Briefly speaking, a Params object can be created from a list
of parameter specification dictionaries. The parameters are then become
attributes of this object. A number of functions are provided to determine
values of these parameters using commandline arguments, a configuration
file, or a parameter input dialog (using Tkinter or wxPython).
Values of these parameters can be accessed as attributes, or extracted
as a list or a dictionary. Note that the Params.getParam function
automatically handles the following commandline arguments.

	-h or --help

	Print usage message.

	--config=configFile

	Read parameters from a configuration file configFile.

Function setOptions

	
simuOpt.setOptions(alleleType=None, optimized=None, gui=None, quiet=None, debug=None, version=None, revision=None, numThreads=None, plotter=None)

	Set options before simuPOP is loaded to control which simuPOP module to
load, and how the module should be loaded.

	alleleType

	Use the standard, binary,long or mutant allele version of the simuPOP
module if alleleType is set to ‘short’, ‘binary’, ‘long’, ‘mutant’,
or ‘lineage’ respectively. If this parameter is not set, this function
will try to get its value from environmental variable SIMUALLELETYPE.
The standard (short) module will be used if the environmental variable
is not defined.

	optimized

	Load the optimized version of a module if this parameter is set to
True and the standard version if it is set to False. If this
parameter is not set (None), the optimized version will be used
if environmental variable SIMUOPTIMIZED is defined. The standard
version will be used otherwise.

	gui

	Whether or not use graphical user interfaces, which graphical toolkit
to use and how to process parameters in non-GUI mode. If this parameter
is None (default), this function will check environmental variable
SIMUGUI or commandline option --gui for a value, and assume
True if such an option is unavailable. If gui=True, simuPOP
will use wxPython-based dialogs if wxPython is available, and
use Tkinter-based dialogs if Tkinter is available and use an
interactive shell if no graphical toolkit is available.
gui='Tkinter' or 'wxPython' can be used to specify the
graphical toolkit to use. If gui='interactive', a simuPOP script
prompt users to input values of parameters. If gui='batch',
default values of unspecified parameters will be used. In any case,
commandline arguments and a configuration file specified by parameter
–config will be processed. This option is usually left to None so
that the same script can be run in both GUI and batch mode using
commandline option --gui.

	plotter

	(Deprecated)

	quiet

	If set to True, suppress the banner message when a simuPOP module
is loaded.

	debug

	A list of debug code (as string) that will be turned on when simuPOP
is loaded. If this parameter is not set, a list of comma separated
debug code specified in environmental variable SIMUDEBUG, if
available, will be used. Note that setting debug=[] will remove
any debug code that might have been by variable SIMUDEBUG.

	version

	A version string (e.g. 1.0.0) indicating the required version number
for the simuPOP module to be loaded. simuPOP will fail to load if the
installed version is older than the required version.

	revision

	Obsolete with the introduction of parameter version.

	numThreads

	Number of Threads that will be used to execute a simuPOP script. The
values can be a positive number (number of threads) or 0 (all available
cores of the computer, or whatever number set by environmental variable
OMP_NUM_THREADS). If this parameter is not set, the number of
threads will be set to 1, or a value set by environmental variable
OMP_NUM_THREADS.

Module simuPOP.utils

This module provides some commonly used operators
and format conversion utilities.

class Trajectory

	
class simuPOP.utils.Trajectory

	A Trajectory object contains frequencies of one or more loci in one
or more subpopulations over several generations. It is usually returned by
member functions of class TrajectorySimulator or equivalent global
functions simulateForwardTrajectory and simulateBackwardTrajectory.

The Trajectory object provides several member functions to facilitate
the use of Trajectory-simulation techiniques. For example,
Trajectory.func() returns a trajectory function that can be provided
directly to a ControlledOffspringGenerator; Trajectory.mutators()
provides a list of PointMutator that insert mutants at the right
generations to initialize a trajectory.

For more information about Trajectory simulation techniques and related
controlled random mating scheme, please refer to the simuPOP user’s guide,
and Peng et al (PLoS Genetics 3(3), 2007).

	
Trajectory(endGen, nLoci)

	Create a Trajectory object of alleles at nLoci loci with
ending generation endGen. endGen is the generation when expected
allele frequencies are reached after mating. Therefore, a trajectory
for 1000 generations should have endGen=999.

	
freq(gen, subPop)

	Return frequencies of all loci in subpopulation subPop at
generation gen of the simulated Trajectory. Allele frequencies are
assumed to be zero if gen is out of range of the simulated
Trajectory.

	
func()

	Return a Python function that returns allele frequencies for each
locus at specified loci. If there are multiple subpopulations, allele
frequencies are arranged in the order of loc0_sp0, loc1_sp0,
…, loc0_sp1, loc1_sp1, … and so on. The returned function
can be supplied directly to the freqFunc parameter of a controlled
random mating scheme (ControlledRandomMating) or a homogeneous
mating scheme that uses a controlled offspring generator
(ControlledOffspringGenerator).

	
mutants()

	Return a list of mutants in the form of (loc, gen, subPop)

	
mutators(loci, inds=0, allele=1, *args, **kwargs)

	Return a list of PointMutator operators that introduce mutants
at the beginning of simulated trajectories. These mutators should be
added to the preOps parameter of Simulator.evolve function to
introduce a mutant at the beginning of a generation with zero allele
frequency before mating, and a positive allele frequency after mating.
A parameter loci is needed to specify actual loci indexes in the
real forward simulation. Other than default parameters inds=0 and
allele=1, additional parameters could be passed to point mutator
as keyward parameters.

class TrajectorySimulator

	
class simuPOP.utils.TrajectorySimulator

	A Trajectory Simulator takes basic demographic and genetic (natural
selection) information of an evolutionary process of a diploid population
and allow the simulation of Trajectory of allele frequencies of one or
more loci. Trajectories could be simulated in two ways: forward-time and
backward-time. In a forward-time simulation, the simulation starts from
certain allele frequency and simulate the frequency at the next generation
using given demographic and genetic information. The simulation continues
until an ending generation is reached. A Trajectory is successfully
simulated if the allele frequency at the ending generation falls into a
specified range. In a backward-time simulation, the simulation starts from
the ending generation with a desired allele frequency and simulate the
allele frequency at previous generations one by one until the allele gets
lost (allele frequency equals zero).

The result of a trajectory simulation is a trajectory object which can be
used to direct the simulation of a special random mating process that
controls the evolution of one or more disease alleles so that allele
frequencies are consistent across replicate simulations. For more
information about Trajectory simulation techniques and related controlled
random mating scheme, please refer to the simuPOP user’s guide, and Peng et
al (PLoS Genetics 3(3), 2007).

	
TrajectorySimulator(N, nLoci=1, fitness=None, logger=None)

	Create a trajectory Simulator using provided demographic and genetic
(natural selection) parameters. Member functions simuForward and
simuBackward can then be used to simulate trajectories within certain
range of generations. This class accepts the following parameters

	N

	Parameter N accepts either a constant number for population size
(e.g. N=1000), a list of subpopulation sizes (e.g. N=[1000, 2000]),
or a demographic function that returns population or subpopulation
sizes at each generation. During the evolution, multiple
subpopulations can be merged into one, and one population can be
split into several subpopulations. The number of subpopulation is
determined by the return value of the demographic function. Note
that N should be considered as the population size at the end of
specified generation.

	nLoci

	Number of unlinked loci for which trajectories of allele
frequencies are simulated. We assume a diploid population with
diallelic loci. The Trajectory represents frequencies of a

	fitness

	Parameter fitness can be None (no selection), a list of fitness
values for genotype with 0, 1, and 2 disease alleles (AA, Aa,
and aa) at one or more loci; or a function that returns fitness
values at each generation. When multiple loci are involved
(nLoci), fitness can be a list of 3 (the same fitness values
for all loci), a list of 3*nLoci (different fitness values for each
locus) or a list of 3**nLoci (fitness value for each combination of
genotype). The fitness function should accept generation number and
a subpopulation index. The latter parameter allows, and is the only
way to specify different fitness in each subpopulation.

	logger

	A logging object (see Python module logging) that can be used
to output intermediate results with debug information.

	
simuBackward(endGen, endFreq, minMutAge=None, maxMutAge=None, maxAttempts=1000)

	Simulate trajectories of multiple disease susceptibility loci using
a forward time approach. This function accepts allele frequencies of
alleles of multiple unlinked loci (endFreq) at the end of generation
endGen. Depending on the number of loci and subpopulations, parameter
beginFreq can be a number (same frequency for all loci in all
subpopulations), or a list of frequencies for each locus (same
frequency in all subpopulations), or a list of frequencies for each
locus in each subpopulation in the order of loc0_sp0, loc1_sp0,
…, loc0_sp1, loc1_sp1, … and so on.

This simulator will simulate a trajectory generation by generation and
restart if the disease allele got fixed (instead of lost), or if the
length simulated Trajectory does not fall into minMutAge and
maxMutAge (ignored if None is given). This simulator will return
None if no valid Trajectory is found after maxAttempts attemps.

	
simuForward(beginGen, endGen, beginFreq, endFreq, maxAttempts=10000)

	Simulate trajectories of multiple disease susceptibility loci using a
forward time approach. This function accepts allele frequencies of
alleles of multiple unlinked loci at the beginning generation (freq)
at generation beginGen, and expected range of allele frequencies
of these alleles (endFreq) at the end of generation endGen.
Depending on the number of loci and subpopulations, these parameters
accept the following inputs:

	beginGen

	Starting generation. The initial frequecies are considered as
frequencies at the beginning of this generation.

	endGen

	Ending generation. The ending frequencies are considerd as
frequencies at the end of this generation.

	beginFreq

	The initial allele frequency of involved loci in all subpopulations.
It can be a number (same frequency for all loci in all
subpopulations), or a list of frequencies for each locus (same
frequency in all subpopulations), or a list of frequencies for each
locus in each subpopulation in the order of loc0_sp0,
loc1_sp0, …, loc0_sp1, loc1_sp1, … and so on.

	endFreq

	The range of acceptable allele frequencies at the ending generation.
The ranges can be specified for all loci in all subpopulations,
for all loci (allele frequency in the whole population is
considered), or for all loci in all subpopulations, in the order
of loc0_sp0, loc1_sp0, …. loc0_sp1, … and so on.

This simulator will simulate a trajectory generation by generation and
restart if the resulting frequencies do not fall into specified range
of frequencies. This simulator will return None if no valid
Trajectory is found after maxAttempts attemps.

Function simulateForwardTrajectory

	
simuPOP.utils.simulateForwardTrajectory(N, beginGen, endGen, beginFreq, endFreq, nLoci=1, fitness=None, maxAttempts=10000, logger=None)

	Given a demographic model (N) and the fitness of genotype at one or
more loci (fitness), this function simulates a trajectory of one or more
unlinked loci (nLoci) from allele frequency freq at generation
beginGen forward in time, until it reaches generation endGen. A
Trajectory object will be returned if the allele frequency falls
into specified ranges (endFreq). None will be returned if no valid
Trajectory is simulated after maxAttempts attempts. Please refer to
class Trajectory, TrajectorySimulator and their member functions
for more details about allowed input for these parameters. If a logger
object is given, it will send detailed debug information at DEBUG
level and ending allele frequencies at the INFO level. The latter
can be used to adjust your fitness model and/or ending allele frequency
if a trajectory is difficult to obtain because of parameter mismatch.

Function simulateBackwardTrajectory

	
simuPOP.utils.simulateBackwardTrajectory(N, endGen, endFreq, nLoci=1, fitness=None, minMutAge=None, maxMutAge=None, maxAttempts=1000, logger=None)

	Given a demographic model (N) and the fitness of genotype at one or
more loci (fitness), this function simulates a trajectory of one or more
unlinked loci (nLoci) from allele frequency freq at generation endGen
backward in time, until all alleles get lost. A Trajectory object will
be returned if the length of simulated Trajectory with minMutAge and
maxMutAge (if specified). None will be returned if no valid
Trajectory is simulated after maxAttempts attempts. Please refer to
class Trajectory, TrajectorySimulator and their member functions
for more details about allowed input for these parameters. If a logger
object is given, it will send detailed debug information at DEBUG
level and ending generation and frequency at the INFO level. The latter
can be used to adjust your fitness model and/or ending allele frequency
if a trajectory is difficult to obtain because of parameter mismatch.

class ProgressBar

	
class simuPOP.utils.ProgressBar

	The ProgressBar class defines a progress bar. This class will use a
text-based progress bar that outputs progressing dots (.) with intermediate
numbers (e.g. 5 for 50%) under a non-GUI mode (gui=False) or not displaying
any progress bar if gui='batch'. In the GUI mode, a Tkinter or wxPython
progress dialog will be used (gui=Tkinter or gui=wxPython). The default
mode is determined by the global gui mode of simuPOP
(see also simuOpt.setOptions).

This class is usually used as follows:

progress = ProgressBar("Start simulation", 500)
for i in range(500):
 # i+1 can be ignored if the progress bar is updated by 1 step
 progress.update(i+1)
if you would like to make sure the done message is displayed.
progress.done()

	
ProgressBar(message, totalCount, progressChar='.', block=2, done=' Done.n', gui=None)

	Create a progress bar with message, which will be the title of
a progress dialog or a message for textbased progress bar. Parameter
totalCount specifies total expected steps. If a text-based progress
bar is used, you could specified progress character and intervals at
which progresses will be displayed using parameters progressChar
and block. A ending message will also be displayed in text mode.

	
done()

	Finish progressbar, print ‘done’ message if in text-mode.

	
update(count=None)

	Update the progreebar with count steps done. The dialog or textbar
may not be updated if it is updated by full percent(s). If count is
None, the progressbar increases by one step (not percent).

Function viewVars

	
simuPOP.utils.viewVars(var, gui=None)

	
	list a variable in tree format, either in text format or in a

	wxPython window.

	var

	A dictionary variable to be viewed. Dictionary wrapper objects returned
by Population.dvars() and Simulator.dvars() are also acceptable.

	gui

	If gui is False or 'Tkinter', a text presentation (use the
pprint module) of the variable will be printed to the screen. If gui is
'wxPython' and wxPython is available, a wxPython windows will be
used. The default mode is determined by the global gui mode (see also
simuOpt.setOptions).

Function saveCSV

	
simuPOP.utils.saveCSV(pop, filename='', infoFields=[], loci=True, header=True, subPops=ALL_AVAIL, genoFormatter=None, infoFormatter=None, sexFormatter={1: 'M', 2: 'F'}, affectionFormatter={True: 'A', False: 'U'}, sep=', ', **kwargs)

	This function is deprecated. Please use export(format='csv') instead.
Save a simuPOP population pop in csv format. Columns of this
file is arranged in the order of information fields (infoFields),
sex (if sexFormatter is not None), affection status (if
affectionFormatter is not None), and genotype (if genoFormatter is
not None). This function only output individuals in the present
generation of population pop. This function accepts the following
parameters:

	pop

	A simuPOP population object.

	filename

	Output filename. Leading ‘>’ characters are ignored. However, if the first
character of this filename is ‘!’, the rest of the name will be evalulated
in the population’s local namespace. If filename is empty, the content
will be written to the standard output.

	infoFileds

	Information fields to be outputted. Default to none.

	loci

	If a list of loci is given, only genotype at these loci will be
written. Default to ALL_AVAIL, meaning all available loci. You can
set this parameter to [] if you do not want to output any genotype.

	header

	Whether or not a header should be written. These headers will include
information fields, sex (if sexFormatter is not None), affection
status (if affectionFormatter is not None) and loci names. If
genotype at a locus needs more than one column, _1, _2 etc will
be appended to loci names. Alternatively, a complete header (a string)
or a list of column names could be specified directly.

	subPops

	A list of (virtual) subpopulations. If specified, only individuals
from these subpopulations will be outputed.

	infoFormatter

	A format string that is used to format all information fields. If
unspecified, str(value) will be used for each information field.

	genoFormatter

	How to output genotype at specified loci. Acceptable values include
None (output allele names), a dictionary with genotype as keys,
(e.g. genoFormatter={(0,0):1, (0,1):2, (1,0):2, (1,1):3}, or a function
with genotype (as a tuple of integers) as inputs. The dictionary value
or the return value of this function can be a single or a list of
number or strings.

	sexFormatter

	How to output individual sex. Acceptable values include None (no
output) or a dictionary with keys MALE and FEMALE.

	affectionFormatter

	How to output individual affection status. Acceptable values include
None (no output) or a dictionary with keys True and False.

Parameters genoCode, sexCode, and affectionCode from version
1.0.0 have been renamed to genoFormatter, sexFormatter and
affectionFormatter but can still be used.

class Exporter

	
class simuPOP.utils.Exporter

	An operator to export the current population in specified format.
Currently supported file formats include:

STRUCTURE (http://pritch.bsd.uchicago.edu/structure.html). This format
accepts the following parameters:

	markerNames

	If set to True (default), output names of loci that are specified by parameter
lociNames of the Population class. No names will be outputted if loci are
anonymous. A list of loci names are acceptable which will be outputted directly.

	recessiveAlleles

	If specified, value of this parameter will be outputted after the marker names
line.

	interMarkerDistances

	If set to True (default), output distances between markers. The first marker
of each chromosome has distance -1, as required by this format.

	phaseInformation

	If specified, output the value (0 or 1) of this parameter after the inter marker
distances line. Note that simuPOP populations always have phase information.

	label

	Output 1-based indexes of individuals if this parameter is true (default)

	popData

	Output 1-based index of subpopulation if this parameter is set to true (default).

	popFlag

	Output value of this parameter (0 or 1) after popData if this parameter specified.

	locData

	Name of an information field with location information of each individual. Default
to None (no location data)

	phenotype

	Name of an information field with phenotype information of each individual. Default
to None (no phenotype)

Genotype information are always outputted. Alleles are coded the same way (0, 1, 2, etc)
as they are stored in simuPOP.

GENEPOP (http://genepop.curtin.edu.au/). The genepop format accepts the following
parameters:

	title

	The tile line. If unspecified, a line similar to ‘produced by simuPOP on XXX’
will be outputted.

	adjust

	Adjust values of alleles by specified value (1 as default). This adjustment is
necessary in many cases because GENEPOP treats allele 0 as missing values, and
simuPOP treats allele 0 as a valid allele. Exporting alleles 0 and 1 as 1 and 2
will allow GENEPOP to analyze simuPOP-exported files correctly.

Because 0 is reserved as missing data in this format, allele A is outputted as A+adjust.
simuPOP will use subpopulation names (if available) and 1-based individual index
to output individual label (e.g. SubPop2-3). If parameter subPops is used to output
selected individuals, each subpop will be outputted as a separate subpopulation even
if there are multiple virtual subpopulations from the same subpopulation. simuPOP
currently only export diploid populations to this format.

FSTAT (http://www2.unil.ch/popgen/softwares/fstat.htm). The fstat format accepts
the following parameters:

	lociNames

	Names of loci that will be outputted. If unspecified, simuPOP will try to use
names of loci that are specified by parameter lociNames of the Population
class, or names in the form of chrX-Y.

	adjust

	Adjust values of alleles by specified value (1 as default). This adjustment is
necessary in many cases because FSTAT treats allele 0 as missing values, and
simuPOP treats allele 0 as a valid allele. Exporting alleles 0 and 1 as 1 and 2
will allow FSTAT to analyze simuPOP-exported files correctly.

MAP (marker information format) output information about each loci. Each line of
the map file describes a single marker and contains chromosome name, locus name,
and position. Chromosome and loci names will be the names specified by parameters
chromNames and lociNames of the Population object, and will be
chromosome index + 1, and ‘.’ if these parameters are not specified. This
format output loci position to the third column. If the unit assumed in your
population does not match the intended unit in the MAP file, (e.g. you would like
to output position in basepair while the population uses Mbp), you can use parameter
posMultiplier to adjust it. This format accepts the following parameters:

	posMultiplier

	A number that will be multiplied to loci positions (default to 1). The result
will be outputted in the third column of the output.

PED (Linkage Pedigree pre MAKEPED format), with columns of family, individual,
father mother, gender, affection status and genotypes. The output should be
acceptable by HaploView or plink, which provides more details of this format in
their documentation. If a population does not have ind_id, father_id or
mother_id, this format will output individuals in specified (virtual)
subpopulations in the current generation (parental generations are ignored)
as unrelated individuals with 0, 0 as parent IDs. An incremental family
ID will be assigned for each individual. If a population have ind_id,
father_id and mother_id, parents will be recursively traced to separate
all individuals in a (multigenerational) population into families of related
individuals. father and mother id will be set to zero if one of them does not
exist. This format uses 1 for MALE, 2 for FEMALE. If phenoField is None,
individual affection status will be outputted with 1 for Unaffected and 2
for affected. Otherwise, values of an information field will be outputted as
phenotype. Because 0 value indicates missing value, values of alleles will
be adjusted by 1 by default, which should be avoided if you are using non-zero
alleles to model ACTG alleles in simuPOP. This format will ignore subpopulation
structure because parents might belong to different subpopulations. This format
accepts the following parameters:

	idField

	A field for individual id, default to ind_id. Value at this field will be
individual ID inside a pedigree.

	fatherField

	A field for father id, default to father_id. Value at this field will be
used to output father of an individual, if an individual with this ID exists
in the population.

	motherField

	A field for mother id, default to mother_id. Value at this field will be
used to output mother of an individual, if an individual with this ID exists
in the population.

	phenoField

	A field for individual phenotype that will be outputted as the sixth column of
the PED file. If None is specified (default), individual affection status
will be outputted (1 for unaffected and 2 for affected).

	adjust

	Adjust values of alleles by specified value (1 as default). This adjustment
is necessary in many cases because LINKAGE/PED format treats allele 0 as
missing values, and simuPOP treats allele 0 as a valid allele. You should set
this paremter to zero if you have already used alleles 1, 2, 3, 4 to model
A, C, T, and G alleles.

Phylip (Joseph Felsenstein’s Phylip format). Phylip is generally used for nuclotide
sequences and protein sequences. This makes this format suitable for simulations
of haploid populations (ploidy=1) with nucleotide or protein sequences (number of
alleles = 4 or 24 with alleleNames as nucleotide or amino acid names). If your
population does satisfy these conditions, you can still export it, with homologous
chromosomes in a diploid population as two sequences, and with specified allele
names for allele 0, 1, 2, …. This function outputs sequence name as SXXX where
XXX is the 1-based index of individual and SXXX_Y (Y=1 or 2) for diploid individuals,
unless names of sequences are provided by parameter seqNames. This format supports
the following parameters:

	alleleNames

	Names of alleles 0, 1, 2, … as a single string (e.g. ‘ACTG’) or a list of
single-character strings (e.g. [‘A’, ‘C’, ‘T’, ‘G’]). If this parameter is
unspecified (default), this program will try to use names of alleles
specified in alleleNames parameter of a Population, and raise an error if no
name could be found.

	seqNames

	Names of each sequence outputted, for each individual, or for each sequences
for non-haploid population. If unspecified, default names such as SXXX or
SXXX_Y will be used.

	style

	Output style, can be ‘sequential’ (default) or ‘interleaved’. For sequential
output, each sequence consists of for the first line a name and 90 symbols
starting from column 11, and subsequent lines of 100 symbols. The interleaved
style have subsequent lines as separate blocks.

MS (output from Richard R. Hudson’s MS or msHOT program). This format records
genotypes of SNP markers at segregating site so all non-zero genotypes are
recorded as 1. simuPOP by default outputs a single block of genotypes at
all loci on the first chromosome, and for all individuals, unless parameter
splitBy is specified to separate genotypes by chromosome or subpopulations.

	splitBy:

	simuPOP by default output segregating sites at all loci on the first
chromosome for all individuals. If splitBy is set to 'subPop',
genotypes for individuals in all or specified (parameter subPops)
subpopulations are outputted in separate blocks. The subpopulations should
have the same number of individuals to produce blocks of the same number
of sequences. Alternatively, splitBy can be set to chrom, for
which genotypes on different chromosomes will be outputted separately.

CSV (comma separated values). This is a general format that output genotypes in
comma (or tab etc) separated formats. The function form of this operator
export(format='csv') is similar to the now-deprecated saveCSV function,
but its interface has been adjusted to match other formats supported by this
operator. This format outputs a header (optiona), and one line for each individual
with values of specified information fields, sex, affection status, and genotypes.
All fields except for genotypes are optional. The output format is controlled by the
following parameters:

	infoFileds

	Information fields to be outputted. Default to none.

	header

	Whether or not a header should be written. These headers will include
information fields, sex (if sexFormatter is not None), affection
status (if affectionFormatter is not None) and loci names. If
genotype at a locus needs more than one column, _1, _2 etc will
be appended to loci names. Alternatively, a complete header (a string)
or a list of column names could be specified directly.

	infoFormatter

	A format string that is used to format all information fields. If
unspecified, str(value) will be used for each information field.

	genoFormatter

	How to output genotype at specified loci. Acceptable values include
None (output allele values), a dictionary with genotype as keys,
(e.g. genoFormatter={(0,0):1, (0,1):2, (1,0):2, (1,1):3}, or a function
with genotype (as a tuple of integers) as inputs. The dictionary value
or the return value of this function can be a single or a list of
number or strings.

	sexFormatter

	How to output individual sex. Acceptable values include None (no
output) or a dictionary with keys MALE and FEMALE.

	affectionFormatter

	How to output individual affection status. Acceptable values include
None (no output) or a dictionary with keys True and False.

	delimiter

	Delimiter used to separate values, default to ‘,’.

	subPopFormatter

	How to output population membership. Acceptable values include
None (no output), a string that will be used for the column name, or
True which uses ‘pop’ as the column name. If present, the column is
written with the string represenation of the (virtual) subpopulation.

This operator supports the usual applicability parameters such as begin,
end, step, at, reps, and subPops. If subPops are specified, only
individuals from specified (virtual) subPops are exported. Similar to
other operators, parameter output can be an output specification string
(filename, >>filename, !expr), filehandle (or any Python object
with a write function), any python function. Unless explicitly stated for
a particular format, this operator exports individuals from the current
generation if there are multiple ancestral generations in the population.

The Exporter class will make use of a progress bar to show the progress. The
interface of the progress bar is by default determined by the global GUI status
but you can also set it to, for example, gui=False to forcefully use a
text-based progress bar, or gui='batch' to suppress the progress bar.

	
Exporter(format, output, begin=0, end=-1, step=1, at=[], reps=True, subPops=ALL_AVAIL, infoFields=[], gui=None, *args, **kwargs)

	Usage:

	PyOperator(func, param=None, begin=0, end=-1, step=1, at=[],

	reps=ALL_AVAIL, subPops=ALL_AVAIL, infoFields=[])

Details:

Create a pure-Python operator that calls a user-defined function
when it is applied. If this operator is applied before or after
mating, your function should have form func(pop) or func(pop,
param) where pop is the population to which the operator is
applied, param is the value specified in parameter param. param
will be ignored if your function only accepts one parameter.
Althernatively, the function should have form func(ind) with
optional parameters pop and param. In this case, the function will
be called for all individuals, or individuals in subpopulations
subPops. Individuals for which the function returns False will be
removed from the population. This operator can therefore perform
similar functions as operator DiscardIf. If this operator is
applied during mating, your function should accept parameters pop,
off (or ind), dad, mom and param where pop is the parental
population, and off or ind, dad, and mom are offspring and their
parents for each mating event, and param is an optional parameter.
If subPops are provided, only offspring in specified (virtual)
subpopulations are acceptable. This operator does not support
parameters output, and infoFields. If certain output is needed, it
should be handled in the user defined function func. Because the
status of files used by other operators through parameter output
is undetermined during evolution, they should not be open or
closed in this Python operator.

Function importPopulation

	
simuPOP.utils.importPopulation(format, filename, *args, **kwargs)

	This function import and return a population from a file filename in
specified format. Format-specific parameters can be used to define how the
input should be interpreted and imported. This function supports the following
file format.

GENEPOP (http://genepop.curtin.edu.au/). For input file of this format, this
function ignores the first title line, load the second line as loci names,
and import genotypes of different POP sections as different subpopulations.
This format accepts the following parameters:

	adjust

	Adjust alleles by specified value (default to 0 for no adjustment). This
parameter is mostly used to convert alleles 1 and 2 in a GenePop file to
alleles 0 and 1 (with adjust=-1) in simuPOP. Negative allele (e.g. missing
value 0) will be imported as regular allele with module-dependent values
(e.g. -1 imported as 255 for standard module).

FSTAT (http://www2.unil.ch/popgen/softwares/fstat.htm). This format accepts
the following parameters:

	adjust

	Adjust alleles by specified value (default to 0 for no adjustment). This
parameter is mostly used to convert alleles 1 and 2 in a GenePop file to
alleles 0 and 1 (with adjust=-1) in simuPOP. Negative allele (e.g. missing
value 0) will be imported as regular allele with module-dependent values
(e.g. -1 imported as 255 for standard module).

Phylip (Joseph Felsenstein’s Phylip format). This function ignores sequence
names and import sequences in a haploid (default) or diploid population (if
there are even number of sequences). An list of allele names are required to
translate symbols to allele names. This format accepts the following
parameters:

	alleleNames

	Names of alleles 0, 1, 2, … as a single string (e.g. ‘ACTG’) or a list of
single-character strings (e.g. [‘A’, ‘C’, ‘T’, ‘G’]). This will be used to
translate symbols into numeric alleles in simuPOP. Allele names will continue
to be used as allele names of the returned population.

	ploidy

	Ploidy of the returned population, default to 1 (haploid). There should be
even number of sequences if ploidy=2 (haploid) is specified.

MS (output from Richard R. Hudson’s MS or msHOT program). The ms program generates
npop blocks of nseq haploid chromosomes for command starting with
ms nsample nrepeat. By default, the result is imported as a haploid
population of size nsample. The population will have nrepeat subpopulations
each with the same number of loci but different number of segregating sites.
This behavior could be changed by the following parameters:

	ploidy

	If ploidy is set to 2, the sequenences will be paired so the population
will have nseq/2 individuals. An error will be raised if an odd number
of sequences are simulated.

	mergeBy

	By default, replicate samples will be presented as subpopulations. All
individuals have the same number of loci but individuals in different
subpopulations have different segregating sites. If mergeBy is set
to "chrom", the replicates will be presented as separate chromosomes,
each with a different set of loci determined by segregating sites.

Function export

	
simuPOP.utils.export(pop, format, *args, **kwargs)

	Apply operator Exporter to population pop in format format.

Module simuPOP.demography

This module provides some commonly used demographic models. In addition
to several migration rate generation functions, it provides models that
encapsulate complete demographic features of one or more populations (
population growth, split, bottleneck, admixture, migration). These models
provides:

	The model itself can be passed to parameter subPopSize of a mating
scheme to determine the size of the next generation. More importantly,
it performs necessary actions of population size change when needed.

	The model provides attribute num_gens, which can be passed to parameter
gens of Simulator.evolve or Population.evolve function.
A demographic model can also terminate an evolutionary process by
returnning an empty list so gens=model.num_gens is no longer required.

Function migrIslandRates

	
simuPOP.demography.migrIslandRates(r, n)

	migration rate matrix

 x m/(n-1) m/(n-1)
 m/(n-1) x

 m/(n-1) m/(n-1) x

where x = 1-m

Function migrHierarchicalIslandRates

	
simuPOP.demography.migrHierarchicalIslandRates(r1, r2, n)

	Return the migration rate matrix for a hierarchical island model
where there are different migration rate within and across groups
of islands.

	r1

	Within group migration rates. It can be a number or a list of numbers
for each group of the islands.

	r2

	Across group migration rates which is the probability that someone will
migrate to a subpopulation outside of his group. A list of r2 could be
specified for each group of the islands.

	n

	Number of islands in each group. E.g. n=[5, 4] specifies two groups of
islands with 5 and 4 islands each.

For individuals in an island, the probability that it remains in the same
island is 1-r1-r2 (r1, r2 might vary by island groups), that it migrates
to another island in the same group is r1 and migrates to another island
outside of the group is r2. migrate rate to a specific island depends on
the size of group.

Function migrSteppingStoneRates

	
simuPOP.demography.migrSteppingStoneRates(r, n, circular=False)

	migration rate matrix for circular stepping stone model (X=1-m)

X m/2 m/2
m/2 X m/2 0
0 m/2 x m/20
...
m/2 0 m/2 X

or non-circular

 X m/2 m/2
 m/2 X m/2 0
 0 m/2 X m/20
 ...
 ... m X

This function returns [[1]] when there is only one subpopulation.

Function migrtwoDSteppingStoneRates

	
simuPOP.demography.migr2DSteppingStoneRates(r, m, n, diagonal=False, circular=False)

	migration rate matrix for 2D stepping stone model, with or without
diagonal neighbors (4 or 8 neighbors for central patches). The boundaries
are connected if circular is True. Otherwise individuals from corner and
bounary patches will migrate to their neighbors with higher probability.

class EventBasedModel

	
class simuPOP.demography.EventBasedModel

	An event based demographic model in which the demographic changes are
triggered by demographic events such as population growth, split, join, and
admixture. The population size will be kept constant if no event is applied
at a certain generation.

	
EventBasedModel(events=[], T=None, N0=[], ops=[], infoFields=[])

	A demographic model that is driven by a list of demographic events.
The events should be subclasses of DemographicEvent, which have similar
interface as regular operators with the exception that applicable parameters
begin, end, step, at are relative to the demographic model,
not the population.

	
plot(filename='', title='', initSize=[])

	Evolve a haploid population using a RandomSelection mating scheme
using the demographic model. Print population size changes duringe evolution.
An initial population size could be specified using parameter initSize
for a demographic model with dynamic initial population size. If a filename
is specified and if matplotlib is available, this function draws a figure
to depict the demographic model and save it to filename. An optional
title could be specified to the figure. Note that this function can
not be plot demographic models that works for particular mating schemes
(e.g. genotype dependent).

class DemographicEvent

	
class simuPOP.demography.DemographicEvent

	A demographic events that will be applied to one or more populations at
specified generations. The interface of a DemographicEvent is very similar to
an simuPOP operator, but the applicable parameters are handled so that
the generations are relative to the demographic model, not the populations
to which the event is applied.

	
DemographicEvent(ops=[], output='', begin=0, end=-1, step=1, at=[], reps=True, subPops=ALL_AVAIL, infoFields=[])

	Create a demographic event that will be applied at specified
generations according to applicability parameters reps, begin,
end, step and at. Parameter subPops is usually used
to specify the subpopulations affected by the event. One or more simuPOP
operators, if specified in ops, will be applied when the event
happens. Parameters output and infoFields are currently ignored.

	
apply(pop)

	

class ExpansionEvent

	
class simuPOP.demography.ExpansionEvent

	A demographic event that increase applicable population size by
N*r (to size N*(1+r)), or s (to size N+s) at each applicable
generation. The first model leads to an exponential population expansion
model with rate r (N(t)=N(0)*exp(r*t)), where the second model leads to
an linear population growth model (N(t)=N(0)+s*t) and this is why the
parameter is called slopes. Note that if both population
size and r are small (e.g. N*r<1), the population might not expand
as expected.

	
ExpansionEvent(rates=[], slopes=[], capacity=[], name='', ops=[], output='', begin=0, end=-1, step=1, at=[], reps=True, subPops=ALL_AVAIL, infoFields=[])

	A demographic event that expands all or specified subpopulations
(subPops) exponentially by a rate of rates, or linearly by a slope
of slopes, unless carray capacity (capacity) of the population has
been reached. Parameter rates can be a single number or a list of rates
for all subpopulations. Parameter slopes should be a number, or a list
of numbers for all subpopulations. subPops can be a ALL_AVAIL or a list
of subpopulation index or names. capacity can be empty (no limit on
carrying capacity), or one or more numbers for each of the subpopulations.

	
apply(pop)

	

class ResizeEvent

	
class simuPOP.demography.ResizeEvent

	A demographic event that resize specified subpopulations

	
ResizeEvent(sizes=[], names=[], removeEmptySubPops=False, ops=[], output='', begin=0, end=-1, step=1, at=[], reps=True, subPops=ALL_AVAIL, infoFields=[])

	A demographic event that resizes given subpopulations subPops to new
sizes (integer type), or sizes proportional to original sizes (if a float
number is given). For example, sizes=[0.5, 500] will resize the first
subpopulation to half of its original size, and the second subpopulation to
size 500. If the new size is larger, existing individuals will be copied
to sequentially, and repeatedly if needed. If the size of a subpopulation is
0 and removeEmptySubPops is True, empty subpopulations will be
removed. A new set of names could be assigned to the population being resized.

	
apply(pop)

	

class SplitEvent

	
class simuPOP.demography.SplitEvent

	A demographic event that splits a specified population into two or
more subpopulations.

	
SplitEvent(sizes=[], names=[], ops=[], output='', begin=0, end=-1, step=1, at=[], reps=True, subPops=ALL_AVAIL, infoFields=[])

	A demographic event that splits a subpopulation specified by
subPops to two or more subpopulations, with specified sizes
and names. sizes can be a list of numbers, proportions
(e.g. [1., 500] keeps the original population and copies 500
individuals to create a new subpupulation). Note that sizes
and names, if specified, should include the source subpopulation
as its first element.

	
apply(pop)

	

class MergeEvent

	
class simuPOP.demography.MergeEvent

	A demographic event that merges one or more subpopulation to
a single one.

	
MergeEvent(name='', ops=[], output='', begin=0, end=-1, step=1, at=[], reps=True, subPops=ALL_AVAIL, infoFields=[])

	A demographic event that merges subpopulations into a single subpopulation.
The merged subpopulation will have the name of the first merged subpopulation
unless a separate name is supported.

	
apply(pop)

	

class AdmixtureEvent

	
class simuPOP.demography.AdmixtureEvent

	This event implements a population admixture event that mix
individuals from specified subpopulations to either a new
subpopulation or an existing subpopulation.

	
AdmixtureEvent(sizes=[], toSubPop=None, name='', ops=[], output='', begin=0, end=-1, step=1, at=[], reps=True, subPops=ALL_AVAIL, infoFields=[])

	Create an admixed population by choosing individuals
from all or specified subpopulations (subPops) and creating
an admixed population toSubPop. The admixed population will
be appended to the population as a new subpopulation with name
name if toSubPop is None (default), or replace an
existing subpopulation with name or index toSubPop. The admixed
population consists of individuals from subPops according to
specified sizes. Its size is maximized to have the largest
number of individuals from the source population when a new population
is created, or equal to the size of the existing destination population.
The parameter sizes should be a list of float numbers
between 0 and 1, and add up to 1 (e.g. [0.4, 0.4, 0.2], although
this function ignores the last element and set it to 1 minus the
sum of the other numbers). Alternatively, parameter sizes can
be a list of numbers used to explicitly specify the size of admixed
population and number of individuals from each source subpopulation.
In all cases, the size of source populations will be kept constant.

	
apply(pop)

	

class InstantChangeModel

	
class simuPOP.demography.InstantChangeModel

	A model for instant population change (growth, resize, merge, split).

	
InstantChangeModel(T=None, N0=[], G=[], NG=[], ops=[], infoFields=[], removeEmptySubPops=False)

	An instant population growth model that evolves a population
from size N0 to NT for T generations with population
size changes at generation G to NT. If G is a list,
multiple population size changes are allowed. In that case, a list
(or a nested list) of population size should be provided to parameter
NT. Both N0 and NT supports fixed (an integer), dynamic
(keep passed poulation size) and proportional (an float number) population
size. Optionally, one or more operators (e.g. a migrator) ops
can be applied to population. Required information fields by these
operators should be passed to parameter infoFields. If removeEmpty
option is set to True, empty subpopulation will be removed. This
option can be used to remove subpopulations.

	
plot(filename='', title='', initSize=[])

	Evolve a haploid population using a RandomSelection mating scheme
using the demographic model. Print population size changes duringe evolution.
An initial population size could be specified using parameter initSize
for a demographic model with dynamic initial population size. If a filename
is specified and if matplotlib is available, this function draws a figure
to depict the demographic model and save it to filename. An optional
title could be specified to the figure. Note that this function can
not be plot demographic models that works for particular mating schemes
(e.g. genotype dependent).

class ExponentialGrowthModel

	
class simuPOP.demography.ExponentialGrowthModel

	A model for exponential population growth with carry capacity

	
ExponentialGrowthModel(T=None, N0=[], NT=None, r=None, ops=[], infoFields=[])

	An exponential population growth model that evolves a population from size
N0 to NT for T generations with r*N(t) individuals added
at each generation. N0, NT and r can be a list of population
sizes or growth rates for multiple subpopulations. The initial population
will be resized to N0 (split if necessary). Zero or negative growth
rates are allowed. The model will automatically determine T, r
or NT if one of them is unspecified. If all of them are specified,
NT is intepretted as carrying capacity of the model, namely the
population will keep contant after it reaches size NT. Optionally,
one or more operators (e.g. a migrator) ops can be applied to
population.

	
plot(filename='', title='', initSize=[])

	Evolve a haploid population using a RandomSelection mating scheme
using the demographic model. Print population size changes duringe evolution.
An initial population size could be specified using parameter initSize
for a demographic model with dynamic initial population size. If a filename
is specified and if matplotlib is available, this function draws a figure
to depict the demographic model and save it to filename. An optional
title could be specified to the figure. Note that this function can
not be plot demographic models that works for particular mating schemes
(e.g. genotype dependent).

class LinearGrowthModel

	
class simuPOP.demography.LinearGrowthModel

	A model for linear population growth with carry capacity.

	
LinearGrowthModel(T=None, N0=[], NT=None, r=None, ops=[], infoFields=[])

	An linear population growth model that evolves a population from size
N0 to NT for T generations with r*N0 individuals added
at each generation. N0, NT and r can be a list of population
sizes or growth rates for multiple subpopulations. The initial population
will be resized to N0 (split if necessary). Zero or negative growth
rates are allowed. The model will automatically determine T, r
or NT if one of them is unspecified. If all of them are specified,
NT is intepretted as carrying capacity of the model, namely the
population will keep contant after it reaches size NT. Optionally,
one or more operators (e.g. a migrator) ops can be applied to
population.

	
plot(filename='', title='', initSize=[])

	Evolve a haploid population using a RandomSelection mating scheme
using the demographic model. Print population size changes duringe evolution.
An initial population size could be specified using parameter initSize
for a demographic model with dynamic initial population size. If a filename
is specified and if matplotlib is available, this function draws a figure
to depict the demographic model and save it to filename. An optional
title could be specified to the figure. Note that this function can
not be plot demographic models that works for particular mating schemes
(e.g. genotype dependent).

class MultiStageModel

	
class simuPOP.demography.MultiStageModel

	A multi-stage demographic model that connects a number of demographic
models.

	
MultiStageModel(models, ops=[], infoFields=[])

	An multi-stage demographic model that connects specified
demographic models models. It applies a model to the population
until it reaches num_gens of the model, or if the model returns
[]. One or more operators could be specified, which will be applied
before a demographic model is applied. Note that the last model will be
ignored if it lasts 0 generation.

	
plot(filename='', title='', initSize=[])

	Evolve a haploid population using a RandomSelection mating scheme
using the demographic model. Print population size changes duringe evolution.
An initial population size could be specified using parameter initSize
for a demographic model with dynamic initial population size. If a filename
is specified and if matplotlib is available, this function draws a figure
to depict the demographic model and save it to filename. An optional
title could be specified to the figure. Note that this function can
not be plot demographic models that works for particular mating schemes
(e.g. genotype dependent).

class OutOfAfricaModel

	
class simuPOP.demography.OutOfAfricaModel

	A dempgraphic model for the CHB, CEU, and YRI populations, as defined in
Gutenkunst 2009, Plos Genetics. The model is depicted in Figure 2, and the
default parameters are listed in Table 1 of this paper.

	
OutOfAfricaModel(T0, N_A=7300, N_AF=12300, N_B=2100, N_EU0=1000, r_EU=0.004, N_AS0=510, r_AS=0.0055, m_AF_B=0.00025, m_AF_EU=3e-05, m_AF_AS=1.9e-05, m_EU_AS=9.6e-05, T_AF=8800, T_B=5600, T_EU_AS=848, ops=[], infoFields=[], outcome=['AF', 'EU', 'AS'], scale=1)

	Counting backward in time, this model evolves a population for T0
generations (required parameter). The ancient population A started at
size N_A and expanded at T_AF generations from now, to pop AF
with size N_AF. Pop B split from pop AF at T_B generations
from now, with size N_B; Pop AF remains as N_AF individuals.
Pop EU and AS split from pop B at T_EU_AS generations
from now; with size N_EU0 individuals and N_ASO individuals,
respectively. Pop EU grew exponentially with rate r_EU; Pop
AS grew exponentially with rate r_AS. The YRI, CEU and
CHB samples are drawn from AF, EU and AS populations
respectively. Additional operators could be added to ops. Information
fields required by these operators should be passed to infoFields. If
a scaling factor scale is specified, all population sizes and
generation numbers will be divided by a factor of scale. This demographic
model by default returns all populations (AF, EU, AS) but
you can choose to keep only selected subpopulations using parameter
outcome (e.g. outcome=['EU', 'AS']).

This model merges all subpopulations if it is applied to an initial
population with multiple subpopulation.

	
plot(filename='', title='', initSize=[])

	Evolve a haploid population using a RandomSelection mating scheme
using the demographic model. Print population size changes duringe evolution.
An initial population size could be specified using parameter initSize
for a demographic model with dynamic initial population size. If a filename
is specified and if matplotlib is available, this function draws a figure
to depict the demographic model and save it to filename. An optional
title could be specified to the figure. Note that this function can
not be plot demographic models that works for particular mating schemes
(e.g. genotype dependent).

class SettlementOfNewWorldModel

	
class simuPOP.demography.SettlementOfNewWorldModel

	A dempgraphic model for settlement of the new world of Americans, as defined
in Gutenkunst 2009, Plos Genetics. The model is depicted in Figure 3, and the
default parameters are listed in Table 2 of this paper.

	
SettlementOfNewWorldModel(T0, N_A=7300, N_AF=12300, N_B=2100, N_EU0=1500, r_EU=0.0023, N_AS0=590, r_AS=0.0037, N_MX0=800, r_MX=0.005, m_AF_B=0.00025, m_AF_EU=3e-05, m_AF_AS=1.9e-05, m_EU_AS=1.35e-05, T_AF=8800, T_B=5600, T_EU_AS=1056, T_MX=864, f_MX=0.48, ops=[], infoFields=[], outcome='MXL', scale=1)

	Counting backward in time, this model evolves a population for T0
generations. The ancient population A started at size N_A and
expanded at T_AF generations from now, to pop AF with size N_AF.
Pop B split from pop AF at T_B generations from now, with
size N_B; Pop AF remains as N_AF individuals. Pop EU and
AS split from pop B at T_EU_AS generations from now; with
size N_EU0 individuals and N_ASO individuals, respectively. Pop
EU grew exponentially with final population size N_EU; Pop
AS grew exponentially with final populaiton size N_AS. Pop MX
split from pop AS at T_MX generations from now with size N_MX0,
grew exponentially to final size N_MX. Migrations are allowed between
populations with migration rates m_AF_B, m_EU_AS, m_AF_EU,
and m_AF_AS. At the end of the evolution, the AF and CHB
populations are removed, and the EU and MX populations are merged
with f_MX proportion for MX. The Mexican American<F19> sample could
be sampled from the last single population. Additional operators could
be added to ops. Information fields required by these operators
should be passed to infoFields. If a scaling factor scale
is specified, all population sizes and generation numbers will be divided by
a factor of scale. This demographic model by default only returns the
mixed Mexican America model (outputcom='MXL') but you can specify any
combination of AF, EU, AS, MX and MXL.

This model merges all subpopulations if it is applied to an initial population
with multiple subpopulation.

	
plot(filename='', title='', initSize=[])

	Evolve a haploid population using a RandomSelection mating scheme
using the demographic model. Print population size changes duringe evolution.
An initial population size could be specified using parameter initSize
for a demographic model with dynamic initial population size. If a filename
is specified and if matplotlib is available, this function draws a figure
to depict the demographic model and save it to filename. An optional
title could be specified to the figure. Note that this function can
not be plot demographic models that works for particular mating schemes
(e.g. genotype dependent).

class CosiModel

	
class simuPOP.demography.CosiModel

	A dempgraphic model for Africa, Asia and Europe, as described in
Schaffner et al, Genome Research, 2005, and implemented in the coalescent
simulator cosi.

	
CosiModel(T0, N_A=12500, N_AF=24000, N_OoA=7700, N_AF1=100000, N_AS1=100000, N_EU1=100000, T_AF=17000, T_OoA=3500, T_EU_AS=2000, T_AS_exp=400, T_EU_exp=350, T_AF_exp=200, F_OoA=0.085, F_AS=0.067, F_EU=0.02, F_AF=0.02, m_AF_EU=3.2e-05, m_AF_AS=8e-06, ops=[], infoFields=[], scale=1)

	Counting backward in time, this model evolves a population for a
total of T0 generations. The ancient population Ancestral started
at size N_Ancestral and expanded at T_AF generations from now,
to pop AF with size N_AF. The Out of Africa population split from
the AF population at T_OoA generations ago. The OoA population
split into two subpopulations AS and EU but keep the same size.
At the generations of T_EU_exp, T_AS_exp, and T_AF_exp ago,
three populations expanded to modern population sizes of N_AF1,
N_AS1 and N_EU1 exponentially, respectively. Migrations are
allowed between AF and EU populations
with rate m_AF_EU, and between AF and AS with rate m_AF_AS.

Four bottlenecks happens in the AF, OoA, EU and AS populations.
They are supposed to happen 200 generations after population split and last
for 200 generations. The intensity is parameterized in F, which is number
of generations devided by twice the effective size during bottleneck.
So the bottleneck size is 100/F.

This model merges all subpopulations if it is applied to a population with
multiple subpopulation. Although parameters are configurable, we assume
the order of events so dramatically changes of parameters might need
to errors. If a scaling factor scale is specified, all population
sizes and generation numbers will be divided by, and migration rates
will be multiplied by a factor of scale.

	
plot(filename='', title='', initSize=[])

	Evolve a haploid population using a RandomSelection mating scheme
using the demographic model. Print population size changes duringe evolution.
An initial population size could be specified using parameter initSize
for a demographic model with dynamic initial population size. If a filename
is specified and if matplotlib is available, this function draws a figure
to depict the demographic model and save it to filename. An optional
title could be specified to the figure. Note that this function can
not be plot demographic models that works for particular mating schemes
(e.g. genotype dependent).

Module simuPOP.sampling

This module provides classes and functions that could be used to draw samples
from a simuPOP population. These functions accept a list of parameters such
as subPops ((virtual) subpopulations from which samples will be drawn) and
numOfSamples (number of samples to draw) and return a list of populations. Both
independent individuals and dependent individuals (Pedigrees) are supported.

Independent individuals could be drawn from any Population. pedigree
information is not necessary and is usually ignored. Unique IDs are not needed
either although such IDs could help you identify samples in the parent
Population.

Pedigrees could be drawn from multi-generational populations or age-structured
populations. All individuals are required to have a unique ID (usually tracked
by operator IdTagger and are stored in information field ind_id).
Parents of individuals are usually tracked by operator PedigreeTagger and
are stored in information fields father_id and mother_id. If parental
information is tracked using operator ParentsTagger and information fields
father_idx and mother_idx, a function sampling.indexToID can be
used to convert index based pedigree to ID based Pedigree. Note that
ParentsTagger can not be used to track Pedigrees in age-structured
populations because they require parents of each individual resides in a
parental generation.

All sampling functions support virtual subpopulations through parameter
subPops, although sample size specification might vary. This feature
allows you to draw samples with specified properties. For example, you
could select only female individuals for cases of a female-only disease,
or select individuals within certain age-range. If you specify a list
of (virtual) subpopulations, you are usually allowed to draw certain
number of individuals from each subpopulation.

class BaseSampler

	
class simuPOP.sampling.BaseSampler

	A sampler extracts individuals from a simuPOP population and return them
as separate populations. This base class defines the common interface of
all sampling classes, including how samples prepared and returned.

	
BaseSampler(subPops=ALL_AVAIL)

	Create a sampler with parameter subPops, which will be used
to prepare population for sampling. subPops should be a list of
(virtual) subpopulations from which samples are drawn. The default
value is ALL_AVAIL, which means all available subpopulations of a
Population.

	
drawSample(pop)

	Draw and return a sample.

	
drawSamples(pop, numOfSamples)

	Draw multiple samples and return a list of populations.

	
prepareSample(pop, rearrange)

	Prepare passed population object for sampling according to parameter
subPops. If samples are drawn from the whole population, a
Population will be trimmed if only selected (virtual) subpopulations
are used. If samples are drawn separately from specified subpopulations,
Population pop will be rearranged (if rearrange==True) so that
each subpoulation corresponds to one element in parameter subPops.

class RandomSampler

	
class simuPOP.sampling.RandomSampler

	A sampler that draws individuals randomly.

	
RandomSampler(sizes, subPops=ALL_AVAIL)

	Creates a random sampler with specified number of individuals.

	
drawSample(input_pop)

	Draw a random sample from passed population.

	
drawSamples(pop, numOfSamples)

	Draw multiple samples and return a list of populations.

	
prepareSample(pop, rearrange)

	Prepare passed population object for sampling according to parameter
subPops. If samples are drawn from the whole population, a
Population will be trimmed if only selected (virtual) subpopulations
are used. If samples are drawn separately from specified subpopulations,
Population pop will be rearranged (if rearrange==True) so that
each subpoulation corresponds to one element in parameter subPops.

Function drawRandomSample

	
simuPOP.sampling.drawRandomSample(pop, sizes, subPops=ALL_AVAIL)

	Draw sizes random individuals from a population. If a single sizes
is given, individuals are drawn randomly from the whole population or
from specified (virtual) subpopulations (parameter subPops). Otherwise,
a list of numbers should be used to specify number of samples from each
subpopulation, which can be all subpopulations if subPops=ALL_AVAIL
(default), or from each of the specified (virtual) subpopulations. This
function returns a population with all extracted individuals.

Function drawRandomSamples

	
simuPOP.sampling.drawRandomSamples(pop, sizes, numOfSamples=1, subPops=ALL_AVAIL)

	Draw numOfSamples random samples from a population and return a list of
populations. Please refer to function drawRandomSample for more details
about parameters sizes and subPops.

class CaseControlSampler

	
class simuPOP.sampling.CaseControlSampler

	A sampler that draws affected and unaffected individuals randomly.

	
CaseControlSampler(cases, controls, subPops=ALL_AVAIL)

	Ceates a case-control sampler with specified number of cases
and controls.

	
drawSample(input_pop)

	Draw a case control sample

	
drawSamples(pop, numOfSamples)

	Draw multiple samples and return a list of populations.

	
prepareSample(input_pop)

	Find out indexes all affected and unaffected individuales.

Function drawCaseControlSample

	
simuPOP.sampling.drawCaseControlSample(pop, cases, controls, subPops=ALL_AVAIL)

	Draw a case-control samples from a population with cases
affected and controls unaffected individuals. If single cases and
controls are given, individuals are drawn randomly from the whole
Population or from specified (virtual) subpopulations (parameter
subPops). Otherwise, a list of numbers should be used to specify
number of cases and controls from each subpopulation, which can be all
subpopulations if subPops=ALL_AVAIL (default), or from each of the
specified (virtual) subpopulations. This function returns a population with
all extracted individuals.

Function drawCaseControlSamples

	
simuPOP.sampling.drawCaseControlSamples(pop, cases, controls, numOfSamples=1, subPops=ALL_AVAIL)

	Draw numOfSamples case-control samples from a population with cases
affected and controls unaffected individuals and return a list of
populations. Please refer to function drawCaseControlSample for a
detailed descriptions of parameters.

class PedigreeSampler

	
class simuPOP.sampling.PedigreeSampler

	The base class of all pedigree based sampler.

	
PedigreeSampler(families, subPops=ALL_AVAIL, idField='ind_id', fatherField='father_id', motherField='mother_id')

	Creates a pedigree sampler with parameters

	families

	number of families. This can be a number or a list of numbers. In
the latter case, specified families are drawn from each
subpopulation.

	subPops

	A list of (virtual) subpopulations from which samples are drawn.
The default value is ALL_AVAIL, which means all available
subpopulations of a population.

	
drawSample(input_pop)

	Randomly select Pedigrees

	
drawSamples(pop, numOfSamples)

	Draw multiple samples and return a list of populations.

	
family(id)

	Get the family of individual with id.

	
prepareSample(pop, loci=[], infoFields=[], ancGens=True)

	Prepare self.pedigree, some pedigree sampler might need additional loci and
information fields for this sampler.

class AffectedSibpairSampler

	
class simuPOP.sampling.AffectedSibpairSampler

	A sampler that draws a nuclear family with two affected offspring.

	
AffectedSibpairSampler(families, subPops=ALL_AVAIL, idField='ind_id', fatherField='father_id', motherField='mother_id')

	Initialize an affected sibpair sampler.

	
drawSample(input_pop)

	Randomly select Pedigrees

	
drawSamples(pop, numOfSamples)

	Draw multiple samples and return a list of populations.

	
family(id)

	Return id, its spouse and their children

	
prepareSample(input_pop)

	Find the father or all affected sibpair families

Function drawAffectedSibpairSample

	
simuPOP.sampling.drawAffectedSibpairSample(pop, families, subPops=ALL_AVAIL, idField='ind_id', fatherField='father_id', motherField='mother_id')

	Draw affected sibpair samples from a population. If a single
families is given, affected sibpairs and their parents are drawn
randomly from the whole population or from specified (virtual)
subpopulations (parameter subPops). Otherwise, a list of numbers should
be used to specify number of families from each subpopulation, which can be
all subpopulations if subPops=ALL_AVAIL (default), or from each of the
specified (virtual) subpopulations. This function returns a population that
contains extracted individuals.

Function drawAffectedSibpairSamples

	
simuPOP.sampling.drawAffectedSibpairSamples(pop, families, numOfSamples=1, subPops=ALL_AVAIL, idField='ind_id', fatherField='father_id', motherField='mother_id')

	Draw numOfSamples affected sibpair samplesa from population pop and
return a list of populations. Please refer to function
drawAffectedSibpairSample for a description of other parameters.

class NuclearFamilySampler

	
class simuPOP.sampling.NuclearFamilySampler

	A sampler that draws nuclear families with specified number of affected
parents and offspring.

	
NuclearFamilySampler(families, numOffspring, affectedParents=0, affectedOffspring=0, subPops=ALL_AVAIL, idField='ind_id', fatherField='father_id', motherField='mother_id')

	Creates a nuclear family sampler with parameters

	families

	number of families. This can be a number or a list of numbers. In the latter
case, specified families are drawn from each subpopulation.

	numOffspring

	number of offspring. This can be a fixed number or a range [min, max].

	affectedParents

	number of affected parents. This can be a fixed number or a range [min, max].

	affectedOffspring

	number of affected offspring. This can be a fixed number of a range [min, max].

	subPops

	A list of (virtual) subpopulations from which samples are drawn.
The default value is ALL_AVAIL, which means all available
subpopulations of a population.

	
drawSample(input_pop)

	Randomly select Pedigrees

	
drawSamples(pop, numOfSamples)

	Draw multiple samples and return a list of populations.

	
family(id)

	Return id, its spouse and their children

	
prepareSample(input_pop)

	Prepare self.pedigree, some pedigree sampler might need additional loci and
information fields for this sampler.

Function drawNuclearFamilySample

	
simuPOP.sampling.drawNuclearFamilySample(pop, families, numOffspring, affectedParents=0, affectedOffspring=0, subPops=ALL_AVAIL, idField='ind_id', fatherField='father_id', motherField='mother_id')

	Draw nuclear families from a population. Number of offspring, number of
affected parents and number of affected offspring should be specified using
parameters numOffspring, affectedParents and affectedOffspring,
which can all be a single number, or a range [a, b] (b is incldued).
If a single families is given, Pedigrees are drawn randomly from the
whole population or from specified (virtual) subpopulations (parameter
subPops). Otherwise, a list of numbers should be used to specify
numbers of families from each subpopulation, which can be all
subpopulations if subPops=ALL_AVAIL (default), or from each of the
specified (virtual) subpopulations. This function returns a population that
contains extracted individuals.

Function drawNuclearFamilySamples

	
simuPOP.sampling.drawNuclearFamilySamples(pop, families, numOffspring, affectedParents=0, affectedOffspring=0, numOfSamples=1, subPops=ALL_AVAIL, idField='ind_id', fatherField='father_id', motherField='mother_id')

	Draw numOfSamples affected sibpair samplesa from population pop and
return a list of populations. Please refer to function
drawNuclearFamilySample for a description of other parameters.

class ThreeGenFamilySampler

	
class simuPOP.sampling.ThreeGenFamilySampler

	A sampler that draws three-generation families with specified pedigree
size and number of affected individuals.

	
ThreeGenFamilySampler(families, numOffspring, pedSize, numOfAffected=0, subPops=ALL_AVAIL, idField='ind_id', fatherField='father_id', motherField='mother_id')

	
	families

	number of families. This can be a number or a list of numbers. In the latter
case, specified families are drawn from each subpopulation.

	numOffspring

	number of offspring. This can be a fixed number or a range [min, max].

	pedSize

	number of individuals in the Pedigree. This can be a fixed number or
a range [min, max].

	numAfffected

	number of affected individuals in the Pedigree. This can be a fixed number
or a range [min, max]

	subPops

	A list of (virtual) subpopulations from which samples are drawn.
The default value is ALL_AVAIL, which means all available
subpopulations of a population.

	
drawSample(input_pop)

	Randomly select Pedigrees

	
drawSamples(pop, numOfSamples)

	Draw multiple samples and return a list of populations.

	
family(id)

	Return id, its spouse, their children, children’s spouse and grandchildren

	
prepareSample(input_pop)

	Prepare self.pedigree, some pedigree sampler might need additional loci and
information fields for this sampler.

Function drawThreeGenFamilySample

	
simuPOP.sampling.drawThreeGenFamilySample(pop, families, numOffspring, pedSize, numOfAffected=0, subPops=ALL_AVAIL, idField='ind_id', fatherField='father_id', motherField='mother_id')

	Draw three-generation families from a population. Such families consist
of grant parents, their children, spouse of these children, and grand
children. Number of offspring, total number of individuals, and total
number of affected individuals in a pedigree should be specified using
parameters numOffspring, pedSize and numOfAffected, which can all
be a single number, or a range [a, b] (b is incldued). If a single
families is given, Pedigrees are drawn randomly from the whole
Population or from specified (virtual) subpopulations (parameter
subPops). Otherwise, a list of numbers should be used to specify
numbers of families from each subpopulation, which can be all
subpopulations if subPops=ALL_AVAIL (default), or from each of the
specified (virtual) subpopulations. This function returns a population that
contains extracted individuals.

Function drawThreeGenFamilySamples

	
simuPOP.sampling.drawThreeGenFamilySamples(pop, families, numOffspring, pedSize, numOfAffected=0, numOfSamples=1, subPops=ALL_AVAIL, idField='ind_id', fatherField='father_id', motherField='mother_id')

	Draw numOfSamples three-generation pedigree samples from population pop
and return a list of populations. Please refer to function
drawThreeGenFamilySample for a description of other parameters.

class CombinedSampler

	
class simuPOP.sampling.CombinedSampler

	A combined sampler accepts a list of sampler objects, draw samples and
combine the returned sample into a single population. An id field is
required to use this sampler, which will be used to remove extra copies of
individuals who have been drawn by different samplers.

	
CombinedSampler(samplers=[], idField='ind_id')

	
	samplers

	A list of samplers

	
drawSample(pop)

	Draw and return a sample.

	
drawSamples(pop, numOfSamples)

	Draw multiple samples and return a list of populations.

	
prepareSample(pop, rearrange)

	Prepare passed population object for sampling according to parameter
subPops. If samples are drawn from the whole population, a
Population will be trimmed if only selected (virtual) subpopulations
are used. If samples are drawn separately from specified subpopulations,
Population pop will be rearranged (if rearrange==True) so that
each subpoulation corresponds to one element in parameter subPops.

Function drawCombinedSample

	
simuPOP.sampling.drawCombinedSample(pop, samplers, idField='ind_id')

	Draw different types of samples using a list of samplers. A
Population consists of all individuals from these samples will
be returned. An idField that stores an unique ID for all individuals
is needed to remove duplicated individuals who are drawn multiple
numOfSamples from these samplers.

Function drawCombinedSamples

	
simuPOP.sampling.drawCombinedSamples(pop, samplers, numOfSamples=1, idField='ind_id')

	Draw combined samples numOfSamples numOfSamples and return a list of populations.
Please refer to function drawCombinedSample for details about
parameters samplers and idField.

Module simuPOP.gsl

This module exposes the following GSL (GUN Scientific Library) functions used
by simuPOP to the user interface. Although more functions may be added from time
to time, this module is not intended to become a complete wrapper for GSL. Please
refer to the GSL reference manual (http://www.gnu.org/software/gsl/manual/html_node/)
for details about these functions. Note that random number generation functions
are wrapped into the simuPOP.RNG class.

	gsl_cdf_gaussian_P(x, sigma)

	gsl_cdf_gaussian_Q(x, sigma)

	gsl_cdf_gaussian_Pinv(P, sigma)

	gsl_cdf_gaussian_Qinv(Q, sigma)

	gsl_cdf_ugaussian_P(x)

	gsl_cdf_ugaussian_Q(x)

	gsl_cdf_ugaussian_Pinv(P)

	gsl_cdf_ugaussian_Qinv(Q)

	gsl_cdf_exponential_P(x, mu)

	gsl_cdf_exponential_Q(x, mu)

	gsl_cdf_exponential_Pinv(P, mu)

	gsl_cdf_exponential_Qinv(Q, mu)

	gsl_cdf_chisq_P(x, nu)

	gsl_cdf_chisq_Q(x, nu)

	gsl_cdf_chisq_Pinv(P, nu)

	gsl_cdf_chisq_Qinv(Q, nu)

	gsl_cdf_gamma_P(x, a, b)

	gsl_cdf_gamma_Q(x, a, b)

	gsl_cdf_gamma_Pinv(P, a, b)

	gsl_cdf_gamma_Qinv(Q, a, b)

	gsl_ran_gamma_pdf(x, a, b)

	gsl_cdf_beta_P(x, a, b)

	gsl_cdf_beta_Q(x, a, b)

	gsl_cdf_beta_Pinv(P, a, b)

	gsl_cdf_beta_Qinv(Q, a, b)

	gsl_ran_beta_pdf(x, a, b)

	gsl_cdf_binomial_P(k, p, n)

	gsl_cdf_binomial_Q(k, p, n)

	gsl_ran_binomial_pdf(k, p, n)

	gsl_cdf_poisson_P(k, mu)

	gsl_cdf_poisson_Q(k, mu)

	gsl_ran_poisson_pdf(k, mu)

 Python Module Index

 s

 		 	

 		
 s	

 	
 	
 simuOpt	

 	[image: -]
 	
 simuPOP	

 	
 	
 simuPOP.demography	

 	
 	
 simuPOP.gsl	

 	
 	
 simuPOP.sampling	

 	
 	
 simuPOP.utils	

 Index

 Index pages by letter:

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

 Full index on one page
 (can be huge)

Index

 Index

Index

 Index

Index

 Index

Index

 Index

Index

 Index

Index

 Index

Index

 Index

Index

 Index

Index

 Index

Index

 Index

Index

 Index

Index

 Index

Index

 Index

