
SimulaVR Documentation
Release 0.0.0

Simula Team

Feb 08, 2018





Users Guide

1 SimlaVR Usage 3
1.1 With Nix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Simply Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 OSVR Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 How to Contribute 5

3 License Details 7

4 Git Help 9

5 Building with Nix 11

6 Ubuntu Build Process 13
6.1 Ubuntu 17.10 (Artful) Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

7 Obtaining Source Dependencies 15
7.1 Per Repository Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

8 Source Module Layout 19

9 Development Status 21
9.1 Developer TODOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

10 Rendering Roadmap 23
10.1 Headset Rendering Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

11 Origins 25

i



ii



SimulaVR Documentation, Release 0.0.0

• Users Guide

• Building Simula

• Developer Documentation

Here’s a screenshot showing three different wayland client applications running under the simulavr weston compositor.

Users Guide 1

https://gitter.im/SimulaVR/Simula?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge


SimulaVR Documentation, Release 0.0.0

2 Users Guide



CHAPTER 1

SimlaVR Usage

To use simulavr you need to start an osvr_server to read the controller data. See the section, OSVR Server, below for
more details on using and configuring the osvr_server.

SimulaVR can be tested with and without additional hardware. Current limitations include the following:

• Headset rendering is non-existent at the moment. Maybe you can help, see Headset Rendering Status for more
ways to help.

• To get feedback on the headset movement when all hardware is connected and seen by osvr_server you must
pass the -w or –waitHMD flag to simulavr to properly wait for the connection to osvr_server.

Note: When everything is working properly you will see a boring white window. You should launch some programs
for testing. The developers’ goto test program is weston-terminal.

1.1 With Nix

You will need two terminals to launch this compositor. In the first terminal, you must launch the OSVR Server.

nix-shell ./shell.nix

In the second terminal, launch simulavr:

stack --nix --no-exec-pure exec -- simulavr [-h -w]

Note: You will need nvidia-381.26.13 (or higher) video drivers. Unfortunately, nix cannot provide those, so you will
have to get them from your system’s package manager.

3



SimulaVR Documentation, Release 0.0.0

1.2 Simply Stack

Vanilla baseline testing and executing by only using stack along with system libraries.

stack exec simulavr

Note: When run with no arguments simulavr will not track the headset. It will update controller positions, but not the
headset.

If you have everything working and want to sync with the headset as well as the controllers use the following snippet.

stack exec -- simulavr -w

1.3 OSVR Server

osvr_server ./config/ViveExtendedMode.json # or use ViveDirectMode.json for
direct mode

4 Chapter 1. SimlaVR Usage



CHAPTER 2

How to Contribute

We’re looking for open-source contributors. If you’re interested in using Haskell to (cleanly) bring VR and Linux
together, but don’t have an HTC Vive, PM or email me at georgewsinger@gmail.com.

You can also see the GitHub Issues for a list of ways to immediately contribute. Issued may be tagged as new
contributor if they are especially appropriate for people getting adjusted to the code. In addition, Developer TODOs
sketches some additional issues with the code that may be solved via future contributions.

Important: All pull requests to this repo implicitly consent to, and will be subsumed under the terms of the Apache
2.0 license. See License Details.

5

mailto:georgewsinger@gmail.com
https://github.com/SimulaVR/Simula/issues/


SimulaVR Documentation, Release 0.0.0

6 Chapter 2. How to Contribute



CHAPTER 3

License Details

Copyright 2017 George Singer

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

7

http://www.apache.org/licenses/LICENSE-2.0


SimulaVR Documentation, Release 0.0.0

8 Chapter 3. License Details



CHAPTER 4

Git Help

Before you begin you must initialize and update the submodules in the SimulaHS repository. This process ensures that
you are in sync with previously checked in combinations of commits between the two projects. More information on
submodules is [here](https://git-scm.com/book/en/v2/Git-Tools-Submodules).

git submodule update --init --recursive

9

https://git-scm.com/book/en/v2/Git-Tools-Submodules


SimulaVR Documentation, Release 0.0.0

10 Chapter 4. Git Help



CHAPTER 5

Building with Nix

The easiest way to build Simula is to install nix and run:

stack --nix build --ghc-options="-pgmcg++ -pgmlg++"
source ./swrast.sh # only needs to be run once

Nix automatically downloads every non-Haskell dependency for this project and places them in /nix/store in such a
way that they don’t conflict with your current distro’s libraries. Running stack with these flags tells it how to find these
libraries. The swrast.sh script tells nix how to find your system’s OpenGL drivers.

If you don’t already have nix installed, you can get it from your distro’s package manager, or run

curl https://nixos.org/nix/install | sh

To use simulavr see SimlaVR Usage.

11



SimulaVR Documentation, Release 0.0.0

12 Chapter 5. Building with Nix



CHAPTER 6

Ubuntu Build Process

The process to try out Simula, is as simple as 1, 2, 3, 4 with only minor software compliation in between. You will
need to install software from your linux distributor and have your machine whirl and buzz for minutes on end with no
output to test this collection of Haskell, C, and C++ code. If you are up for the challenge then you can find most of a
recipie below. Many of the instructions have only been attempted once, if any at all, and can only be cast as a guide to
get running. With those precautions aside, here’s what someone got working once, sometime, probably.

1. Clone all submodules, see Git Help

2. Build and Install requisite packages for your system

3. Build SimulaHS stack build --extra-lib-dirs="${HOME}"/.local/lib
--extra-include-dirs="${HOME}"/.local/include

4. Execute the program and play around: SimlaVR Usage

6.1 Ubuntu 17.10 (Artful) Packages

Install all the dependecies in one shot with the following script:

sudo apt install \
g++ \
automake \
autoconf \
autoconf-archive \
make \
cmake \
libtool \
pkg-config \
binutils-dev \
libegl1-mesa-dev \
libgles2-mesa-dev \
libxcb-composite0-dev \
libxcursor-dev \
libcairo2-dev \

13



SimulaVR Documentation, Release 0.0.0

libpixman-1-dev \
libgbm-dev \
libmtdev-dev \
libinput-dev \
libxkbcommon-dev \
libpam0g-dev \
libgflags-dev \
libgoogle-glog-dev \
libssl-dev \
libdouble-conversion-dev \
libevent-dev \
libboost-context-dev \
libboost-chrono-dev \
libboost-filesystem-dev \
libboost-iostreams-dev \
libboost-locale-dev \
libboost-program-options-dev \
libboost-regex-dev \
libboost-system-dev \
libboost-thread-dev \
libsdl2-dev \
libopencv-dev \
libjsoncpp-dev \
libxml2-dev \
libusb-1.0-0-dev \
libspdlog-dev \
libeigen3-dev

14 Chapter 6. Ubuntu Build Process



CHAPTER 7

Obtaining Source Dependencies

1. wayland-protocols - [https://github.com/wayland-project/wayland-protocols]

Currently HEAD is fine, but any tag >= 1.7 will work fine.

2. libweston - [https://github.com/wayland-project/weston]

You will need to checkout tag 2.0.0.

3. libfunctionality - [https://github.com/OSVR/libfunctionality]

Currently HEAD is fine, previous versions not tested (2017-07-20).

4. folly - [https://github.com/facebook/folly]

5. OSVR-Core - [https://github.com/OSVR/OSVR-Core]

Currently HEAD is fine, v0.6 does not build on debian stretch.

7.1 Per Repository Notes

7.1.1 Dependencies for wayland-protocols

There are no special dependencies, but a pro-tip, run configure with a custom PREFIX and copy the wayland-
protocols.pc file to PREFIX/lib/pkgconfig and set PKG_CONFIG_PATH to the same.

Example:

./configure --prefix="$HOME"/.local
make && make install
cp wayland-protocols.pc "$HOME"/.local/lib/pkgconfig
export PKG_CONFIG_PATH="$HOME"/.local/lib/pkgconfig

15

https://github.com/wayland-project/wayland-protocols
https://github.com/wayland-project/weston
https://github.com/OSVR/libfunctionality
https://github.com/facebook/folly
https://github.com/OSVR/OSVR-Core


SimulaVR Documentation, Release 0.0.0

7.1.2 Dependencies for libweston

Make sure you have installed wayland-protocols before proceeding to building libweston.

1. EGL - libegl1-mesa-dev

2. glesv2 - libgles2-mesa-dev

3. xcb-composite - libxcb-composite0-dev

4. xcursor - libxcursor-dev

5. cairo-xcb - libcairo2-dev

6. automatically install by libcairo2-dev - libpixman-1-dev

7. gbm - libgbm-dev

8. mtdev - libmtdev-dev

9. libinput - libinput-dev

10. xkbcommon - libxkbcommon-dev

11. pam - libpam0g-dev

After installing the above packages you can configure and build libweston. Here is a recipie for success.:

git checkout -b v2.0.0 2.0.0
./autogen.sh
./configure --prefix="$HOME"/.local --disable-setuid-install
make && make install

You will see a notice about needing to set LD_LIBRARY_PATH and also for setting LD_RUN_PATH to use these
newly installed libraries. You may want to set these in your .bashrc file or other shell startup file. For your interactive
shell you can just use the following lines:

LIBDIR=”$HOME”/.local/lib export LD_LIBRARY_PATH=”$LD_LIBRARY_PATH”:”$LIBDIR”:”$LIBDIR”/libweston-
2:”$LIBDIR”/weston export LD_RUN_PATH=”$LD_RUN_PATH:”$LIBDIR”:”$LIBDIR”/libweston-
2:”$LIBDIR”/weston

7.1.3 Dependencies for libfunctionality

You will need cmake to build any of the projects from OSVR. When building cmake projects you should perform
out-of-tree builds by creating a build directory and running cmake from that directory. For example you can repeat this
pattern for any cmake project.:

mkdir $PROJECT-build
git clone $PROJECT_URI
cd $PROJECT-build
cmake ../$PROJECT

To set a custom PREFIX for cmake projects you need to use the following incantation. cmake -D
CMAKE_INSTALL_PREFIX="$HOME"/.local ../$PROJECT

7.1.4 Dependencies for folly

1. boost-context - libboost-context-dev

2. boost-chrono - libboost-chrono-dev

16 Chapter 7. Obtaining Source Dependencies



SimulaVR Documentation, Release 0.0.0

3. boost-filesystem - libboost-filesystem-dev

4. boost-regex - libboost-regex-dev

5. boost-program-options - libboost-program-options-dev

6. boost-system - libboost-system-dev

7. boost-thread - libboost-thread-dev

8. gflags - libgflags-dev

9. google-glog - libgoogle-glog-dev

10. libssl - libssl-dev

11. double-conversion - libdouble-conversion-dev

12. libevent - libevent-dev

To build folly you need to run autoreconf -ivf from the folly subdirectory of the cloned repository.:

cd folly
autoreconf -ivf
./configure --prefix="$HOME"/.local
make && make install

7.1.5 Dependencies for OSVR-Core

To proceed ensure you have installed folly, libfunctionality, libweston, and wayland-protocols as described above.

1. sdl2 - libsdl2-dev

2. opencv - libopencv-dev

3. jsoncpp - libjsoncpp-dev

4. boost-thread - libboost-thread-dev

5. boost-locale - libboost-locale-dev

6. boost-filesystem - libboost-filesystem-dev

7. boost-program-options - libboost-program-options-deu

8. libusb - libusb-1.0-0-dev

9. libspdlog - libspdlog-dev

When fetching from github you must fetch the submodules and initialize them before attempting a build.

git submodule update --init --recursive

OSVR-Core is a cmake project so refer to the instructions above in the libfunctionality section to perform an out-of-tree
build.

7.1. Per Repository Notes 17



SimulaVR Documentation, Release 0.0.0

18 Chapter 7. Obtaining Source Dependencies



CHAPTER 8

Source Module Layout

Here is the project’s dependency graph:

• The top level of this project hosts the primary Haskell modules.

• The embedded submodules simula-wayland, simula-osvr, and simula-openvr contain FFI bindings (via c2hs)
that connect to their respective C libraries shown above.

• In order to run the vive-compositor, you will need nvidia-381.26.13 or greater installed on your system, which
(unfortunately) nix cannot provide. You do not need nvidia drivers, however, to run the simulavr.

• A list of technologies in use: Haskell, C/C++ (c2hs, inline-c), OpenGL, wayland & weston, OSVR, OpenVR,
nix (for build dependencies).

19

https://wayland.freedesktop.org/architecture.html/
https://github.com/wayland-project/weston/
https://github.com/OSVR/OSVR-Core/
https://github.com/ValveSoftware/openvr/tree/master/samples/
https://nixos.org/nix/


SimulaVR Documentation, Release 0.0.0

20 Chapter 8. Source Module Layout



CHAPTER 9

Development Status

Goal Status Short-Run Horizon Long-Run Horizon
Basic, Launchable Compositor DONE X
Wayland App Compatibility DONE X
X Applications Compatibility X
HTC Vive Compatibility X
Usable VR Desktop X
Test Suite X
Clear Text Resolution in VR X
Special-Purpose 3D Linux Apps X
A “VR Linux Distro” X
Standalone HMD Compatibility X

9.1 Developer TODOs

This is a compilation of old TODO notes. Important items from this list should moved to Issues.

9.1.1 General

• Awful C++-esque typeclass structure. In most cases, Some a can be replaced with something better. However
due to time/etc limitations, the current code architecture closely mirrors the simula_cpp one.

• hs-boot files due to the above. Annoying extra bookkeeping and should be phased out whenever possible.

• General stinginess with comments. In case something is unclear, chances are it’s either unclear in the motorcar
source and/or unclear to me (since it was ported from motorcar/simula_cpp). Ask anyways though.

• MVars are used whenever mutable state is required. This is not always needed, and I’ve attempted to reduce the
amount of mutable references, but it’s likely I missed some.

21

https://github.com/SimulaVR/Simula/issues/


SimulaVR Documentation, Release 0.0.0

9.1.2 Simula.BaseCompositor

• .Event is basically unused. Weston handles all of that stuff.

• Geometry is mostly clean, apart from Rectangle being a misnomer (Rect is the actual Rectangle)

• OpenGL contains viewport code (relatively straightforward) and shader code (slightly suboptimal, as it compiled
shaders too often; they should be cached)

• checkForErrors terminates the program on an OpenGL error with a backtrace; this can be deactivated by com-
mentiong out the error line

• The scene graph is a big unholy mess of C++-esque code. It needs a massive refactoring.

• Gratitious use of RecursiveDo (aka mfix) to deal with (x needs reference of y, and vice versa, to be constructed)
and superclass stuff. Could be solved by refactoring the above C++ mess.

• Generally, resources need to be cleaned up better. Consider ResourceT.

• The Weston surfaces currently don’t have a type. This should be fixed.

• Weston.hs in general is a bit messy, and could use some cleaning up.

• The OSVR branch Weston.hs has modifications in the render loop and a reference to OSVR.hs’ SimulaOSVR-
CLient. It should be merged back into the main branch.

22 Chapter 9. Development Status



CHAPTER 10

Rendering Roadmap

With the HTC-Vive using osvr, simulavr can see and get reports on the location information for the two controllers
and the headset. The main renderer is a wayland server and provides a full compositor. OSVR is also providing all the
distortion information needed to render static images to the headset display.

10.1 Headset Rendering Status

Table 10.1: Missing Puzzle Pieces in Rendering
Feature to Implement Implementation Status Priority
Respond to Controllers Partially implemented Blocker
Respond to Buttons Possible to implement Low
Render Controllers Needs Haskell Normal
Viewport Responds to HMD Needs Haskell Blocker
Render Left Eye to Texture Needs Haskell Low
Render Right Eye to Texture Needs Haskell Low
Render to HMD Screen library missing High

10.1.1 HMD Rendering Notes

There are several libraries available for use in different aspects of VR. The two main libraries in use by Simula are
OSVR and OpenVR. Both of these libraries are meant to be high level and provide a unified interface for dealing with
inputs and headset rendering. OpenVR <openvr-link> depends on the SteamVR runtime library to work, but seems to
be the most robust library for interfacing with the headset.

The OSVR library does a wonderful job of working with the HTC lighthouse devices and gives a callback registration
interface for handling input devices. This works really well. It has the potential to scale to multiple headsets connected
over a network. With all that said the headset portion of the library is still binary only and Linux support is non-existent
at the moment. We have tried using OSVR-RenderManager and can’t seem to get direct or extended mode to render
to the headset.

23



SimulaVR Documentation, Release 0.0.0

The current plan is to move ahead trying to work with OpenVR and explore additional library options. OpenHMD is
a potential library to integrate and test. There is the possibility of going more low-level and using another OpenGL
context to just render textures. Another would be to simply get a dumb XOrg window and render the eye distortion
textures there.

10.1.2 Evaluating Libraries

When evaluating a library for inclusion, there are a couple of criteria to keep in mind.

1. Does it work?

2. Can you write a small example Haskell program using it?

24 Chapter 10. Rendering Roadmap



CHAPTER 11

Origins

Simula is a reimplementation fork of motorcar. To read about motorcar, see Toward General Purpose 3D User Inter-
faces: Extending Windowing Systems to Three Dimensions.

25

https://github.com/evil0sheep/motorcar/
https://github.com/evil0sheep/MastersThesis/blob/master/thesis.pdf?raw=true/
https://github.com/evil0sheep/MastersThesis/blob/master/thesis.pdf?raw=true/

	SimlaVR Usage
	With Nix
	Simply Stack
	OSVR Server

	How to Contribute
	License Details
	Git Help
	Building with Nix
	Ubuntu Build Process
	Ubuntu 17.10 (Artful) Packages

	Obtaining Source Dependencies
	Per Repository Notes

	Source Module Layout
	Development Status
	Developer TODOs

	Rendering Roadmap
	Headset Rendering Status

	Origins

