

simpy-events

documentation:

	documentation
	TODO

	source documentation
	event

	manager

simpy-events

[image: license] [image: python version] [https://pypi.python.org/pypi/simpy-events] [image: build-status] [https://travis-ci.org/loicpw/simpy-events] [image: Documentation Status] [http://simpy-events.readthedocs.io/en/latest/?badge=latest] [image: coverage] [https://coveralls.io/github/loicpw/simpy-events?branch=master] [image: pypi package] [https://badge.fury.io/py/simpy-events]

event system with SimPy [https://simpy.readthedocs.org] to decouple simulation code and increase reusability

(>>>>>>> WORK IN PROGRESS <<<<<<<)

A basic example

Note

SimPy [https://simpy.readthedocs.org] is a process-based discrete-event simulation framework based on standard Python.

	Our simplified scenario is composed of:

	satellites emitting signals

	receivers receiving and processing signals

	basic imports and creating the root namespace:

from simpy_events.manager import RootNameSpace
import simpy

root = RootNameSpace()

	implementing a satellite model:

sat = root.ns('satellite')

class Satellite:
 chunk = 4

 def __init__(self, name, data):
 self.signal = sat.event('signal', sat=name)
 self.data = tuple(map(str, data))

 def process(self, env):
 signal = self.signal
 data = self.data
 chunk = self.chunk
 # slice data in chunks
 for chunk in [data[chunk*i:chunk*i+chunk]
 for i in range(int(len(data) / chunk))]:
 event = env.timeout(1, ','.join(chunk))
 yield signal(event)

	implementing a receiver model:

receiver = root.ns('receiver')
signals = receiver.topic('signals')

@signals.after
def receive_signal(context, event):
 env = event.env
 metadata = context.event.metadata
 header = str({key: val for key, val in metadata.items()
 if key not in ('name', 'ns')})
 env.process(process_signal(env, header, event.value))

def process_signal(env, header, signal):
 receive = receiver.event('process')
 for data in signal.split(','):
 yield receive(env.timeout(0, f'{header}: {data}'))

	creating code to analyse what’s going on:

@root.enable('analyse')
def new_process(context, event):
 metadata = context.event.metadata
 context = {key: str(val) for key, val in metadata.items()}
 print(f'new signal process: {context}')

@root.after('analyse')
def signal(context, event):
 metadata = context.event.metadata
 ns = metadata['ns']
 print(f'signal: {ns.path}: {event.value}')

	setting up our simulation:

root.topic('receiver::signals').extend([
 '::satellite::signal',
])
root.topic('analyse').extend([
 '::satellite::signal',
 '::receiver::process',
])

def run(env):
 # create some actors
 s1 = Satellite('sat1', range(8))
 s2 = Satellite('sat2', range(100, 108))
 env.process(s1.process(env))
 env.process(s2.process(env))

 # execute
 root.enabled = True
 env.run()

	running the simulation

new signal process: {'ns': '::satellite', 'name': 'signal', 'sat': 'sat1'}
new signal process: {'ns': '::satellite', 'name': 'signal', 'sat': 'sat2'}
signal: ::satellite: 0,1,2,3
new signal process: {'ns': '::receiver', 'name': 'process'}
signal: ::satellite: 100,101,102,103
new signal process: {'ns': '::receiver', 'name': 'process'}
signal: ::receiver: {'sat': 'sat1'}: 0
signal: ::receiver: {'sat': 'sat2'}: 100
signal: ::receiver: {'sat': 'sat1'}: 1
signal: ::receiver: {'sat': 'sat2'}: 101
signal: ::receiver: {'sat': 'sat1'}: 2
signal: ::receiver: {'sat': 'sat2'}: 102
signal: ::receiver: {'sat': 'sat1'}: 3
signal: ::receiver: {'sat': 'sat2'}: 103
signal: ::satellite: 4,5,6,7
new signal process: {'ns': '::receiver', 'name': 'process'}
signal: ::satellite: 104,105,106,107
new signal process: {'ns': '::receiver', 'name': 'process'}
signal: ::receiver: {'sat': 'sat1'}: 4
signal: ::receiver: {'sat': 'sat2'}: 104
signal: ::receiver: {'sat': 'sat1'}: 5
signal: ::receiver: {'sat': 'sat2'}: 105
signal: ::receiver: {'sat': 'sat1'}: 6
signal: ::receiver: {'sat': 'sat2'}: 106
signal: ::receiver: {'sat': 'sat1'}: 7
signal: ::receiver: {'sat': 'sat2'}: 107

install and test

install from pypi

using pip:

$ pip install simpy-events

dev install

There is a makefile in the project root directory:

$ make dev

Using pip, the above is equivalent to:

$ pip install -r requirements-dev.txt
$ pip install -e .

run the tests

Use the makefile in the project root directory:

$ make test

This runs the tests generating a coverage html report

build the doc

The documentation is made with sphinx, you can use the makefile in the
project root directory to build html doc:

$ make doc

Documentation

Documentation on Read The Docs [http://simpy-events.readthedocs.io/en/latest/].

Meta

loicpw - peronloic.us@gmail.com

Distributed under the MIT license. See LICENSE.txt for more information.

https://github.com/loicpw

Indices and tables

	Index

	Module Index

	Search Page

documentation

TODO

todo

source documentation

event

	
class simpy_events.event.Callbacks(event, before, callbacks, after)

	Replace the ‘callbacks’ list in simpy.events.Event [https://simpy.readthedocs.io/en/latest/api_reference/simpy.events.html#simpy.events.Event] objects.

Internally used to replace the single list of callbacks in
simpy.events.Event [https://simpy.readthedocs.io/en/latest/api_reference/simpy.events.html#simpy.events.Event] objects.

See also

Event

It allows to add the Event’s hooks before, when
and after the simpy.events.Event [https://simpy.readthedocs.io/en/latest/api_reference/simpy.events.html#simpy.events.Event] object is processed by
simpy [https://simpy.readthedocs.io/en/latest/api_reference/simpy.html#module-simpy] (that is when the items from its “callbacks” list are
called).

Callbacks is intended to replace the original callbacks list
of the simpy.events.Event [https://simpy.readthedocs.io/en/latest/api_reference/simpy.events.html#simpy.events.Event] object When iterated, it chains the
functions attached to before, callbacks and after.

In order to behave as expected by simpy [https://simpy.readthedocs.io/en/latest/api_reference/simpy.html#module-simpy], adding or removing
items from a Callbacks object works as expected by simpy [https://simpy.readthedocs.io/en/latest/api_reference/simpy.html#module-simpy]:
Callbacks is a collections.MutableSequence and callables
added or removed from it will be called by simpy [https://simpy.readthedocs.io/en/latest/api_reference/simpy.html#module-simpy] as regular
callbacks, i.e f(event) where event is a
simpy.events.Event [https://simpy.readthedocs.io/en/latest/api_reference/simpy.events.html#simpy.events.Event] object.

When used to replace the simpy.events.Event [https://simpy.readthedocs.io/en/latest/api_reference/simpy.events.html#simpy.events.Event]’s callbacks
attribute, it ensures the correct order is maintained if the
original simpy.events.Event [https://simpy.readthedocs.io/en/latest/api_reference/simpy.events.html#simpy.events.Event]’s callbacks attribute was itself a
Callbacks object, example:

cross_red_light = Event(name='cross red light')
get_caught = Event(name='caught on camera')
evt = cross_red_light(env.timeout(1))
yield get_caught(evt)

In this example, the call order will be as follows

- cross_red_light's before
- get_caught's before
- cross_red_light's callbacks
- get_caught's callbacks
- cross_red_light's after
- get_caught's after

	
__delitem__(index)

	del callable item from ‘callbacks’ list

	
__getitem__(index)

	return callable item from ‘callbacks’ list

	
__init__(event, before, callbacks, after)

	Attach the Callbacks obj to a simpy.events.Event [https://simpy.readthedocs.io/en/latest/api_reference/simpy.events.html#simpy.events.Event] obj.

event is the simpy.events.Event [https://simpy.readthedocs.io/en/latest/api_reference/simpy.events.html#simpy.events.Event] object whose callbacks
attribute is going to be replaced by this Callbacks object.

before, callbacks and after are callables which will
be called respectively before, when and after the event is
actually processed by simpy [https://simpy.readthedocs.io/en/latest/api_reference/simpy.html#module-simpy].

Note

the current event.callbacks attribute may
already be a Callbacks object, see Callbacks
description for details.

	
__len__()

	return number of callable items in ‘callbacks’ list

	
__setitem__(index, value)

	set callable item in ‘callbacks’ list

	
insert(index, value)

	insert callable item in ‘callbacks’ list

	
class simpy_events.event.Context(**attributes)

	context object forwarded to event handlers by EventDispatcher

contains following attributes:

	event, the Event instance

	hook, the name of the hook

	
__init__(**attributes)

	initializes a new Context with keyword arguments

creates an attribute for each provided keyword arg.

	
class simpy_events.event.Event(**metadata)

	Event provides a node to access the event system.

an Event is an endpoint that allows to dispatch a hook to a
set of handlers. A hook identifies a particular state for the
Event, note Event is intended to be used to wrapp
simpy.events.Event [https://simpy.readthedocs.io/en/latest/api_reference/simpy.events.html#simpy.events.Event] objects.

	enable: triggered when Event.enabled is set to True [https://docs.python.org/3/library/constants.html#True]

	disable: triggered when Event.enabled is set to to False [https://docs.python.org/3/library/constants.html#False]

	before: just before the simpy.events.Event [https://simpy.readthedocs.io/en/latest/api_reference/simpy.events.html#simpy.events.Event] is processed
by simpy [https://simpy.readthedocs.io/en/latest/api_reference/simpy.html#module-simpy]

	callbacks: when the simpy.events.Event [https://simpy.readthedocs.io/en/latest/api_reference/simpy.events.html#simpy.events.Event] is processed by
simpy [https://simpy.readthedocs.io/en/latest/api_reference/simpy.html#module-simpy] (i.e when callbacks are called)

	after: just after the simpy.events.Event [https://simpy.readthedocs.io/en/latest/api_reference/simpy.events.html#simpy.events.Event] is processed
by simpy [https://simpy.readthedocs.io/en/latest/api_reference/simpy.html#module-simpy]

Event provides two options to dispatch an event through the
event system:

	immediately dispatch a hook with Event.dispatch: although
this method is used internally it may be used to dispatch any
arbitrary hook immediately.

	call the Event providing a simpy.events.Event [https://simpy.readthedocs.io/en/latest/api_reference/simpy.events.html#simpy.events.Event] object, so
the ‘before’, ‘callbacks’ and ‘after’ hooks will be dispatched
automatically when the event is processed by the simpy [https://simpy.readthedocs.io/en/latest/api_reference/simpy.html#module-simpy] loop.

See also

Event.__call__

Event is initialized with optional metadata attributes,
provided as keyword args, which will be kept alltogather in
Event.metadata attribute.

handlers:

Handlers are attached to an Event using the Event.topics
list, which is expected to contain a sequence of mappings, each
mapping holding itself a sequence of callable handlers for a
given hook, for ex

evt = Event()

topic1 = {
 'before': [h1, h2, h3],
 'after': [h4, h5],
}

evt.topics.append(topic1)

Note

a topic is not expected to contain all the possible
hook keys, it will be ignored if the hook is not found.

events dispatching:

Event.dispatcher holds a dispatcher object (such as
EventDispatcher) that is called by the Event when
dispatching a hook.

Note setting Event.dispatcher to None [https://docs.python.org/3/library/constants.html#None] will prevent anything
from being dispatched for the Event instance.

See also

Event.dispatch

Event.enabled offers a switch to enable / disable dispatching.
It also allows to notify handlers when the Event is enabled or
disabled, for instance when adding / removing an Event in the
simulation.

	
__call__(event)

	Automatically trigger the Event when event is processed.

The Event will be attached to the provided
simpy.events.Event [https://simpy.readthedocs.io/en/latest/api_reference/simpy.events.html#simpy.events.Event] object via its callbacks, and the
following hooks will be dispatched when event is processed
by simpy [https://simpy.readthedocs.io/en/latest/api_reference/simpy.html#module-simpy] (i.e when its callbacks are called) :

	before: just before event is processed

	callbacks: when event is processed

	after: just after event is processed

Replaces the simpy.events.Event [https://simpy.readthedocs.io/en/latest/api_reference/simpy.events.html#simpy.events.Event] callbacks attribute by a
Callbacks instance so the hooks subscribed to this Event
will be called when the simpy.events.Event [https://simpy.readthedocs.io/en/latest/api_reference/simpy.events.html#simpy.events.Event] is processed
by simpy [https://simpy.readthedocs.io/en/latest/api_reference/simpy.html#module-simpy].

When the simpy.events.Event [https://simpy.readthedocs.io/en/latest/api_reference/simpy.events.html#simpy.events.Event] is processed, then calls
Event.dispatch respectively for ‘before’, ‘callbacks’ and
‘after’ hooks.

return the simpy.events.Event [https://simpy.readthedocs.io/en/latest/api_reference/simpy.events.html#simpy.events.Event] object.

example usage in a typical simpy [https://simpy.readthedocs.io/en/latest/api_reference/simpy.html#module-simpy] process

something_happens = Event(name='important', context='test')

def my_process(env):
 [...]
 yield something_happens(env.timeout(1))

	
__init__(**metadata)

	Initialized a new Event object with optional metadata

metadata keyword args are kept in Event.metadata.

	
dispatch(hook, data=None)

	immediately dispatch hook for this Event.

	hook is the name of the hook to dispatch, for instance
‘before’, ‘after’…etc.

	data is an optional object to forward to the handlers.
It will be None [https://docs.python.org/3/library/constants.html#None] by default.

Does nothing if Event.enabled is False [https://docs.python.org/3/library/constants.html#False] or
Event.dispatcher is None [https://docs.python.org/3/library/constants.html#None].

calls the dispatcher.dispatch method with the following
arguments:

	event: the Event instance

	hook

	data

	
enabled

	enable / disable dispatching for the Event.

when the value of Event.enabled is changed the following
hooks are dispatched:

	enable is dispatched just after the value is changed

	disable is dispatched just before the value is changed

See also

Event.dispatch

	
class simpy_events.event.EventDispatcher

	Responsible for dispatching an event to Event’s handlers

uses the Event’s sequence of topics to get all handlers for
a given hook and call them sequentially.

	
dispatch(event, hook, data)

	dispatch the event to each topic in Event.topics.

args:

	event, the Event instance

	hook, the name of the hook to dispatch

	data, data associated to the event

See also

Event.dispatch

Each topic is expected to be a mapping containing
a sequence of handlers for a given hook. The topic
will be ignored if it doesn’t contain the hook key.

For each sequence of handlers found for hook, a tuple [https://docs.python.org/3/library/stdtypes.html#tuple] is
created to ensure consistency while iterating (it’s likely
handlers are removed / added while dispatching).

Handlers are then called sequentially with the following
arguments:

	context, a Context object

	data

manager

	
class simpy_events.manager.EventType(ns, name)

	Link a set of simpy_events.event.Event instances to a name.

EventType allows to define an event type identified by
a name in a given NameSpace, and create
simpy_events.event.Event instances from it, which will allow
to manage those instances as a group and share common
properties:

	Topic objects can be added to the EventType and
then automatically linked to the simpy_events.event.Event
instances.

	the simpy_events.event.Event instances are managed through
the NameSpace/EventType hierarchy that allows to manage
the simpy_events.event.Event.dispatcher and
simpy_events.event.Event.enabled values either for a given
NameSpace or a given EventType.

	the NameSpace instance and the name of the EventType will
be given as metadata to the created events (see
EventType.create).

Todo

remove event instance ?

	
__init__(ns, name)

	initializes an EventType attached to ns by name name.

See also

EventType are expected to be initialized
automatically, see also NameSpace.event_type.

ns is the NameSpace instance that created and holds the
EventType.

name is the name of the EventType and under which it’s
identified in its parent ns.

	
add_topic(topic)

	add a Topic object to this EventType.

This will immediately link the Topic to the existing and
future created simpy_events.event.Event instances for this
EventType,

	
create(**metadata)

	create a simpy_events.event.Event instance

metadata are optional keyword args that will be forwarded
as it is to initialize the event.

by default two keyword args are given to the
simpy_events.event.Event class:

	ns: the NameSpace instance (EventType.ns)

	name: the name of the EventType (EventType.name)

those values will be overriden by custom values if
corresponding keyword are contained in metadata.

Once the event has been created the Topic objects linked
to the EventType are linked to the
simpy_events.event.Event instance.

Then simpy_events.event.Event.enabled and
simpy_events.event.Event.dispatcher values for the created
event are synchronized with the hierarchy (NameSpace/
EventType).

	
instances

	iter on created simpy_events.event.Event instances

	
name

	(read only) The name of the EventType

	
ns

	(read only) The NameSpace that holds the EventType

	
remove_topic(topic)

	remove a Topic object from this EventType.

The Topic will immediately be unlinked from the existing
simpy_events.event.Event instances for this EventType.

	
topics

	iter on added Topic objects

	
class simpy_events.manager.EventsPropertiesMixin(parent, **values)

	Internally used mixin class to add EventsProperty instances

This class add an EventsProperty instance for each attribute
name in EventsPropertiesMixin._props :

	“dispatcher”

	“enabled”

This is used to ensure a hierarchically set value for the
corresponding attribute of simpy_events.event.Event instances.

See also

NameSpace, EventType

For each attribute:

	a property [https://docs.python.org/3/library/functions.html#property] is used to set / get the value

	the EventsProperty object is stored in a private attribute
using the name ‘_{attr_name}’ (ex: “_dispatcher”)

Then the EventsPropertiesMixin._add_event_properties and
EventsPropertiesMixin.remove_event_properties methods can be
used in subclasses to add / remove an event to / from the
EventsProperty instances.

	
__init__(parent, **values)

	parent is either None [https://docs.python.org/3/library/constants.html#None] or a EventsPropertiesMixin.

values are optional extra keyword args to initialize the
value of the EventsProperty objects (ex: dispatcher=…).

For each managed attribute, the EventsProperty object is
stored in a private attribute using the name ‘_{attr_name}’
(ex: “_dispatcher”).

	
_add_event_properties(event)

	used in subclasses to add a simpy_events.event.Event.

This add the event to each contained EventsProperty object,
so the corresponding attribute is hierarchically set for the
event.

	
_remove_event_properties(event)

	used in subclasses to remove a simpy_events.event.Event.

This remove the event from each contained EventsProperty
object.

	
class simpy_events.manager.EventsProperty(name, value, parent)

	Set an attribue value for a hierarchy of parents/children

EventsProperty is used internally to automatically set the
value of a specific attribute from a parent down to a
hierarchy given the following rules:

	the value of the parent is set recursively to children until
a child contains a not None [https://docs.python.org/3/library/constants.html#None] value.

	if the value of a given node is set to None [https://docs.python.org/3/library/constants.html#None] then the first
parent whose value is not None [https://docs.python.org/3/library/constants.html#None] will be used to replace the
value recursively.

In other words EventsProperty ensures the a hierarchically set
value that can be overriden by children nodes.

See also

EventsPropertiesMixin

	
__init__(name, value, parent)

	creates a new hierarchical attribute linked to parent

for each event added to this node its name attribute will
be set every time the applicable value is updated (this
EventsProperty’s value or a parent value depending on
whether the value is None [https://docs.python.org/3/library/constants.html#None] or not).

	
add_event(event)

	add an event to this node

the corresponding attribute will be hierarchically set
starting from this node in the hierarchy for the added
event.

	
remove_event(event)

	remove an event from the hierarchy.

This doesn’t modify the corresponding attribute.

	
value

	return the current value of this node in the hierarchy

	
class simpy_events.manager.Handlers(lst=None)

	Holds a sequence of handlers.

Handlers is a sequence object which holds handlers for a
specific hook in a topic.

See also

simpy_events.event.Event

Handlers behave like a list [https://docs.python.org/3/library/stdtypes.html#list] expect it’s also callable so it
can be used as a decorator to append handlers to it.

	
__call__(fct)

	append fct to the sequence.

Handlers object can be used as a decorator to append a
handler to it.

	
__init__(lst=None)

	Initialize self. See help(type(self)) for accurate signature.

	
insert(index, value)

	S.insert(index, value) – insert value before index

	
class simpy_events.manager.NameSpace(parent, name, root, **kwargs)

	Define a hierarchical name space to link events and handlers.

NameSpace provides a central node to automatically link
simpy_events.event.Event objects and their handlers.

NameSpace allows to define EventType objects and create
simpy_events.event.Event instances associated with those
event types.

It also allows to define Topic objects and link them to event
types. Handlers can then be attached to the Topic objects,
which will automatically link them to the related
simpy_events.event.Event instances.

Then, NameSpace and EventType also allow to set / override
simpy_events.event.Event.enabled and
simpy_events.event.Event.dispatcher attributes at a given
point in the hierarchy.

See also

RootNameSpace

	
__init__(parent, name, root, **kwargs)

	NameSpace are expected to be initialized automatically

See also

NameSpace.ns, RootNameSpace

	parent is the parent NameSpace that created it

	name is the name of the NameSpace

	root is the RootNameSpace for the hierarchy

	additional kwargs are forwarded to
EventsPropertiesMixin

	
event(name, *args, **kwargs)

	create a simpy_events.event.Event instance

name is the name of the event type to use, it is either
relative or absolute (see NameSpace.event_type).

additional args and kwargs are forwarded to
EventType.create.

NameSpace.event is a convenience method, the following

ns.event('my event')

is equivalent to

ns.event_type('my event').create()

	
event_type(name)

	find or create an EventType

name is either relative or absolute (see NameSpace.ns
for details).

Note

the EventType objects have their own mapping
within a given NameSpace, this means an EventType
and a child NameSpace can have the same name, ex:

ns.event_type('domain')
ns.ns('domain')

will create the EventType instance if it doesn’t exist.

	
handlers(name, hook)

	return the handlers for the topic name and the hook hook

This is a convenience method that returns the Handlers
sequence for a given hook in a given Topic.

See also

NameSpace.topic, Topic.handlers

Then the following

ns.handlers('my topic', 'before')

is equivalent to

ns.topic('my topic').handlers('before')

Note

this method can be used as a decorator to
register a handler, for ex

@ns.handlers('my topic', 'before')
def handler(context, data):
 pass

	
name

	(read only) the name of the NameSpace

example:

root = RootNameSpace(dispatcher)
ns = root.ns('first::second::third')
assert ns.name == 'third'

	
ns(name)

	return or create the child NameSpace for name

There is a unique name:NameSpace pair from a given
NameSpace instance. It’s automatically created when
accessing it if it doesn’t exist.

name is either a relative or absolute name. An absolute
name begins with ‘::’.

If name is absolute the NameSpace is referenced from
the RootNameSpace in the hierarchy, ex:

ns = root.ns('one')
assert ns.ns('::one::two') is root.ns('one::two')

On the other hand a relative name references a NameSpace
from the node on which ns is called, ex:

ns = root.ns('one')
assert ns.ns('one::two') is not root.ns('one::two')
assert ns.ns('one::two') is ns.ns('one').ns('two')
assert ns.ns('one::two') is root.ns('one::one::two')

Note

name cannnot be empty (ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]), and
redundant separators (‘::’), as well as trailing
separators will be ignored, ex:

ns1 = ns.ns('::::one::::two::::::::three::')
assert ns1 is ns.ns('::one::two::three')

Note

‘:’ will be processed as a normal character,
ex:

assert ns.ns(':one').name == ':one'
ns1 = ns.ns(':one::two:::::three:')
ns2 = ns.ns(':one').ns('two').ns(':').ns('three:')
assert ns1 is ns2

See also

NameSpace.path

	
path

	(read only) return the absolute path of in the hierarchy

example:

root = RootNameSpace(dispatcher)
ns = root.ns('first::second::third')
assert ns.path == '::first::second::third'

Note

str(ns) will return ns.path

	
topic(name)

	find or create an Topic

name is either relative or absolute (see NameSpace.ns
for details).

Note

the Topic objects have their own mapping
within a given NameSpace, this means an Topic
and a child NameSpace can have the same name, ex:

ns.topic('domain')
ns.ns('domain')

will create the Topic instance if it doesn’t exist.

	
class simpy_events.manager.RootNameSpace(dispatcher=None, enabled=False)

	The root NameSpace object in the hierarchy.

the RootNameSpace differs from NameSpace because it has no
parent, as a consequence:

	RootNameSpace.path returns None [https://docs.python.org/3/library/constants.html#None]

	RootNameSpace.name returns None [https://docs.python.org/3/library/constants.html#None]

	RootNameSpace.dispatcher cannot be None [https://docs.python.org/3/library/constants.html#None] (i.e unspecified)

a value can be specified when creating the instance, otherwise
a simpy_events.event.EventDispatcher will be created

	RootNameSpace.enabled cannot be None [https://docs.python.org/3/library/constants.html#None] (i.e unspecified)

the value can be specifiied at creation (False [https://docs.python.org/3/library/constants.html#False] by default)

	
__init__(dispatcher=None, enabled=False)

	init the root NameSpace in the hierarchy

	
	dispatcher: used (unless overriden in children) to set

	simpy_events.event.Event.dispatcher

if the value is not provided then a
simpy_events.event.EventDispatcher is created

	
	enabled: used (unless overriden in children) to set

	simpy_events.event.Event.enabled

Default value is False [https://docs.python.org/3/library/constants.html#False]

	
path

	(read only) return the absolute path of in the hierarchy

example:

root = RootNameSpace(dispatcher)
ns = root.ns('first::second::third')
assert ns.path == '::first::second::third'

Note

str(ns) will return ns.path

	
class simpy_events.manager.Topic(ns, name)

	Holds a mapping of handlers to link to specific events.

Topic is a sequence that contains names of events to be linked
automatically when they are created or the name of existing
events is added.

When events are created they’re registered by event type
(EventType), identified by a name. If that name is contained
in a Topic then the topic will be added to the
simpy_events.event.Event’s topcis sequence and the handlers
it contains will be called when the event is dispatched.

a Topic carries a dict [https://docs.python.org/3/library/stdtypes.html#dict] containing sequences of handlers for
specific hooks (‘before’, ‘after’…), and this dict [https://docs.python.org/3/library/stdtypes.html#dict] is added
to simpy_events.event.Event’s topics. The topic’s dict is
added to an event’s topics sequence either when the
simpy_events.event.Event is created or when the corresponding
event’s type (name) is added to the Topic.

Topic’s dict [https://docs.python.org/3/library/stdtypes.html#dict] contains key:value pairs where keys are hook
names (‘before’, ‘after’…) and values are Handlers objects.
The handler functions added to the Topic are added to the
Handlers objects.

The topic is removed automatically from an
simpy_events.event.Event if the corresponding event type
(name) is removed from the Topic.

See also

simpy_events.event.Event, NameSpace.topic,
NameSpace.event

	
__delitem__(index)

	remove an event name from the Topic

this will remove the topic from the events identified by the
event name at the removed index.

Note

cannot use a slice [https://docs.python.org/3/library/functions.html#slice] as index, this will raise
a NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError].

	
__getitem__(index)

	return an event name added to the Topic

	
__init__(ns, name)

	initializes a Topic attached to ns by its name name.

See also

Topic are expected to be initialized
automatically, see also NameSpace.topic.

ns is the NameSpace instance that created and holds the
Topic.

name is the name of the Topic and under which it’s
identified in its parent ns.

	
__setitem__(index, event)

	add an event name to the Topic

this will take care of removing the topic from the events
identified by the current event name at the specified
index

then the new event name will be added to the sequence and
the corresponding events will be linked if instances
exist.

Note

cannot use a slice [https://docs.python.org/3/library/functions.html#slice] as index, this will raise
a NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError].

	
get_handlers(hook)

	eq. to Topic.handlers but doesnt create the Handlers

return the Handlers sequence or None [https://docs.python.org/3/library/constants.html#None].

	
handlers(hook)

	return the Handlers sequence for the hook hook.

the Handlers sequence for a given hook (i.e ‘before’,
‘after’…) is created in a lazy way by the Topic.

See also

simpy_events.event.Event for details about
hooks.

Since Handlers can be used as a decorator itself to add a
handler to it, this method can be used as a decorator to
register a handler, for ex

@topic.handlers('before')
def handler(context, data):
 pass

See also

	Topic.get_handlers

	Topic.enable

	Topic.disable

	Topic.before

	Topic.callbacks

	Topic.after

	
insert(index, event)

	insert an event name into the Topic

The new event name is added to the sequence at the specified
index and the corresponding events are linked if instances
exist.

	
name

	(read only) The name of the Topic

	
ns

	(read only) The NameSpace that holds the Topic

	
topic

	(read only) The dict [https://docs.python.org/3/library/stdtypes.html#dict] that is added to event’s topics

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 simpy_events	

 	
 	
 simpy_events.event	

 	
 	
 simpy_events.manager	

Index

 _
 | A
 | C
 | D
 | E
 | G
 | H
 | I
 | N
 | P
 | R
 | S
 | T
 | V

_

 	
 	__call__() (simpy_events.event.Event method)

 	(simpy_events.manager.Handlers method)

 	__delitem__() (simpy_events.event.Callbacks method)

 	(simpy_events.manager.Topic method)

 	__getitem__() (simpy_events.event.Callbacks method)

 	(simpy_events.manager.Topic method)

 	__init__() (simpy_events.event.Callbacks method)

 	(simpy_events.event.Context method)

 	(simpy_events.event.Event method)

 	(simpy_events.manager.EventType method)

 	(simpy_events.manager.EventsPropertiesMixin method)

 	(simpy_events.manager.EventsProperty method)

 	(simpy_events.manager.Handlers method)

 	(simpy_events.manager.NameSpace method)

 	(simpy_events.manager.RootNameSpace method)

 	(simpy_events.manager.Topic method)

 	
 	__len__() (simpy_events.event.Callbacks method)

 	__setitem__() (simpy_events.event.Callbacks method)

 	(simpy_events.manager.Topic method)

 	_add_event_properties() (simpy_events.manager.EventsPropertiesMixin method)

 	_remove_event_properties() (simpy_events.manager.EventsPropertiesMixin method)

A

 	
 	add_event() (simpy_events.manager.EventsProperty method)

 	
 	add_topic() (simpy_events.manager.EventType method)

C

 	
 	Callbacks (class in simpy_events.event)

 	
 	Context (class in simpy_events.event)

 	create() (simpy_events.manager.EventType method)

D

 	
 	dispatch() (simpy_events.event.Event method)

 	(simpy_events.event.EventDispatcher method)

E

 	
 	enabled (simpy_events.event.Event attribute)

 	Event (class in simpy_events.event)

 	event() (simpy_events.manager.NameSpace method)

 	event_type() (simpy_events.manager.NameSpace method)

 	
 	EventDispatcher (class in simpy_events.event)

 	EventsPropertiesMixin (class in simpy_events.manager)

 	EventsProperty (class in simpy_events.manager)

 	EventType (class in simpy_events.manager)

G

 	
 	get_handlers() (simpy_events.manager.Topic method)

H

 	
 	Handlers (class in simpy_events.manager)

 	
 	handlers() (simpy_events.manager.NameSpace method)

 	(simpy_events.manager.Topic method)

I

 	
 	insert() (simpy_events.event.Callbacks method)

 	(simpy_events.manager.Handlers method)

 	(simpy_events.manager.Topic method)

 	
 	instances (simpy_events.manager.EventType attribute)

N

 	
 	name (simpy_events.manager.EventType attribute)

 	(simpy_events.manager.NameSpace attribute)

 	(simpy_events.manager.Topic attribute)

 	
 	NameSpace (class in simpy_events.manager)

 	ns (simpy_events.manager.EventType attribute)

 	(simpy_events.manager.Topic attribute)

 	ns() (simpy_events.manager.NameSpace method)

P

 	
 	path (simpy_events.manager.NameSpace attribute)

 	(simpy_events.manager.RootNameSpace attribute)

R

 	
 	remove_event() (simpy_events.manager.EventsProperty method)

 	
 	remove_topic() (simpy_events.manager.EventType method)

 	RootNameSpace (class in simpy_events.manager)

S

 	
 	simpy_events.event (module)

 	
 	simpy_events.manager (module)

T

 	
 	Topic (class in simpy_events.manager)

 	topic (simpy_events.manager.Topic attribute)

 	
 	topic() (simpy_events.manager.NameSpace method)

 	topics (simpy_events.manager.EventType attribute)

V

 	
 	value (simpy_events.manager.EventsProperty attribute)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 simpy-events

 		
 documentation

 		
 TODO

 		
 source documentation

 		
 event

 		
 manager

_static/up-pressed.png

_static/up.png

