

    
      
          
            
  
nanopolish

nanopolish [https://github.com/jts/nanopolish] is a software package for signal-level analysis of Oxford Nanopore sequencing data. Nanopolish can calculate an improved consensus sequence for a draft genome assembly, detect base modifications, call SNPs and indels with respect to a reference genome and more (see Nanopolish modules, below).







Publications


	Loman, Nicholas J., Joshua Quick, and Jared T. Simpson. “A complete bacterial genome assembled de novo using only nanopore sequencing data.” Nature methods 12.8 (2015): 733-735.


	Quick, Joshua, et al. “Real-time, portable genome sequencing for Ebola surveillance.” Nature 530.7589 (2016): 228-232.


	Simpson, Jared T., et al. “Detecting DNA cytosine methylation using nanopore sequencing.” nature methods 14.4 (2017): 407-410.







Credits and Thanks

The fast table-driven logsum implementation was provided by Sean Eddy as public domain code. This code was originally part of hmmer3 [http://hmmer.org/] . Nanopolish also includes code from Oxford Nanopore’s scrappie [https://github.com/nanoporetech/scrappie] basecaller. This code is licensed under the MPL.





          

      

      

    

  

    
      
          
            
  
Installation


Dependencies

A compiler that supports C++11 is needed to build nanopolish. Development of the code is performed using gcc-4.8 [https://gcc.gnu.org/gcc-4.8/].

By default, nanopolish will download and compile all of its required dependencies. Some users however may want to use system-wide versions of the libraries. To turn off the automatic installation of dependencies set HDF5=noinstall, EIGEN=noinstall or HTS=noinstall parameters when running make as appropriate. The current versions and compile options for the dependencies are:


	libhdf5-1.8.14 [http://www.hdfgroup.org/HDF5/release/obtain5.html] compiled with multi-threading support --enable-threadsafe


	eigen-3.2.5 [http://eigen.tuxfamily.org/]


	htslib-1.4 [http://github.com/samtools/htslib]




Additionally the helper scripts require biopython [http://biopython.org/] and pysam [http://pysam.readthedocs.io/en/latest/installation.html].




Installing the latest code from github (recommended)

You can download and compile the latest code from github as follows

git clone --recursive https://github.com/jts/nanopolish.git
cd nanopolish
make








Installing a particular release

When major features have been added or bugs fixed, we will tag and release a new version of nanopolish. If you wish to use a particular version, you can checkout the tagged version before compiling

git clone --recursive https://github.com/jts/nanopolish.git
cd nanopolish
git checkout v0.7.1
make








To run using docker

First build the image from the dockerfile:

docker build .





Note the uuid given upon successful build. Then you can run nanopolish from the image:

docker run -v /path/to/local/data/data/:/data/ -it :image_id  ./nanopolish eventalign -r /data/reads.fa -b /data/alignments.sorted.bam -g /data/ref.fa











          

      

      

    

  

    
      
          
            
  
Quickstart - how to polish a genome assembly

The original purpose of nanopolish was to improve the consensus accuracy of an assembly of Oxford Nanopore Technology sequencing reads. Here we provide a step-by-step tutorial to help you get started.

Requirements:


	nanopolish


	samtools [https://htslib.org]


	minimap2 [https://github.com/lh3/minimap2]


	MUMmer [https://github.com/mummer4/mummer]





Download example dataset

You can download the example dataset we will use here:

wget http://s3.climb.ac.uk/nanopolish_tutorial/ecoli_2kb_region.tar.gz
tar -xvf ecoli_2kb_region.tar.gz
cd ecoli_2kb_region





Details:


	Sample :      E. coli str. K-12 substr. MG1655


	Instrument : MinION sequencing R9.4 chemistry


	Basecaller : Albacore v2.0.1


	Region: “tig00000001:200000-202000”


	Note: Ligation-mediated PCR amplification performed




This is a subset of reads that aligned to a 2kb region in the E. coli draft assembly. To see how we generated these files please refer to the tutorial creating_example_dataset.

You should find the following files:


	reads.fasta : subset of basecalled reads


	draft.fa : draft genome assembly


	draft.fa.fai : draft genome assembly index


	fast5_files/ : a directory containing FAST5 files


	ecoli_2kb_region.log : a log file for how the dataset was created with nanopolish helper script (scripts/extract_reads_aligned_to_region.py)




For the evaluation step you will need the reference genome:

curl -o ref.fa https://ftp.ncbi.nih.gov/genomes/archive/old_genbank/Bacteria/Escherichia_coli_K_12_substr__MG1655_uid225/U00096.ffn








Analysis workflow

The pipeline below describes the recommended analysis workflow for larger datasets. In this tutorial, we will run through the basic steps of the pipeline for this smaller (2kb) dataset.


[image: nanopolish-tutorial-workflow]





Data preprocessing

nanopolish needs access to the signal-level data measured by the nanopore sequencer. To begin, we need to create an index readdb file that links read ids with their signal-level data in the FAST5 files:

nanopolish index -d fast5_files/ reads.fasta





We get the following files: reads.fasta.index, reads.fasta.index.fai, reads.fasta.index.gzi, and reads.fasta.index.readdb.




Compute the draft genome assembly using canu

As computing the draft genome assembly takes a few hours we have included the pre-assembled data for you (draft.fa).
We used the following parameters with canu [http://canu.readthedocs.io/en/latest/]:

canu \
    -p ecoli -d outdir genomeSize=4.6m \
    -nanopore-raw albacore-2.0.1-merged.fastq








Compute a new consensus sequence for a draft assembly

Now that we have reads.fasta indexed with nanopolish index, and have a draft genome assembly draft.fa, we can begin to improve the assembly with nanopolish. Let us get started!

First step, is to index the draft genome assembly. We can do that with the following command:

minimap2 -d draft.mmi draft.fa





Next, we align the original reads (reads.fasta) to the draft assembly (draft.fa) and sort alignments:

minimap2 -ax map-ont -t 8 draft.fa reads.fasta | samtools sort -o reads.sorted.bam -T reads.tmp
samtools index reads.sorted.bam





Checkpoint: we can do a quick check to see if this step worked. The bam file should not be empty.

samtools view reads.sorted.bam | head





Then we run the consensus algorithm. For larger datasets we use nanopolish_makerange.py to split the draft genome assembly into 50kb segments, so that we can run the consensus algorithm on each segment in parallel. The output would be the polished segments in fasta format.
Since our dataset is only covering a 2kb region, we skip this step and use the following command:

nanopolish variants --consensus polished.fa \
    -w "tig00000001:200000-202000" \
    -r reads.fasta \
    -b reads.sorted.bam \
    -g draft.fa





We are left with our desired output: polished.fa.




Evaluate the assembly

To analyze how nanopolish performed improving the accuracy we use MUMmer [https://github.com/mummer4/mummer]. MUMmer contains “dnadiff”, a program that enables us to see a report on alignment statistics. With dnadiff we can compare the two different assemblies.

mkdir analysis
MUMmer3.23/dnadiff --prefix analysis/draft.dnadiff ref.fa draft.fa
MUMmer3.23/dnadiff --prefix analysis/polished.dnadiff ref.fa polished.fa





This generates draft.dnadiff.report and polished.dnadiff.report along with other files. The metric we are interested in is AvgIdentity under [ Alignments ] 1-to-1, which is a measurement of how similar the genome assemblies are to the reference genome. We expect to see a higher value for the polished assembly than the draft ( 99.90 vs 99.53 ), concluding that the nanopolish consensus algorithm worked successfully.


Note

The example dataset was PCR amplified causing a loss of methylation information. We recommend using the -q dam,dcm with nanopolish variants --consensus if you have data with methylation information to account for known bacterial methyltransferases.









          

      

      

    

  

    
      
          
            
  
Quickstart - how to align events to a reference genome

The eventalign module in nanopolish is used to align events or “squiggles” to a reference genome. We (the developers of nanopolish) use this feature extensively when we want to see what the low-level signal information looks like. It helps us model the signal and discover differences in current that might hint at base modifications. Here we provide a step-by-step tutorial to help you get started with the nanopolish eventalign module.

For more information about eventalign:


	Blog post: “Aligning Nanopore Events to a Reference” [http://simpsonlab.github.io/2015/04/08/eventalign/]


	Paper: “A complete bacterial genome assembled de novo using only nanopore sequencing data” [https://www.nature.com/articles/nmeth.3444]




Requirements:


	nanopolish


	samtools [http://samtools.sourceforge.net/]


	minimap2 [https://github.com/lh3/minimap2]





Download example dataset

You can download the example dataset we will use here:

wget http://s3.climb.ac.uk/nanopolish_tutorial/ecoli_2kb_region.tar.gz
tar -xvf ecoli_2kb_region.tar.gz
cd ecoli_2kb_region





Details:


	Sample :    E. coli str. K-12 substr. MG1655


	Instrument : MinION sequencing R9.4 chemistry


	Basecaller : Albacore v2.0.1


	Region: “tig00000001:200000-202000”


	Note: Ligation-mediated PCR amplification performed




This is a subset of reads that aligned to a 2kb region in the E. coli draft assembly. To see how we generated these files please refer to this section: Tutorial - using extraction helper script to create example datsets.

You should find the following files:


	reads.fasta : subset of basecalled reads


	fast5_files/ : a directory containing FAST5 files




You will need the E. coli reference genome:

curl -o ref.fa https://ftp.ncbi.nih.gov/genomes/archive/old_genbank/Bacteria/Escherichia_coli_K_12_substr__MG1655_uid225/U00096.ffn








Align the reads with minimap2

In order to run minimap2 we first need to index the reference genome:

minimap2 -d ref.mmi ref.fa





Output files: ref.mmi.

We will need to index the reads as well:

nanopolish index -d fast5_files/ reads.fasta





Output files: reads.fasta.index, reads.fasta.index.fai, reads.fasta.index.gzi, and reads.fasta.index.readdb.

Then we can align the reads to the reference:

minimap2 -ax map-ont -t 8 ref.fa reads.fasta | samtools sort -o reads-ref.sorted.bam -T reads.tmp
samtools index reads-ref.sorted.bam





Output files: reads-ref.sorted.bam and reads-ref.sorted.bam.bai.

Checkpoint: Let’s see if the bam file is not truncated. This will check that the beginning of the file contains a valid header, and checks if the EOF is present. This will exit with a non-zero exit code if the conditions were not met:

samtools quickcheck reads-ref.sorted.bam








Align the nanopore events to a reference

Now we are ready to run nanopolish to align the events to the reference genome:

nanopolish eventalign \
    --reads reads.fasta \
    --bam reads-ref.sorted.bam \
    --genome ref.fa \
    --scale-events > reads-ref.eventalign.txt








Assess the eventalign output

If we take a peek at the first few lines of reads-ref.eventalign.txt this is what we get:

contig    position  reference_kmer  read_index  strand  event_index  event_level_mean  event_stdv  event_length  model_kmer  model_mean  model_stdv  standardized_level
gi|545778205|gb|U00096.3|:c514859-514401  3         ATGGAG          0           t       16538        89.82             3.746       0.00100       CTCCAT      92.53       2.49        -0.88
gi|545778205|gb|U00096.3|:c514859-514401  3         ATGGAG          0           t       16537        88.89             2.185       0.00100       CTCCAT      92.53       2.49        -1.18
gi|545778205|gb|U00096.3|:c514859-514401  3         ATGGAG          0           t       16536        94.96             2.441       0.00125       CTCCAT      92.53       2.49        0.79
gi|545778205|gb|U00096.3|:c514859-514401  3         ATGGAG          0           t       16535        81.63             2.760       0.00150       NNNNNN      0.00        0.00        inf
gi|545778205|gb|U00096.3|:c514859-514401  7         AGTTAA          0           t       16534        78.96             2.278       0.00075       TTAACT      75.55       3.52        0.79
gi|545778205|gb|U00096.3|:c514859-514401  8         GTTAAT          0           t       16533        98.81             4.001       0.00100       ATTAAC      95.87       3.30        0.72
gi|545778205|gb|U00096.3|:c514859-514401  9         TTAATG          0           t       16532        96.92             1.506       0.00150       CATTAA      95.43       3.32        0.36
gi|545778205|gb|U00096.3|:c514859-514401  10        TAATGG          0           t       16531        70.86             0.402       0.00100       CCATTA      68.99       3.70        0.41
gi|545778205|gb|U00096.3|:c514859-514401  11        AATGGT          0           t       16530        91.24             4.256       0.00175       ACCATT      85.84       2.74        1.60








Example plots

In Figure 1 of our methylation detection paper [https://www.nature.com/articles/nmeth.4184] we show a histogram of event_level_mean for a selection of k-mers to demonstrate how methylation changes the observed current. The data for these figures was generated by eventalign, which we subsequently plotted in R using ggplot2.







          

      

      

    

  

    
      
          
            
  
Quickstart - calling methylation with nanopolish

Oxford Nanopore sequencers are sensitive to base modifications. Here we provide a step-by-step tutorial to help you get started with detecting base modifications using nanopolish.

For more information about our approach:


	Simpson, Jared T., et al. “Detecting DNA cytosine methylation using nanopore sequencing.” [https://www.nature.com/articles/nmeth.4184] Nature Methods (2017).




Requirements:


	nanopolish v0.8.4


	samtools v1.2 [https://htslib.org]


	minimap2 [https://github.com/lh3/minimap2]





Download example dataset

In this tutorial we will use a subset of the NA12878 WGS Consortium data [https://github.com/nanopore-wgs-consortium/NA12878/blob/master/Genome.md]. You can download the example dataset we will use here (warning: the file is about 2GB):

wget http://s3.climb.ac.uk/nanopolish_tutorial/methylation_example.tar.gz
tar -xvf methylation_example.tar.gz
cd methylation_example





Details:


	Sample :      Human cell line (NA12878)


	Basecaller : Albacore v2.0.2


	Region: chr20:5,000,000-10,000,000




In the extracted example data you should find the following files:


	albacore_output.fastq : the subset of the basecalled reads


	reference.fasta : the chromsome 20 reference sequence


	fast5_files/ : a directory containing signal-level FAST5 files




The reads were basecalled using this albacore command:

read_fast5_basecaller.py -c r94_450bps_linear.cfg -t 8 -i fast5_files -s basecalled/ -o fastq





After the basecaller finished, we merged all of the fastq files together into a single file:

cat basecalled/workspace/pass/*.fastq > albacore_output.fastq








Data preprocessing

nanopolish needs access to the signal-level data measured by the nanopore sequencer. To begin, we need to create an index file that links read ids with their signal-level data in the FAST5 files:

nanopolish index -d fast5_files/ albacore_output.fastq





We get the following files: albacore_output.fastq.index, albacore_output.fastq.index.fai, albacore_output.fastq.index.gzi, and albacore_output.fastq.index.readdb.




Aligning reads to the reference genome

Next, we need to align the basecalled reads to the reference genome. We use minimap2 as it is fast enough to map reads to the human genome. In this example we’ll pipe the output directly into samtools sort to get a sorted bam file:

minimap2 -a -x map-ont reference.fasta albacore_output.fastq | samtools sort -T tmp -o albacore_output.sorted.bam
samtools index albacore_output.sorted.bam








Calling methylation

Now we’re ready to use nanopolish to detect methylated bases (in this case 5-methylcytosine in a CpG context). The command is fairly straightforward - we have to tell it what reads to use (albacore_output.fastq), where the alignments are (albacore_output.sorted.bam), the reference genome (reference.fasta) and what region of the genome we’re interested in (chr20:5,000,000-10,000,000):

nanopolish call-methylation -t 8 -r albacore_output.fastq -b albacore_output.sorted.bam -g reference.fasta -w "chr20:5,000,000-10,000,000" > methylation_calls.tsv





The output file contains a lot of information including the position of the CG dinucleotide on the reference genome, the ID of the read that was used to make the call, and the log-likelihood ratio calculated by our model:

chromosome  start    end      read_name                             log_lik_ratio  log_lik_methylated  log_lik_unmethylated  num_calling_strands  num_cpgs  sequence
chr20       4980553  4980553  c1e202f4-e8f9-4eb8-b9a6-d79e6fab1e9a  3.70           -167.47             -171.17               1                    1         TGAGACGGGGT
chr20       4980599  4980599  c1e202f4-e8f9-4eb8-b9a6-d79e6fab1e9a  2.64           -98.87              -101.51               1                    1         AATCTCGGCTC
chr20       4980616  4980616  c1e202f4-e8f9-4eb8-b9a6-d79e6fab1e9a  -0.61          -95.35              -94.75                1                    1         ACCTCCGCCTC
chr20       4980690  4980690  c1e202f4-e8f9-4eb8-b9a6-d79e6fab1e9a  -2.99          -99.58              -96.59                1                    1         ACACCCGGCTA
chr20       4980780  4980780  c1e202f4-e8f9-4eb8-b9a6-d79e6fab1e9a  5.27           -135.45             -140.72               1                    1         CACCTCGGCCT
chr20       4980807  4980807  c1e202f4-e8f9-4eb8-b9a6-d79e6fab1e9a  -2.95          -89.20              -86.26                1                    1         ATTACCGGTGT
chr20       4980820  4980822  c1e202f4-e8f9-4eb8-b9a6-d79e6fab1e9a  7.47           -90.63              -98.10                1                    2         GCCACCGCGCCCA
chr20       4980899  4980901  c1e202f4-e8f9-4eb8-b9a6-d79e6fab1e9a  3.17           -96.40              -99.57                1                    2         GTATACGCGTTCC
chr20       4980955  4980955  c1e202f4-e8f9-4eb8-b9a6-d79e6fab1e9a  0.33           -92.14              -92.47                1                    1         AGTCCCGATAT





A positive value in the log_lik_ratio column indicates support for methylation. We have provided a helper script that can be used to calculate how often each reference position was methylated:

scripts/calculate_methylation_frequency.py -i methylation_calls.tsv > methylation_frequency.tsv





The output is another tab-separated file, this time summarized by genomic position:

chromosome  start    end      num_cpgs_in_group  called_sites  called_sites_methylated  methylated_frequency  group_sequence
chr20       5036763  5036763  1                  21            20                       0.952                 split-group
chr20       5036770  5036770  1                  21            20                       0.952                 split-group
chr20       5036780  5036780  1                  21            20                       0.952                 split-group
chr20       5037173  5037173  1                  13            5                        0.385                 AAGGACGTTAT





In the example data set we have also included bisulfite data from ENCODE for the same region of chromosome 20. We can use the included compare_methylation.py helper script to do a quick comparison between the nanopolish methylation output and bisulfite:

python compare_methylation.py bisulfite.ENCFF835NTC.example.tsv methylation_frequency.tsv > bisulfite_vs_nanopolish.tsv





We can use R to visualize the results - we observe good correlation between the nanopolish methylation calls and bisulfite:

library(ggplot2)
library(RColorBrewer)
data <- read.table("bisulfite_vs_nanopolish.tsv", header=T)

# Set color palette for 2D heatmap
rf <- colorRampPalette(rev(brewer.pal(11,'Spectral')))
r <- rf(32)

c <- cor(data$frequency_1, data$frequency_2)
title <- sprintf("N = %d r = %.3f", nrow(data), c)
ggplot(data, aes(frequency_1, frequency_2)) +
    geom_bin2d(bins=25) + scale_fill_gradientn(colors=r, trans="log10") +
    xlab("Bisulfite Methylation Frequency") +
    ylab("Nanopolish Methylation Frequency") +
    theme_bw(base_size=20) +
    ggtitle(title)





Here’s what the output should look like:


[image: quickstart_methylation_results]








          

      

      

    

  

    
      
          
            
  
Helping us debug nanopolish


Overview

Running into errors with nanopolish? To help us debug, we need to be able to reproduce the errors. We can do this by packaging a subset of the files that were used by a nanopolish. We have provided scripts/extract_reads_aligned_to_region.py and this tutorial to help you do exactly this.

Briefly, this script will:


	extract reads that align to a given region in the draft genome assembly


	rewrite a new BAM, BAI, FASTA file with these reads


	extract the FAST5 files associated with these reads


	save all these files into a tar.gz file







Workflow


	Narrow down a problematic region by running nanopolish variants --consensus [...] and changing the -w parameter.


	Run the scripts/extract_reads_aligned_to_region.py.


	Send the resulting tar.gz file to us by hosting either a dropbox or google drive.







Tutorial - using extraction helper script to create example datsets

We extracted a subset of reads for a 2kb region to create the example dataset for the eventalign and consensus tutorial using scripts/extract_reads_aligned_to_region.py. Here is how:







Generated basecalled --reads file:


	Basecalled reads with albacore:

read_fast5_basecaller.py -c r94_450bps_linear.cfg -t 8 -i /path/to/raw/fast5/files -s /path/to/albacore-2.0.1/output/directory -o fastq







	Merged the different albacore fastq outputs:

cat /path/to/albacore-2.0.1/output/directory/workspace/pass/*.fastq > albacore-2.0.1-merged.fastq







	Converted the merged fastq to fasta format:

paste - - - - < albacore-2.0.1-merged.fastq | cut -f 1,2 | sed 's/^@/>/' | tr "\t" "\n" > reads.fasta















Generated --bam file with the draft genome assembly (-g):


	Ran canu to create draft genome assembly:

canu \
    -p ecoli -d outdir genomeSize=4.6m \
    -nanopore-raw reads.fasta \







	Index draft assembly:

bwa index ecoli.contigs.fasta
samtools faidx ecoli.contigs.fasta







	Aligned reads to draft genome assembly with bwa (v0.7.12):

bwa mem -x ont2d ecoli.contigs.fasta reads.fasta | samtools sort -o reads.sorted.bam -T reads.tmp
samtools index reads.sorted.bam















Selected a --window:


	Identified the first contig name and chose a random start position:

head -3 ecoli.contigs.fasta









Output:

>tig00000001 len=4376233 reads=23096 covStat=7751.73 gappedBases=no class=contig suggestRepeat=no suggestCircular=no
AGATGCTTTGAAAGAAACGCAGAATAGATCTCTATGTAATGATATGGAATACTCTGGTATTGTCTGTAAAGATACTAATGGAAAATATTTTGCATCTAAG
GCAGAAACTGATAATTTAAGAAAGGAGTCATATCCTCTGAAAAGAAAATGTCCCACAGGTACAGATAGAGTTGCTGCTTATCATACTCACGGTGCAGATA





As we wanted a 2kb region, we selected a random start position (200000) so our end position was 202000. Therefore our --window was “tig00000001:200000-202000”.







Using the files we created, we ran scripts/extract_reads_aligned_to_region.py, please see usage example below.


Note

Make sure nanopolish still reproduces the same error on this subset before sending it to us.






Usage example

python extract_reads_aligned_to_region.py \
    --reads reads.fasta \
    --genome ecoli.contigs.fasta \
    --bam reads.sorted.bam \
    --window "tig00000001:200000-202000" \
    --output_prefix ecoli_2kb_region --verbose













	Argument name(s)

	Req.

	Default value

	Description





	-b, --bam

	Y

	NA

	Sorted bam file created by aligning reads to the draft genome.



	-g, --genome

	Y

	NA

	Draft genome assembly



	-r, --reads

	Y

	NA

	Fasta, fastq, fasta.gz, or fastq.gz file containing basecalled reads.



	-w, --window

	Y

	NA

	Draft genome assembly coordinate string ex. “contig:start-end”. It is essential that you wrap the coordinates in quotation marks (“).



	-o, --output_prefix

	N

	reads_subset

	Prefix of output tar.gz and log file.



	-v, --verbose

	N

	False

	Use for verbose output with info on progress.









Script overview


	Parse input files


	Assumes readdb file name from input reads file


	
	Validates input

	
	checks that input bam, readdb, fasta/q, draft genome assembly, draft genome assembly index file exist, are not empy, and are readable










	
	With user input draft genome assembly coordinates, extracts all reads that aligned within these coordinates stores the read_ids. This information can be found from the input BAM.

	
	uses pysam.AlignmentFile


	uses samfile.fetch(region=draft_ga_coords) to get all reads aligned to region


	if reads map to multiple sections within draft ga it is not added again










	
	Parses through the input readdb file to find the FAST5 files associated with each region that aligned to region

	
	stores in dictionary region_fast5_files; key = read_id, value = path/to/fast5/file


	path to fast5 file is currently dependent on the user’s directory structure










	
	Make a BAM and BAI file for this specific region

	
	creates a new BAM file called region.bam


	with pysam.view we rewrite the new bam with reads that aligned to the region…


	with pysam.index we create a new BAI file










	
	Now to make a new FASTA file with this subset of reads

	
	the new fasta file is called region.fasta


	this first checks what type of sequences file is given { fasta, fastq, fasta.gz, fastq.gz }


	then handles based on type of seq file using SeqIO.parse


	then writes to a new fasta file










	
	Let’s get to tarring

	
	creates a tar.gz file with the output prefix


	saves the fast5 files in directory output_prefix/fast5_files/










	Adds the new fasta, new bam, and new bai file with the subset of reads


	Adds the draft genome asssembly and associated fai index file


	
	Performs a check

	
	the number of reads in the new BAM file, new FASTA file, and the number of files in the fast5_files directory should be equal










	Outputs a tar.gz and log file. FIN!










          

      

      

    

  

    
      
          
            
  
Manual

Modules available:

nanopolish extract: extract reads in FASTA or FASTQ format from a directory of FAST5 files
nanopolish call-methylation: predict genomic bases that may be methylated
nanopolish variants: detect SNPs and indels with respect to a reference genome
nanopolish variants --consensus: calculate an improved consensus sequence for a draft genome assembly
nanopolish eventalign: align signal-level events to k-mers of a reference genome
nanopolish phase-reads: Phase reads using heterozygous SNVs with respect to a reference genome












extract


Overview

This module is used to extract reads in FASTA or FASTQ format from a directory of FAST5 files.




Input



	path to a directory of FAST5 files modified to contain basecall information










Output



	sequences of reads in FASTA or FASTQ format










Usage example

nanopolish extract [OPTIONS] <fast5|dir>













	Argument name(s)

	Required

	Default value

	Description





	<fast5|dir>

	Y

	NA

	FAST5 or path to directory of FAST5 files.



	-r, --recurse

	N

	NA

	Recurse into subdirectories



	-q, --fastq

	N

	fasta format

	Use when you want to extract to FASTQ format



	-t, --type=TYPE

	N

	2d-or-template

	The type of read either: {template, complement, 2d, 2d-or-template, any}



	-b, --basecaller=NAME[:VERSION]

	N

	NA

	consider only data produced by basecaller NAME, optionally with given exact VERSION



	-o, --output=FILE

	N

	stdout

	Write output to FILE

















index


Overview

Build an index mapping from basecalled reads to the signals measured by the sequencer




Input



	path to directory of raw nanopore sequencing data in FAST5 format


	basecalled reads










Output



	gzipped FASTA format of basecalled reads


	index files (fai, gzi, readdb)










Readdb file format

Readdb file is a tab-separated file that contains two columns. One column represents read ids and the other column represents the corresponding path to FAST5 file:

read_id_1   /path/to/fast5/containing/reads_id_1/signals
read_id_2   /path/to/fast5/containing/read_id_2/signals








Usage example

nanopolish index [OPTIONS] -d nanopore_raw_file_directory reads.fastq













	Argument name(s)

	Required

	Default value

	Description





	-d, --directory

	Y

	NA

	FAST5 or path to directory of FAST5 files containing ONT sequencing raw signal information.



	-f, --fast5-fofn

	N

	NA

	file containing the paths to each fast5 for the run











call-methylation


Overview

Classify nucleotides as methylated or not.




Input



	Basecalled ONT reads in FASTA format










Output



	tab-separated file containing per-read log-likelihood ratios










Usage example

nanopolish call-methylation [OPTIONS] <fast5|dir>













	Argument name(s)

	Required

	Default value

	Description





	-r, --reads=FILE

	Y

	NA

	the ONT reads are in fasta FILE



	-b, --bam=FILE

	Y

	NA

	the reads aligned to the genome assembly are in bam FILE



	-g, --genome=FILE

	Y

	NA

	the genome we are computing a consensus for is in FILE



	-t, --threads=NUM

	N

	1

	use NUM threads



	--progress

	N

	NA

	print out a progress message











variants


Overview

This module is used to call single nucleotide polymorphisms (SNPs) using a signal-level HMM.




Input



	basecalled reads


	alignment info


	genome assembly










Output



	VCF file










Usage example

nanopolish variants [OPTIONS] --reads reads.fa --bam alignments.bam --genome genome.fa













	Argument name(s)

	Required

	Default value

	Description





	--snps

	N

	NA

	use flag to only call SNPs



	--consensus=FILE

	N

	NA

	run in consensus calling mode and write polished sequence to FILE



	--fix-homopolymers

	N

	NA

	use flag to run the experimental homopolymer caller



	--faster

	N

	NA

	minimize compute time while slightly reducing consensus accuracy



	-w, --window=STR

	N

	NA

	find variants in window STR (format: <chromsome_name>:<start>-<end>)



	-r, --reads=FILE

	Y

	NA

	the ONT reads are in fasta FILE



	-b, --bam=FILE

	Y

	NA

	the reads aligned to the reference genome are in bam FILE



	-e, --event-bam=FILE

	Y

	NA

	the events aligned to the reference genome are in bam FILE



	-g, --genome=FILE

	Y

	NA

	the reference genome is in FILE



	-o, --outfile=FILE

	N

	stdout

	write result to FILE



	-t, --threads=NUM

	N

	1

	use NUM threads



	-m, --min-candidate-frequency=F

	N

	0.2

	extract candidate variants from the aligned reads when the variant frequency is at least F



	-d, --min-candidate-depth=D

	N

	20

	extract candidate variants from the aligned reads when the depth is at least D



	-x, --max-haplotypes=N

	N

	1000

	consider at most N haplotypes combinations



	--max-rounds=N

	N

	50

	perform N rounds of consensus sequence improvement



	-c, --candidates=VCF

	N

	NA

	read variants candidates from VCF, rather than discovering them from aligned reads



	-a, --alternative-basecalls-bam=FILE

	N

	NA

	if an alternative basecaller was used that does not output event annotations then use basecalled sequences from FILE. The signal-level events will still be taken from the -b bam



	--calculate-all-support

	N

	NA

	when making a call, also calculate the support of the 3 other possible bases



	--models-fofn=FILE

	N

	NA

	read alternatives k-mer models from FILE











event align


Overview

Align nanopore events to reference k-mers




Input



	basecalled reads


	alignment information


	assembled genome










Usage example

nanopolish eventalign [OPTIONS] --reads reads.fa --bam alignments.bam --genome genome.fa













	Argument name(s)

	Required

	Default value

	Description





	--sam

	N

	NA

	use to write output in SAM format



	-w, --window=STR

	N

	NA

	Compute the consensus for window STR (format : ctg:start_id-end_id)



	-r, --reads=FILE

	Y

	NA

	the ONT reads are in fasta FILE



	-b, --bam=FILE

	Y

	NA

	the reads aligned to the genome assembly are in bam FILE



	-g, --genome=FILE

	Y

	NA

	the genome we are computing a consensus for is in FILE



	-t, --threads=NUM

	N

	1

	use NUM threads



	--scale-events

	N

	NA

	scale events to the model, rather than vice-versa



	--progress

	N

	NA

	print out a progress message



	-n, --print-read-names

	N

	NA

	print read names instead of indexes



	--summary=FILE

	N

	NA

	summarize the alignment of each read/strand in FILE



	--samples

	N

	NA

	write the raw samples for the event to the tsv output



	--models-fofn=FILE

	N

	NA

	read alternative k-mer models from FILE











phase-reads - (experimental)


Overview

Phase reads using heterozygous SNVs with respect to a reference genome




Input



	basecalled reads


	alignment information


	assembled genome


	variants (from nanopolish variants or from other sources eg. Illumina VCF)










Usage example

nanopolish phase-reads [OPTIONS] --reads reads.fa --bam alignments.bam --genome genome.fa variants.vcf
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