

nanopolish

nanopolish [https://github.com/jts/nanopolish] is a software package for signal-level analysis of Oxford Nanopore sequencing data. Nanopolish can calculate an improved consensus sequence for a draft genome assembly, detect base modifications, call SNPs and indels with respect to a reference genome and more (see Nanopolish modules, below).

Publications

	Loman, Nicholas J., Joshua Quick, and Jared T. Simpson. “A complete bacterial genome assembled de novo using only nanopore sequencing data.” Nature methods 12.8 (2015): 733-735.

	Quick, Joshua, et al. “Real-time, portable genome sequencing for Ebola surveillance.” Nature 530.7589 (2016): 228-232.

	Simpson, Jared T., et al. “Detecting DNA cytosine methylation using nanopore sequencing.” nature methods 14.4 (2017): 407-410.

Credits and Thanks

The fast table-driven logsum implementation was provided by Sean Eddy as public domain code. This code was originally part of hmmer3 [http://hmmer.org/] . Nanopolish also includes code from Oxford Nanopore’s scrappie [https://github.com/nanoporetech/scrappie] basecaller. This code is licensed under the MPL.

Installation

Dependencies

A compiler that supports C++11 is needed to build nanopolish. Development of the code is performed using gcc-4.8 [https://gcc.gnu.org/gcc-4.8/].

By default, nanopolish will download and compile all of its required dependencies. Some users however may want to use system-wide versions of the libraries. To turn off the automatic installation of dependencies set HDF5=noinstall, EIGEN=noinstall or HTS=noinstall parameters when running make as appropriate. The current versions and compile options for the dependencies are:

	libhdf5-1.8.14 [http://www.hdfgroup.org/HDF5/release/obtain5.html] compiled with multi-threading support --enable-threadsafe

	eigen-3.2.5 [http://eigen.tuxfamily.org/]

	htslib-1.4 [http://github.com/samtools/htslib]

Additionally the helper scripts require biopython [http://biopython.org/] and pysam [http://pysam.readthedocs.io/en/latest/installation.html].

Installing the latest code from github (recommended)

You can download and compile the latest code from github as follows

git clone --recursive https://github.com/jts/nanopolish.git
cd nanopolish
make

Installing a particular release

When major features have been added or bugs fixed, we will tag and release a new version of nanopolish. If you wish to use a particular version, you can checkout the tagged version before compiling

git clone --recursive https://github.com/jts/nanopolish.git
cd nanopolish
git checkout v0.7.1
make

To run using docker

First build the image from the dockerfile:

docker build .

Note the uuid given upon successful build. Then you can run nanopolish from the image:

docker run -v /path/to/local/data/data/:/data/ -it :image_id ./nanopolish eventalign -r /data/reads.fa -b /data/alignments.sorted.bam -g /data/ref.fa

Quickstart - how to polish a genome assembly

The original purpose of nanopolish was to improve the consensus accuracy of an assembly of Oxford Nanopore Technology sequencing reads. Here we provide a step-by-step tutorial to help you get started.

Requirements:

	nanopolish

	samtools [https://htslib.org]

	minimap2 [https://github.com/lh3/minimap2]

	MUMmer [https://github.com/mummer4/mummer]

Download example dataset

You can download the example dataset we will use here:

wget http://s3.climb.ac.uk/nanopolish_tutorial/ecoli_2kb_region.tar.gz
tar -xvf ecoli_2kb_region.tar.gz
cd ecoli_2kb_region

Details:

	Sample : E. coli str. K-12 substr. MG1655

	Instrument : MinION sequencing R9.4 chemistry

	Basecaller : Albacore v2.0.1

	Region: “tig00000001:200000-202000”

	Note: Ligation-mediated PCR amplification performed

This is a subset of reads that aligned to a 2kb region in the E. coli draft assembly. To see how we generated these files please refer to the tutorial creating_example_dataset.

You should find the following files:

	reads.fasta : subset of basecalled reads

	draft.fa : draft genome assembly

	draft.fa.fai : draft genome assembly index

	fast5_files/ : a directory containing FAST5 files

	ecoli_2kb_region.log : a log file for how the dataset was created with nanopolish helper script (scripts/extract_reads_aligned_to_region.py)

For the evaluation step you will need the reference genome:

curl -o ref.fa https://ftp.ncbi.nih.gov/genomes/archive/old_genbank/Bacteria/Escherichia_coli_K_12_substr__MG1655_uid225/U00096.ffn

Analysis workflow

The pipeline below describes the recommended analysis workflow for larger datasets. In this tutorial, we will run through the basic steps of the pipeline for this smaller (2kb) dataset.

[image: nanopolish-tutorial-workflow]

Data preprocessing

nanopolish needs access to the signal-level data measured by the nanopore sequencer. To begin, we need to create an index readdb file that links read ids with their signal-level data in the FAST5 files:

nanopolish index -d fast5_files/ reads.fasta

We get the following files: reads.fasta.index, reads.fasta.index.fai, reads.fasta.index.gzi, and reads.fasta.index.readdb.

Compute the draft genome assembly using canu

As computing the draft genome assembly takes a few hours we have included the pre-assembled data for you (draft.fa).
We used the following parameters with canu [http://canu.readthedocs.io/en/latest/]:

canu \
 -p ecoli -d outdir genomeSize=4.6m \
 -nanopore-raw albacore-2.0.1-merged.fastq

Compute a new consensus sequence for a draft assembly

Now that we have reads.fasta indexed with nanopolish index, and have a draft genome assembly draft.fa, we can begin to improve the assembly with nanopolish. Let us get started!

First step, is to index the draft genome assembly. We can do that with the following command:

minimap2 -d draft.mmi draft.fa

Next, we align the original reads (reads.fasta) to the draft assembly (draft.fa) and sort alignments:

minimap2 -ax map-ont -t 8 draft.fa reads.fasta | samtools sort -o reads.sorted.bam -T reads.tmp
samtools index reads.sorted.bam

Checkpoint: we can do a quick check to see if this step worked. The bam file should not be empty.

samtools view reads.sorted.bam | head

Then we run the consensus algorithm. For larger datasets we use nanopolish_makerange.py to split the draft genome assembly into 50kb segments, so that we can run the consensus algorithm on each segment in parallel. The output would be the polished segments in fasta format.
Since our dataset is only covering a 2kb region, we skip this step and use the following command:

nanopolish variants --consensus polished.fa \
 -w "tig00000001:200000-202000" \
 -r reads.fasta \
 -b reads.sorted.bam \
 -g draft.fa

We are left with our desired output: polished.fa.

Evaluate the assembly

To analyze how nanopolish performed improving the accuracy we use MUMmer [https://github.com/mummer4/mummer]. MUMmer contains “dnadiff”, a program that enables us to see a report on alignment statistics. With dnadiff we can compare the two different assemblies.

mkdir analysis
MUMmer3.23/dnadiff --prefix analysis/draft.dnadiff ref.fa draft.fa
MUMmer3.23/dnadiff --prefix analysis/polished.dnadiff ref.fa polished.fa

This generates draft.dnadiff.report and polished.dnadiff.report along with other files. The metric we are interested in is AvgIdentity under [Alignments] 1-to-1, which is a measurement of how similar the genome assemblies are to the reference genome. We expect to see a higher value for the polished assembly than the draft (99.90 vs 99.53), concluding that the nanopolish consensus algorithm worked successfully.

Note

The example dataset was PCR amplified causing a loss of methylation information. We recommend using the -q dam,dcm with nanopolish variants --consensus if you have data with methylation information to account for known bacterial methyltransferases.

Quickstart - how to align events to a reference genome

The eventalign module in nanopolish is used to align events or “squiggles” to a reference genome. We (the developers of nanopolish) use this feature extensively when we want to see what the low-level signal information looks like. It helps us model the signal and discover differences in current that might hint at base modifications. Here we provide a step-by-step tutorial to help you get started with the nanopolish eventalign module.

For more information about eventalign:

	Blog post: “Aligning Nanopore Events to a Reference” [http://simpsonlab.github.io/2015/04/08/eventalign/]

	Paper: “A complete bacterial genome assembled de novo using only nanopore sequencing data” [https://www.nature.com/articles/nmeth.3444]

Requirements:

	nanopolish

	samtools [http://samtools.sourceforge.net/]

	minimap2 [https://github.com/lh3/minimap2]

Download example dataset

You can download the example dataset we will use here:

wget http://s3.climb.ac.uk/nanopolish_tutorial/ecoli_2kb_region.tar.gz
tar -xvf ecoli_2kb_region.tar.gz
cd ecoli_2kb_region

Details:

	Sample : E. coli str. K-12 substr. MG1655

	Instrument : MinION sequencing R9.4 chemistry

	Basecaller : Albacore v2.0.1

	Region: “tig00000001:200000-202000”

	Note: Ligation-mediated PCR amplification performed

This is a subset of reads that aligned to a 2kb region in the E. coli draft assembly. To see how we generated these files please refer to this section: Tutorial - using extraction helper script to create example datsets.

You should find the following files:

	reads.fasta : subset of basecalled reads

	fast5_files/ : a directory containing FAST5 files

You will need the E. coli reference genome:

curl -o ref.fa https://ftp.ncbi.nih.gov/genomes/archive/old_genbank/Bacteria/Escherichia_coli_K_12_substr__MG1655_uid225/U00096.ffn

Align the reads with minimap2

In order to run minimap2 we first need to index the reference genome:

minimap2 -d ref.mmi ref.fa

Output files: ref.mmi.

We will need to index the reads as well:

nanopolish index -d fast5_files/ reads.fasta

Output files: reads.fasta.index, reads.fasta.index.fai, reads.fasta.index.gzi, and reads.fasta.index.readdb.

Then we can align the reads to the reference:

minimap2 -ax map-ont -t 8 ref.fa reads.fasta | samtools sort -o reads-ref.sorted.bam -T reads.tmp
samtools index reads-ref.sorted.bam

Output files: reads-ref.sorted.bam and reads-ref.sorted.bam.bai.

Checkpoint: Let’s see if the bam file is not truncated. This will check that the beginning of the file contains a valid header, and checks if the EOF is present. This will exit with a non-zero exit code if the conditions were not met:

samtools quickcheck reads-ref.sorted.bam

Align the nanopore events to a reference

Now we are ready to run nanopolish to align the events to the reference genome:

nanopolish eventalign \
 --reads reads.fasta \
 --bam reads-ref.sorted.bam \
 --genome ref.fa \
 --scale-events > reads-ref.eventalign.txt

Assess the eventalign output

If we take a peek at the first few lines of reads-ref.eventalign.txt this is what we get:

contig position reference_kmer read_index strand event_index event_level_mean event_stdv event_length model_kmer model_mean model_stdv standardized_level
gi|545778205|gb|U00096.3|:c514859-514401 3 ATGGAG 0 t 16538 89.82 3.746 0.00100 CTCCAT 92.53 2.49 -0.88
gi|545778205|gb|U00096.3|:c514859-514401 3 ATGGAG 0 t 16537 88.89 2.185 0.00100 CTCCAT 92.53 2.49 -1.18
gi|545778205|gb|U00096.3|:c514859-514401 3 ATGGAG 0 t 16536 94.96 2.441 0.00125 CTCCAT 92.53 2.49 0.79
gi|545778205|gb|U00096.3|:c514859-514401 3 ATGGAG 0 t 16535 81.63 2.760 0.00150 NNNNNN 0.00 0.00 inf
gi|545778205|gb|U00096.3|:c514859-514401 7 AGTTAA 0 t 16534 78.96 2.278 0.00075 TTAACT 75.55 3.52 0.79
gi|545778205|gb|U00096.3|:c514859-514401 8 GTTAAT 0 t 16533 98.81 4.001 0.00100 ATTAAC 95.87 3.30 0.72
gi|545778205|gb|U00096.3|:c514859-514401 9 TTAATG 0 t 16532 96.92 1.506 0.00150 CATTAA 95.43 3.32 0.36
gi|545778205|gb|U00096.3|:c514859-514401 10 TAATGG 0 t 16531 70.86 0.402 0.00100 CCATTA 68.99 3.70 0.41
gi|545778205|gb|U00096.3|:c514859-514401 11 AATGGT 0 t 16530 91.24 4.256 0.00175 ACCATT 85.84 2.74 1.60

Example plots

In Figure 1 of our methylation detection paper [https://www.nature.com/articles/nmeth.4184] we show a histogram of event_level_mean for a selection of k-mers to demonstrate how methylation changes the observed current. The data for these figures was generated by eventalign, which we subsequently plotted in R using ggplot2.

Quickstart - calling methylation with nanopolish

Oxford Nanopore sequencers are sensitive to base modifications. Here we provide a step-by-step tutorial to help you get started with detecting base modifications using nanopolish.

For more information about our approach:

	Simpson, Jared T., et al. “Detecting DNA cytosine methylation using nanopore sequencing.” [https://www.nature.com/articles/nmeth.4184] Nature Methods (2017).

Requirements:

	nanopolish v0.8.4

	samtools v1.2 [https://htslib.org]

	minimap2 [https://github.com/lh3/minimap2]

Download example dataset

In this tutorial we will use a subset of the NA12878 WGS Consortium data [https://github.com/nanopore-wgs-consortium/NA12878/blob/master/Genome.md]. You can download the example dataset we will use here (warning: the file is about 2GB):

wget http://s3.climb.ac.uk/nanopolish_tutorial/methylation_example.tar.gz
tar -xvf methylation_example.tar.gz
cd methylation_example

Details:

	Sample : Human cell line (NA12878)

	Basecaller : Albacore v2.0.2

	Region: chr20:5,000,000-10,000,000

In the extracted example data you should find the following files:

	albacore_output.fastq : the subset of the basecalled reads

	reference.fasta : the chromsome 20 reference sequence

	fast5_files/ : a directory containing signal-level FAST5 files

The reads were basecalled using this albacore command:

read_fast5_basecaller.py -c r94_450bps_linear.cfg -t 8 -i fast5_files -s basecalled/ -o fastq

After the basecaller finished, we merged all of the fastq files together into a single file:

cat basecalled/workspace/pass/*.fastq > albacore_output.fastq

Data preprocessing

nanopolish needs access to the signal-level data measured by the nanopore sequencer. To begin, we need to create an index file that links read ids with their signal-level data in the FAST5 files:

nanopolish index -d fast5_files/ albacore_output.fastq

We get the following files: albacore_output.fastq.index, albacore_output.fastq.index.fai, albacore_output.fastq.index.gzi, and albacore_output.fastq.index.readdb.

Aligning reads to the reference genome

Next, we need to align the basecalled reads to the reference genome. We use minimap2 as it is fast enough to map reads to the human genome. In this example we’ll pipe the output directly into samtools sort to get a sorted bam file:

minimap2 -a -x map-ont reference.fasta albacore_output.fastq | samtools sort -T tmp -o albacore_output.sorted.bam
samtools index albacore_output.sorted.bam

Calling methylation

Now we’re ready to use nanopolish to detect methylated bases (in this case 5-methylcytosine in a CpG context). The command is fairly straightforward - we have to tell it what reads to use (albacore_output.fastq), where the alignments are (albacore_output.sorted.bam), the reference genome (reference.fasta) and what region of the genome we’re interested in (chr20:5,000,000-10,000,000):

nanopolish call-methylation -t 8 -r albacore_output.fastq -b albacore_output.sorted.bam -g reference.fasta -w "chr20:5,000,000-10,000,000" > methylation_calls.tsv

The output file contains a lot of information including the position of the CG dinucleotide on the reference genome, the ID of the read that was used to make the call, and the log-likelihood ratio calculated by our model:

chromosome start end read_name log_lik_ratio log_lik_methylated log_lik_unmethylated num_calling_strands num_cpgs sequence
chr20 4980553 4980553 c1e202f4-e8f9-4eb8-b9a6-d79e6fab1e9a 3.70 -167.47 -171.17 1 1 TGAGACGGGGT
chr20 4980599 4980599 c1e202f4-e8f9-4eb8-b9a6-d79e6fab1e9a 2.64 -98.87 -101.51 1 1 AATCTCGGCTC
chr20 4980616 4980616 c1e202f4-e8f9-4eb8-b9a6-d79e6fab1e9a -0.61 -95.35 -94.75 1 1 ACCTCCGCCTC
chr20 4980690 4980690 c1e202f4-e8f9-4eb8-b9a6-d79e6fab1e9a -2.99 -99.58 -96.59 1 1 ACACCCGGCTA
chr20 4980780 4980780 c1e202f4-e8f9-4eb8-b9a6-d79e6fab1e9a 5.27 -135.45 -140.72 1 1 CACCTCGGCCT
chr20 4980807 4980807 c1e202f4-e8f9-4eb8-b9a6-d79e6fab1e9a -2.95 -89.20 -86.26 1 1 ATTACCGGTGT
chr20 4980820 4980822 c1e202f4-e8f9-4eb8-b9a6-d79e6fab1e9a 7.47 -90.63 -98.10 1 2 GCCACCGCGCCCA
chr20 4980899 4980901 c1e202f4-e8f9-4eb8-b9a6-d79e6fab1e9a 3.17 -96.40 -99.57 1 2 GTATACGCGTTCC
chr20 4980955 4980955 c1e202f4-e8f9-4eb8-b9a6-d79e6fab1e9a 0.33 -92.14 -92.47 1 1 AGTCCCGATAT

A positive value in the log_lik_ratio column indicates support for methylation. We have provided a helper script that can be used to calculate how often each reference position was methylated:

scripts/calculate_methylation_frequency.py -i methylation_calls.tsv > methylation_frequency.tsv

The output is another tab-separated file, this time summarized by genomic position:

chromosome start end num_cpgs_in_group called_sites called_sites_methylated methylated_frequency group_sequence
chr20 5036763 5036763 1 21 20 0.952 split-group
chr20 5036770 5036770 1 21 20 0.952 split-group
chr20 5036780 5036780 1 21 20 0.952 split-group
chr20 5037173 5037173 1 13 5 0.385 AAGGACGTTAT

In the example data set we have also included bisulfite data from ENCODE for the same region of chromosome 20. We can use the included compare_methylation.py helper script to do a quick comparison between the nanopolish methylation output and bisulfite:

python compare_methylation.py bisulfite.ENCFF835NTC.example.tsv methylation_frequency.tsv > bisulfite_vs_nanopolish.tsv

We can use R to visualize the results - we observe good correlation between the nanopolish methylation calls and bisulfite:

library(ggplot2)
library(RColorBrewer)
data <- read.table("bisulfite_vs_nanopolish.tsv", header=T)

Set color palette for 2D heatmap
rf <- colorRampPalette(rev(brewer.pal(11,'Spectral')))
r <- rf(32)

c <- cor(data$frequency_1, data$frequency_2)
title <- sprintf("N = %d r = %.3f", nrow(data), c)
ggplot(data, aes(frequency_1, frequency_2)) +
 geom_bin2d(bins=25) + scale_fill_gradientn(colors=r, trans="log10") +
 xlab("Bisulfite Methylation Frequency") +
 ylab("Nanopolish Methylation Frequency") +
 theme_bw(base_size=20) +
 ggtitle(title)

Here’s what the output should look like:

[image: quickstart_methylation_results]

Helping us debug nanopolish

Overview

Running into errors with nanopolish? To help us debug, we need to be able to reproduce the errors. We can do this by packaging a subset of the files that were used by a nanopolish. We have provided scripts/extract_reads_aligned_to_region.py and this tutorial to help you do exactly this.

Briefly, this script will:

	extract reads that align to a given region in the draft genome assembly

	rewrite a new BAM, BAI, FASTA file with these reads

	extract the FAST5 files associated with these reads

	save all these files into a tar.gz file

Workflow

	Narrow down a problematic region by running nanopolish variants --consensus [...] and changing the -w parameter.

	Run the scripts/extract_reads_aligned_to_region.py.

	Send the resulting tar.gz file to us by hosting either a dropbox or google drive.

Tutorial - using extraction helper script to create example datsets

We extracted a subset of reads for a 2kb region to create the example dataset for the eventalign and consensus tutorial using scripts/extract_reads_aligned_to_region.py. Here is how:

Generated basecalled --reads file:

	Basecalled reads with albacore:

read_fast5_basecaller.py -c r94_450bps_linear.cfg -t 8 -i /path/to/raw/fast5/files -s /path/to/albacore-2.0.1/output/directory -o fastq

	Merged the different albacore fastq outputs:

cat /path/to/albacore-2.0.1/output/directory/workspace/pass/*.fastq > albacore-2.0.1-merged.fastq

	Converted the merged fastq to fasta format:

paste - - - - < albacore-2.0.1-merged.fastq | cut -f 1,2 | sed 's/^@/>/' | tr "\t" "\n" > reads.fasta

Generated --bam file with the draft genome assembly (-g):

	Ran canu to create draft genome assembly:

canu \
 -p ecoli -d outdir genomeSize=4.6m \
 -nanopore-raw reads.fasta \

	Index draft assembly:

bwa index ecoli.contigs.fasta
samtools faidx ecoli.contigs.fasta

	Aligned reads to draft genome assembly with bwa (v0.7.12):

bwa mem -x ont2d ecoli.contigs.fasta reads.fasta | samtools sort -o reads.sorted.bam -T reads.tmp
samtools index reads.sorted.bam

Selected a --window:

	Identified the first contig name and chose a random start position:

head -3 ecoli.contigs.fasta

Output:

>tig00000001 len=4376233 reads=23096 covStat=7751.73 gappedBases=no class=contig suggestRepeat=no suggestCircular=no
AGATGCTTTGAAAGAAACGCAGAATAGATCTCTATGTAATGATATGGAATACTCTGGTATTGTCTGTAAAGATACTAATGGAAAATATTTTGCATCTAAG
GCAGAAACTGATAATTTAAGAAAGGAGTCATATCCTCTGAAAAGAAAATGTCCCACAGGTACAGATAGAGTTGCTGCTTATCATACTCACGGTGCAGATA

As we wanted a 2kb region, we selected a random start position (200000) so our end position was 202000. Therefore our --window was “tig00000001:200000-202000”.

Using the files we created, we ran scripts/extract_reads_aligned_to_region.py, please see usage example below.

Note

Make sure nanopolish still reproduces the same error on this subset before sending it to us.

Usage example

python extract_reads_aligned_to_region.py \
 --reads reads.fasta \
 --genome ecoli.contigs.fasta \
 --bam reads.sorted.bam \
 --window "tig00000001:200000-202000" \
 --output_prefix ecoli_2kb_region --verbose

	Argument name(s)

	Req.

	Default value

	Description

	-b, --bam

	Y

	NA

	Sorted bam file created by aligning reads to the draft genome.

	-g, --genome

	Y

	NA

	Draft genome assembly

	-r, --reads

	Y

	NA

	Fasta, fastq, fasta.gz, or fastq.gz file containing basecalled reads.

	-w, --window

	Y

	NA

	Draft genome assembly coordinate string ex. “contig:start-end”. It is essential that you wrap the coordinates in quotation marks (“).

	-o, --output_prefix

	N

	reads_subset

	Prefix of output tar.gz and log file.

	-v, --verbose

	N

	False

	Use for verbose output with info on progress.

Script overview

	Parse input files

	Assumes readdb file name from input reads file

	
	Validates input

	
	checks that input bam, readdb, fasta/q, draft genome assembly, draft genome assembly index file exist, are not empy, and are readable

	
	With user input draft genome assembly coordinates, extracts all reads that aligned within these coordinates stores the read_ids. This information can be found from the input BAM.

	
	uses pysam.AlignmentFile

	uses samfile.fetch(region=draft_ga_coords) to get all reads aligned to region

	if reads map to multiple sections within draft ga it is not added again

	
	Parses through the input readdb file to find the FAST5 files associated with each region that aligned to region

	
	stores in dictionary region_fast5_files; key = read_id, value = path/to/fast5/file

	path to fast5 file is currently dependent on the user’s directory structure

	
	Make a BAM and BAI file for this specific region

	
	creates a new BAM file called region.bam

	with pysam.view we rewrite the new bam with reads that aligned to the region…

	with pysam.index we create a new BAI file

	
	Now to make a new FASTA file with this subset of reads

	
	the new fasta file is called region.fasta

	this first checks what type of sequences file is given { fasta, fastq, fasta.gz, fastq.gz }

	then handles based on type of seq file using SeqIO.parse

	then writes to a new fasta file

	
	Let’s get to tarring

	
	creates a tar.gz file with the output prefix

	saves the fast5 files in directory output_prefix/fast5_files/

	Adds the new fasta, new bam, and new bai file with the subset of reads

	Adds the draft genome asssembly and associated fai index file

	
	Performs a check

	
	the number of reads in the new BAM file, new FASTA file, and the number of files in the fast5_files directory should be equal

	Outputs a tar.gz and log file. FIN!

Manual

Modules available:

nanopolish extract: extract reads in FASTA or FASTQ format from a directory of FAST5 files
nanopolish call-methylation: predict genomic bases that may be methylated
nanopolish variants: detect SNPs and indels with respect to a reference genome
nanopolish variants --consensus: calculate an improved consensus sequence for a draft genome assembly
nanopolish eventalign: align signal-level events to k-mers of a reference genome
nanopolish phase-reads: Phase reads using heterozygous SNVs with respect to a reference genome

extract

Overview

This module is used to extract reads in FASTA or FASTQ format from a directory of FAST5 files.

Input

	path to a directory of FAST5 files modified to contain basecall information

Output

	sequences of reads in FASTA or FASTQ format

Usage example

nanopolish extract [OPTIONS] <fast5|dir>

	Argument name(s)

	Required

	Default value

	Description

	<fast5|dir>

	Y

	NA

	FAST5 or path to directory of FAST5 files.

	-r, --recurse

	N

	NA

	Recurse into subdirectories

	-q, --fastq

	N

	fasta format

	Use when you want to extract to FASTQ format

	-t, --type=TYPE

	N

	2d-or-template

	The type of read either: {template, complement, 2d, 2d-or-template, any}

	-b, --basecaller=NAME[:VERSION]

	N

	NA

	consider only data produced by basecaller NAME, optionally with given exact VERSION

	-o, --output=FILE

	N

	stdout

	Write output to FILE

index

Overview

Build an index mapping from basecalled reads to the signals measured by the sequencer

Input

	path to directory of raw nanopore sequencing data in FAST5 format

	basecalled reads

Output

	gzipped FASTA format of basecalled reads

	index files (fai, gzi, readdb)

Readdb file format

Readdb file is a tab-separated file that contains two columns. One column represents read ids and the other column represents the corresponding path to FAST5 file:

read_id_1 /path/to/fast5/containing/reads_id_1/signals
read_id_2 /path/to/fast5/containing/read_id_2/signals

Usage example

nanopolish index [OPTIONS] -d nanopore_raw_file_directory reads.fastq

	Argument name(s)

	Required

	Default value

	Description

	-d, --directory

	Y

	NA

	FAST5 or path to directory of FAST5 files containing ONT sequencing raw signal information.

	-f, --fast5-fofn

	N

	NA

	file containing the paths to each fast5 for the run

call-methylation

Overview

Classify nucleotides as methylated or not.

Input

	Basecalled ONT reads in FASTA format

Output

	tab-separated file containing per-read log-likelihood ratios

Usage example

nanopolish call-methylation [OPTIONS] <fast5|dir>

	Argument name(s)

	Required

	Default value

	Description

	-r, --reads=FILE

	Y

	NA

	the ONT reads are in fasta FILE

	-b, --bam=FILE

	Y

	NA

	the reads aligned to the genome assembly are in bam FILE

	-g, --genome=FILE

	Y

	NA

	the genome we are computing a consensus for is in FILE

	-t, --threads=NUM

	N

	1

	use NUM threads

	--progress

	N

	NA

	print out a progress message

variants

Overview

This module is used to call single nucleotide polymorphisms (SNPs) using a signal-level HMM.

Input

	basecalled reads

	alignment info

	genome assembly

Output

	VCF file

Usage example

nanopolish variants [OPTIONS] --reads reads.fa --bam alignments.bam --genome genome.fa

	Argument name(s)

	Required

	Default value

	Description

	--snps

	N

	NA

	use flag to only call SNPs

	--consensus=FILE

	N

	NA

	run in consensus calling mode and write polished sequence to FILE

	--fix-homopolymers

	N

	NA

	use flag to run the experimental homopolymer caller

	--faster

	N

	NA

	minimize compute time while slightly reducing consensus accuracy

	-w, --window=STR

	N

	NA

	find variants in window STR (format: <chromsome_name>:<start>-<end>)

	-r, --reads=FILE

	Y

	NA

	the ONT reads are in fasta FILE

	-b, --bam=FILE

	Y

	NA

	the reads aligned to the reference genome are in bam FILE

	-e, --event-bam=FILE

	Y

	NA

	the events aligned to the reference genome are in bam FILE

	-g, --genome=FILE

	Y

	NA

	the reference genome is in FILE

	-o, --outfile=FILE

	N

	stdout

	write result to FILE

	-t, --threads=NUM

	N

	1

	use NUM threads

	-m, --min-candidate-frequency=F

	N

	0.2

	extract candidate variants from the aligned reads when the variant frequency is at least F

	-d, --min-candidate-depth=D

	N

	20

	extract candidate variants from the aligned reads when the depth is at least D

	-x, --max-haplotypes=N

	N

	1000

	consider at most N haplotypes combinations

	--max-rounds=N

	N

	50

	perform N rounds of consensus sequence improvement

	-c, --candidates=VCF

	N

	NA

	read variants candidates from VCF, rather than discovering them from aligned reads

	-a, --alternative-basecalls-bam=FILE

	N

	NA

	if an alternative basecaller was used that does not output event annotations then use basecalled sequences from FILE. The signal-level events will still be taken from the -b bam

	--calculate-all-support

	N

	NA

	when making a call, also calculate the support of the 3 other possible bases

	--models-fofn=FILE

	N

	NA

	read alternatives k-mer models from FILE

event align

Overview

Align nanopore events to reference k-mers

Input

	basecalled reads

	alignment information

	assembled genome

Usage example

nanopolish eventalign [OPTIONS] --reads reads.fa --bam alignments.bam --genome genome.fa

	Argument name(s)

	Required

	Default value

	Description

	--sam

	N

	NA

	use to write output in SAM format

	-w, --window=STR

	N

	NA

	Compute the consensus for window STR (format : ctg:start_id-end_id)

	-r, --reads=FILE

	Y

	NA

	the ONT reads are in fasta FILE

	-b, --bam=FILE

	Y

	NA

	the reads aligned to the genome assembly are in bam FILE

	-g, --genome=FILE

	Y

	NA

	the genome we are computing a consensus for is in FILE

	-t, --threads=NUM

	N

	1

	use NUM threads

	--scale-events

	N

	NA

	scale events to the model, rather than vice-versa

	--progress

	N

	NA

	print out a progress message

	-n, --print-read-names

	N

	NA

	print read names instead of indexes

	--summary=FILE

	N

	NA

	summarize the alignment of each read/strand in FILE

	--samples

	N

	NA

	write the raw samples for the event to the tsv output

	--models-fofn=FILE

	N

	NA

	read alternative k-mer models from FILE

phase-reads - (experimental)

Overview

Phase reads using heterozygous SNVs with respect to a reference genome

Input

	basecalled reads

	alignment information

	assembled genome

	variants (from nanopolish variants or from other sources eg. Illumina VCF)

Usage example

nanopolish phase-reads [OPTIONS] --reads reads.fa --bam alignments.bam --genome genome.fa variants.vcf

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/nanopolish-workflow.png
INPUT
PRE-PROCESS OUTPUT IMPROVE ASSEMBLY

Sequence reads Align reads to draft
FAST5
1
. 1
1
.
1 1
1 1
1
Basecall and merge reads merged i !]
1
FASTQ -1 i
(reads.fa) 1 : Segment the draft genome :
1
! 1
L 1
1! 1
1! 1
P! 1 N 1 ! '
I : draft_1.fa draft_2.fa draft_3.fa draft_4.fa I
: 2 1t 3: segment 4: 1
Index reads readdb : : Segf;;:;l Ssegjggib ;zgorrvlesr\()kb 15g07200kb 1
1 1
(reads.fa.gz.readdb) ! 1
1! 1
readl /path/to/fast5/readl : : :
read2 /path/to/fast5/read2, P! Compute improved assembly 1
1! 1
1! 1
¥ oo ooc €« =
1
1
i ; ! n
lished_1.f: lished_2.fz f: lished_4.fz
Assemble draft genome L eamartis | |Fsegmenta: | |cogmentor | | seqmenta:
FASTA 1 0-50kb 50-100kb 100-150kb 150-200kb
(draft.fa) - -3
Merge segments
Index draft genome
MMI
(draft.mmi) polished_genome.fa
0-200kb

_images/quickstart_methylation_results.png
=}
S

0.75

0.50

0.25

Nanopolish Methylation Frequency

0.00

N =28779r=0.887

-

L ‘

0.00 0.25 0.50 075 1.00
Bisulfite Methylation Frequency

count
¥ 1000
100

I10
1

_static/nanopolish-workflow.png
INPUT
PRE-PROCESS OUTPUT IMPROVE ASSEMBLY

Sequence reads Align reads to draft
FAST5
1
. 1
1
.
1 1
1 1
1
Basecall and merge reads merged i !]
1
FASTQ -1 i
(reads.fa) 1 : Segment the draft genome :
1
! 1
L 1
1! 1
1! 1
P! 1 N 1 ! '
I : draft_1.fa draft_2.fa draft_3.fa draft_4.fa I
: 2 1t 3: segment 4: 1
Index reads readdb : : Segf;;:;l Ssegjggib ;zgorrvlesr\()kb 15g07200kb 1
1 1
(reads.fa.gz.readdb) ! 1
1! 1
readl /path/to/fast5/readl : : :
read2 /path/to/fast5/read2, P! Compute improved assembly 1
1! 1
1! 1
¥ oo ooc €« =
1
1
i ; ! n
lished_1.f: lished_2.fz f: lished_4.fz
Assemble draft genome L eamartis | |Fsegmenta: | |cogmentor | | seqmenta:
FASTA 1 0-50kb 50-100kb 100-150kb 150-200kb
(draft.fa) - -3
Merge segments
Index draft genome
MMI
(draft.mmi) polished_genome.fa
0-200kb

nav.xhtml

 Table of Contents

 		
 nanopolish

_static/quickstart_methylation_results.png
=}
S

0.75

0.50

0.25

Nanopolish Methylation Frequency

0.00

N =28779r=0.887

-

L ‘

0.00 0.25 0.50 075 1.00
Bisulfite Methylation Frequency

count
¥ 1000
100

I10
1

_static/up-pressed.png

_static/plus.png

_static/up.png

