

Welcome to simplequi’s documentation!

This package implements the Codeskulptor.org simplegui API in a desktop environment,
running using PySide2/Qt. See the README for installation and usage instructions.

Contents:

	README
	simplequi
	Features

	Installation

	Examples

	Known Issues

	Contribute

	Support

	License

	simplequi usage
	Codeskulptor simplegui API
	Create a Frame

	Create a Timer

	Load an Image from a URL

	Load a Sound from a URL

	Lookup the Value for a Key Press

	Classes
	Frame

	Canvas

	Control

	Timer

	Image

	Sound

Index

	Index

README

simplequi

v1.0.7

[image: Build Status]
 [https://github.com/ArthurGW/simplequi/workflows/build/badge.svg][image: Test Status]
 [https://github.com/ArthurGW/simplequi/workflows/tests/badge.svg][image: Documentation Status]
 [https://simplequi.readthedocs.io/en/stable/?badge=stable][image: PyPI version]
 [https://pypi.org/project/simplequi][image: License: GPL v3]
 [https://www.gnu.org/licenses/gpl-3.0]Run codeskulptor.org programs on the desktop using Qt/PySide2

To run an existing codeskulptor script on your local machine, simply import simplequi as simplegui:

import simplequi as simplegui

The rest of your script goes here unchanged

Nothing else should need changing!

Features

	Runs codeskulptor.org Python3 scripts using a Qt application

	The API matches simplegui exactly, so you should be able to run your script exactly as on codeskulptor.org after importing simplequi

Installation

Get simplequi from pip:

pip install simplequi

Or checkout the source code from https://github.com/ArthurGW/simplequi, then run:

pip install -r requirements.txt

Examples

Included in simplequi/examples are various scripts to show simple usages.

After installing simplequi, these can be run for example like this:

python -m simplequi.examples.codeskulptor_default

Known Issues

	Only supports the simplegui part of the codeskulptor API.

	Does not support simplemap, simpleplot or other support functions.

	Support for simplemap and simpleplot is planned in future.

	Execution happens by the simplequi Qt application running when the Python interpreter is ready to shutdown

	This can cause problems with some debuggers, but is fine for normal use.

	Please report any issues you find with this!

	For now, only supports PySide2/qt-for-python

	Support for PyQt will hopefully be added in future.

Contribute

	Issue Tracker: https://github.com/ArthurGW/simplequi/issues

	Source Code: https://github.com/ArthurGW/simplequi

Support

If you are having issues, please let us know.
The maintainers can be contacted at simplequi.codeskulptor@gmail.com

License

The project is licensed under the GPLv3 license.

OpenSSL

The distribution includes a couple of OpenSSL DLLs, which are necessary for getting images and sounds from HTTPS urls. This
encryption may not be allowed in your country, please check local laws. These DLLs may only work on Windows, so you
may have to install OpenSSL yourself on other systems.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit. (http://www.openssl.org/).

See simplequi/resources/ssllib/LICENSE.txt for the full OpenSSL licence details.

simplequi usage

See the documents below for everything you can currently do with simplequi. Codeskulptor simplegui API
lists everything in the simplequi module itself, i.e. anything run by simplequi.function, e.g.
simplequi.create_frame(). Classes describes the usage of the classes returned
by the simplequi functions, such as Frame, Timer
etc.

	Codeskulptor simplegui API
	Create a Frame

	Create a Timer

	Load an Image from a URL

	Load a Sound from a URL

	Lookup the Value for a Key Press

	Classes
	Frame

	Canvas

	Control

	Timer

	Image

	Sound

Codeskulptor simplegui API

The functions below implement the basic methods used to interact with simplegui
and create objects: frames, timers, images and sounds.

Create a Frame

	
simplequi.create_frame(title, canvas_width, canvas_height, control_width=None)

	Creates a new frame for interactive programs.

The frame’s window has the given title, a string.
The frame consists of two parts: a control panel on the left and a canvas on the right.
The control panel’s width in pixels can be specified by the number control_width.
The canvas width in pixels is the number canvas_width.
The height in pixels of both the control panel and canvas is the number canvas_height.

	Parameters

	
	title (str) – the title of the frame window

	canvas_width (int) – the width of the drawing area, in pixels

	canvas_height (int) – the height of the drawing area, in pixels

	control_width (Optional[int]) – the width of the control area of the frame, in pixels

	Return type

	Frame

	Returns

	a Frame that can be used to setup (most of) the rest of the program

Create a Timer

	
simplequi.create_timer(interval, timer_handler)

	Creates a timer.

Once started, it will repeatedly call the given event handler at the specified interval, which is given in ms.
The handler should be defined with no arguments.

	Parameters

	
	interval (int) – the interval at which to call the timer handler, in milliseconds

	timer_handler (Callable[[], None]) – a function to call after each interval

	Return type

	Timer

	Returns

	a Timer that calls timer_handler every interval ms (once started)

Load an Image from a URL

	
simplequi.load_image(url)

	Loads an image from the specified URL.

The image can be in any format supported by PySide2.
No error is raised if the file isn’t found or is of an unsupported format.

	Parameters

	url (str) – the URL of the image to load

	Return type

	Image

	Returns

	an Image that can be passed to draw_image()

Load a Sound from a URL

	
simplequi.load_sound(url)

	Loads a sound from the specified URL.

Supports whatever audio formats that PySide2 supports.
No error is raised if the file isn’t found or is of an unsupported format.

	Parameters

	url (str) – the URL of the sound to load

	Return type

	Sound

	Returns

	a Sound that can be played, paused etc.

Lookup the Value for a Key Press

	
class simplequi._keys.KeyMap

	The keyboard event handlers receive the relevant key as an integer.

Because different browsers can give different values for the same keystrokes, simplequi provides a way to get the
appropriate key integer for a given meaning. The acceptable strings for character are the letters ‘a’…’z’ and
A’…’Z’, the digits ‘0’…‘9’, ‘space’, ‘left’, ‘right’, ‘up’, and ‘down’. Note that other keyboard symbols are not
defined in simplequi.KEY_MAP.

	
__getitem__(key)

	x.__getitem__(‘y’) <==> x[‘y’]

Get the value that is sent to a handler for a given key press.

This is usually called using square brackets, like value = simplequi.KEY_MAP['space']

	Parameters

	key (str) – the key press to look up

	Return type

	int

	Returns

	the integer value for the key

	Raises

	KeyError – if the key is not in the map for simplegui

Example usage:

def key_handler(self, key):
 if key == simplequi.KEY_MAP['left']:
 print('Left key pressed!')
 self.move_ship_left()

Classes

These are the classes returned by simplegui functions. They implement the rest
of the simplegui API. The methods on these are responsible for most of the fun
stuff that simplegui can do!

Frame

	
class simplequi._frame.Frame(title, canvas_width, canvas_height, control_width=None)

	Frame that contains all other graphical widgets

	Parameters

	
	title (str) – the text to use in the frame title bar

	canvas_width (int) – the width of the drawing canvas part of the frame

	canvas_height (int) – the height of the drawing canvas part of the frame

	control_width (Optional[int]) – the optional width of the controls (buttons etc.) part of the frame

	
add_button(text, button_handler, width=None)

	Adds a button to the frame’s control panel with the given text label.

The width of the button defaults to fit the given text, but can be specified in pixels. If the provided width is
less than that of the text, the text overflows the button. The handler should be defined with no parameters.

	Parameters

	
	text (str) – the button text

	button_handler (Callable[[], None]) – a function to call when the button is clicked

	width (Optional[int]) – the optional button width

	Return type

	Control

	Returns

	a handle that can be used to get and set the button text

	
add_input(text, input_handler, width)

	Adds a text input field to the control panel with the given text label.

The input field has the given width in pixels. The handler should be defined with one parameter. This parameter
will receive a string of the text input when the user presses the Enter key.

	Parameters

	
	text (str) – the text of the input field label

	input_handler (Callable[[str], None]) – a function that is called when the user presses enter in the text input field

	width (int) – the width of the input field

	Return type

	Control

	Returns

	a handle that can be used to get and set the input field text

	
add_label(text, width=None)

	Adds a text label to the control panel.

The width of the label defaults to fit the width of the given text, but can be specified in pixels. If the
provided width is less than that of the text, the text overflows the label.

	Parameters

	
	text (str) – the label text

	width (Optional[int]) – the optional label width

	Return type

	Control

	Returns

	a handle that can be used to get and set the label text

	
static get_canvas_textwidth(text, size, face)

	Given a text string, a font size, and a font face, this returns the width of the text in pixels.

It does not draw the text. This is useful in computing the position to draw text when you want it centered or
right justified in some region. The supported font faces are the default ‘serif’, ‘sans-serif’, and ‘monospace’.

	Parameters

	
	text (str) – the text to measure

	size (int) – the font size that would be drawn with

	face (str) – the font face that would be drawn with

	Return type

	int

	Returns

	the width of the text in pixels

	
set_canvas_background(colour)

	Changes the background colour of the frame’s canvas, which defaults to black.

..seealso:: get_colour() defines the allowed colour definitions

	Parameters

	colour (str) – the background colour to set, accepts any valid CSS colour

	Return type

	None

	
set_draw_handler(draw_handler)

	Adds an event handler that is responsible for all drawing.

The handler should be defined with one parameter. This parameter will receive a
Canvas object.

	Parameters

	draw_handler (Callable[[Canvas], None]) – function to call every 1/60:sup:th of a second (actually 17ms), which gets a
Canvas object as an argument

	Return type

	None

	
set_keydown_handler(key_handler)

	Adds a keyboard event handler waiting for keydown event.

When any key is pressed, the keydown handler is called once. The handler should be defined with one parameter.
This parameter will receive an integer representing a keyboard character.

	Parameters

	key_handler (Callable[[int], None]) – a function to call when a key is pressed down and the frame is focused

	Return type

	None

	
set_keyup_handler(key_handler)

	Adds a keyboard event handler waiting for keyup event.

When any key is released, the keyup handler is called once. The handler should be defined with one parameter.
This parameter will receive an integer representing a keyboard character.

	Parameters

	key_handler (Callable[[int], None]) – a function to call when a key is released and the frame is focused

	Return type

	None

	
set_mouseclick_handler(mouse_handler)

	Adds a mouse event handler waiting for mouseclick event.

When a mouse button is clicked, i.e., pressed and released, the mouseclick handler is called once. The handler
should be defined with one parameter. This parameter will receive a pair of screen coordinates, i.e., a tuple of
two non-negative integers.

	Parameters

	mouse_handler (Callable[[tuple], None]) – a function to call when the mouse is clicked

	Return type

	None

	
set_mousedrag_handler(mouse_handler)

	Adds a mouse event handler waiting for mousedrag event.

When a mouse is dragged while the mouse button is being pressed, the mousedrag handler is called for each new
mouse position. The handler should be defined with one parameter. This parameter will receive a pair of screen
coordinates, i.e., a tuple of two non-negative integers.

	Parameters

	mouse_handler (Callable[[Tuple[int, int]], None]) – a function to call when the mouse is clicked and dragged

	Return type

	None

	
start()

	Commences event handling on the frame (actually on the canvas that handles the events)

Canvas

	
class simplequi._canvas.Canvas(drawing_area)

	Wrapper for the drawing area, implementing the codeskulptor canvas API.

This class is passed to the draw_handler set by set_draw_handler() to allow calls
to draw on the canvas to be made in draw events. These events occur roughly 60 times per second. Note that users
should not create instances of this class, creation is handled internally.

	Parameters

	drawing_area (DrawingArea) – the actual widget that will be drawn on

	
draw_arc(center_point, radius, start_angle, end_angle, line_width, line_color, fill_color=None)

	Draws an arc at the given center point having the given radius.

The point is a 2-element tuple or list of screen coordinates. The starting and ending angles indicate which part
of a circle should be drawn. Angles are given in radians, clockwise starting with a zero angle at the 3 o’clock
position. The line’s width is given in pixels and must be positive. The fill color defaults to None. If the fill
color is specified, then the interior of the circle is colored.

	Parameters

	
	center_point (Tuple[int, int]) – the center of the arc

	radius (int) – the radius of the arc

	start_angle (float) – the start angle of the arc

	end_angle (float) – the end angle of the arc

	line_width (int) – the line width to draw with

	line_color (str) – the line colour to draw with

	fill_color (Optional[str]) – the colour to fill the arc with (optional, defaults to transparent)

	Return type

	None

	
draw_circle(center_point, radius, line_width, line_color, fill_color=None)

	Draws a circle at the given center point having the given radius.

The point is a 2-element tuple or list of screen coordinates. The line’s width is given in pixels and must be
positive. The fill color defaults to None. If the fill color is specified, then the interior of the circle is
colored.

	Parameters

	
	center_point (Tuple[int, int]) – the center of the circle

	radius (int) – the radius of the circle

	line_width (int) – the line width to draw with

	line_color (str) – the line colour to draw with

	fill_color (Optional[str]) – the colour to fill the circle with, optional, defaults to transparent

	Return type

	None

	
draw_image(image, center_source, width_height_source, center_dest, width_height_dest, rotation=0.0)

	Draw an image that was previously loaded by simplequi.load_image.

center_source is a pair of coordinates giving the position of the center of the image, while center_dest is a
pair of screen coordinates specifying where the center of the image should be drawn on the canvas.
width_height_source is a pair of integers giving the size of the original image, while width_height_dest is a
pair of integers giving the size of how the images should be drawn. The image can be rotated clockwise by
rotation radians.

You can draw the whole image file or just part of it. The source information (center_source and
width_height_source) specifies which pixels to display. If it attempts to use any pixels outside of the actual
file size, then no image will be drawn.

Specifying a different width or height in the destination than in the source will rescale the image.

	Parameters

	
	image (Image) – the Image to render

	center_source (Tuple[int, int]) – the center point of the portion of the original image to render

	width_height_source (Tuple[int, int]) – the width and height of the portion of the original image to render

	center_dest (Tuple[int, int]) – the location to render the image on the canvas

	width_height_dest (Tuple[int, int]) – the size to render the image on the canvas

	rotation (float) – amount in radians to rotate the image, with 0.0 at the 3 o’clock position, increasing clockwise

	Return type

	None

	
draw_line(point1, point2, line_width, line_color)

	Draws a line segment between the two points, each of which is a 2-element tuple or list of screen
coordinates. The line’s width is given in pixels and must be positive.

	Parameters

	
	point1 (Tuple[int, int]) – the coordinate of the start point of the line

	point2 (Tuple[int, int]) – the coordinate of the end point of the line

	line_width (int) – the width of the line to draw

	line_color (str) – the colour of the line to draw

	Return type

	None

	
draw_point(point, color)

	Draws a 1×1 rectangle at the given point in the given color. The point is a 2-element tuple or list of screen
coordinates.

	Parameters

	
	point (Tuple[int, int]) – the coordinates of the point

	color (str) – the colour to draw the point

	Return type

	None

	
draw_polygon(point_list, line_width, line_color, fill_color=None)

	Draws a sequence of line segments between each adjacent pair of points in the non-empty list, plus a line
segment between the first and last points.

It is an error for the list of points to be empty. Each point is a 2-element tuple or list of screen
coordinates. The line’s width is given in pixels, and must be positive. The fill color defaults to None. If the
fill color is specified, then the interior of the polygon is colored.

	Parameters

	
	point_list (Iterable[Tuple[int, int]]) – the coordinates of the polygon’s vertices (the final point is always joined to the first)

	line_width (int) – the line width to draw with

	line_color (str) – the line colour to draw with

	fill_color (Optional[str]) – the colour to fill the polygon with, optional, defaults to transparent

	Return type

	None

	
draw_polyline(point_list, line_width, line_color)

	Draws a sequence of line segments between each adjacent pair of points in the non-empty list.

It is an error for the list of points to be empty. Each point is a 2-element tuple or list of screen
coordinates. The line’s width is given in pixels and must be positive.

	Parameters

	
	point_list (Iterable[Tuple[int, int]]) – the coordinates of the line’s segment start/finish points, in order

	line_width (int) – the line width to draw with

	line_color (str) – the line colour to draw with

	Return type

	None

	
draw_text(text, point, font_size, font_color, font_face='serif')

	Writes the given text string in the given font size, color, and font face.

The point is a 2-element tuple or list of screen coordinates representing the lower-left-hand corner of where to
write the text. The supported font faces are ‘serif’ (the default), ‘sans-serif’, and ‘monospace’.

	Parameters

	
	text (str) – the text to draw

	point (Tuple[int, int]) – the point to draw at

	font_size (int) – the font size of the text

	font_color (str) – the colour of the text

	font_face (str) – the font face of the text (one of serif, sans-serif or monospace)

	Return type

	None

Control

	
class simplequi._widgets.Control(widget)

	A control that lives in the control area of a Frame, and allows getting and setting
of its display text.

	Parameters

	widget (QWidget) – the widget that this control wraps

	
get_text()

	Returns the text in a label, the text label of a button, or the text in the input field of a text input.

For an input field, this is useful to look at the contents of the input field before the user presses Enter.

	Return type

	str

	Returns

	the current text of the control

	
set_text(text)

	Changes the text in a label, the text label of a button, or the text in the input field of a text input.

For a button, it also resizes the button if the button wasn’t created with a particular width.
For an input field, this is useful to provide a default input for the input field.

	Parameters

	text (str) – the new text to set

	Return type

	None

Timer

	
class simplequi._timer.Timer(interval, timer_handler)

	Creates a timer.

Once started, it will repeatedly call the given event handler at the specified interval, which is given in
milliseconds. The handler should be defined with no arguments.

	Parameters

	
	interval (int) – how often to call the timer_handler

	timer_handler (Callable[[], None]) – a function to call every interval milliseconds

	
is_running()

	Returns whether the timer is running, i.e., it has been started, but not stopped.

	Return type

	bool

	
start()

	Starts or restarts the timer.

	
stop()

	Stops the timer. It can be restarted.

Image

	
class simplequi._image.Image(url)

	Loads an image from the specified URL.

The image can be in any format supported by PySide2.
No error is raised if the file can’t be loaded for any reason, it will simply not draw when asked to.

	Parameters

	url (str) – the URL to load the image from, can be a local file

	
get_height()

	Returns the height of the image in pixels. While the image is still loading, it returns zero.

	
get_width()

	Returns the width of the image in pixels. While the image is still loading, it returns zero.

Sound

	
class simplequi._sound.Sound(url)

	Loads a sound from the specified URL.

Supports whatever audio formats that PySide2 supports (depending on locally-installed codecs).
No error is raised if the file isn’t found or is of an unsupported format.

Sounds are tracked

	Parameters

	url (str) – the URL to load the sound from, can be a local file

	
pause()

	Stops the playing of the sound. Playing can be restarted at the stopped point with play().

	
play()

	Starts playing a sound, or restarts playing it at the point it was paused.

	
rewind()

	Stops playing the sound, makes it so the next play() will start playing the sound at the beginning.

	
set_volume(volume)

	Changes the volume for the sound to be the given level on a 0 (silent) – 1.0 (maximum) scale. Default is 1.

	Parameters

	volume (float) – the volume to set

	Return type

	None

Index

 _
 | A
 | C
 | D
 | F
 | G
 | I
 | K
 | L
 | P
 | R
 | S
 | T

_

 	
 	__getitem__() (simplequi._keys.KeyMap method)

A

 	
 	add_button() (simplequi._frame.Frame method)

 	
 	add_input() (simplequi._frame.Frame method)

 	add_label() (simplequi._frame.Frame method)

C

 	
 	Canvas (class in simplequi._canvas)

 	Control (class in simplequi._widgets)

 	
 	create_frame() (in module simplequi)

 	create_timer() (in module simplequi)

D

 	
 	draw_arc() (simplequi._canvas.Canvas method)

 	draw_circle() (simplequi._canvas.Canvas method)

 	draw_image() (simplequi._canvas.Canvas method)

 	draw_line() (simplequi._canvas.Canvas method)

 	
 	draw_point() (simplequi._canvas.Canvas method)

 	draw_polygon() (simplequi._canvas.Canvas method)

 	draw_polyline() (simplequi._canvas.Canvas method)

 	draw_text() (simplequi._canvas.Canvas method)

F

 	
 	Frame (class in simplequi._frame)

G

 	
 	get_canvas_textwidth() (simplequi._frame.Frame static method)

 	get_height() (simplequi._image.Image method)

 	
 	get_text() (simplequi._widgets.Control method)

 	get_width() (simplequi._image.Image method)

I

 	
 	Image (class in simplequi._image)

 	
 	is_running() (simplequi._timer.Timer method)

K

 	
 	KeyMap (class in simplequi._keys)

L

 	
 	load_image() (in module simplequi)

 	
 	load_sound() (in module simplequi)

P

 	
 	pause() (simplequi._sound.Sound method)

 	
 	play() (simplequi._sound.Sound method)

R

 	
 	rewind() (simplequi._sound.Sound method)

S

 	
 	set_canvas_background() (simplequi._frame.Frame method)

 	set_draw_handler() (simplequi._frame.Frame method)

 	set_keydown_handler() (simplequi._frame.Frame method)

 	set_keyup_handler() (simplequi._frame.Frame method)

 	set_mouseclick_handler() (simplequi._frame.Frame method)

 	set_mousedrag_handler() (simplequi._frame.Frame method)

 	
 	set_text() (simplequi._widgets.Control method)

 	set_volume() (simplequi._sound.Sound method)

 	Sound (class in simplequi._sound)

 	start() (simplequi._frame.Frame method)

 	(simplequi._timer.Timer method)

 	stop() (simplequi._timer.Timer method)

T

 	
 	Timer (class in simplequi._timer)

 nav.xhtml

 Table of Contents

 		
 Welcome to simplequi’s documentation!

 		
 README

 		
 simplequi

 		
 Features

 		
 Installation

 		
 Examples

 		
 Known Issues

 		
 Contribute

 		
 Support

 		
 License

 		
 simplequi usage

 		
 Codeskulptor simplegui API

 		
 Create a Frame

 		
 Create a Timer

 		
 Load an Image from a URL

 		
 Load a Sound from a URL

 		
 Lookup the Value for a Key Press

 		
 Classes

 		
 Frame

 		
 Canvas

 		
 Control

 		
 Timer

 		
 Image

 		
 Sound

_static/plus.png

_static/file.png

_static/minus.png

