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Simplebus is a organization that helps you to use CQRS and event sourcing in your application. Get started by reading
more about these concepts LINK or by digging in to common use cases LINK.
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2 Introduction



CHAPTER 1

Features and limitations

Why we do not have queries. Why we chose not to return thins from command handlers.
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4 Chapter 1. Features and limitations



CHAPTER 2

Package design

Why so many packages. Refer to Matthias Noback’s Principle of package design.

2.1 Getting started

Step by step how to include libraries and bundles

2.2 Organization overview

The organization has quite a few packages but each of them are very small. The packages have a single responsibility.
This page will describe all packages and what they should be used for.

2.2.1 MessageBus

Generic classes and interfaces for messages and message buses. The most common middleware does also live here.
Both commands and events are messages.

2.2.2 Asynchronous

To enable asynchronous messages with SimpleBus. This package contains strategies for publishing messages, pro-
ducers and consumers. To use this package you will need a serializer and a library that can publish messages on some
kind of queue.

2.2.3 Serialization

Generic classes and interfaces for serializing messages. This will put messages in an envelope and serialize the body
of the envelope.

2.2.4 JMSSerializerBridge

Bridge for using JMSSerializer as message serializer with SimpleBus/Serialization.

5
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2.2.5 DoctrineORMBridge

Bridge for using commands and events with Doctrine ORM. This will allow you do execute commands in a Doctrine
transaction. It will also handle your entities domain events.

2.2.6 DoctrineDBALBridge

Bridge for using SimpleBus with Doctrine DBAL. This will allow you do execute commands in a Doctrine transaction.

2.2.7 SymfonyBridge

Bridge for using command buses and event buses in Symfony projects. This package contains the CommandBusBun-
dle, EventBusBundle and DoctrineOrmBridgeBundle.

2.2.8 AsynchronousBundle

Symfony bundle for using SimpleBus/Asynchronous

2.2.9 JMSSerializerBundleBridge

A small bundle to use the JMSSerializerBridge with Symfony.

2.2.10 RabbitMQBundleBridge

Use OldSoundRabbitMQBundle with SimpleBus/AsynchronousBundle.

2.3 Introduction to CQRS and event sourcing

What it is, why, the defition. Why not returning from commands is good. Read more about it on Matthias Noback
blog posts.

2.4 Contributing

2.4.1 The documentation

We are happy for documentation contributions. This section will show you how to get up and running with contribution
the SimpleBus documentations. The documentation is formatted in reStructuredText. For this we use Sphinx, a
tool that makes it easy to create beautiful documentation. Assuming you have Python already installed, install Sphinx:

1 $ pip install sphinx sphinx-autobuild

6 Chapter 2. Package design
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Download GIT repository

Before you can start contributing the documentations you have to, fork the repository, clone it and create a new branch
with the following commands:

1 $ git clone https://github.com/your-name/repo-name.git
2 $ git checkout -b documentation-description

After cloning the documentation repository you can open these files in your preferred IDE. Now it’s time to start
editing one of the the .rst files. For example the contributing.rst and add the information you are missing
in the project.

Install the dependencies

This documentation is making use of external open source dependencies. You can think of the Read the Docs theme
and the Sphinx Extensions for PHP and Symfony. You can install these by the following command.

1 $ pip install -r requirements.txt

Building the documentation

After you have installed the open source dependencies and changed some files, you can manually rebuild the docu-
mentation HTML output. You can see the result by opening the _build/html/index.html file.

1 $ make html

Note: You can use sphinx-autobuild to auto-reload your docs. Run make autobuild instead of make
html.

Spelling

This documentation makes use of the Sphinx spelling extension, a spelling checker for Sphinx-based documentation.
You run this by the following command:

1 $ make spelling

If there are some technical words that are not recognized, then you have to add them to
spelling_word_list.txt. Please fill in this glossary in alphabetical order. As an example, you’ll see
the output below for the word symfony that’s not found in the contributing.rst file.

1 contributing.rst:55:symfony:

Commit & pull request

Now it’s time to commit your changes and push it to your repository. The last step to finish your contribution, is to
create an pull requests for your valuable contribution. Thank you!

2.4. Contributing 7
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2.5 Asynchronous example

This article will explain how to use asynchronous messages with Symfony. We will assume that you know the basics
of SimpleBus, CQRS and event sourcing. This is just an example. you could of course have a working asynchronous
set up with SimpleBus and Symfony in a different way and with different libraries.

2.5.1 Installation

Install Simplebus, async support, message serializer and the RabbitMQBundle.

1 composer require simple-bus/asynchronous-bundle simple-bus/symfony-bridge simple-bus/doctrine-orm-bridge simple-bus/jms-serializer-bundle-bridge simple-bus/rabbitmq-bundle-bridge

Register the bundles in Symfony’s AppKernel.php

1 class AppKernel extends Kernel
2 {
3 public function registerBundles()
4 {
5 $bundles = array(
6 ...
7 new SimpleBus\SymfonyBridge\SimpleBusCommandBusBundle()
8 new SimpleBus\SymfonyBridge\SimpleBusEventBusBundle()
9 new SimpleBus\SymfonyBridge\DoctrineOrmBridgeBundle()

10 new SimpleBus\AsynchronousBundle\SimpleBusAsynchronousBundle()
11 new SimpleBus\RabbitMQBundleBridge\SimpleBusRabbitMQBundleBridgeBundle()
12 new SimpleBus\JMSSerializerBundleBridge\SimpleBusJMSSerializerBundleBridgeBundle()
13 new OldSound\RabbitMqBundle\OldSoundRabbitMqBundle()
14 new JMS\SerializerBundle\JMSSerializerBundle()
15 )
16 // ...
17 }
18 // ...
19 }

2.5.2 Configuration

There is quite a lot of moving parts in this configuration. Most if it is to configure the queue and make sure Rabbit-
MqBundle is aware of SimpleBus’ consumers and producers.

1 // app/config/config.yml
2 parameters:
3 app.command_queue: 'commands'
4 app.event_queue: 'events'
5

6 simple_bus_rabbit_mq_bundle_bridge:
7 commands:
8 producer_service_id: old_sound_rabbit_mq.asynchronous_commands_producer
9 events:

10 producer_service_id: old_sound_rabbit_mq.asynchronous_events_producer
11

12 simple_bus_asynchronous:
13 events:
14 strategy: 'predefined'
15

16 old_sound_rabbit_mq:

8 Chapter 2. Package design
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17 connections:
18 default:
19 host: "127.0.0.1"
20 port: 5672
21 user: 'guest'
22 password: 'guest'
23 vhost: '/'
24 lazy: false
25 connection_timeout: 3
26 read_write_timeout: 3
27

28 # requires php-amqplib v2.4.1+ and PHP5.4+
29 keepalive: false
30

31 # requires php-amqplib v2.4.1+
32 heartbeat: 0
33 producers:
34 asynchronous_commands:
35 connection: default
36 exchange_options: { name: '%app.command_queue%', type: "direct" }
37

38 asynchronous_events:
39 connection: default
40 exchange_options: { name: '%app.event_queue%', type: "direct" }
41

42 consumers:
43 asynchronous_commands:
44 connection: default
45 exchange_options: { name: '%app.command_queue%', type: direct }
46 queue_options: { name: '%app.command_queue%' }
47 callback: simple_bus.rabbit_mq_bundle_bridge.commands_consumer
48

49 asynchronous_events:
50 connection: default
51 exchange_options: { name: '%app.command_queue%', type: direct }
52 queue_options: { name: '%app.command_queue%' }
53 callback: simple_bus.rabbit_mq_bundle_bridge.events_consumer

2.5.3 Usage

The first thing we need to do is to create a command and tag the command handler as asynchronous. You do that with
the asynchronous_command_handler tag.

1 services:
2 command_handler.email.SendEmailToAllUsers:
3 class: App\Message\CommandHandler\Email\SendEmailToAllUsersHandler
4 autowire: true
5 tags:
6 - { name: 'asynchronous_command_handler', handles: App\Message\Command\Email\SendEmailToAllUsers }

You can of course to the very same with events subscribers. When tagging event subscribers as asynchronous you
should use the asynchronous_event_subscriber tag.

SimpleBus will automatically make sure that the messages get put on the queue. There is not special way you would
create and handle asynchronous messages.

2.5. Asynchronous example 9
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1 $this->container->get('command_bus')->handle(new SendEmailToAllUsers());

2.5.4 Consuming Messages

There is different strategies you could use to consume messages from the queue. One simple solution is to run the
following commands. They will start listening on incoming messages and consume them. If you are using these
commands it is recommended to set up supervisord.

1 php app/console rabbitmq:consume asynchronous_events
2 php app/console rabbitmq:consume asynchronous_commands

2.6 Implementing a command bus

The classes and interfaces from this package can be used to set up a command bus. The characteristics of a command
bus are:

• It handles commands, i.e. imperative messages

• Commands are handled by exactly one command handler

• The behavior of the command bus is extensible: middlewares are allowed to do things before or after handling
a command

2.6.1 Setting up the command bus

At least we need an instance of MessageBusSupportingMiddleware:

1 use SimpleBus\Message\Bus\Middleware\MessageBusSupportingMiddleware;
2

3 $commandBus = new MessageBusSupportingMiddleware();

Finish handling a command, before handling the next

We want to make sure that commands are always fully handled before other commands will be handled, so we add a
specialized middleware for that:

1 use SimpleBus\Message\Bus\Middleware\FinishesHandlingMessageBeforeHandlingNext;
2

3 $commandBus->appendMiddleware(new FinishesHandlingMessageBeforeHandlingNext());

Defining the command handler map

Now we also want commands to be handled by exactly one command handler (which can be any callable). We first
need to define the collection of handlers that are available in the application. We should make this command handler
map lazy-loading, or every command handler will be fully loaded, even though it is not going to be used:

1 use SimpleBus\Message\CallableResolver\CallableMap;
2 use SimpleBus\Message\CallableResolver\ServiceLocatorAwareCallableResolver;
3

4 // Provide a map of command names to callables. You can provide actual callables, or lazy-loading ones.
5 $commandHandlersByCommandName = [

10 Chapter 2. Package design

http://php.net/manual/en/language.types.callable.php


SimpleBus Documentation, Release latest

6 'Fully\Qualified\Class\Name\Of\Command' => ... // a "callable"
7 ];

Each of the provided “callables” can be one of the following things:

• An actual PHP callable,

• A service id (string) which the service locator (see below) can resolve to a PHP callable,

• An array of which the first value is a service id (string), which the service locator can resolve to a regular object,
and the second value is a method name.

For backwards compatibility an object with a handle() method also counts as a “callable”.

1 // Provide a service locator callable. It will be used to instantiate a handler service whenever requested.
2 $serviceLocator = function ($serviceId) {
3 $handler = ...;
4

5 return $handler;
6 }
7

8 $commandHandlerMap = new CallableMap(
9 $commandHandlersByCommandName,

10 new ServiceLocatorAwareCallableResolver($serviceLocator)
11 );

Resolving the command handler for a command

The name of a command

First we need a way to resolve the name of a command. You can use the fully-qualified class name (FQCN) of a
command object as its name:

1 use SimpleBus\Message\Name\ClassBasedNameResolver;
2

3 $commandNameResolver = new ClassBasedNameResolver();

Or you can ask command objects what their name is:

1 use SimpleBus\Message\Name\NamedMessageNameResolver;
2

3 $commandNameResolver = new NamedMessageNameResolver();

In that case your commands have to implement NamedMessage:

1 use SimpleBus\Message\Name\NamedMessage;
2

3 class YourCommand implements NamedMessage
4 {
5 public static function messageName()
6 {
7 return 'your_command';
8 }
9 }

10

11 .. rubric:: Implementing your own ``MessageNameResolver``
12 :name: implementing-your-own-messagenameresolver
13

14 If you want to use another rule to determine the name of a command,

2.6. Implementing a command bus 11
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15 create a class that implements
16 ``SimpleBus\Message\Name\MessageNameResolver``.

Resolving the command handler based on the name of the command

Using the MessageNameResolver of your choice, you can now let the command handler resolver find the right
command handler for a given command.

1 use SimpleBus\Message\Handler\Resolver\NameBasedMessageHandlerResolver;
2

3 $commandHandlerResolver = new NameBasedMessageHandlerResolver(
4 $commandNameResolver,
5 $commandHandlerMap
6 );

Finally, we should add some middleware to the command bus that calls the resolved command handler:

1 use SimpleBus\Message\Handler\DelegatesToMessageHandlerMiddleware;
2

3 $commandBus->appendMiddleware(
4 new DelegatesToMessageHandlerMiddleware(
5 $commandHandlerResolver
6 )
7 );

2.6.2 Using the command bus: an example

Consider the following command:

1 class RegisterUser
2 {
3 private $emailAddress;
4 private $plainTextPassword;
5

6 public function __construct($emailAddress, $plainTextPassword)
7 {
8 $this->emailAddress = $emailAddress;
9 $this->plainTextPassword = $plainTextPassword;

10 }
11

12 public function emailAddress()
13 {
14 return $this->emailAddress;
15 }
16

17 public function plainTextPassword()
18 {
19 return $this->plainTextPassword;
20 }
21 }

This command communicates the intention to “register a new user”. The message data consists of an email address
and a password in plain text. This information is required to execute the desired behavior.

The handler for this command looks like this:

12 Chapter 2. Package design
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1 class RegisterUserCommandHandler
2 {
3 ...
4

5 public function handle(RegisterUser $command)
6 {
7 $user = User::register(
8 $command->emailAddress(),
9 $command->plainTextPassword()

10 );
11

12 $this->userRepository->add($user);
13 }
14 }

We should register this handler as a service and add the service id to the command handler map. Since we have already
fully configured the command bus, we can just start creating a new command object and let the command bus handle
it. Eventually the command will be passed as a message to the RegisterUserCommandHandler:

1 $command = new RegisterUser(
2 'matthiasnoback@gmail.com',
3 's3cr3t'
4 );
5

6 $commandBus->handle($command);
7

8 .. rubric:: Implementing your own command bus middleware
9 :name: implementing-your-own-command-bus-middleware

It’s very easy to extend the behavior of the command bus. You can create a class that implements
MessageBusMiddleware:

1 use SimpleBus\Message\Bus\Middleware\MessageBusMiddleware;
2

3 /**
4 * Marker interface for commands that should be handled asynchronously
5 */
6 interface IsHandledAsynchronously
7 {
8 }
9

10 class HandleCommandsAsynchronously implements MessageBusMiddleware
11 {
12 ...
13

14 public function handle($message, callable $next)
15 {
16 if ($message instanceof IsHandledAsynchronously) {
17 // handle the message asynchronously using a message queue
18 $this->messageQueue->add($message);
19 } else {
20 // handle the message synchronously, i.e. right-away
21 $next($message);
22 }
23 }
24 }

You should add an instance of that class as middleware to any MessageBusSupportingMiddleware instance
(like the command bus we created earlier):

2.6. Implementing a command bus 13
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1 $commandBus->appendMiddleware(new HandleCommandsAsynchronously());

Make sure that you do this at the right place, before or after you add the other middlewares.

Calling $next($message) will make sure that the next middleware in line is able to handle the message.

Logging messages

To log every message that passes through the command bus, add the LoggingMiddleware right before the
DelegatesToMessageHandlerMiddleware. Make sure to set up a PSR-3 compliant logger first:

1 use Psr\Log\LoggerInterface;
2 use Psr\Log\LogLevel;
3

4 // $logger is an instance of LoggerInterface
5 $logger = ...;
6 $loggingMiddleware = new LoggingMiddleware($logger, LogLevel::DEBUG);
7 $commandBus->appendMiddleware($loggingMiddleware);

Continue to read about the perfect complement to the command bus: the event bus.

2.7 Implementing an event bus

The classes and interfaces from this package can also be used to set up an event bus. The characteristics of an event
bus are:

• It handles events, i.e. informational messages

• Zero or more event subscribers will be notified of the occurance of an event

• The behavior of the event bus is extensible: middlewares are allowed to do things before or after handling an
event

2.7.1 Setting up the event bus

At least we need an instance of MessageBusSupportingMiddleware:

1 use SimpleBus\Message\Bus\Middleware\MessageBusSupportingMiddleware;
2

3 $eventBus = new MessageBusSupportingMiddleware();

Finish handling an event, before handling the next

We want to make sure that events are always fully handled before other events will be handled, so we add a specialized
middleware for that:

1 use SimpleBus\Message\Bus\Middleware\FinishesHandlingMessageBeforeHandlingNext;
2

3 $eventBus->appendMiddleware(new FinishesHandlingMessageBeforeHandlingNext());

14 Chapter 2. Package design
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Defining the event subscriber collection

We want any number of event subscribers to be notified of a given event. We first need to define the collection of
event subscribers that are available in the application. We should make this event subscriber collection lazy-loading,
or every event subscriber will be fully loaded, even though it is not going to be used:

1 use SimpleBus\Message\CallableResolver\CallableCollection;
2 use SimpleBus\Message\CallableResolver\ServiceLocatorAwareCallableResolver;
3

4 // Provide a map of event names to callables. You can provide actual callables, or lazy-loading ones.
5 $eventSubscribersByEventName = [
6 Fully\Qualified\Class\Name\Of\Event::class => [ // an array of "callables",
7 ...,
8 ...
9 ]

10 ...
11 ];

Each of the provided “callables” can be one of the following things:

• An actual PHP callable,

• A service id (string) which the service locator (see below) can resolve to a PHP callable,

• An array of which the first value is a service id (string), which the service locator can resolve to a regular object,
and the second value is a method name.

For backwards compatibility an object with a notify() method also counts as a “callable”.

1 // Provide a service locator callable. It will be used to instantiate a subscriber service whenever requested.
2 $serviceLocator = function ($serviceId) {
3 $handler = ...;
4

5 return $handler;
6 };
7

8 $eventSubscriberCollection = new CallableCollection(
9 $eventSubscribersByEventName,

10 new ServiceLocatorAwareCallableResolver($serviceLocator)
11 );

Resolving the event subscribers for an event

The name of an event

First we need a way to resolve the name of an event. You can use the fully-qualified class name (FQCN) of an event
object as its name:

1 use SimpleBus\Message\Name\ClassBasedNameResolver;
2

3 $eventNameResolver = new ClassBasedNameResolver();

Or you can ask event objects what their name is:

1 use SimpleBus\Message\Name\NamedMessageNameResolver;
2

3 $eventNameResolver = new NamedMessageNameResolver();

In that case your events have to implement NamedMessage:

2.7. Implementing an event bus 15

http://php.net/manual/en/language.types.callable.php


SimpleBus Documentation, Release latest

1 use SimpleBus\Message\Name\NamedMessage;
2

3 class YourEvent implements NamedMessage
4 {
5 public static function messageName()
6 {
7 return 'your_event';
8 }
9 }

10

11 .. rubric:: Implementing your own ``MessageNameResolver``
12 :name: implementing-your-own-messagenameresolver
13

14 If you want to use another rule to determine the name of an event,
15 create a class that implements
16 ``SimpleBus\Message\Name\MessageNameResolver``.

Resolving the event subscribers based on the name of the event

Using the MessageNameResolver of your choice, you can now let the event subscribers resolver find the right
event subscribers for a given event.

1 use SimpleBus\Message\Subscriber\Resolver\NameBasedMessageSubscriberResolver;
2

3 $eventSubscribersResolver = new NameBasedMessageSubscriberResolver(
4 $eventNameResolver,
5 $eventSubscriberCollection
6 );

Finally, we should add some middleware to the event bus that notifies all of the resolved event subscribers:

1 use SimpleBus\Message\Subscriber\NotifiesMessageSubscribersMiddleware;
2

3 $eventBus->appendMiddleware(
4 new NotifiesMessageSubscribersMiddleware(
5 $eventSubscribersResolver
6 )
7 );

2.7.2 Using the event bus: an example

Consider the following event:

1 class UserRegistered
2 {
3 private $userId;
4

5 public function __construct(UserId $userId)
6 {
7 $this->userId = $userId;
8 }
9

10 public function userId()
11 {
12 return $this->userId;

16 Chapter 2. Package design
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13 }
14 }

This event conveys the information that “a new user was registered”. The message data consists of the unique identifier
of the user that was registered. This information is required for event subscribers to act upon the event.

A subscriber for this event looks like this:

1 class SendWelcomeMailWhenUserRegistered
2 {
3 ...
4

5 public function notify($message)
6 {
7 $user = $this->userRepository->byId($message->userId());
8

9 // send the welcome mail
10 }
11 }

We should register this subscriber as a service and add the service id to the event subscriber collection. Since we
have already fully configured the event bus, we can just start creating a new event object and let the event bus handle
it. Eventually the event will be passed as a message to the SendWelcomeMailWhenUserRegistered event
subscriber:

1 $userId = $this->userRepository->nextIdentity();
2

3 $event = new UserRegistered($userId);
4

5 $eventBus->handle($event);

2.7.3 Implementing your own event bus middleware

It’s very easy to extend the behavior of the event bus. You can create a class that implements
MessageBusMiddleware:

1 use SimpleBus\Message\Bus\Middleware\MessageBusMiddleware;
2

3 /**
4 * Marker interface for domain events that should be stored in the event store
5 */
6 interface DomainEvent
7 {
8 }
9

10 class StoreDomainEvents implements MessageBusMiddleware
11 {
12 // ...
13

14 public function handle($message, callable $next)
15 {
16 if ($message instanceof DomainEvent) {
17 // store the domain event
18 $this->eventStore->add($message);
19 }
20

21 // let other middlewares do their job

2.7. Implementing an event bus 17
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22 $next($message);
23 }
24 }

You should add an instance of that class as middleware to any MessageBusSupportingMiddleware instance
(like the event bus we created earlier):

1 $eventBus->appendMiddleware(new StoreDomainEvents());

Make sure that you do this at the right place, before or after you add the other middlewares.

Calling $next($message) will make sure that the next middleware in line is able to handle the message.

2.7.4 Logging messages

To log every message that passes through the event bus, add the LoggingMiddleware right before the
NotifiesMessageSubscribersMiddleware. Make sure to set up a PSR-3 compliant logger first:

1 use Psr\Log\LoggerInterface;
2 use Psr\Log\LogLevel;
3 use SimpleBus\Message\Logging\LoggingMiddleware;
4

5 // $logger is an instance of LoggerInterface
6 $logger = ...;
7 $loggingMiddleware = new LoggingMiddleware($logger, LogLevel::DEBUG);
8 $eventBus->appendMiddleware($loggingMiddleware);

Continue to read about recording events and handling them.

2.8 Recording events and handling them

While the command bus handles a command, certain events will take place. It might be important to record these
events and, when the command has been fully handled, notify other parts of the system about the events that were
recorded.

This can be accomplished by using message recorders. These are objects with the ability to record messages. From
the outside these messages can be retrieved, and erased:

1 interface ContainsRecordedMessages
2 {
3 public function recordedMessages();
4

5 public function eraseMessages();
6 }

2.8.1 Collecting events

Publicly

The default implementation, which has a public record() method as well, is the PublicMessageRecorder:

1 use SimpleBus\Message\Recorder\PublicMessageRecorder;
2

3 $publicMessageRecorder = new PublicMessageRecorder();

18 Chapter 2. Package design

http://www.php-fig.org/psr/psr-3/


SimpleBus Documentation, Release latest

4

5 $event = new UserRegistered(...);
6

7 $publicMessageRecorder->record($event);
8

9 $recordedEvents = $publicMessageRecorder->recordedEvents();
10 // $recordedEvents is an array containing the previously recorded $event object

Privately

When you use domain events, your domain entities will generate events while you change them. You record those
events inside the entity. Later, when the changes have been persisted and the database transaction has succeeded, you
should collect the recorded events and handle them:

1 $entity->changeSomething();
2 // $entity generates a SomethingChanged event and records it internally
3

4 // start transaction
5 $entityManager->persist($entity);
6 // commit transaction
7

8 $events = $entity->recordedEvents();
9

10 // handle the events
11 foreach ($events as $event) {
12 $eventBus->handle($event);
13 }

You can give your entities the ability to record their own events by letting them implement the RecordsMessages
interface and using the PrivateMessageRecorderCapabilities trait:

1 use SimpleBus\Message\Recorder\RecordsMessages;
2 use SimpleBus\Message\Recorder\PrivateMessageRecorderCapabilities;
3

4 class YourEntity implements RecordsMessages
5 {
6 use PrivateMessageRecorderCapabilities;
7

8 public function changeSomething()
9 {

10 ...
11

12 $this->record(new SomethingChanged());
13 }
14 }

2.8.2 Handling events

Handling publicly recorded events

Events are recorded while a command is handled. We only want to handle the events themselves after the command
has been completely and successfully been handled. The best option to accomplish this is to add a piece of middleware
to the command bus. This middleware needs the message recorder to find out which events were recorded during the
handling of a command, and it needs the event bus to actually handle the recorded events:

2.8. Recording events and handling them 19
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1 use SimpleBus\Message\Recorder\HandlesRecordedMessagesMiddleware;
2

3 $commandBus->appendMiddleware(new HandlesRecordedMessagesMiddleware(
4 $publicMessageRecorder,
5 $eventBus
6 ));

Make sure to add this middleware first, before adding any other middleware. Like mentioned before: we only want
events to be handled when we know that everything else has gone well.

Only the command bus handled recorded events automatically

When using a standard setup (like described above), only the command bus automatically handles
recorded events. If you want to dispatch new events in for example event subscribers, you shouldn’t
record the event, but just inject the event bus as a constructor argument and let it handle the new event
right-away.

2.8.3 Handling domain events

When you privately record events inside your domain entities, you need to collect those recorded events manually.
Your database abstraction library, ORM or ODM probably offers a way to hook into the process of persisting the
entities and collecting them somehow. After the command has been handled successfully and the transaction has been
committed, you can iterate over those entities and collect their recorded events.

Handling domain events with Doctrine ORM

SimpleBus comes with a Doctrine ORM bridge. Using this package you can collect recorded events from
Doctrine ORM entities. See its README file for further instructions.

2.8.4 Combining multiple message recorders

If you have multiple ways in which you record events, e.g. using the PublicMessageRecorder and using domain
events, you can combine those into one message recorder, which aggregates the recorded messages:

1 use SimpleBus\Message\Recorder\AggregatesRecordedMessages;
2

3 $aggregatingMessageRecorder = new AggregatesRecordedMessages(
4 [
5 $publicMessageRecorder,
6 $domainEventsMessagesRecorder,
7 ...
8 ]
9 );

Finally, you can provide this aggregating message recorder to the HandlesRecordedMessagesMiddleware
and it will act as if it is a single message recorder.

1 $commandBus->appendMiddleware(new HandlesRecordedMessagesMiddleware(
2 $aggregatingMessageRecorder,
3 $eventBus
4 ));

20 Chapter 2. Package design
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2.9 Asynchronous

This package contains generic classes and interfaces which can be used to process messages asynchronously using a
SimpleBus MessageBus instance.

@TODO The intro should explain what it does.

2.9.1 Publishing messages

When a Message should not be handled by the message bus (i.e. command or event bus) immediately (i.e. syn-
chronously), it can be published to be handled by some other process. This library comes with three strategies for
publishing messages:

1. A message will always also be published.

2. A message will only be published when the message bus isn’t able to handle it because there is no handler
defined for it.

3. A message will be published only if its name exists in a predefined list.

Strategy 1: Always publish messages

This strategy is very useful when you have an event bus that notifies event subscribers of events that have occurred. If
you have set up the event bus, you can add the AlwaysPublishesMessages middleware to it:

1 use SimpleBus\Message\Bus\Middleware\MessageBusSupportingMiddleware;
2 use SimpleBus\Asynchronous\MessageBus\AlwaysPublishesMessages;
3 use SimpleBus\Asynchronous\Publisher\Publisher;
4 use SimpleBus\Message\Message;
5

6 // $eventBus is an instance of MessageBusSupportingMiddleware
7 $eventBus = ...;
8

9 // $publisher is an instance of Publisher
10 $publisher = ...;
11

12 $eventBus->appendMiddleware(new AlwaysPublishesMessages($publisher));
13

14 // $event is an object
15 $event = ...;
16

17 $eventBus->handle($event);

The middleware publishes the message to the publisher (which may add it to some a queue of some sorts). After that
it just calls the next middleware and lets it process the same message in the usual way.

By applying this strategy you basically allow other processes to respond to any event that occurs within your applica-
tion.

Strategy 2: Only publish messages that could not be handled

This strategy is useful if you have a command bus that handles commands. If you have set up the command bus, you
can add the PublishesUnhandledMessages middleware to it:
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1 use SimpleBus\Message\Bus\Middleware\MessageBusSupportingMiddleware;
2 use SimpleBus\Asynchronous\MessageBus\PublishesUnhandledMessages;
3 use SimpleBus\Asynchronous\Publisher\Publisher;
4 use Psr\Log\LoggerInterface;
5 use Psr\Log\LogLevel;
6

7 // $commandBus is an instance of MessageBusSupportingMiddleware
8 $commandBus = ...;
9

10 // $publisher is an instance of Publisher
11 $publisher = ...;
12

13 // $logger is an instance of LoggerInterface
14 $logger = ...;
15

16 // $logLevel is one of the class constants of LogLevel
17 $logLevel = LogLevel::DEBUG;
18

19 $commandBus->appendMiddleware(new PublishesUnhandledMessages($publisher, $logger, $logLevel));
20

21 // $command is an object
22 $command = ...;
23

24 $commandBus->handle($command);

Because of the nature of commands (they have a one-to-one correspondence with their handlers), it doesn’t make sense
to always publish a command. Instead, it should only be published when it couldn’t be handled by your application.
Possibly some other process knows how to handle it.

If no command handler was found and the command is published, this will be logged using the provided $logger.

Strategy 3: Only publish predefined messages

This strategy is useful when you know what messages you want to publish.

1 use SimpleBus\Message\Bus\Middleware\MessageBusSupportingMiddleware;
2 use SimpleBus\Asynchronous\MessageBus\AlwaysPublishesMessages;
3 use SimpleBus\Asynchronous\Publisher\Publisher;
4 use SimpleBus\Message\Message;
5 use SimpleBus\Message\Name\MessageNameResolver;
6

7 // $eventBus is an instance of MessageBusSupportingMiddleware
8 $eventBus = ...;
9

10 // $publisher is an instance of Publisher
11 $publisher = ...;
12

13 // $messageNameResolver is an instance of MessageNameResolver
14 $messageNameResolver = ...;
15

16 // The list of names will depend on what MessageNameResolver you are using.
17 $names = ['My\\Event', 'My\\Other\\Event'];
18

19 $eventBus->appendMiddleware(new PublishesPredefinedMessages($publisher, $messageNameResolver, $names));
20

21 // $event is an object
22 $event = ...;
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23

24 $eventBus->handle($event);

2.9.2 Consuming messages

When a message has been published, for instance to some kind of queue, another process should be able to consume
it, i.e. receive and process it.

A message consumer actually consumes serialized envelopes, instead of the messages themselves. A consumer then
restores the Envelope by deserializing it and finally it can restore the Message itself by deserializing the serialized
message carried by the Envelope.

To ease integration of existing messaging software with SimpleBus/Asynchronous, this library contains a stan-
dard implementation of a SerializedEnvelopeConsumer. It deserializes a serialized Envelope, then lets the
message bus handle the Message contained in the Envelope.

1 use SimpleBus\Asynchronous\Consumer\StandardSerializedEnvelopeConsumer;
2 use SimpleBus\Serialization\Envelope\Serializer\MessageInEnvelopeSerializer;
3 use SimpleBus\Message\Bus\MessageBus;
4

5 // $messageSerializer is an instance of MessageInEnvelopeSerializer
6 $messageSerializer = ...;
7

8 // $messageBus is an instance of MessageBus
9 $messageBus = ...;

10

11 $consumer = StandardSerializedEnvelopeConsumer($messageSerializer, $messageBus);
12

13 // keep fetching serialized envelopes
14 while ($aSerializedEnvelope = ...) {
15 // this causes $messageBus to handle the deserialized Message
16 $consumer->consume($aSerializedEnvelope);
17 }

For more information about envelopes and serializing messages, take a look at the documentation of Simple-
Bus/Serialization.

2.9.3 Routing keys

A routing key is a concept that originates from RabbitMQ: it allows you to let particular groups of messages be routed
to specific queues, which may then be consumed by dedicated consumers.

Whether or not you use RabbitMQ, you might need the concept of a routing key somewhere in your application. This
library contains an interface RoutingKeyResolver and two very simple standard implementations of it:

1. The ClassBasedRoutingKeyResolver: when asked to resolve a routing key for a given Message, it
takes the full class name of it and replaces \ with ..

2. The EmptyRoutingKeyResolver: it always returns an empty string as the routing key for a given
Message.

2.9.4 Additional properties

“Additional properties” is a concept that originates from RabbitMQ: it allows you to add metadata or otherwise con-
figure a message before it is sent to the server.
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Whether or not you use RabbitMQ, you might need these additional (message) properties somewhere in your
application. This library contains an interface AdditionalPropertiesResolver and one implemen-
tation of that interface, the DelegatingAdditionalPropertiesResolver which accepts an array of
AdditionalPropertiesResolver instances. It lets them all step in and provide values:

1 use SimpleBus\Asynchronous\Properties\DelegatingAdditionalPropertiesResolver;
2 use SimpleBus\Asynchronous\Properties\AdditionalPropertiesResolver;
3

4 class MyPropertiesResolver implements AdditionalPropertiesResolver
5 {
6 public function resolveAdditionalPropertiesFor($message)
7 {
8 // determine which properties to use
9

10 return [
11 'content-type' => 'application/xml'
12 ];
13 }
14 }
15

16 $delegatingResolver = new DelegatingAdditionalPropertiesResolver(
17 [
18 new MyPropertiesResolver(),
19 ...
20 ]
21 );
22

23 // $message is some message (e.g. a command or event)
24 $message = ...;
25

26 $properties = $delegatingResolver->resolveAdditionalPropertiesFor($message);

2.10 DoctrineDBALBridge

This package provides a command bus middleware that can be used to integrate SimpleBus/MessageBus with Doctrine
DBAL.

It provides an easy way to wrap command handling in a database transaction.

@TODO The intro should explain what it does.

2.10.1 Getting started

Installation

Using Composer:

1 composer require simple-bus/doctrine-dbal-bridge

Preparations

To use the middleware provided by the library, set up a command bus, if you didn’t already do this:
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1 use SimpleBus\Message\Bus\Middleware\MessageBusSupportingMiddleware;
2

3 $commandBus = new MessageBusSupportingMiddleware();
4 ...

Make sure to also properly set up a Doctrine connection:

1 // $connection is an instance of Doctrine\DBAL\Driver\Connection
2 $connection = ...;

2.10.2 Transactions

It is generally a good idea to wrap command handling in a database transaction. If you want to do this, add the
WrapsMessageHandlingInTransaction middleware to the command bus. Provide an instance of the Doc-
trine Connection interface that you want to use.

1 use SimpleBus\DoctrineDBALBridge\MessageBus\WrapsMessageHandlingInTransaction;
2

3 // $connection is an instance of Doctrine\DBAL\Driver\Connection
4 $connection = ...;
5

6 $transactionalMiddleware = new WrapsMessageHandlingInTransaction($connection);
7

8 $commandBus->addMiddleware($transactionalMiddleware);

When an exception is thrown, the transaction will be rolled back. If not, the transaction is committed.

2.11 DoctrineORMBridge

This package provides command bus middlewares that can be used to integrate SimpleBus/MessageBus with Doctrine
ORM.

It provides an easy way to wrap command handling in a database transaction and handle domain events generated by
entities.

@TODO The intro should explain what it does.

2.11.1 Getting started

Installation

Using Composer:

1 composer require simple-bus/doctrine-orm-bridge

Preparations

To use the middlewares provided by the library, set up a command bus and an event bus, if you didn’t already do this:

1 use SimpleBus\Message\Bus\Middleware\MessageBusSupportingMiddleware;
2

3 $commandBus = new MessageBusSupportingMiddleware();
4 ...
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5

6 $eventBus = new MessageBusSupportingMiddleware();
7 ...

Make sure to also properly set up an entity manager:

1 // $entityManager is an instance of Doctrine\ORM\EntityManager
2 $entityManager = ...;

Now add the available middlewares for transaction handling and domain events.

2.11.2 Transactions

It is generally a good idea to wrap command handling in a database transaction. If you want to do this, add the
WrapsMessageHandlingInTransaction middleware to the command bus. Provide an instance of the Doc-
trine ManagerRegistry interface and the name of the entity manager that you want to use.

1 use SimpleBus\DoctrineORMBridge\MessageBus\WrapsMessageHandlingInTransaction;
2

3 /*
4 * $managerRegistry is an instance of Doctrine\Common\Persistence\ManagerRegistry
5 *
6 * For example: if you use Symfony, use the "doctrine" service
7 */
8 $managerRegistry = ...;
9

10 $transactionalMiddleware = new WrapsMessageHandlingInTransaction($managerRegistry, 'default');
11

12 $commandBus->addMiddleware($transactionalMiddleware);

Note: Once you have added this middleware, you shouldn’t call EntityManager::flush() manually from
inside your command handlers anymore.

2.11.3 Domain events

Using the message recorder facilities from SimpleBus/MessageBus you can let Doctrine ORM collect domain
events and subsequently let the event bus handle them.

Make sure that your entities implement the ContainsRecordedMessages interface. Use the
PrivateMessageRecorderCapabilities trait to conveniently record events from inside the entity:

1 use SimpleBus\Message\Recorder\ContainsRecordedMessages;
2 use SimpleBus\Message\Recorder\PrivateMessageRecorderCapabilities;
3

4 class YourEntity implements ContainsRecordedMessages
5 {
6 use PrivateMessageRecorderCapabilities;
7

8 public function changeSomething()
9 {

10 // record new events like this:
11

12 $this->record(new SomethingChanged());
13 }
14 }
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Then set up the event recorder for Doctrine entities:

1 use SimpleBus\DoctrineORMBridge\EventListener\CollectsEventsFromEntities;
2

3 $eventRecorder = new CollectsEventsFromEntities();
4

5 $entityManager->getConnection()->getEventManager()->addEventSubscriber($eventRecorder);

The event recorder will loop over all the entities that were involved in the last database transaction and collect their
internally recorded events.

After a database transaction was completed successfully these events should be handled by the event bus. This is done
by a specialized middleware, which should be appended to the command bus before the middleware that is responsible
for handling the transaction.

1 use SimpleBus\DoctrineORMBridge\MessageBus\WrapsMessageHandlingInTransaction;
2

3 use SimpleBus\Message\Bus\MessageBus;
4

5 $eventDispatchingMiddleware = new HandlesRecordedMessagesMiddleware($eventProvider, $eventBus);
6 // N.B. append this middleware *before* the WrapsMessageHandlingInTransaction middleware
7 $commandBus->appendMiddleware($eventDispatchingMiddleware);
8

9 $transactionalMiddleware = new WrapsMessageHandlingInTransaction($entityManager);
10 $commandBus->appendMiddleware($transactionalMiddleware);

Note: The MessageBusSupportingMiddleware class also has a prependMiddleware() method, which
you can use to prepend middleware instead of appending it.

2.12 JMSSerializerBridge

@TODO Add docs

2.13 Serialization

This package contains generic classes and interfaces which can be used to serialize SimpleBus messages.

@TODO The intro should explain what it does.

2.13.1 Message envelopes

Before an instance of SimpleBus\Message\Message can be serialized to JSON, XML, etc. it has to be wrapped
inside an envelope. The envelope contains some metadata about the message, e.g. the type of the message (its
fully qualified class name - FQCN) and the message itself. SimpleBus/Serialization comes with a default
implementation of an envelope, which can be used like this:

1 use SimpleBus\Serialization\Envelope\DefaultEnvelope;
2

3 // $message is an object
4 $message = ...;
5

6 $envelope = DefaultEnvelope::forMessage($message);
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7

8 $fqcn = $envelope->messageType();
9 $message = $envelope->message();

Because the message itself is an object and needs to be transformed to plain text in order to travel over a network,
you should serialize the message itself using an object serializer and get a new envelope instance with the serialized
message:

1 // $serializedMessage is a string
2 $serializedMessage = ...;
3

4 $envelopeWithSerializedMessage = $envelope->withSerializedMessage($serializedMessage);

The new Envelope only contains the serialized message. Using the object serializer you can now safely serialize
the entire envelope.

If an Envelope contains a serialized message and you have deserialized that message, you can get a new envelope
by providing the actual message:

1 // $deserializedMessage is an instance of Message
2 $deserializedMessage = ...;
3

4 $envelopeWithActualMessage = $envelopeWithSerializedMessage->withMessage($deserializedMessage);

Custom envelope types

You may want to use your own type of envelopes, containing extra metadata like a timestamp, or the identifier of the
machine that produced the message. In that case you can just implement your own Envelope class:

1 use SimpleBus\Serialization\Envelope\DefaultEnvelope;
2

3 class MyEnvelope extends DefaultEnvelope
4 {
5 ...
6 }
7

8 // or
9

10 class MyEnvelope implements Envelope
11 {
12 ...
13 }

Envelope factory

The message serializer uses an EnvelopeFactory to delegate the creation of envelopes to, so if you want to use
your own type of envelopes, you should implement an envelope factory yourself as well:

1 use SimpleBus\Serialization\Envelope\EnvelopeFactory;
2 use SimpleBus\Message\Message;
3

4 class MyEnvelopeFactory implements EnvelopeFactory
5 {
6 public function wrapMessageInEnvelope(Message $message)
7 {
8 return MyEnvelope::forMessage($message);
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9 }
10

11 public function envelopeClass()
12 {
13 return 'Fully\Qualified\Class\Name\Of\MyEnvelope';
14 }
15 }

2.13.2 Object serializer

An object serializer is supposed to be able to serialize any object handed to it. SimpleBus/Serializer contains
a simple implementation of an object serializer, which uses the native PHP serialize() and unserialize()
functions:

1 // $envelope is an instance of Envelope, containing a serialized message
2 $envelope = ...;
3

4 $serializer = NativeObjectSerializer();
5 $serializedEnvelope = $serializer->serialize($envelope);
6

7 $deserializedEnvelope = $serializer->deserialize($serializedEnvelope, get_class($envelope));

Note: You are encouraged to use a more advanced serializer like the JMSSerializer. SimpleBus/JMSSerializerBridge
contains an adapter for the SimpleBus ObjectSerializer interface.

Using JSON or XML as the serialized format a message is better readable and understandable for humans, but more
importantly, it’s platform-independent.

2.13.3 Message serializer

In order to to send a message (object) over the network it needs to be wrapped in an Envelope. At
the other end it may be unwrapped and processed. This standard procedure is implemented inside the
StandardMessageInEnvelopeSerializer:

1 use SimpleBus\Serialization\Envelope\DefaultEnvelopeFactory;
2 use SimpleBus\Serialization\NativeObjectSerializer;
3 use SimpleBus\Serialization\Envelope\Serializer\StandardMessageInEnvelopeSerializer;
4

5 $envelopeFactory = new DefaultEnvelopeFactory();
6 $objectSerializer = new NativeObjectSerializer();
7

8 $serializer = StandardMessageInEnvelopeSerializer($envelopeFactory, $objectSerializer);
9

10 // $message is an object
11 $message = ...;
12

13 // $serializedEnvelope will be a string
14 $serializedEnvelope = $serializer->wrapAndSerialize($message);
15

16 ...
17

18 // $deserializedEnvelope will be an instance of the original Envelope
19 $deserializedEnvelope = $serializer->unwrapAndDeserialize($serializedEnvelope);
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20

21 // $message will be an object which is a copy of the original message
22 $message = $deserializedEnvelope->message();

2.14 Getting started with Symfony

Using the Symfony framework will hide some of the complexity compared to when use are interacting directly with the
components. The SymfonyBridge package contains the following bundles which can be used to integrate SimpeBus
with a Symfony application:

• CommandBusBundle.

• EventBusBundle.

• DoctrineORMBridgeBundle.

Are you upgrading from a previous version? Read the upgrade guide.

2.14.1 Installation

Download the SymfonyBridge with composer.

1 composer require simple-bus/symfony-bridge

When composer is done you can enable the bundles you want in the AppKernel.php

1 class AppKernel extends Kernel
2 {
3 public function registerBundles()
4 {
5 $bundles = array(
6 //...
7 new SimpleBus\SymfonyBridge\SimpleBusCommandBusBundle(),
8 new SimpleBus\SymfonyBridge\SimpleBusEventBusBundle(),
9 new SimpleBus\SymfonyBridge\DoctrineOrmBridgeBundle(),

10 )
11 //...
12 }
13 //...
14 }

Read more how you use the bundles in the documentation pages for CommandBusBundle, EventBusBundle and
DoctrineORMBridgeBundle.

2.15 CommandBusBundle

Using the building blocks supplied by the SimpleBus/MessageBus library you can create a command bus,
which is basically a message bus, with some middlewares and a map of message handlers. This is described in
the documentation of CommandBus.
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2.15.1 Using the command bus

This bundle provides the command_bus service which is an instance of
SimpleBus\SymfonyBridge\Bus\CommandBus. Wherever you like, you can let it handle commands,
e.g. inside a container-aware controller:

1 // $command is an arbitrary object that will be passed to the command handler
2 $command = ...;
3

4 $this->get('command_bus')->handle($command);

However, you are encouraged to properly inject the command_bus service as a dependency whenever you need it:

1 services:
2 some_service:
3 class: Acme\Foobar
4 arguments:
5 - "@command_bus"

This bundle can be used with Symfony’s Autowiring out of the box.

Simply inject SimpleBus\SymfonyBridge\Bus\CommandBus in your controller or service:

1 namespace App\Controller;
2

3 use SimpleBus\SymfonyBridge\Bus\CommandBus;
4

5 class UpdatePhoneNumberController
6 {
7 private $commandBus;
8

9 public function __construct(CommandBus $commandBus)
10 {
11 $this->commandBus = $commandBus;
12 }
13

14 public function __invoke(Request $request)
15 {
16 $this->commandBus->handle(new SavePhoneNumberCommand($request->get('phone')));
17 }
18 }

2.15.2 Registering command handlers

As described in the MessageBus documentation you can delegate the handling of particular commands to com-
mand handlers. This bundle allows you to register your own command handlers by adding the command_handler
tag to the command handler’s service definition:

1 services:
2 register_user_command_handler:
3 class: Fully\Qualified\Class\Name\Of\RegisterUserCommandHandler
4 tags:
5 - { name: command_handler, handles: Fully\Qualified\Class\Name\Of\RegisterUser }

Note: Command handlers are lazy-loaded
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Since only one of the command handlers is going to handle any particular command, command handlers are lazy-
loaded. This means that their services should be defined as public services (i.e. you can’t use public: false for
them).

Command handlers are callables

Any service that is a PHP callable itself can be used as a command handler. If a service itself is not callable, SimpleBus
looks for a __invoke or handle method and calls it. If you want to use a custom method, just add a method
attribute to the command_handler tag:

1 services:
2 register_user_command_handler:
3 ...
4 tags:
5 - { name: command_handler, handles: ..., method: registerUser }

2.15.3 Setting the command name resolving strategy

To find the correct command handler for a given command, the name of the command is used.
This can be either 1) its fully-qualified class name (FQCN) or, 2) if the command implements the
SimpleBus\Message\Name\NamedMessage interface, the value returned by its static messageName()
method. By default, the first strategy is used, but you can configure it in your application configuration:

1 # app/config/config.yml
2 command_bus:
3 # default value for this key is "class_based"
4 command_name_resolver_strategy: named_message

When you change the strategy, you also have to change the value of the handles attribute of your command handler
service definitions:

1 services:
2 register_user_command_handler:
3 class: Fully\Qualified\Class\Name\Of\RegisterUserCommandHandler
4 tags:
5 - { name: command_handler, handles: register_user }

Make sure that the value of handles matches the return value of RegisterUser::messageName().

2.15.4 Adding command bus middleware

As described in the MessageBus documentation you can extend the behavior of the command bus by adding middle-
ware to it. This bundle allows you to register your own middleware by adding the command_bus_middleware
tag to the middleware service definition:

1 services:
2 specialized_command_bus_middleware:
3 class: YourSpecializedCommandBusMiddleware
4 public: false
5 tags:
6 - { name: command_bus_middleware, priority: 100 }

By providing a value for the priority tag attribute you can influence the order in which middlewares are added to
the command bus.
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Note: Middlewares are not lazy-loaded

Whenever you use the command bus, you also use all of its middlewares, so command bus middlewares are not lazy-
loaded. This means that their services should be defined as private services (i.e. you should use public: false).
See also: Marking Services as public / private

2.15.5 Logging

If you want to log every command that is being handled, enable logging in config.yml:

1 # app/config/config.yml
2 command_bus:
3 middlewares:
4 logger: true

Messages will be logged to the command_bus channel with %simple_bus.command_bus.logging.level%
(defaults to debug) level.

2.15.6 Nested commands execution

By default, calls to $commandBus->handle($command) will not be executed se-
quentially. Instead, the $command will be pushed to a in-memory queue in the
SimpleBus\Message\Bus\Middleware\FinishesHandlingMessageBeforeHandlingNext
middleware. Once the handler that triggered the command is finished, the in-memory queue will be processed.

If you don’t like this behaviour you can disable it in config.yml:

1 # app/config/config.yml
2 command_bus:
3 middlewares:
4 finishes_command_before_handling_next: false

2.16 Event bus bundle

Using the building blocks supplied by the SimpleBus/MessageBus library you can create an event bus, which
is basically a message bus, with some middlewares and a collection of message subscribers. This is described in the
documentation of EventBus.

2.16.1 Using the event bus

This bundle provides the event_bus service which is an instance of
SimpleBus\SymfonyBridge\Bus\MessageBus. Wherever you like, you can let it handle events, e.g.
by fetching it inside a container-aware controller:

1 // $event is an arbitrary object that will be passed to the event subscriber
2 $event = ...;
3

4 $this->get('event_bus')->handle($event);

However, you are encouraged to properly inject the event_bus service as a dependency whenever you need it:
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1 services:
2 some_service:
3 class: Acme\Foobar
4 arguments:
5 - "@event_bus"

This bundle can be used with Symfony’s Autowiring out of the box.

Simply inject SimpleBus\SymfonyBridge\Bus\EventBus in your controller or service:

1 namespace App\Service;
2

3 use SimpleBus\SymfonyBridge\Bus\EventBus;
4

5 class SomeService
6 {
7 private $eventBus;
8

9 public function __construct(EventBus $eventBus)
10 {
11 $this->eventBus = $eventBus;
12 }
13

14 public function __invoke()
15 {
16 $this->eventBus->handle(new SomethingHappenedEvent());
17 }
18 }

2.16.2 Registering event subscribers

As described in the EventBus documentation you can notify event subscribers about the occurrence of a par-
ticular event. This bundle allows you to register your own event subscribers by adding the event_subscriber tag
to the event subscriber’s service definition:

1 services:
2 user_registered_event_subscriber:
3 class: Fully\Qualified\Class\Name\Of\UserRegisteredEventSubscriber
4 tags:
5 - { name: event_subscriber, subscribes_to: Fully\Qualified\Class\Name\Of\UserRegistered }

Note: Event subscribers are lazy-loaded

Since only some of the event subscribers are going to handle any particular event, event subscribers are lazy-loaded.
This means that their services should be defined as public services (i.e. you can’t use public: false for them).

2.16.3 Event subscribers are callables

Any service that is a PHP callable itself can be used as an event subscriber. If a service itself is not callable, SimpleBus
looks for a __invoke or notify method and calls it. If you want to use a custom method, just add a method
attribute to the event_subscriber tag:

1 services:
2 user_registered_event_subscriber:
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3 ...
4 tags:
5 - { name: event_subscriber, subscribes_to: ..., method: userRegistered }

If you are using Autowiring you can use the following configuration:

1 services:
2 _defaults:
3 autowire: true
4 autoconfigure: true
5

6 App\Subscriber\:
7 resource: '%kernel.project_dir%/src/Subscriber'
8 public: true
9 tags: [{ name: 'event_subscriber' }]

This will search for all subscribers in the src/Subscriber directory and automatically detects the event that the
subscriber is subscribing to.

2.16.4 One subscriber listening to multiple events

When you have 1 subscriber that is listening to multiple events you might want to set the
register_public_methods attribute to true:

1 services:
2 _defaults:
3 autowire: true
4 autoconfigure: true
5

6 App\Subscriber\:
7 resource: '%kernel.project_dir%/src/Subscriber'
8 public: true
9 tags: [{ name: 'event_subscriber', register_public_methods: true }]

With the following code for the subscriber:

1 namespace App\Subscriber;
2

3 use App\Event\EventAddedEvent;
4 use App\Event\VenueAddedEvent;
5

6 class ElasticSearchSubscriber
7 {
8 public function onEventAdded(EventAddedEvent $event)
9 {

10 // Add the event to ElasticSearch
11 }
12

13 public function onVenueAdded(VenueAddedEvent $event)
14 {
15 // Add the venue to ElasticSearch
16 }
17 }

SimpleBus automatically detects that ElasticSearchSubscriber wants to subscribe to both
EventAddedEvent and VenueAddedEvent.
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2.16.5 Setting the event name resolving strategy

To find the correct event subscribers for a given event, the name of the event is used. This can be either 1) its fully-
qualified class name (FQCN) or, 2) if the event implements the SimpleBus\Message\Name\NamedMessage
interface, the value returned by its static messageName() method. By default, the first strategy is used, but you can
configure it in your application configuration:

1 event_bus:
2 # default value for this key is "class_based"
3 event_name_resolver_strategy: named_message

When you change the strategy, you also have to change the value of the subscribes_to attribute of your event
subscriber service definitions:

1 services:
2 user_registered_event_subscriber:
3 class: Fully\Qualified\Class\Name\Of\UserRegisteredEventSubscriber
4 tags:
5 - { name: event_subscriber, subscribes_to: user_registered }

Make sure that the value of subscribes_to matches the return value of
UserRegistered::messageName().

2.16.6 Adding event bus middlewares

As described in the MessageBus documentation you can extend the behavior of the event bus by adding middlewares
to it. This bundle allows you to register your own middlewares by adding the event_bus_middleware tag to
middleware service definitions:

1 services:
2 specialized_event_bus_middleware:
3 class: YourSpecializedEventBusMiddleware
4 public: false
5 tags:
6 - { name: event_bus_middleware, priority: 100 }

By providing a value for the priority tag attribute you can influence the order in which middlewares are added to
the event bus.

Note: Middlewares are not lazy-loaded

Whenever you use the event bus, you also use all of its middlewares, so event bus middlewares are not lazy-loaded.
This means that their services should be defined as private services (i.e. you should use public: false). See
also: Marking Services as public / private

2.16.7 Event recorders

Recording events

As explained in the documentation of MessageBus you can collect events while a command is being
handled. If you want to record new events you can inject the event_recorder service as a constructor argument
of a command handler:
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1 use SimpleBus\Message\Recorder\RecordsMessages;
2

3 class SomeInterestingCommandHandler
4 {
5 private $eventRecorder;
6

7 public function __construct(RecordsMessages $eventRecorder)
8 {
9 $this->eventRecorder = $eventRecorder;

10 }
11

12 public function handle($command)
13 {
14 ...
15

16 // create an event
17 $event = new SomethingInterestingHappened();
18

19 // record the event
20 $this->eventRecorder->record($event);
21 }
22 }

The corresponding service definition looks like this:

1 services:
2 some_interesting_command_handler:
3 arguments:
4 - @event_recorder
5 tags:
6 - { name: command_handler, handles: Fully\Qualified\Name\Of\SomeInterestingCommand

Recorded events will be handled after the command has been completely handled.

Registering your own message recorders

In case you have another source for recorded message (for instance a class that collects domain events like the
DoctrineORMBridge does), you can register it as a message recorder:

1 use SimpleBus\Message\Recorder\ContainsRecordedMessages;
2

3 class PropelDomainEvents implements ContainsRecordedMessages
4 {
5 public function recordedMessages()
6 {
7 // return an array of Message instances
8 }
9

10 public function eraseMessages()
11 {
12 // clear the internal array containing the recorded messages
13 }
14 }

The corresponding service definition looks like this:

1 services:
2 propel_domain_events:
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3 class: Fully\Qualified\Class\Name\Of\PropelDomainEvents
4 public: false
5 tags:
6 - { name: event_recorder }

Note: Logging

If you want to log every event that is being handled, enable logging in config.yml:

1 event_bus:
2 logging: ~

Messages will be logged to the event_bus channel.

2.17 Doctrine ORM and domain events

As described in the documentation of the SimpleBus/DoctrineORMBridge package library it provides:

• A command bus middleware which wraps the handling of commands inside a database transaction

• A command bus middleware which collects domain events recorded by entities and lets the event bus handle
them

Install SimpleBus/DoctrineORMBridge

Before you continue, first install the simple-bus/doctrine-orm-bridge package in your
project:

composer require simple-bus/doctrine-orm-bridge

When you enable the DoctrineORMBridgeBundle in your project, both features will be automatically registered
as command bus middlewares:

1 class AppKernel extends Kernel
2 {
3 public function registerBundles()
4 {
5 $bundles = array(
6 ...
7 new SimpleBus\SymfonyBridge\DoctrineOrmBridgeBundle()
8 )
9 ...

10 }
11 ...
12 }

You can optionally configure which entity manager and connection should be used:

1 # in config.yml
2

3 doctrine_orm_bridge:
4 entity_manager: default
5 connection: default
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2.18 Upgrade guide

2.18.1 From 3.x to 4.0

Version 4.0 works with SimpleBus/MessageBus 2.0 so you have to make the changes descibred in its upgrade
guide as well.

The biggest change for the SymfonyBridge package is that command handler and event subscriber services don’t
have to have handle or notify methods respectively:

1. If the services are valid callables already (i.e. they have a public __invoke() method), then they are used as
they are.

2. If the service has a public handle() method, that method will be used.

3. If the service has a public notify() method, that method will be used.

4. Otherwise you have to specify which method should be called in the tag attributes:

1 - { name: command_handler, handles: ..., method: theMethodThatShouldBeCalled }
2

3 # or
4

5 - { name: event_subscriber, subscribes_to: ..., method: theMethodThatShouldBeCalled }

This means that in theory you can now also have one handler handle different commands in different methods, and
subscribers which subscribe to multiple events. This is not recommended in most cases, but at least you have this
option now.

2.18.2 From 1.0 to 2.0

Commands

Before:

1 use SimpleBus\Command\Command;
2

3 class FooCommand implements Command
4 {
5 public function name()
6 {
7 return 'foo';
8 }
9 }

After:

1 use SimpleBus\Message\Type\Command;
2

3 class FooCommand implements Command
4 {
5 // no name() method anymore
6 }

Or:
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1 use SimpleBus\Message\Type\Command;
2 use SimpleBus\Message\Name\NamedMessage;
3

4 class FooCommand implements Command, NamedMessage
5 {
6 public static function messageName()
7 {
8 return 'foo';
9 }

10 }

See below for more information about this change.

Events

Before:

1 use SimpleBus\Event\Event;
2

3 class BarEvent implements Event
4 {
5 public function name()
6 {
7 return 'bar';
8 }
9 }

After:

1 use SimpleBus\Message\Type\Event;
2

3 class BarEvent implements Event
4 {
5 // no name() method anymore
6 }

Or:

1 use SimpleBus\Message\Type\Event;
2 use SimpleBus\Message\Name\NamedMessage;
3

4 class BarEvent implements Event, NamedMessage
5 {
6 public static function messageName()
7 {
8 return 'bar';
9 }

10 }

See below for more information about this change.

Command handlers

Before:

1 use SimpleBus\Command\Handler\CommandHandler;
2 use SimpleBus\Command\Command;
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3

4 class FooCommandHandler implements CommandHandler
5 {
6 public function handle(Command $command)
7 {
8 ...
9 }

10 }

After:

1 use SimpleBus\Message\Handler\MessageHandler;
2 use SimpleBus\Message\Message;
3

4 class FooCommandHandler implements MessageHandler
5 {
6 public function handle(Message $command)
7 {
8 ...
9 }

10 }

You can register this handler like this:

1 services:
2 foo_command_handler:
3 class: Fully\Qualified\Class\Name\Of\FooCommandHandler
4 tags:
5 - { name: command_handler, handles: Fully\Qualified\Class\Name\Of\FooCommand }

Or, if you let commands implement NamedMessage:

1 services:
2 foo_command_handler:
3 class: Fully\Qualified\Class\Name\Of\FooCommandHandler
4 tags:
5 - { name: command_handler, handles: foo }

Event subscribers

Before:

1 use SimpleBus\Event\Handler\EventHandler;
2 use SimpleBus\Event\Event;
3

4 class BarEventHandler implements EventHandler
5 {
6 public function handle(Event $event)
7 {
8 ...
9 }

10 }

After:

1 use SimpleBus\Message\Subscriber\MessageSubscriber;
2 use SimpleBus\Message\Message;
3

4 class BarEventSubscriber implements MessageSubscriber
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5 {
6 public function notify(Message $message)
7 {
8 ...
9 }

10 }

You can register this subscriber like this:

1 services:
2 bar_event_subscriber:
3 class: Fully\Qualified\Class\Name\Of\BarEventSubscriber
4 tags:
5 - { name: event_subscriber, subscribes_to: Fully\Qualified\Class\Name\Of\BarEvent }

Or, if you let events implement NamedMessage:

1 services:
2 bar_event_subscriber:
3 class: Fully\Qualified\Class\Name\Of\BarEventSubscriber
4 tags:
5 - { name: event_subscriber, subscribes_to: bar }

Named messages

If instead of the FQCN you want to keep using the command/event name as returned by its messageName()method,
you should configure this in config.yml:

1 command_bus:
2 # the name of a command is considered to be its FQCN
3 command_name_resolver_strategy: class_based
4

5 event_bus:
6 # the name of an event should be returned by its messageName() method
7 event_name_resolver_strategy: named_message

This strategy then applies to all your commands or events.

Command and event bus middlewares

Previously you could define your own command bus and event bus behaviors by implementing CommandBus or
EventBus. As of version 2.0 in both cases you should implement MessageBusMiddleware instead:

1 use SimpleBus\Message\Bus\Middleware\MessageBusMiddleware;
2

3 class SpecializedCommandBusMiddleware implements MessageBusMiddleware
4 {
5 public function handle(Message $message, callable $next)
6 {
7 // do whatever you want
8

9 $next($message);
10

11 // maybe do some more things
12 }
13 }
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Please note that the trait RemembersNext doesn’t exist anymore. Instead of calling $this->next() you should
now call $next($message).

You should register command bus middleware like this:

1 services:
2 specialized_command_bus_middleware:
3 class: Fully\Qualified\Class\Name\Of\SpecializedCommandBusMiddleware
4 tags:
5 - { name: command_bus_middleware, priority: 0 }

The same for event bus middleware, but then you should use the tag event_bus_middleware. The priority
value for middlewares works just like it did before. Read more in the CommandBusBundle and EventBusBundle
documentation.

2.18.3 Event providers have become event recorders

If you have entities that collect domain events, you should implement ContainsRecordedMessages in-
stead of ProvidesEvents and use the trait PrivateMessageRecorderCapabilities instead of
EventProviderCapabilities. The raise() method has been renamed to record().

1 use SimpleBus\Message\Recorder\ContainsRecordedMessages;
2 use SimpleBus\Message\Recorder\PrivateMessageRecorderCapabilities;
3

4 class Entity implements ContainsRecordedMessages
5 {
6 use PrivateMessageRecorderCapabilities;
7

8 public function someFunction()
9 {

10 // $event is an instance of Message
11 $event = ...;
12

13 $this->record($event);
14 }
15 }

If you had registered event providers using the service tag event_provider, you should change that to
event_recorder.

Read more about event recorders in the EventBusBundle documentation.

2.19 AsynchronousBundle

This bundle integrates async component with the Symfony framework

Install with

1 composer require simple-bus/asynchronous-bundle

1 class AppKernel extends Kernel
2 {
3 public function registerBundles()
4 {
5 $bundles = array(
6 ...
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7 new SimpleBus\AsynchronousBundle\SimpleBusAsynchronousBundle(),
8 ...
9 );

10 }
11 }

2.19.1 Configuration

@TODO Show the standard config

2.19.2 Public services

@TODO What services exists when the bundle is enabled.

2.19.3 Getting started

Introduction

This bundle defines a new command and event bus, to be used for processing asynchronous commands and events.
It also adds middleware to existing the command and event buses which publishes messages to be processed asyn-
chronously. See also the documentation of SimpleBus/Asynchronous.

First, enable the SimpleBusAsynchronousBundle in your AppKernel class.

Provide an object serializer

The first thing you need to do is to provide a service that is able to serialize any object. This service needs to implement
SimpleBus\Serialization\ObjectSerializer.

1 # in config.yml
2 simple_bus_asynchronous:
3 object_serializer_service_id: your_object_serializer

Note: Use an existing object serializer

Instead of creating your own object serializer, you should install the SimpleBus/JMSSerializerBundle. Once you reg-
ister this bundle in your AppKernel as well, it will automatically register itself as the preferred object serializer. So if
you do, don’t forget to remove the key simple_bus_asynchronous.object_serializer_service_id
from your config file.

Provide message publishers

Next, you need to define services that are able to publish commands and events, for example to some message
queue. These services should both implement SimpleBus\Asynchronous\Publisher\Publisher. When
you have defined them as services, mention their service id in the configuration:

1 # in config.yml
2 simple_bus_asynchronous:
3 commands:
4 publisher_service_id: your_command_publisher
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5 events:
6 publisher_service_id: your_event_publisher

Note: Use existing publishers

Instead of writing your own publishers, you can use existing publisher implementations.

As part of SimpleBus a RabbitMQBundle has been provided which automatically registers command and event pub-
lishers to publish serialized messages to a RabbitMQ exchange.

Logging

To get some insight into what goes on in the consumer process, enable logging:

1 # in config.yml
2 simple_bus_asynchronous:
3 commands:
4 ...
5 logging: ~
6 events:
7 ...
8 logging: ~

This will log consumed messages to the asynchronous_command_bus and asynchronous_event_bus
channels respectively.

Choose event strategy

When handling events you have two predefined strategies to choose from. Either you publish all events to the message
queue (always strategy) or you only publish the events that have a registered asynchronous subscriber (predefined
strategy). If your application is the only one that is consuming messages you should consider using the predefined
strategy. This will reduce the message overhead on the message queue.

1 simple_bus_asynchronous:
2 events:
3 strategy: 'predefined' # default: 'always'

You can also use Your own strategy by defining custom strategy_service_id

1 simple_bus_asynchronous:
2 events:
3 strategy:
4 strategy_service_id: your_strategy_service

Using Autowiring

This bundle can be used with Symfony’s Autowiring out of the box.

Simply inject SimpleBus\AsynchronousBundle\Bus\AsyncronousCommandBus or SimpleBusAsyn-
chronousBundleBusAsyncronousEventBus in your service.
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2.20 RabbitMQBundleBridge

The SimpleBusRabbitMQBundleBridgeBundle allows you to publish and consume SimpleBus messages
using the OldSoundRabbitMQBundle.

2.20.1 Getting started

First, enable SimpleBusAsynchronousBundle in your Symfony project. Next enable
SimpleBusRabbitMQBundleBridgeBundle and OldSoundRabbitMqBundle.

Handling commands asynchronously

If you want commands to be handled asynchronously, you should first configure OldSoundRabbitMqBundle:

1 # in config.yml
2 old_sound_rabbit_mq:
3 # don't forget to provide the connection details
4 ...
5 producers:
6 ...
7 asynchronous_commands:
8 connection: default
9 exchange_options: { name: 'asynchronous_commands', type: direct }

10 consumers:
11 ...
12 asynchronous_commands:
13 connection: default
14 exchange_options: { name: 'asynchronous_commands', type: direct }
15 queue_options: { name: 'asynchronous_commands' }
16 # use the consumer provided by SimpleBusRabbitMQBundleBridgeBundle
17 callback: simple_bus.rabbit_mq_bundle_bridge.commands_consumer

Now enable asynchronous command handling:

1 # in config.yml
2 simple_bus_rabbit_mq_bundle_bridge:
3 commands:
4 # this producer service will be defined by OldSoundRabbitMqBundle,
5 # its name is old_sound_rabbit_mq.%producer_name%_producer
6 producer_service_id: old_sound_rabbit_mq.asynchronous_commands_producer

Please note that commands are only handled asynchronously when there is no regular handler defined for it. In-
stead of registering the handler using the tag command_handler, you should now register it using the tag
asynchronous_command_handler:

1 services:
2 my_asynchronous_command_handler:
3 class: ...
4 tags:
5 { name: asynchronous_command_handler, handles: ... }

See also the documentation of SimpleBus/AsynchronousBundle.

To actually consume command messages, you need to start (and keep running):
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1 php app/console rabbitmq:consume asynchronous_commands

Handling events asynchronously

If you want events to be handled asynchronously, you should first configure OldSoundRabbitMqBundle:

1 # in config.yml
2 old_sound_rabbit_mq:
3 # don't forget to provide the connection details
4 ...
5 producers:
6 ...
7 asynchronous_events:
8 connection: default
9 exchange_options: { name: 'asynchronous_events', type: direct }

10 consumers:
11 asynchronous_events:
12 connection: default
13 exchange_options: { name: 'asynchronous_events', type: direct }
14 queue_options: { name: 'asynchronous_events' }
15 # use the consumer provided by SimpleBusRabbitMQBundleBridgeBundle
16 callback: simple_bus.rabbit_mq_bundle_bridge.events_consumer

Now enable asynchronous event handling:

1 # in config.yml
2 simple_bus_rabbit_mq_bundle_bridge:
3 events:
4 # this producer service will be defined by OldSoundRabbitMqBundle,
5 # its name is old_sound_rabbit_mq.%producer_name%_producer
6 producer_service_id: old_sound_rabbit_mq.asynchronous_events_producer

Events are always handled synchronously as well as asynchronously. If you want an event subscriber to only be
notified of an event asynchronously, instead of registering the subscriber using the tag event_subscriber tag,
you should now use the asynchronous_event_subscriber tag:

1 services:
2 my_asynchronous_event_subscriber:
3 class: ...
4 tags:
5 { name: asynchronous_event_subscriber, subscribes_to: ... }

To actually consume event messages, you need to start (and keep running):

1 php app/console rabbitmq:consume asynchronous_events

Note: You are encouraged to tweak the exchange/queue options and make them right for your project. Read more
about your options in the RabbitMQ documentation and in the documentation of OldSoundRabbitMQBundle.

2.20.2 Events

2.20. RabbitMQBundleBridge 47

http://www.rabbitmq.com/documentation.html
https://github.com/videlalvaro/RabbitMqBundle


SimpleBus Documentation, Release latest

Failure during message consumption

When an exception is thrown while a Message is being consumed, the exception is not allowed to bubble up so it
won’t cause the consumer process to fail. That way, one Message that can’t be processed is no danger to any other
Message.

The AMQP message containing the Message that caused the failure will be logged, together with the Exception
that was thrown.

If you want to implement some other error handling behaviour (e.g. storing the message to be published again
later), you only need to implement an event subscriber (or listener if you want to) which subscribes to the event
simple_bus.rabbit_mq_bundle_bridge.message_consumption_failed:

1 use SimpleBus\RabbitMQBundleBridge\Event\Events;
2 use SimpleBus\RabbitMQBundleBridge\Event\MessageConsumptionFailed;
3 use Symfony\Component\EventDispatcher\EventSubscriberInterface;
4

5 class MyErrorHandler implements EventSubscriberInterface
6 {
7 public static function getSubscribedEvents()
8 {
9 return [Events::MESSAGE_CONSUMPTION_FAILED => 'messageConsumptionFailed'];

10 }
11

12 public function messageConsumptionFailed(MessageConsumptionFailed $event)
13 {
14 $exception = $event->exception();
15 $amqpMessage = $event->message();
16 ...
17 }
18 }

Don’t forget to define a service for it and tag it as kernel.event_subscriber:

1 services:
2 my_error_handler:
3 class: MyErrorHandler
4 tags:
5 - { name: kernel.event_subscriber }

Successful message consumption

When a Message has been handled successfully you may want to perform some addi-
tional actions. You can do this by creating an event subscriber which subscribes to the
simple_bus.rabbit_mq_bundle_bridge.message_consumed event:

1 use SimpleBus\RabbitMQBundleBridge\Event\Events;
2 use SimpleBus\RabbitMQBundleBridge\Event\MessageConsumed;
3 use Symfony\Component\EventDispatcher\EventSubscriberInterface;
4

5 class MySuccessHandler implements EventSubscriberInterface
6 {
7 public static function getSubscribedEvents()
8 {
9 return [Events::MESSAGE_CONSUMED => 'messageConsumed'];

10 }
11

12 public function messageConsumed(MessageConsumed $event)
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13 {
14 $amqpMessage = $event->message();
15 ...
16 }
17 }

Don’t forget to define a service for it and tag it as kernel.event_subscriber:

1 services:
2 my_success_handler:
3 class: MySuccessHandler
4 tags:
5 - { name: kernel.event_subscriber }

2.20.3 Routing

By default, this bundle assumes that you want to use “direct” exchanges and use one queue for all commands, and one
queue for all events. If you want to use “topic” exchanges and selectively consume messages using a routing key, this
bundle can generate routing keys automatically for you based on the class name of the Message. Just change the
bundle configuration:

1 # in config.yml
2 simple_bus_rabbit_mq:
3 # default value is "empty"
4 routing_key_resolver: class_based

When for example a Message of class Acme\Command\RegisterUser is published to the queue, its routing
key will be Acme.Command.RegisterUser. Now you can define consumers for specific messages, based on this
routing key:

1 # in config.yml
2 old_sound_rabbit_mq:
3 ...
4 consumers:
5 acme_commands:
6 connection: default
7 exchange_options: { name: 'asynchronous_commands', type: topic }
8 queue_options: { name: 'asynchronous_commands', routing_keys: ['Acme.Command.#'] }
9 callback: simple_bus.rabbit_mq_bundle_bridge.events_consumer

Custom routing keys

If you want to define routing keys in a custom way (not based on the class of a message), create a class that implements
RoutingKeyResolver:

1 use SimpleBus\RabbitMQBundleBridge\Routing\RoutingKeyResolver;
2

3 class MyCustomRoutingKeyResolver implements RoutingKeyResolver
4 {
5 public function resolveRoutingKeyFor($message)
6 {
7 // determine the routing key for the given Message
8 return ...;
9

10 // if you don't want to use a specific routing key, return an empty string
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11 }
12 }

Now register this class as a service:

1 services:
2 my_custom_routing_key_resolver:
3 class: MyCustomRoutingKeyResolver

Finally, mention your routing key resolver service id in the bundle configuration:

1 # in config.yml
2 simple_bus_rabbit_mq_bundle_bridge:
3 routing_key_resolver: my_custom_routing_key_resolver

Fair dispatching

If you are looking for a way to evenly distribute messages over several workers, you may not be better off using a
“topic” exchange. Instead, you could just use a “direct” exchange, spin up several workers, and configure consumers
to prefetch only one message at a time:

1 # in config.yml
2 old_sound_rabbit_mq:
3 consumers:
4 ...
5 asynchronous_commands:
6 ...
7 qos_options:
8 prefetch_count: 1

Note: See also Fair dispatching in the bundle’s official documentation.

2.20.4 Additional properties

Besides the raw message and a routing key the RabbitMQ producer accepts several additional properties. You can
determine them dynamically using additional property resolvers. Define your resolvers as a service and tag them as
simple_bus.additional_properties_resolver:

1 services:
2 your_additional_property_resolver:
3 class: Your\AdditionalPropertyResolver
4 tags:
5 - { name: simple_bus.additional_properties_resolver }

Optionally you can provide a priority for the resolver. Resolvers with a higher priority will be called first, so if your
resolver should have the final say, give it a very low (i.e. negative) priority.
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