

 Navigation

 	
 index

 	SimpleAciUiLogServer latest documentation

SimpleAciUiLogServer

[image: Code Health]
 [https://landscape.io/github/datacenter/SimpleAciUiLogServer/master][image: Latest Version]
 [https://pypi.python.org/pypi/SimpleAciUiLogServer/][image: Wheel Status]
 [https://pypi.python.org/pypi/SimpleAciUiLogServer/][image: Egg Status]
 [https://pypi.python.org/pypi/SimpleAciUiLogServer/]A Simple HTTP/HTTPS server that accepts POSTs from the APIC UI as a remote API
Inspector.

The simplest method to use this module is to execute it as a standalone script,
however it is designed to allow it to be imported as a module as well.

<http://datacenter.github.io/SimpleAciUiLogServer>

Standalone Script

$ SimpleAci
SimpleAciUiLogServer SimpleAciUiLogServer.py
$ SimpleAciUiLogServer
serving at:
http://10.10.10.107:8987/apiinspector
https://10.10.10.107:8443/apiinspector

2015-01-25 05:07:11,040 DEBUG -

 method: GET
 url: http://172.1.1.176/api/node/class/fabricTopology.json?subscription=yes
 payload: None
 # objs: 1
 response: {"totalCount":"1","subscriptionId":"72057761559216131","imdata":
 [{"fabricTopology":{"attributes":{"childAction":"","dn":"topology",
 "lcOwn":"local","modTs":"2015-01-08T02:10:36.147+04:00","monPolDn":
 "uni/fabric/monfab-default","status":""}}}]}

The standalone script can be invoked using any of these commands:

	SimpleAciUiLogServer

	SimpleAciUiLogServer.py

	acilogserv

The standalone script also allows you to set several options:

	-a or –apicip: The IP address of an APIC or an IP address on the same subnet
as the APIC. This allows the standalone server to be able to print the
correct IP address when it announces what IP address, port and location
it is listening on if the server is multi-homed.

	-p or –port: The http port the server should listen on.

	-s or –sslport: The https port the server should listen on.

	-c or –cert: The server certificate for HTTPS connections.

	-l or –location: The local path that the server should look for, anything
sent to the server outside of this location will result in the server
returning a 404. The default is /apiinspector

	-r or –logrequests: This will cause the server to log a message about the
POST request to sys.stderr, the default is False, possible values are True
and False.

	-d or –delete-imdata: Strip out the im_data and other info at the im_data
level from the payloads and responses.

	-n or –nice-output: Pretty print the payloads and responses.

	-i or –indent: Number of spaces to indent when pretty printing.

When the module is run as a standalone script it simply logs the messages
to sys.stdout using the standard logging module.

APIC Configuration

Once the server is running, you can start remote logging from the APIC UI by
selecting “Start Remote Logging” from the ‘welcome, username’ menu in the top
right corner of the APIC UI.

[image: https://raw.githubusercontent.com/datacenter/SimpleAciUiLogServer/master/start_remote_logging.png]
Then enter the URL the server is listening on:

[image: https://raw.githubusercontent.com/datacenter/SimpleAciUiLogServer/master/enter_remote_logging_info.png]
If you need to disable the remote logging from the APIC, you can do so from
the same menu and selecting ‘Stop Remote Logging.’

[image: https://raw.githubusercontent.com/datacenter/SimpleAciUiLogServer/master/stop_remote_logging.png]
Note: If https is used to connect to the APIC, the server that is
instantiated will also need to be able to accept https connections.

Server Test

By convention the APIC does not use the GET method when communicating with the
logging server. The APIC only uses POST to POST the log messages to the server.
However, the servers provided by this module do offer a GET method to provide
a means of testing them. For example it is possible to open a web browser and
browse to the server that has been started. If the server is working a small
message is provided about pointing the APIC to that server.

Debugging

If things do not seem to be working, the first step should be to open the
developer tools/javascript console for the browser and see if there are
any errors being printed as you click on various items in the APIC GUI.

Importing as a module

You can also import the module and use it as a server as part of another
application. This provides you with flexibility as it allows the registration
of callback functions for each HTTP method (GET, POST, DELETE, etc) found in the
log message. From this, it is possible to do things like use the data from the
log message for other purposes or filter out specific logs messages based on
the HTTP method. The methods that the APIC uses are:

	GET

	POST

	EventChannelMessage

	undefined - NOTE: This is an APIC bug that is fixed in versions after 1.0(2*)

Example:

>>> from SimpleAciUiLogServer.SimpleAciUiLogServer import \
... SimpleAciUiLogServer
>>> import logging
>>>
>>> logging.basicConfig(level=logging.DEBUG)
>>> def GET(**kwargs):
... logging.debug("Got a GET")
...
>>> def POST(**kwargs):
... logging.debug("Kwargs/params: {0}".format(kwargs))
...
>>> server = SimpleAciUiLogServer(("", 8987), location='/apiinspector')
>>> server.register_function(GET)
>>> server.register_function(POST)
>>> server.serve_forever()
DEBUG:root:Got a GET
DEBUG:root:
 method: Event Channel Message
 url: N/A
 payload: N/A
 # objs: 0
 response: {"subscriptionId":["72057611234639895","72057611234640073"],
 "imdata":[{"fvTenant":{"attributes":{"childAction":"","dn":
 "uni/tn-mtimm-simple","modTs":"2015-01-23T23:04:28.838+00:00","rn":"",
 "status":"deleted"}}}]}

DEBUG:root:Kwargs/params: {'data': {'url':
'http://172.1.1.5/api/node/mo/uni.json', 'response': '{"imdata":[]}',
'preamble': '18:00:12 DEBUG - ', 'method': 'POST', 'payload': '{"polUni":{
"attributes":{"dn":"uni","status":"modified"},"children":[{"fvTenant":{
"attributes":{"dn":"uni/tn-mtimm-simple","status":"deleted"},"children":[]}
}]}}'}, 'layout': 'PatternLayout'}

Note: since there were no functions registered for the EventChannelMessage
method, SimpleAciUiLogServer sent that data to the default dispatch method
which logs a formatted message. However, both GET and POST have registered
functions and they do different things than the default dispatch method.

It is also possible to override the _dispatch method to create your own
dispatch logic, for example rather than dispatch based on method maybe you
would like to dispatch based on subscription id.

Multi-threaded Servers

The SimpleAciUiLogServer class is single threaded. If many APIC’s are going
to be reporting into the same server, one transaction may block another until
the first is complete. This scenario can be avoided using the
ThreadingSimpleAciUiLogServer class. The ThreadingSimpleAciUiLogServer class
provides a threaded server that can accept multiple connections at the same
time. When using the ThreadingSimpleAciUiLogServer it is best to use the
logging functionality from the Python standard library rather than print
statements because the logging module is thread safe.

If you need to listen on multiple ports you will need to instantiate multiple,
SimpleAciUiLogServer or ThreadingSimpleAciUiLogServers. This might be done
to start up both a http and https server. The module provides its own
serve_forever() method that dispatches to multiple server instances. Otherwise
the servers own serve_forever() method is appropriate. The standalone script
offers an example of doing this.

HTTPS TLS/SSL Support

To accept HTTPS connections the SimpleAciUiLogServer or the
ThreadingSimpleAciUiLogServer classes can be instantiated with the cert
parameter pointed at a file that contains the servers certificate. The module
comes with an embedded self-signed certificate but use of this should be avoided
in long-term production scenarios. A self-signed certificate can be created
using openssl:

openssl req -new -x509 -keyout server.pem -out server.pem -days 36500 -nodes

When the cert parameter is passed to the class initializer and is not None, the
socket is wrapped in ssl allowing the APIC to send https POST’s to the server.

If you are using self-signed certificates, you will most likely need to accept
the certificate as a security exception in your browser before the APIC can send
data to it. This is usually a one-time configuration step and can most easily
be accomplished by using your browser to browse to the server.

Available Class Variables

The servers provided inherit from a log dispatch class that offers some class
variables to control how the server formats the log messages. Those variables
are:

	prettyprint - Format the payload and responses so they are easier to read. The
default is False.

	indent - When using prettyprint, how much indent should be used. The default
is 4.

	strip_imdata - When printing responses, do not print the whole response, only
print the contents of the im_data field. The default is False.

All three of these variables are booleans and should be set to True or False.

Author and Acknowledgements

Written by Mike Timm (mtimm@cisco.com)
Based on code written by Fredrik Lundh & Brian Quinlan.

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	SimpleAciUiLogServer latest documentation

Index

 Copyright .
 Created using Sphinx 1.3.1.

 _static/file.png

_static/ajax-loader.gif

_static/plus.png

HISTORY.html

 Navigation

 		
 index

 		SimpleAciUiLogServer latest documentation »

Release History

1.1.3 (2015-8-16)

Features Added

		Added a request types filter to allow filtering based on request type, i.e
POST, GET, undefined, EventChannelMessage, all. The all option allows all
request types to be logged and is the default. Please see the -ty and
–type options.

		Slightly revised excludes to allow any exclude based on class name or rn when
initialized programtically.

		Added aaaLogout, HDfabricOverallHealth5min-0, and all to the excludes as
options from the CLI.

		Bump version to 1.1.3.

Bug Fixes

		handle excludes for registered functions, previously classes that inherited
SimpleAciUiLogServer or SimpleLogDispatcher had to handle this themselves.

1.1.2 (??)

Features Added

		??

Bug Fixes

		??

1.1.1 (2014-11-24) - date does not seem right...

Features Added

		Threading support added via the ThreadingSimpleAciUiLogServer class, this
prevents one request that is being processed from blocking another request
from being processed.

		Support for HTTPS sessions (#6)

		The standalone script starts both a http and https server and allows
connections to be established on each independently

		More robust logging by using logging from the standard library

		Pretty printing payload and response elements

		Experimental Stripping of the imdata field - may be removed in the future

		Added the following options to the standalone script: –exclude (-e),
–sslport (-s), –cert (-c), –delete-imdata (-d), –nice-output (-n)

		Release history (this file)

		Total count of objects added to the logging output

		Added responses for GET requests from the servers that indicate the server
is working

Bug Fixes

		Reformatted the logging to be consistent

1.0.1 (2014-11-24)

First Release

Features:

		Handles the following log messages types from the APIC Remote Logging feature:
GET, POST, Event Channel Message, undefined

		HTTP session support

		Subclassing of SimpleAciUiLogServer class allows for interesting applications
to be built

		Callbacks can be registered to handle the different supported methods

		Standalone scripts are installed that allow for a default log server to be
used easily using one of these: acilogserv, SimpleAciUiLogServer.py,
SimpleAciUiLogServer

		The standalone script supports the –apicip (-a), –port (-p), –location (-l),
–logrequests (-r) options.

 © Copyright .
 Created using Sphinx 1.3.1.

search.html

 Navigation

 		
 index

 		SimpleAciUiLogServer latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/up.png

_static/minus.png

_static/comment.png

_static/down-pressed.png

_static/up-pressed.png

_static/down.png

_static/comment-bright.png

_static/comment-close.png

