
Simple-HOHMM Documentation
Release 0.0.3

Jacob Krantz

Mar 18, 2018

Topics

1 Getting Started 3
1.1 Installation for Python 2 or 3 . 3
1.2 Installation for Pypy . 3

2 Tutorials 5
2.1 Supervised . 5
2.2 Semi-Supervised . 6
2.3 Unsupervised . 6

3 API Reference 9

4 Implementation References 11
4.1 Web articles . 11

5 License 13

i

ii

Simple-HOHMM Documentation, Release 0.0.3

Simple-HOHMM is an end-to-end sequence classifier using Hidden Markov Models. Let the builder construct a model
for you based on chosen model attributes. Now you can solve the classic problems of HMMs: evaluating, decoding,
and learning. Play with different orders of history to maximize the accuracy of your model.

This documentation is under development, but the tutorials are a good place to start.

Topics 1

Simple-HOHMM Documentation, Release 0.0.3

2 Topics

CHAPTER 1

Getting Started

1.1 Installation for Python 2 or 3

Simple-HOHMM can be installed directly from Github using pip. You must have git installed for this process to
work.

>>> pip install git+https://github.com/jacobkrantz/Simple-HOHMM.git

If you want the most recent staging build:

>>> pip install git+https://github.com/jacobkrantz/Simple-HOHMM.git@staging

Alternative: to view the source code and run the tests before installation:

>>> git clone https://github.com/jacobkrantz/Simple-HOHMM.git
>>> cd Simple-HOHMM
>>> python setup.py test
>>> python setup.py install

1.2 Installation for Pypy

For usage with pypy, you must install with pip inside pypy:

>>> pypy -m pip install git+https://github.com/jacobkrantz/Simple-HOHMM.git

If this fails, try installing pip for pypy first:

>>> curl -O https://bootstrap.pypa.io/get-pip.py
>>> pypy get-pip.py

If you want the most recent staging build still with pypy:

3

Simple-HOHMM Documentation, Release 0.0.3

>>> pypy -m pip install git+https://github.com/jacobkrantz/Simple-HOHMM.git@staging

Alternative staging branch with pypy:

>>> sudo pypy -m pip install --upgrade https://github.com/jacobkrantz/Simple-HOHMM/
→˓archive/staging.zip

4 Chapter 1. Getting Started

CHAPTER 2

Tutorials

The following tutorials are meant to give you a jump start in applying the tools of Simple-HOHMM. To see what
model attributes are adjustable, view the API Reference.

2.1 Supervised

The following example is adapted from Wikipedia.

Suppose villagers are either healthy or have a fever. Fevers are diagnosed by the doctor asking patients how they
feel (normal, dizzy, or cold). Assuming their health can be modeled by a discrete Markov chain, the observations
are (normal, dizzy, cold) and the hidden states are (healthy, fever). The doctor has seen patients
in the past, and kept that data. The observations are in one list and the states are in another such that states[i]
corresponds to observations[i]:

observations = [
['normal', 'cold', 'dizzy', 'dizzy','normal','normal'],
['cold', 'cold', 'dizzy', 'normal','normal','normal'],
['dizzy', 'dizzy', 'cold', 'normal', 'dizzy', 'normal'],
['normal', 'normal', 'cold', 'dizzy', 'dizzy', 'dizzy']

]
states = [

['healthy', 'healthy', 'fever', 'fever', 'healthy', 'healthy'],
['healthy', 'fever', 'fever', 'healthy', 'healthy', 'fever'],
['fever', 'fever', 'fever', 'healthy', 'healthy', 'healthy'],
['healthy', 'healthy', 'healthy', 'fever', 'fever', 'fever']

]

We can now build a first order Hidden Markov Model based on the observations and states above:

from SimpleHOHMM import HiddenMarkovModelBuilder as Builder
builder = Builder()
builder.add_batch_training_examples(observations, states)
hmm = builder.build()

5

https://en.wikipedia.org/wiki/Viterbi_algorithm

Simple-HOHMM Documentation, Release 0.0.3

Now suppose a patient has been seeing the doctor for three days and felt (normal, cold, dizzy). What might
the doctor guess about this patient’s health? This is solved with Viterbi decoding:

obs = ['normal', 'cold', 'dizzy']
states = hmm.decode(obs)
print(states) # prints: ['healthy', 'healthy', 'fever']

We can also determine the likelihood of a patient feeling (normal, cold, dizzy):

obs = ['normal', 'cold', 'dizzy']
likelihood = hmm.evaluate(obs)
print(likelihood) # prints: 0.0433770021525

2.2 Semi-Supervised

For this example, we will use the same observations and states as the Supervised example. Here we initialize
our model just as before:

from SimpleHOHMM import HiddenMarkovModelBuilder as Builder
builder = Builder()
builder.add_batch_training_examples(observations, states)
hmm = builder.build()

From here we can improve the model’s training even further by exposing it to observations it has not seen before. Since
we are using a small set, we will limit the learning process to one iteration instead of delta convergence by utilizing
the iterations=1 parameter. Also, we use k_smoothing=0.05 to avoid cases of zero probability:

sequences = [
['normal', 'cold', 'dizzy','normal','normal'],
['normal', 'cold', 'normal','dizzy','normal'],
['dizzy', 'dizzy', 'dizzy','cold','normal'],
['dizzy', 'dizzy', 'normal','normal','normal'],
['cold', 'cold', 'dizzy','normal','normal'],
['normal', 'dizzy', 'dizzy','normal','cold'],
['normal', 'cold', 'dizzy', 'cold'],
['normal', 'cold', 'dizzy']

]
hmm.learn(sequences, k_smoothing=0.05, iterations=1)

We now determine the updated likelihood and hidden state sequence. Notice that running hmm.learn() has increased
the likelihood of our observation:

obs = ['normal', 'cold', 'dizzy']
print(hmm.evaluate(obs)) # prints 0.052111435936
print(hmm.decode(obs)) # prints ['healthy', 'fever', 'fever']

2.3 Unsupervised

In fully unsupervised scenarios, we build and train a model with no prior training examples to draw from. The only
data we supply to our model is the set of possible observations, the set of possible hidden states, and a collection of
observation sequences to optimize for.

We first gather the data to supply to our model:

6 Chapter 2. Tutorials

Simple-HOHMM Documentation, Release 0.0.3

possible_observations = ['normal', 'healthy', 'dizzy']
possible_states = ['healthy', 'fever']
sequences = [

['normal', 'cold', 'dizzy','normal','normal'],
['normal', 'cold', 'normal','dizzy','normal'],
['dizzy', 'dizzy', 'dizzy','cold','normal'],
['dizzy', 'dizzy', 'normal','normal','normal'],
['cold', 'cold', 'dizzy','normal','normal'],
['normal', 'dizzy', 'dizzy','normal','cold'], #start new here
['normal', 'cold', 'dizzy', 'dizzy','normal','normal'],
['dizzy', 'cold', 'dizzy', 'normal','normal','normal'],
['dizzy', 'cold', 'dizzy', 'normal','normal','normal'],
['normal', 'cold', 'dizzy', 'dizzy','cold','normal'],
['dizzy', 'dizzy', 'dizzy', 'dizzy', 'cold', 'cold'],
['cold', 'cold', 'cold', 'normal', 'dizzy', 'normal'],
['dizzy', 'normal', 'cold', 'cold', 'dizzy', 'dizzy']

]

There are two initial distributions to choose from, either uniform or random. This selection applies to model
parameters A, B, pi. In our case we will initialize with a random distribution:

from SimpleHOHMM import HiddenMarkovModelBuilder as Builder
builder = Builder()
hmm = builder.build_unsupervised(

single_states=possible_states,
all_obs=possible_observations,
distribution="random",
highest_order=2

)

We can view the initial model parameters, train our model using Baum-Welch EM, then again view our parameters to
see how they have been modified:

hmm.display_parameters()
hmm.learn(sequences, k_smoothing=0.001)
hmm.display_parameters()

Results may be inconsistent due to the random initial distributions. You can play with different k_smoothing values,
delta values, and sequence selection. Of course, train on prior examples where possible.

2.3. Unsupervised 7

Simple-HOHMM Documentation, Release 0.0.3

8 Chapter 2. Tutorials

CHAPTER 3

API Reference

TODO: detailed reference guide to using the API

9

Simple-HOHMM Documentation, Release 0.0.3

10 Chapter 3. API Reference

CHAPTER 4

Implementation References

[1] L. R. Rabiner, “A tutorial on hidden Markov models and selected applications in speech recognition,” in Proceed-
ings of the IEEE, vol. 77, no. 2, pp. 257-286, Feb 1989. doi: 10.1109/5.18626 URL: http://ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=18626&isnumber=698

[2] Daniel Jurafsky & James H. Martin. (2016). Speech and Language Processing. Draft of August 7, 2017. URL:
https://web.stanford.edu/~jurafsky/slp3/

[3] Du Preez, J.A., Efficient high-order hidden Markov modelling. PhD Dissertation, University of Stellenbosch, South
Africa, 1998. URL: http://www.ussigbase.org/downloads/jadp_phd.pdf

4.1 Web articles

• https://en.wikipedia.org/wiki/Forward_algorithm

• https://en.wikipedia.org/wiki/Forward%E2%80%93backward_algorithm

• https://en.wikipedia.org/wiki/Viterbi_algorithm

• https://en.wikipedia.org/wiki/Baum%E2%80%93Welch_algorithm

11

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=18626&isnumber=698
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=18626&isnumber=698
https://web.stanford.edu/~jurafsky/slp3/
http://www.ussigbase.org/downloads/jadp_phd.pdf
https://en.wikipedia.org/wiki/Forward_algorithm
https://en.wikipedia.org/wiki/Forward%E2%80%93backward_algorithm
https://en.wikipedia.org/wiki/Viterbi_algorithm
https://en.wikipedia.org/wiki/Baum%E2%80%93Welch_algorithm

Simple-HOHMM Documentation, Release 0.0.3

12 Chapter 4. Implementation References

CHAPTER 5

License

The MIT License (MIT)

Copyright (c) 2017 Jacob Krantz

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

13

	Getting Started
	Installation for Python 2 or 3
	Installation for Pypy

	Tutorials
	Supervised
	Semi-Supervised
	Unsupervised

	API Reference
	Implementation References
	Web articles

	License

