
SimCX Documentation
Release 1.0.0-beta.21

Tiago Baptista

Apr 13, 2018

Contents:

1 Introductory Tutorial 3
1.1 Installation . 3
1.2 Model Description . 3
1.3 Implementing the Model . 4

2 Agent-Based Modelling Tutorial 9

3 SimCX Reference 11
3.1 Core . 11
3.2 Submodules . 12

4 Indices and tables 15

Python Module Index 17

i

ii

SimCX Documentation, Release 1.0.0-beta.21

Note: This documentation is under development.

Contents: 1

SimCX Documentation, Release 1.0.0-beta.21

2 Contents:

CHAPTER 1

Introductory Tutorial

In this first contact with the SimCX framework, we will walk you through its basic components and create an
example project in that process.

The framework has been mainly developed as a tool to teach complex systems. As such, a lot of the design
decisions are biased towards that purpose. Most of the examples have also that bias.

In SimCX there are three base components (implemented as python classes): The Simulator that implements
the simulation core, the Visual that is used to show the state of a simulator, and the Display that controls
one application window and can contain several visuals. We then provide, in two submodules, several specific
implementations of simulators and visuals. You can use these, or create your own simulators and visuals, by
deriving the base classes. Regarding the visual components, the framework supports the use of matplotlib (through
the MplVisual class), or you can use OpenGL directly using the pyglet module.

The framework is generic in the sense that we can use several modelling and simulation paradigms, like difference
equations, differential equations, or agent-based modelling. In this first tutorial we will focus on using difference
equations to simulate a dynamical system.

Installation

Before we start, we need to install SimCX and all its dependencies. Be aware that the framework has been
developed for Python 3, and mainly tested on that version. Nevertheless, we make an effort to make it compatible
with Python 2.7.

SimCX is available from the PyPI repository. To install, on a terminal (Command Prompt on Windows), execute
the following command:

$ pip install simcx

That command will install SimCX and all its dependencies. Make sure that the pip command you are running is
from the Python version you wish to install the framework on. On Windows, the pip command may not be on the
system path. In that case you will need to provide the full path to the pip executable, or navigate to its directory
before executing.

Model Description

In this tutorial we will use SimCX to model population growth using difference equations. We will use an example
taken from Hiroki Sayama’s book Introduction to the Modeling and Analysis of Complex Systems [1]. To start
we will model a population with exponential growth, using the following equation:

𝑥𝑡 = 𝑎𝑥𝑡−1

Here, 𝑥𝑡 is the population size at time step 𝑡, 𝑥𝑡−1 is the population size at time step 𝑡 − 1, and 𝑎 is the growth
ratio of the population per time step. This simple model will give us an unbounded exponential growth of the

3

SimCX Documentation, Release 1.0.0-beta.21

population, which is not very life like. We can thus consider adding a bound to the size of the population, using
the following equation:

𝑥𝑡 = 𝑥𝑡−1 + 𝑟𝑥𝑡−1

(︁
1− 𝑥𝑡−1

𝐾

)︁
We have introduced a new parameter 𝐾 that represents the carrying capacity of the environment. Also, we have
made the following substitution 𝑟 = 𝑎 − 1. To get more details on the mathematical modelling and derivation of
these equations, refer to [1].

Implementing the Model

Let us start with the implementation. We will first need to import the SimCX package. We will also need
some of the ready-made simulator and visual classes from the sub-modules. In this example, we will use the
simulators.FunctionIterator simulator and the visuals.TimeSeries visual.

import simcx
from simcx.simulators import FunctionIterator
from simcx.visuals import TimeSeries

We now need to define the function for our first difference equation. To accommodate different values for our
growth rate parameter, we define a python function that in turn returns a function.

def eq1(a):
return lambda x: a * x

Next we will create a new window to control our simulation. This is done by creating a new instance of the
Display class. By default the window is created with a size of 500x500 pixels. You can change this using the
width and height parameters of the constructor. We will also need our simulator and a plot to analyse the behaviour
of our system. In this case we will use a time series plot.

display = simcx.Display()

a = 1.2 # The growth rate
x0 = 10 # The initial population size
sim = FunctionIterator(eq1(a), x0)

orbit = TimeSeries(sim)

display.add_simulator(sim)
display.add_visual(orbit)

simcx.run()

The code is self-explanatory. We first create the display, then we set the values for our parameters, and create
the simulator. We then create the visual, and add both to the display. We now have everything setup to run our
simulation, and to do that, simply call the function run(). This function will enter the main loop of the program,
displaying the window and awaiting user interaction. The default keyboard bindings are:

• Space: Continue or Pause simulation

• S: Step the simulation

• R: Reset the simulation (if the simulator supports it)

• ALT+R: Start recording the window

• F: Show or hide frames per second

By default, when a display is created, it is in paused mode. You can then run the simulation step by step by using
the S key, or let the simulation run with the Space key. After some iterations of the simulation, you should se
something like what is shown in Fig. 1.1.

4 Chapter 1. Introductory Tutorial

SimCX Documentation, Release 1.0.0-beta.21

Fig. 1.1: Time series plot of the first model.

1.3. Implementing the Model 5

SimCX Documentation, Release 1.0.0-beta.21

It is clear that the population has an exponential growth, and if you try to continue running the model, you will see
that it just keeps increasing. Let us then improve our simulation, by using the second equation where we introduce
the environments carrying capacity. We will need to define a new function.

def eq2(r, K):
return lambda x: x + r*x*(1 - (x / K))

We now need to change our main code block to accommodate this new equation.

display = simcx.Display()

a = 1.2
x0 = 10
K = 1000
sim = FunctionIterator(eq2(a - 1, K), x0)

orbit = TimeSeries(sim)

display.add_simulator(sim)
display.add_visual(orbit)

simcx.run()

Again, running our simulation for some time, we should get something similar to what is shown in Fig. 1.2.

We now can see that our population does level out when approaching the carrying capacity of the environment. We
can further analyse this system by testing different initial conditions. Fortunately, both the simulator and visual
classes used, allow us to set more than one value for the initial state. By changing the line:

x0 = [0, 10, 200, 1000]

We are now testing all these four initial values for the population size. Run the simulation and see what you get.

To end this first tutorial we will make a movie of our simulation run. The framework already provides this
capability. To create the movie, you can simply add to your code, before the simcx.run() line, the following:

display.start_recording('movie.mp4')

This will create a movie file, with the filename provided. The recording will span the whole simulation run. From
the start, up to the application close. For each step of the simulation, one frame will be recorded. By default, the
movie will be recorded with a frame rate of 20 fps, but that can be changed by passing the fps parameter to the
Display.start_recording() method. We can also alter the bitrate of the recording from the default of
1800 Kbps. You can also start a recording during any simulation without adding any code, simply by using the
ALT+R keyboard shortcut. In that case, the file will have the default name of simcx.mp4.

In this example we mostly made use of the simulators and visuals that are provided with the framework.
To make full use of SimCX, though, you may need to implement your own simulators and visuals. To get
an idea of how the ones used in this tutorial work, have a look at the reference (and code) for both the
simulators.FunctionIterator and the visuals.TimeSeries classes. In another tutorial we will
show you how to create your own.

6 Chapter 1. Introductory Tutorial

SimCX Documentation, Release 1.0.0-beta.21

Fig. 1.2: Time series plot of the second model.

1.3. Implementing the Model 7

SimCX Documentation, Release 1.0.0-beta.21

8 Chapter 1. Introductory Tutorial

CHAPTER 2

Agent-Based Modelling Tutorial

The SimCX framework works optionally with the pyafai framework for Agent-Based Modeling projects. Although
it is possible to implement an agent-based model directly in SimCX, pyafai provides a base multi-agent framework
that facilitates the implementation. In this tutorial we present an example of using SimCX with pyafai.

9

SimCX Documentation, Release 1.0.0-beta.21

10 Chapter 2. Agent-Based Modelling Tutorial

CHAPTER 3

SimCX Reference

Core

A simulation framework for complex systems modelling and analysis.

class simcx.Display(width=500, height=500, interval=0.05, multi_sampling=True, **kwargs)
Bases: object

add_simulator(sim: simcx.Simulator)

add_visual(visual: simcx.Visual, x=0, y=0)

on_close()

on_draw()

on_key_press(symbol, modifiers)

start_recording(filename=’simcx.mp4’, fps=None, bitrate=1800)

class simcx.FFMpegWriter(fps=5, codec=None, bitrate=None, extra_args=None, metadata=None)
Bases: matplotlib.animation.FFMpegWriter

frame_size
A tuple (width,height) in pixels of a movie frame.

grab_frame(**savefig_kwargs)
Grab the image information from the display and save as a movie frame. The keyword arguments are
not being used in the subclass.

setup(display, outfile)
Perform setup for writing the movie file. display: simcx.Display instance The Display instance whose
framebuffer we want to use. outfile: string The filename of the resulting movie file

class simcx.MplVisual(sim: simcx.Simulator, **kwargs)
Bases: simcx.Visual

update_image()

class simcx.PyafaiSimulator(world)
Bases: simcx.Simulator

step(delta=0)

class simcx.PyafaiVisual(sim: simcx.PyafaiSimulator, width=500, height=500)
Bases: simcx.Visual

draw()

class simcx.Simulator
Bases: object

reset()

11

SimCX Documentation, Release 1.0.0-beta.21

step(delta=0)

class simcx.Visual(sim: simcx.Simulator, **kwargs)
Bases: object

draw()

simcx.run()

Submodules

simcx.simulators module

This module provides several ready-made simulator classes. Used mainly for the examples given in the Complex
Systems course. In this current version, these should not be considered stable in terms of API.

class simcx.simulators.FinalStateIterator(func, seed, start, end, discard=1000, sam-
ples=250, delta=0.01)

Bases: simcx.Simulator

step(delta=0)

class simcx.simulators.FunctionIterator(func, initial_states)
Bases: simcx.Simulator

reset()

step(delta=0)

class simcx.simulators.FunctionIterator2D(func, initial_state)
Bases: simcx.Simulator

step(delta=0)

class simcx.simulators.IFS(transforms, probs, step_size=100)
Bases: simcx.Simulator

An Iterated Function Systems simulator using the Chaos Game.

step(delta=0, discard=False)

class simcx.simulators.JuliaSet(c, min_x=-2, max_x=2, min_y=-2, max_y=2, samples=500,
iterations=100)

Bases: simcx.Simulator

A simulator to calculate the Julia Set of a function in the form 𝑓(𝑧) = 𝑧2 + 𝑐. The simulator will compute
the Julia Set for the given range (min_x, min_y) to (max_x, max_y) on creation of the instance.

Note: numexpr optimized version inspired by code by Jean-François Puget.

step(delta=0)

simcx.visuals module

This module provides several ready-made visual classes. Used mainly for the examples given in the Complex
Systems course. In this current version, these should not be considered stable in terms of API.

class simcx.visuals.BifurcationDiagram(sim: simcx.simulators.FinalStateIterator,
**kwargs)

Bases: simcx.MplVisual

draw()

class simcx.visuals.CobWebVisual(sim: simcx.simulators.FunctionIterator, min_x, max_x,
func_string=’‘, **kwargs)

Bases: simcx.MplVisual

12 Chapter 3. SimCX Reference

https://gist.github.com/jfpuget/60e07a82dece69b011bb

SimCX Documentation, Release 1.0.0-beta.21

draw()

class simcx.visuals.FinalStateDiagram(sim: simcx.simulators.FunctionIterator, dis-
card_initial=1000, **kwargs)

Bases: simcx.MplVisual

draw()

class simcx.visuals.FractalVisual(sim, gamma=1.0, **kwargs)
Bases: simcx.MplVisual

class simcx.visuals.Line(sim: simcx.Simulator, x: list, y: list, auto_size=True, **kwargs)
Bases: simcx.MplVisual

draw()

class simcx.visuals.Lines(sim: simcx.Simulator, auto_size=True, **kwargs)
Bases: simcx.MplVisual

draw()

class simcx.visuals.PhaseSpace2D(sim: simcx.simulators.FunctionIterator2D, name_x, name_y,
**kwargs)

Bases: simcx.visuals.Line

class simcx.visuals.Points2D(sim, min_x=0.0, max_x=1.0, min_y=0.0, max_y=1.0, **kwargs)
Bases: simcx.Visual

draw()

class simcx.visuals.TimeSeries(sim: simcx.simulators.FunctionIterator, **kwargs)
Bases: simcx.visuals.Lines

3.2. Submodules 13

SimCX Documentation, Release 1.0.0-beta.21

14 Chapter 3. SimCX Reference

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

15

SimCX Documentation, Release 1.0.0-beta.21

16 Chapter 4. Indices and tables

Python Module Index

s
simcx, 11
simcx.simulators, 12
simcx.visuals, 12

17

SimCX Documentation, Release 1.0.0-beta.21

18 Python Module Index

Index

A
add_simulator() (simcx.Display method), 11
add_visual() (simcx.Display method), 11

B
BifurcationDiagram (class in simcx.visuals), 12

C
CobWebVisual (class in simcx.visuals), 12

D
Display (class in simcx), 11
draw() (simcx.PyafaiVisual method), 11
draw() (simcx.Visual method), 12
draw() (simcx.visuals.BifurcationDiagram method), 12
draw() (simcx.visuals.CobWebVisual method), 12
draw() (simcx.visuals.FinalStateDiagram method), 13
draw() (simcx.visuals.Line method), 13
draw() (simcx.visuals.Lines method), 13
draw() (simcx.visuals.Points2D method), 13

F
FFMpegWriter (class in simcx), 11
FinalStateDiagram (class in simcx.visuals), 13
FinalStateIterator (class in simcx.simulators), 12
FractalVisual (class in simcx.visuals), 13
frame_size (simcx.FFMpegWriter attribute), 11
FunctionIterator (class in simcx.simulators), 12
FunctionIterator2D (class in simcx.simulators), 12

G
grab_frame() (simcx.FFMpegWriter method), 11

I
IFS (class in simcx.simulators), 12

J
JuliaSet (class in simcx.simulators), 12

L
Line (class in simcx.visuals), 13
Lines (class in simcx.visuals), 13

M
MplVisual (class in simcx), 11

O
on_close() (simcx.Display method), 11
on_draw() (simcx.Display method), 11
on_key_press() (simcx.Display method), 11

P
PhaseSpace2D (class in simcx.visuals), 13
Points2D (class in simcx.visuals), 13
PyafaiSimulator (class in simcx), 11
PyafaiVisual (class in simcx), 11

R
reset() (simcx.Simulator method), 11
reset() (simcx.simulators.FunctionIterator method), 12
run() (in module simcx), 12

S
setup() (simcx.FFMpegWriter method), 11
simcx (module), 11
simcx.simulators (module), 12
simcx.visuals (module), 12
Simulator (class in simcx), 11
start_recording() (simcx.Display method), 11
step() (simcx.PyafaiSimulator method), 11
step() (simcx.Simulator method), 11
step() (simcx.simulators.FinalStateIterator method), 12
step() (simcx.simulators.FunctionIterator method), 12
step() (simcx.simulators.FunctionIterator2D method),

12
step() (simcx.simulators.IFS method), 12
step() (simcx.simulators.JuliaSet method), 12

T
TimeSeries (class in simcx.visuals), 13

U
update_image() (simcx.MplVisual method), 11

V
Visual (class in simcx), 12

19

	Introductory Tutorial
	Installation
	Model Description
	Implementing the Model

	Agent-Based Modelling Tutorial
	SimCX Reference
	Core
	Submodules

	Indices and tables
	Python Module Index

