
Simple Network Simulator (sim2net)
Documentation

Release

Michal Kalewski

Sep 22, 2017





Contents

1 Installation 3
1.1 1. Using the pip installation tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 2. Manually from the source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 “Hello World” example 5

3 Contents 7
3.1 Command-line interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 sim2net.application.Application abstract class . . . . . . . . . . . . . . . . . . . . . . 8
3.2.1 Default configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3.1 Package sim2net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3.2 Package sim2net.area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.3 Package sim2net.failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.4 Package sim2net.mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.5 Package sim2net.packet_loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.6 Package sim2net.placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.7 Package sim2net.propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.8 Package sim2net.speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.9 Package sim2net.utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Indices and tables 43

5 Links 45

6 Copyright 47

Bibliography 49

Python Module Index 51

i



ii



Simple Network Simulator (sim2net) Documentation, Release

Simple Network Simulator (sim2net) is a discrete event simulator of mobile ad hoc networks (MANETs) imple-
mented in Python (version 2.7). The simulator allows us to simulate networks of a given number of nodes that move
according to the selected mobility model, run custom applications, and communicate only by sending application
messages through wireless links.

Contents 1



Simple Network Simulator (sim2net) Documentation, Release

2 Contents



CHAPTER 1

Installation

There are two possibilities to install the sim2net simulator: with the use of the pip installation tool, or from the source
code obtained from GitHub.

1. Using the pip installation tool

$ sudo pip install sim2net

2. Manually from the source code

Step 1. Clone the project:

$ git clone git@github.com:mkalewski/sim2net.git sim2net
$ cd sim2net

Step 2. Run install:

$ sudo python setup.py install

3

https://github.com/mkalewski/sim2net


Simple Network Simulator (sim2net) Documentation, Release

4 Chapter 1. Installation



CHAPTER 2

“Hello World” example

$ sim2net -i .
$ sim2net ./configuration.py ./application.py

5



Simple Network Simulator (sim2net) Documentation, Release

6 Chapter 2. “Hello World” example



CHAPTER 3

Contents

Command-line interface

This package provides a command-line interface for the sim2net simulator, which allows users to initialize and start
simulations.

Synopsis

sim2net – a console script to initialize and start simulations:

sim2net [-h | -d | -v | -i DIRECTORY] CONFIGURATION APPLICATION

positional arguments:
CONFIGURATION simulation configuration file
APPLICATION simulation application file

optional arguments:
-h, --help show this help message and exit
-d, --description show description message and exit
-i DIRECTORY, --initialize DIRECTORY

write configuration and application files to given
directory

-v, --version show version message and exit

Description

To start a simulation with the sim2net simulator, two files are necessary: a configuration file (with the simulator
settings) and an application file that is run by every node in the simulated network (the application must implement
the sim2net.application.Application abstract class). The easiest way to obtain both files is to execute the
sim2net command with the -i option, eg.:

7



Simple Network Simulator (sim2net) Documentation, Release

sim2net -i .

After that, two files are created in the given directory: configuration.py and application.py. Both files
may be edited – for more information about configuration parameters see Packages section, and for more information
about application implementation see the sim2net.application.Application abstract class.

Next, to start the simulation, the sim2net command should be executed with both files as arguments, eg.:

sim2net ./configuration.py ./application.py

See also:

Packages, sim2net.application.Application

sim2net.application.Application abstract class

class sim2net.application.Application
Bases: object

failure(time, shared)

finalize(shared)

initialize(node_id, shared)

main(time, communication, neighbors, shared)

Default configuration

test.

Packages

Simple Network Simulator (sim2net) – a discrete-event simulation of mobile ad hoc networks (MANETs).

Package sim2net

This package provides modules for the sim2net simulator.

The sim2net.simulator.Sim2Net class is the main entry point for conducting simulations, and the sim2net.
application.Application abstract class defines the interface for simulation applications.

Package modules:

• Module sim2net._version

• Module sim2net._time

• Module sim2net._channel

• Module sim2net._network

• Module sim2net.simulator

8 Chapter 3. Contents



Simple Network Simulator (sim2net) Documentation, Release

Module sim2net._version

This package provides version information for the project.

The project’s version number has the following form: X.Y.Z, where:

• X – is a major version number,

• Y – is a minor version number,

• Z – is a maintenance version number.

Each number is increased by one at a time. When one of the numbers is increased, the less significant numbers are
reset to zero in the following way:

• if there are backwards incompatible changes then the major number is incremented and the minor and mainte-
nance numbers are reset to zero;

• if there are new features (additions) implemented then the minor number is incremented and the maintenance
number is reset to zero;

• if there are only implementation detail changes or bug fixes then the maintenance number is incremented (and
there are no resets).

sim2net._version.get_version()
Returns the current version number as a string.

sim2net._version.project_information()
Returns the project information in the form of its name, short name, and the current version number as a string.

Module sim2net._time

Supplies time-related functionality for simulations.

In this module the following terminology is used:

Simulation step, 𝑠: takes successive discrete values stating from 0 before each simulation iteration.

Simulation time, 𝑡𝑠: keeps track of the current time for the system being simulated; it advances to the
next value in accordance with a given simulation frequency before each simulation iteration.

Simulation frequency, 𝑓𝑠: a constant that describes the relationship between the simulation step and the
simulation time in the following manner: 𝑡𝑠 = 𝑠

𝑓𝑠
.

Simulation period, 𝑇𝑠: a constant such that: 𝑇𝑠 =
1
𝑓𝑠

.

class sim2net._time.Time
Bases: object

This class provides time abstractions for simulations.

Class Time keeps track of simulation steps and time in accordance with a given simulation frequency value.

Warning: The class must be set up by calling the setup() method.

setup(simulation_frequency=1)
Initializes time abstractions for simulations.

Parameters:

• simulation_frequency (int): a value of the simulation frequency (greater than 0).

3.3. Packages 9



Simple Network Simulator (sim2net) Documentation, Release

Raises:

• ValueError: raised when a given value of the simulation frequency is less or equal to 0.

Examples:

>>> clock = Time()
>>> clock.setup()
>>> clock.tick()
(0, 0.0)
>>> clock.tick()
(1, 1.0)
>>> clock.tick()
(2, 2.0)
>>> clock.simulation_period
1.0

>>> clock = Time()
>>> clock.setup(4)
>>> clock.tick()
(0, 0.0)
>>> clock.tick()
(1, 0.25)
>>> clock.tick()
(2, 0.5)
>>> clock.tick()
(3, 0.75)
>>> clock.tick()
(4, 1.0)
>>> clock.simulation_period
0.25

simulation_frequency
(Property) The simulation frequency of type int.

simulation_period
(Property) The simulation period of type float.

simulation_step
(Property) The current simulation step value of type int.

simulation_time
(Property) The current simulation time value of type float.

tick()
Advances the simulation step and time values.

Returns: A tuple of two values: the current simulation step (int) and the current simulation time (float).

Note: The first call to this method will always returns (0, 0.0).

Module sim2net._channel

Provides an implementation of bidirectional communication channels for nodes in the simulated network.

The channels transmit packets that transport application messages between neighboring nodes. Each packet has its
own identifier that is unique under the same sender, and can be received only by these nodes that are neighbors of
the sender for the duration of the packet transmission according to the wireless signal propagation model used (see:

10 Chapter 3. Contents



Simple Network Simulator (sim2net) Documentation, Release

sim2net.propagation). Potential packet losses are determined on the basis of the given model (see: sim2net.
packet_loss), and transmission time of each packet is uniformly randomized in range (0, 𝑡𝑚𝑎𝑥], where 𝑡𝑚𝑎𝑥 is the
given maximum transmission time in the simulation time units (see: sim2net._time).

class sim2net._channel.Channel(time, packet_loss, node_id, maximum_transmission_time)
Bases: sim2net._channel._Output, sim2net._channel._Input

This class implements bidirectional communication channels for each node in the simulated network.

The class has no members and inherits all its methods from two classes: _Input and _Output.

Application message passing is implemented here as follows. First, a message is sent locally by the _Output.
send_message() method. Then, it is transmitted in a packet to neighboring nodes by the _Output.
transmit_packets() method. If the transmission is successful, the packet leaves the output channel by
calling the _Output.deliver_packet() method and will be transferred to receiving nodes by calling the
_Input.capture_packet() methods. Finally, the message can be received by the application by calling
the _Input.receive_message() method.

Parameters:

• time: a simulation time object of the sim2net._time.Time class;

• packet_loss: an object representing the packet loss model (see sim2net.packet_loss);

• node_id (int): an identifier of the node;

• maximum_transmission_time (float): maximum message transmission time between neighboring
nodes in the simulation time units (see: sim2net._time).

Raises:

• ValueError: raised when the given value of the time or packet_loss parameter is None; or when the
given value of the node_id or maximum_transmission_time parameter is less than zero.

class sim2net._channel._Input(node_id)
Bases: object

This class implements input channels for nodes in the simulated network.

Parameters:

• node_id (int): an identifier of the node for which the input channel is created.

capture_packet(packet)
Captures packets transmitted by neighboring nodes.

Parameters:

• packet (tuple): a packet to capture represented by a tuple that contains the packet’s identifier and
transported application message, which is also a tuple containing an identifier of the sender and
the message.

receive_message()
Returns a received application message.

Returns: None value if there is no message at the current simulation step, or a tuple that contains an
identifier of the sender and the received application message.

class sim2net._channel._Output(time, packet_loss, node_id, maximum_transmission_time)
Bases: object

This class implements output channels for nodes in the simulated network.

3.3. Packages 11



Simple Network Simulator (sim2net) Documentation, Release

Note: Methods transmit_packets() and deliver_packet() are responsible for the transmission
and delivery of packages, so it is presumed that these methods are called at each step of the simulation.

Parameters:

• time: a simulation time object of the sim2net._time.Time class;

• packet_loss: an object representing a packet loss model to use (see sim2net.packet_loss);

• node_id (int): an identifier of the node for which the output channel is created;

• maximum_transmission_time (float): maximum message transmission time between neighboring
nodes in the simulation time units (see: sim2net._time).

_Output__get_transmission_neighbors(packet_id, transmission_time, neighbors)
Returns a list of neighboring nodes at the beginning of packet transmission.

Parameters:

• packet_id (int): an identifier of the transmitted packet;

• transmission_time (float): scheduled start time of the transmission;

• neighbors (list): a list of identifiers of all neighboring nodes of the sender at the current simulation
step.

Returns: (list) a list of identifiers of neighboring nodes of the sender for the given packet transmission or
None value if the transmission time has not yet begun.

deliver_packet()
Delivers packets to neighboring nodes.

Returns: None value if there is no packet to deliver at the current simulation step, or a tuple that contains
the packet to deliver. In such a case, the tuple has the following data:

• an identifier of the packet to deliver of type int;

• a tuple that contains an identifier of the sender of type int and the transported application message;

• a list of identifiers of nodes which receive the packet.

Hint:

•It is possible that at one simulation step there will be multiple packets to deliver, so this method should
be called as long until it returns None value.

•This method requires the use of complementary method _Input.capture_packet() of input
channels of all nodes receiving the packet.

send_message(message, neighbors)
Sends an application message.

Parameters:

• message: the application message to send of any type;

• neighbors (list): a list of identifiers of all neighboring nodes of the sender at the current simulation
step.

transmit_packets(neighbors)
Transmits packets to neighboring nodes.

12 Chapter 3. Contents



Simple Network Simulator (sim2net) Documentation, Release

Parameters:

• neighbors (list): a list of identifiers of all neighboring nodes of the sender at the current simulation
step according to the wireless signal propagation model used (see: sim2net.propagation).

Module sim2net._network

This module provides an implementation of the mobile ad hoc network that is to be simulated.

The network is composed of the given number of nodes running the provided simulation application. The main method
of this module, the sim2net._network.Network.step() method, is called at each simulation step and it
advances the simulation by computing node failures, new positions of the nodes, performing direct communication
between neighboring nodes, and executing the simulation application at each node.

Additionally, the sim2net._network._Communication class is implemented, which serves as a communica-
tion interface for the simulated nodes.

class sim2net._network.Network(environment)
Bases: object

This class implements the mobile ad hoc network that is to be simulated.

Parameters:

• environment: a dictionary that contains objects, which form the network environment for simulations
(see sim2net._network.Network.__ENVIRONMENT for the objects list).

_Network__application()
Executes the simulation application at each operative node at the current simulation step.

See also:

sim2net.application

_Network__communication()
Performs packets propagation in the network at the current simulation step.

See also:

sim2net._channel.Channel

_Network__failure()
Computes node failures at the current simulation step.

See also:

sim2net.failure

_Network__move()
Calculates new positions of the simulated nodes at the current simulation step.

See also:

sim2net.mobility

_Network__neighborhood()
Calculates neighboring nodes at the current simulation step.

See also:

sim2net.propagation

communication_receive(node_id)
Receives an application message for the given node.

3.3. Packages 13



Simple Network Simulator (sim2net) Documentation, Release

Parameters:

• node_id (int): an identifier of the receiver.

Returns: None value if there is no message at the current simulation step for the receiver, or a tuple that
contains an identifier of the sender and the received application message.

See also:

sim2net._network._Communication

communication_send(node_id, message)
Sends an application message.

Parameters:

• node_id (int): an identifier of the sender;

• message: the application message to send of any type.

Warning: This method uses the copy.deepcopy() function, and hence may be slow.

See also:

sim2net._network._Communication

finalize()
Calls the sim2net.application.Application.finalize() finalization method at each node
after all simulation steps.

step()
Advances the simulation by one simulation step. This method is called as many times as there is simulation
steps by the sim2net.simulator.Sim2Net.run() method.

This method calls: sim2net._network.Network._Network__failure(),
sim2net._network.Network._Network__move(), sim2net._network.
Network._Network__neighborhood(), sim2net._network.Network.
_Network__communication(), sim2net._network.Network.
_Network__application(), and sim2net._time.Time.tick() methods.

class sim2net._network._Communication(node_id, send_message, receive_message)
Bases: object

This class implements a communication interface for the simulated nodes providing two methods for sending
and receiving application messages.

Parameters:

• node_id (int): an identifier of the node;

• send_message: a sending method in the sim2net._network.Network class;

• receive_message: a receiving method in the sim2net._network.Network class.

receive()
Returns None value if there is no message at the current simulation step, or a tuple that contains an identifier
of the sender and the received application message.

send(message)
Sends an application message.

Parameters:

• message: the application message to send of any type.

14 Chapter 3. Contents



Simple Network Simulator (sim2net) Documentation, Release

Module sim2net.simulator

This module provides an interface to the simulator for the sim2net.cli command-line tool and its main entry point
for conducting simulations.

class sim2net.simulator.Sim2Net(configuration, application_file)
Bases: object

This class is the main entry point for conducting simulations.

Based on the given simulation configuration and application file, the class initializes and runs the simulation.

_Sim2Net__get_application_class(application_file)

_Sim2Net__get_arguments(name, configuration)

_Sim2Net__get_element(name, configuration, environment, number=None)

_Sim2Net__get_value(name, configuration)

_Sim2Net__report_error(element, name)

run()

Package sim2net.area

This package provides a collection of simulation area classes.

Area expresses a simulation surface by its shape and extent in the two-dimensional space with the origin in (0, 0).

Package modules:

• Module sim2net.area._area

• Module sim2net.area.rectangle

• Module sim2net.area.square

See also:

sim2net.placement

Module sim2net.area._area

Contains an abstract class that should be implemented by all simulation area classes.

class sim2net.area._area.Area(name)
Bases: object

This class is an abstract class that should be implemented by all simulation area classes.

Parameters:

• name (str): a name of the implemented simulation area.

ORIGIN = (0.0, 0.0)
The origin for simulation areas.

get_area()
Creates a dictionary that stores information about the simulation area.

3.3. Packages 15



Simple Network Simulator (sim2net) Documentation, Release

Returns: A dictionary containing the simulation area information.

Raises:

• NotImplementedError: this method is an abstract method.

height
(Property) A height of the simulation area of type float.

Raises:

• NotImplementedError: this property is an abstract property.

logger
(Property) A logger object of the logging.Logger class with an appropriate channel name.

See also:

sim2net.utility.logger

width
(Property) A width of the simulation area of type float.

Raises:

• NotImplementedError: this property is an abstract property.

within(horizontal_coordinate, vertical_coordinate)
Tests whether the given coordinates are within the simulation area.

Parameters:

• horizontal_coordinate (float): a horizontal (x-axis) coordinate;

• vertical_coordinate (float): a vertical (y-axis) coordinate.

Returns: (bool) True if the given coordinates are within the simulation area, or False otherwise.

Raises:

• NotImplementedError: this method is an abstract method.

Module sim2net.area.rectangle

Provides an implementation of a rectangular simulation area in the two-dimensional space.

class sim2net.area.rectangle.Rectangle(width, height)
Bases: sim2net.area._area.Area

This class implements a rectangular simulation area of the given size in the two-dimensional space with the
origin in (0, 0).

Parameters:

• width (float): a width of the rectangular simulation area (along the horizontal x-axis),

• height (float): a height of the rectangular simulation area (along the vertical y-axis).

Raises:

• ValueError: raised when a given value of either width or height parameter is equal to or less than 0.

get_area()
Creates a dictionary that stores information about the simulation area.

Returns: A dictionary that stores information about the simulation area; it has the following fields:

16 Chapter 3. Contents



Simple Network Simulator (sim2net) Documentation, Release

• ‘area name’: a name of the simulation area of type str,

• ‘width’: a width of the simulation area of type float,

• ‘height’: a height of the simulation area of type float.

height
(Property) A height of the simulation area of type float.

width
(Property) A width of the simulation area of type float.

within(horizontal_coordinate, vertical_coordinate)
Tests whether the given coordinates are within the simulation area.

Parameters:

• horizontal_coordinate (float): a horizontal (x-axis) coordinate;

• vertical_coordinate (float): a vertical (y-axis) coordinate.

Returns: (bool) True if the given coordinates are within the rectangular simulation area, or False other-
wise.

Module sim2net.area.square

Provides an implementation of a square simulation area in the two-dimensional space.

class sim2net.area.square.Square(side)
Bases: sim2net.area.rectangle.Rectangle

This class implements a square simulation area of the given size in the two-dimensional space with the origin in
(0, 0).

Parameters:

• side (float): a side length of the square simulation area.

Note: In this case, the sim2net.area.rectangle.Rectangle() method is called with the width and
height parameters set to the value of the given side argument.

get_area()
Creates a dictionary that stores information about the simulation area.

Returns: A dictionary that stores information about the simulation area; it has the following fields:

• ‘area name’: a name of the simulation area of type str,

• ‘side’: a side length of the square simulation area of type float.

Package sim2net.failure

This package provides a collection of process failure models.

A process failure occurs whenever the process does not behave according to its algorithm, and here the term process
means the application running on one of the nodes in the simulated network. To simulate such behaviors, process fail-
ure models are used, and they differ in the nature and scope of faults. Possible process failures may include ([CGR11]):
crashes (where a process at some time may simply stop to execute any steps and never recovers); omissions (where
a process does not send or receive messages that it is supposed to send or receive according to its algorithm); crashes
with recoveries (where a process crashes and never recovers or it keeps infinitely often crashing and recovering);

3.3. Packages 17



Simple Network Simulator (sim2net) Documentation, Release

eavesdropping (where a process leaks information obtained in its algorithm to an outside entity); and arbitrary
(where a process may deviate in any conceivable way from its algorithm).

Package modules:

• Module sim2net.failure._failure

• Module sim2net.failure.crash

Module sim2net.failure._failure

Contains an abstract class that should be implemented by all process failure model classes.

class sim2net.failure._failure.Failure(name)
Bases: object

This class is an abstract class that should be implemented by all process failure model classes.

Parameters:

• name (str): a name of the implemented process failure model.

logger
(Property) A logger object of the logging.Logger class with an appropriate channel name.

See also:

sim2net.utility.logger

node_failure(failures)
Gives in place information about nodes which processes have failed according to the implemented process
failure model.

Parameters:

• failures (list): a list of boolean values of the size equal to the total number of nodes in the
simulated network; True value in position 𝑖 indicates that the process on node number 𝑖 has
failed.

random_generator
(Property) An object representing the sim2net.utility.randomness._Randomness pseudo-
random number generator.

Module sim2net.failure.crash

This module provides an implementation of the crash model.

In the crash model ([CGR11]), processes at some time may simply stop to execute any steps, and if this is the case, the
faulty processes never recover. In this implementation, a failure for each process is determined randomly with the use
of the given crash probability that indicates the probability that a process will crash during the total simulation time.
By the method used, times at which processes crash will be distributed uniformly in the total simulation time. There
is also a possibility to setup a transient period (at the beginning of the simulation), during which process failures do
not occur, and the total number of faulty processes can also be limited to a given value.

class sim2net.failure.crash.Crash(time, nodes_number, crash_probability, maxi-
mum_crash_number, total_simulation_steps, tran-
sient_steps=0)

Bases: sim2net.failure._failure.Failure

18 Chapter 3. Contents



Simple Network Simulator (sim2net) Documentation, Release

This class implements the process crash model.

Note: It is presumed that the node_failure() method is called at each step of the simulation.

Parameters:

• time: a simulation time object of the sim2net._time.Time class;

• nodes_number (int): the total number of nodes in the simulated network;

• crash_probability (float): the probability that a single process will crash during the total simulation
time;

• maximum_crash_number (int): the maximum number of faulty processes;

• total_simulation_steps (int): the total number of simulation steps;

• transient_steps (int): a number of steps at the beginning of the simulation during which no crashes
occur (default: 0).

Raises:

• ValueError: raised when the given value of the time object is None; or when the given number of
nodes is less than or equal to zero; or when the given crash probability is less than zero or grater than
one; or when the given value of the maximum number of faulty processes or the given value of the
total simulation steps is less than zero; or when the number of steps in the transient period is less than
zero or greater than the given value of the total simulation steps.

_Crash__crashes(nodes_number, crash_probability, maximum_crash_number, to-
tal_simulation_steps, transient_steps)

Determines faulty processes and their times of crash with the use of the given crash probability. There
is also a possibility to setup a transient period (at the beginning of the simulation), during which process
failures do not occur, and the total number of faulty processes can also be limited to a given value.

Parameters:

• nodes_number (int): the total number of nodes in the simulated network;

• crash_probability (float): the probability that a single process will crash during the total simula-
tion time;

• maximum_crash_number (int): the maximum number of faulty processes;

• total_simulation_steps (int): the total number of simulation steps;

• transient_steps (int): a number of steps at the beginning of the simulation during which no
crashes occur (default: 0).

Returns: A list of tuples; each tuple contains an identifier of the node with faulty process and its time of
crash (in simulation steps). The list is sorted in ascending order by crash times.

node_failure(failures)
Gives in place information about nodes which processes have failed according to the crash model.

Parameters:

• failures (list): a list of boolean values of the size equal to the total number of nodes in the
simulated network; True value in position 𝑖 indicates that the process on node number 𝑖 has
failed.

Returns“ A list of nodes which processes failed at the current simulation step.

3.3. Packages 19



Simple Network Simulator (sim2net) Documentation, Release

Examples:

In order to avoid any process failures use this class with the crash_probability and/or maxi-
mum_crash_number parameters set to 0, as in the examples below.

>>> clock = Time()
>>> clock.setup()
>>> crash = Crash(clock, 4, 0.0, 0, 2)
>>> failures = [False, False, False, False]
>>> clock.tick()
(0, 0.0)
>>> crash.node_failure(failures)
[]
>>> print failures
[False, False, False, False]
>>> clock.tick()
(1, 1.0)
>>> crash.node_failure(failures)
[]
>>> print failures
[False, False, False, False]

>>> clock = Time()
>>> clock.setup()
>>> crash = Crash(clock, 4, 1.0, 0, 2)
>>> failures = [False, False, False, False]
>>> clock.tick()
(0, 0.0)
>>> crash.node_failure(failures)
[]
>>> print failures
[False, False, False, False]
>>> clock.tick()
(1, 1.0)
>>> crash.node_failure(failures)
[]
>>> print failures
[False, False, False, False]

Package sim2net.mobility

This package provides a collection of mobility model classes.

Mobility models ([LNR04], [CBD02]) are designed to describe the movement pattern of mobile nodes, and how
their location, velocity and acceleration change over time. Since mobility patterns may play a significant role in
determining the protocol performance, it is desirable for mobility models to emulate the movement pattern of targeted
real life applications in a reasonable way.

The literature categorises mobility models as being either entity or group models. Entity models are used as a tool to
model the behaviour of individual mobile nodes, treated as autonomous, independent entities. On the other hand, the
key assumption behind the group models is that individual nodes influence each other’s movement to some degree.
Therefore, group models have become helpful in simulating the motion patterns of a group as a whole.

Package modules:

• Module sim2net.mobility._mobility

20 Chapter 3. Contents



Simple Network Simulator (sim2net) Documentation, Release

• Module sim2net.mobility.gauss_markov

• Module sim2net.mobility.nomadic_community

• Module sim2net.mobility.random_direction

• Module sim2net.mobility.random_waypont

Module sim2net.mobility._mobility

Contains an abstract class that should be implemented by all mobility model classes.

class sim2net.mobility._mobility.Mobility(name)
Bases: object

This class is an abstract class that should be implemented by all mobility model classes.

Parameters:

• name (str): a name of the implemented mobility model.

get_current_position(node_id, node_speed, node_coordinates)
Calculates and returns a node’s position at the current simulation step in accordance with the implemented
mobility model. It is assumed that this method is called at each step of the simulation.

Parameters:

• node_id (int): an identifier of the node;

• node_speed: an object representing the node’s speed;

• node_coordinates (list): values of the node’s horizontal and vertical coordinates at the previous
simulation step.

Returns: A tuple containing current values of the node’s horizontal and vertical coordinates.

Raises:

• NotImplementedError: this method is an abstract method.

logger
(Property) A logger object of the logging.Logger class with an appropriate channel name.

See also:

sim2net.utility.logger

random_generator
(Property) An object representing the sim2net.utility.randomness._Randomness pseudo-
random number generator.

Module sim2net.mobility.gauss_markov

This module provides an implementation of the Gauss-Markov mobility model.

In the Gauss-Markov mobility model ([LH99]), motion of a single node is modelled in the form of a Gauss-Markov
stochastic process. At the beginning, each node is assigned with an initial speed and direction, as well as mean values
of these parameters. Then, at set intervals of time (e.g. simulation steps), a new speed and direction are calculated
for each node, which follow the new course until the next time step. This is repeated through the duration of the
simulation. The new speed (𝑣) and direction (𝑑), at time interval 𝑛, are evaluated in the following manner:

• 𝑣𝑛 = 𝛼× 𝑣𝑛−1 + (1− 𝛼)× 𝑣 +
√︀
(1− 𝛼2)× 𝑣𝑥,

3.3. Packages 21



Simple Network Simulator (sim2net) Documentation, Release

• 𝑑𝑛 = 𝛼× 𝑑𝑛−1 + (1− 𝛼)× 𝑑+
√︀
(1− 𝛼2)× 𝑑𝑥;

where:

• 0 6 𝛼 6 1 is a tuning parameter used to vary the randomness;

• 𝑣 is constant representing the mean value of speed;

• 𝑑 is constant representing the mean value of direction;

• 𝑣𝑥 and 𝑑𝑥 are random variables from a normal (Gaussian) distribution.

Consequently, at time interval 𝑛, node’s horizontal (𝑥) and vertical (𝑦) coordinates in the simulation area are given by
the following equations:

• 𝑥𝑛 = 𝑥𝑛−1 + 𝑣𝑛−1 × cos 𝑑𝑛−1;

• 𝑦𝑛 = 𝑦𝑛−1 + 𝑣𝑛−1 × sin 𝑑𝑛−1.

It is worth to note that when 𝛼 is equal to 1, movement becomes predictable, losing all randomness. On the other
hand, if 𝛼 is equal to 0, the model becomes memoryless: the new speed and direction are based completely upon the
mean speed and direction constants (𝑣 and 𝑑) and the Gaussian random variables (𝑣𝑥 and 𝑑𝑥).

class sim2net.mobility.gauss_markov.GaussMarkov(area, time, initial_coordinates, ini-
tial_speed, **kwargs)

Bases: sim2net.mobility._mobility.Mobility

This class implements the Gauss-Markov mobility model, in which motion of each node is modelled in the form
of a Gauss-Markov stochastic process.

Note:

•Due to the characteristics of this model, it is expected that each node has assigned the normal speed
distribution (see: sim2net.speed.normal) – the speed is used as random variable 𝑣𝑥 when a new
speed is calculated.

•All direction values used in this implementation are expressed in radians.

•The get_current_position() method computes a position of a node at the current simulation step
(see: sim2net._time), so it is presumed that the method is called at each step of the simulation.

Parameters:

• area: an object representing the simulation area;

• time: a simulation time object of the sim2net._time.Time class;

• initial_coordinates (list): initial coordinates of all nodes; each element of this parameter should be a
tuple of two coordinates: horizontal and vertical (respectively) of type float;

• initial_speed (float): a value of the initial speed that is assigned to each node at the beginning of the
simulation;

• kwargs (dict): a dictionary of (optional) keyword parameters related to the Gauss-Markov mobility
model; the following parameters are accepted:

alpha (float) The tuning parameter 0 6 𝛼 6 1 used to vary the randomness of movements (default:
0.75).

direction_deviation (float) Constant representing the standard deviation of direction random vari-
able 𝑑𝑥 (it defaults to 𝜋

2 ).

22 Chapter 3. Contents



Simple Network Simulator (sim2net) Documentation, Release

direction_margin (float) Constant used to change direction mean 𝑑 to ensure that nodes do not
remain near a border of the simulation area for a long period of time (it defaults to 0.15, or
15% of the simulation area width/height, and cannot be less than zero and greater than one; see:
_GaussMarkov__velocity_recalculation()).

direction_mean (float) Constant representing mean value 𝑑 of direction (it defaults to 𝜋
6 ). The same

value is used as mean of direction random variable 𝑑𝑥.

recalculation_interval (int) Velocity (i.e. speed and direction) recalculation time interval (it defaults
to the simulation frequency; see: sim2net._time). It determines how often, counting in
simulation steps, new values of velocity are recalculated.

Raises:

• ValueError: raised when the given value of the area, time, initial_coordinates or initial_speed pa-
rameter is None; or when the given value of the keyword parameter alpha is less than zero or greater
that one; or when the given value of the (optional) keyword parameter direction_margin is less than
zero or greater than one.

Example:

>>> gm = GaussMarkov(area, time, coordinates, 10.0, alpha=0.35)

_GaussMarkov__get_new_direction()
Randomizes a new direction with the normal (Gaussian) distribution.

Returns: (float) a newly randomized direction value.

_GaussMarkov__step_move(node_id, node_coordinates)
Computes a node’s position at the current simulation step.

Parameters:

• node_id (int): an identifier of the node;

• node_coordinates (list): values of the node’s horizontal and vertical coordinates at the previous
simulation step.

Returns: (tuple) current values of the node’s horizontal and vertical coordinates.

_GaussMarkov__velocity_recalculation(node_id, node_speed, node_coordinates)
Recalculates a node’s velocity, i.e. its speed and direction, as a Gauss-Markov stochastic process.

To ensure that a node does not remain near a border of the simulation area for a long period of time, the
node is forced away from the border when it moves within certain distance of the edge. This is done by
modifying mean direction 𝑑. For example, when a node is near the right border of the simulation area, the
value of 𝑑 changes to 180 degrees (𝜋). The distance that is used in this method is calculated as a product
of the direction margin and area width or height.

Parameters:

• node_id (int): an identifier of the node;

• node_speed: an object representing the node’s speed;

• node_coordinates (list): values of the node’s horizontal and vertical coordinates at the previous
simulation step.

get_current_position(node_id, node_speed, node_coordinates)
Calculates and returns a node’s position at the current simulation step in accordance with the Gauss-
Markov mobility model.

3.3. Packages 23



Simple Network Simulator (sim2net) Documentation, Release

A distance of the route traveled by the node, between the current and previous simulation steps, is cal-
culated as the product of the current node’s speed and the simulation period (see: sim2net._time
module). Therefore, it is assumed that this method is called at every simulation step.

Parameters:

• node_id (int): an identifier of the node;

• node_speed: an object representing the node’s speed;

• node_coordinates (list): values of the node’s horizontal and vertical coordinates at the previous
simulation step.

Returns: A tuple containing current values of the node’s horizontal and vertical coordinates.

Module sim2net.mobility.nomadic_community

This module provides an implementation of the Nomadic Community mobility model.

The Nomadic Community ([CBD02]) is a group mobility model, in which a group of nodes collectively moves from
one destination to another. Destinations for the group are determined by the so-called reference point that is selected at
random within the simulation area. Moreover, each node uses an entity mobility model to roam, within a fixed range,
around the current reference point. But when the reference point changes, all nodes travel to the new area defined
by new coordinates of the reference point (and its range of free roam) and then begin roaming around it. The whole
process is repeated again and again until simulation ends.

class sim2net.mobility.nomadic_community.NomadicCommunity(area, time, ini-
tial_coordinates,
pause_time=0.0,
area_factor=0.25)

Bases: sim2net.mobility.random_waypoint.RandomWaypoint, sim2net.mobility.
_mobility.Mobility

This class implements the Nomadic Community mobility model, in which a group of nodes travels together
from one location to another.

In this implementation, coordinates of the reference point are uniformly selected at random within the simu-
lation area once every 𝑥 + 𝑦 × 𝑝𝑎𝑢𝑠𝑒_𝑡𝑖𝑚𝑒 simulation time units (see: sim2net._time module), where
𝑥 is uniformly picked at random from the range [100, 200], and 𝑦 from the range [1, 10]. Nodes roam around
reference points in accordance with the Random Waypoint mobility model (see: sim2net.mobility.
random_waypoint module). The width and height of the (square or rectangular) free roam area around the
reference point are computed as a product of the area_factor parameter and the width and height (respectively)
of the simulation area.

Note: The get_current_position() method computes a position of a node at the current simulation
step (see: sim2net._time), so it is presumed that the method is called at each step of the simulation.

Parameters:

• area: an object representing the simulation area;

• time: a simulation time object of the sim2net._time.Time class;

• initial_coordinates (list): initial coordinates of all nodes; each element of this parameter should be a
tuple of two coordinates: horizontal and vertical (respectively) of type float;

• pause_time (float): a maximum value of the pause time in the simulation time units (default: 0.0, see
also: sim2net._time);

24 Chapter 3. Contents



Simple Network Simulator (sim2net) Documentation, Release

• area_factor (float): a factor used to determine the width and height of the free roam area around the
reference point (default: 0.25).

Raises:

• ValueError: raised when the given value of the area, time or initial_coordinates parameter is None;
or when the given value of the pause_time parameter is less that zero; or when the given value of the
area_factor parameter is less than zero or greater than one.

(At the beginning, nodes’ destination points are set to be equal to its initial coordinates passed by the ini-
tial_coordinates parameter.)

_NomadicCommunity__get_free_roam_area_edges(reference_point)
Computes boundaries of a free roam area around a given reference point.

Parameter:

• reference_point (tuple) containing horizontal and vertical coordinates (respectively) of the refer-
ence point.

Returns: A tuple containing values of the top, right, bottom and left boundaries (respectively) in the
simulation area.

_NomadicCommunity__get_new_reference_point()
Uniformly randomizes new coordinates of the reference point. The vertical and horizontal coordinates are
returned (respectively) as a tuple.

_NomadicCommunity__get_new_relocation_time()
Randomizes and returns a new relocation time of type float, after which coordinates of the reference point
will be changed.

_NomadicCommunity__reference_point_relocation()
Relocates the reference point by picking its new coordinates. The relocation takes place only if all nodes
are within the current area of free roam and the relocation time has expired. Otherwise, the current coor-
dinates of the reference point are preserved.

_get_new_destination()
Uniformly randomizes a new waypoint within the range of free roam and returns its coordinates as a tuple.

get_current_position(node_id, node_speed, node_coordinates)
Calculates and returns a node’s position at the current simulation step in accordance with the Nomadic
Community mobility model (and Random Waypoint model within the area of free roam).

A distance of the route traveled by the node, between the current and previous simulation steps, is cal-
culated as the product of the current node’s speed and the simulation period (see: sim2net._time
module). Therefore, it is assumed that this method is called at every simulation step.

Parameters:

• node_id (int): an identifier of the node;

• node_speed: an object representing the node’s speed;

• node_coordinates (list): values of the node’s horizontal and vertical coordinates at the previous
simulation step.

Returns: A tuple containing current values of the node’s horizontal and vertical coordinates.

Module sim2net.mobility.random_direction

This module provides an implementation of the Random Direction mobility model.

3.3. Packages 25



Simple Network Simulator (sim2net) Documentation, Release

At the beginning of the simulation, with the use of the Random Direction mobility model ([RMM01]), a node first
stops for some random pause time, and then randomly selects a direction in which to move. The direction is measured
in degrees, and at first, the node selects a degree between 0 and 359. Next, it finds a destination point on the boundary
of the simulation area in this direction of travel and moves with a constant, but randomly selected (between the
minimum and maximum values), speed to its destination. Once it reaches the destination, it pauses, and then selects
a new direction between 0 and 180 degree (the degree is limited because the node is already on the boundary of the
simulation area). The node then identifies the destination on the boundary in this line of direction, selects a new speed,
and resumes travel. The whole process is repeated again and again until simulation ends. The speed and destination
of each node are chosen independently of other nodes.

class sim2net.mobility.random_direction.RandomDirection(area, time, ini-
tial_coordinates,
pause_time=0.0)

Bases: sim2net.mobility.random_waypoint.RandomWaypoint, sim2net.mobility.
_mobility.Mobility

This class implements the Random Direction mobility model, in which each node moves along straight lines
from one destination point, on the boundary of the simulation area, to another.

The nodes may also have pause times when they reach their destination points, and their speeds are selected at
random between the minimum and maximum speed values. (All random picks are uniformly distributed).

Note: The get_current_position() method computes a position of a node at the current simulation
step (see: sim2net._time), so it is presumed that the method is called at each step of the simulation.

See also:

sim2net.mobility.random_waypoint

Parameters:

• area: an object representing the simulation area;

• time: a simulation time object of the sim2net._time.Time class;

• initial_coordinates (list): initial coordinates of all nodes; each element of this parameter should be a
tuple of two coordinates: horizontal and vertical (respectively) of type float;

• pause_time (float): a maximum value of the pause time in the simulation time units (default: 0.0, see
also: sim2net._time).

Raises:

• ValueError: raised when the given value of the area, time or initial_coordinates parameter is None
or when the given value of the pause_time parameter is less that zero.

(At the beginning, nodes’ destination points are set to be equal to its initial coordinates passed by the ini-
tial_coordinates parameter.)

_get_new_destination()
Randomizes a new destination point on the boundary of the simulation area and returns its coordinates as
a tuple.

Module sim2net.mobility.random_waypont

This module provides an implementation of the Random Waypoint mobility model.

26 Chapter 3. Contents



Simple Network Simulator (sim2net) Documentation, Release

In this model ([JM96], [BMJ+98]), a node first stops for some random pause time. Then, the node randomly picks
a point within the simulation area and starts moving toward it with a constant, but randomly selected, speed that
is uniformly distributed between the minimum and maximum speed values. Upon reaching the destination point (or
waypoint), the node pauses again and then moves toward a newly randomized point. (If the pause time is equal to zero,
this leads to continuous mobility.) The whole process is repeated again and again until simulation ends. The speed
and destination of each node are chosen independently of other nodes.

class sim2net.mobility.random_waypoint.RandomWaypoint(area, time, initial_coordinates,
pause_time=0.0)

Bases: sim2net.mobility._mobility.Mobility

This class implements the Random Waypoint mobility model, in which each node moves along straight lines
from one waypoint to another.

The waypoints are randomly picked within the simulation area. The nodes may also have pause times when they
reach waypoints, and their speeds are selected at random between the minimum and maximum speed values. (All
random picks are uniformly distributed).

Note: The get_current_position() method computes a position of a node at the current simulation
step (see: sim2net._time), so it is presumed that the method is called at each step of the simulation.

Parameters:

• area: an object representing the simulation area;

• time: a simulation time object of the sim2net._time.Time class;

• initial_coordinates (list): initial coordinates of all nodes; each element of this parameter should be a
tuple of two coordinates: horizontal and vertical (respectively) of type float;

• pause_time (float): a maximum value of the pause time in the simulation time units (default: 0.0, see
also: sim2net._time).

Raises:

• ValueError: raised when the given value of the area, time or initial_coordinates parameter is None
or when the given value of the pause_time parameter is less that zero.

(At the beginning, nodes’ destination points are set to be equal to its initial coordinates passed by the ini-
tial_coordinates parameter.)

_assign_new_destination(node_id, node_speed)
Assigns a new destination point for a node of a given ID and picks its new speed value. (See also:
_get_new_destination())

Parameters:

• node_id (int): an identifier of the node;

• node_speed: an object representing the node’s speed.

_assign_new_pause_time(node_id)
Assigns a new pause time for a node of a given ID and returns the value. If the maximum pause time is set
to 0, None value is assigned and returned.

Parameters:

• node_id (int): an identifier of the node.

Returns: (float) a newly randomized pause time.

3.3. Packages 27



Simple Network Simulator (sim2net) Documentation, Release

_diagonal_trajectory(node_id, node_coordinates, step_distance)
Computes the current position of a node if its trajectory is not parallel to the horizontal or vertical axis of
the simulation area. (See also: _parallel_trajectory().)

Parameters:

• node_id (int): an identifier of the node;

• node_coordinates (list): values of the node’s horizontal and vertical coordinates at the previous
simulation step.

• step_distance (float): a distance that the node has moved between the previous and current sim-
ulation step.

Returns: (tuple) current values of the node’s horizontal and vertical coordinates.

_get_new_destination()
Randomizes a new waypoint and returns its coordinates as a tuple.

_get_new_pause_time()
Randomizes a new pause time and returns its value of type float.

_parallel_trajectory(coordinate, destination, step_distance)
Computes the current position of a node when one of its coordinates is equal to the corresponding des-
tination coordinate. In such a case, the node moves on a straight line that is parallel to the horizontal or
vertical axis of the simulation area. (See also: _diagonal_trajectory().)

Parameters:

• coordinate (float): a value of the previous node’s coordinate that is not equal to its corresponding
destination coordinate;

• destination (float): a value of the destination coordinate;

• step_distance (float): a distance that the node has moved between the previous and current sim-
ulation steps.

Returns: (float) a current value of the node’s coordinate.

_pause(node_id, node_coordinates)
Decreases the current value of a node’s pause time and returns the result of type float, or None if the pause
time has expired.

Parameters:

• node_id (int): an identifier of the node;

• node_coordinates (list): values of the node’s horizontal and vertical coordinates at the previous
simulation step.

_step_move(node_id, node_speed, node_coordinates)
Computes a node’s position at the current simulation step. If its trajectory is parallel to the horizontal
or vertical axis of the simulation area, the _steady_trajectory() method is used, otherwise the
_diagonal_trajectory() method is used.

Parameters:

• node_id (int): an identifier of the node;

• node_speed: an object representing the node’s speed;

• node_coordinates (list): values of the node’s horizontal and vertical coordinates at the previous
simulation step.

Returns: (tuple) current values of the node’s horizontal and vertical coordinates.

28 Chapter 3. Contents



Simple Network Simulator (sim2net) Documentation, Release

get_current_position(node_id, node_speed, node_coordinates)
Calculates and returns a node’s position at the current simulation step in accordance with the Random
Waypoint mobility model.

A distance of the route traveled by the node, between the current and previous simulation steps, is cal-
culated as the product of the current node’s speed and the simulation period (see: sim2net._time
module). Therefore, it is assumed that this method is called at every simulation step.

Parameters:

• node_id (int): an identifier of the node;

• node_speed: an object representing the node’s speed;

• node_coordinates (list): values of the node’s horizontal and vertical coordinates at the previous
simulation step.

Returns: A tuple containing current values of the node’s horizontal and vertical coordinates.

Package sim2net.packet_loss

This package provides a collection of packet loss model classes.

Packet loss occurs when a packet of data (or message) traveling across a computer network fails to reach its destina-
tion(s). In wireless communication, the loss may be caused by wireless channel properties (e.g. signal degradation
due to multi-path fading or shadowing), packet collisions or faulty networking hardware. Thus, the purpose of packet
loss models is to simulate (potential) transmission failures in wireless communication.

Package modules:

• Module sim2net.packet_loss._packet_loss

• Module sim2net.packet_loss.gilbert_elliott

See also:

sim2net.propagation

Module sim2net.packet_loss._packet_loss

Contains an abstract class that should be implemented by all packet loss model classes.

class sim2net.packet_loss._packet_loss.PacketLoss(name)
Bases: object

This class is an abstract class that should be implemented by all packet loss model classes.

Parameters:

• name (str): a name of the implemented placement model.

logger
(Property) A logger object of the logging.Logger class with an appropriate channel name.

See also:

sim2net.utility.logger

3.3. Packages 29



Simple Network Simulator (sim2net) Documentation, Release

packet_loss()
Returns information about whether a transmitted packet has been lost or can be successfully received by
destination nodes according to the implemented packet loss model.

Returns: (bool) True if the packet has been lost, or False otherwise.

Raises:

• NotImplementedError: this method is an abstract method.

random_generator
(Property) An object representing the sim2net.utility.randomness._Randomness pseudo-
random number generator.

Module sim2net.packet_loss.gilbert_elliott

This module provides an implementation of the Gilbert-Elliott packet loss model.

The Gilbert-Elliott model ([Gil60], [Ell63]) describes error patterns in communication channels ([HH08]). The model
is based on a simple Markov chain with two states: G (for good or gap) and B (for bad or burst). Each of them may
generate errors (packet losses) as independent events at a state dependent error rate: 1− 𝑘 in the good state and 1− ℎ
in the bad state. The chain is shown in the figure below along with the transition matrix 𝐴 that uses two transitions:
𝑝 = 𝑃 (𝑞𝑡 = 𝐵|𝑞𝑡−1 = 𝐺) and 𝑟 = 𝑃 (𝑞𝑡 = 𝐺|𝑞𝑡−1 = 𝐵) (𝑞𝑡 denotes the state at time 𝑡):

+-------+ p +-------+ { }
+----| |------------>| |<---+ { 1-p p }

1-p | | G | | B | | 1-r A = { }
| | (1-k) | | (1-h) | | { r 1-r }
+--->| |<------------| |----+ { }

+-------+ r +-------+

Then, error rate 𝑝𝐸 is obtained (in steady mode) for the model as follows: 𝑝𝐸 = (1 − 𝑘) × 𝑟
𝑝+𝑟 + (1 − ℎ) × 𝑝

𝑝+𝑟
(assuming: 0 < 𝑝, 𝑟 < 1).

It is worth to note that when 𝑞 = 1− 𝑝 (and 𝑘 = 1, ℎ = 0), this model reduces to the Bernoulli model – a very simple
loss model, characterized by a single parameter, the loss rate 𝑟, used for modeling packet loss.

Finally, 𝑝 equal to 0 means that no losses are possible, whereas 𝑟 equal to 0 means that no transmission is successful
(once the B state is reached).

class sim2net.packet_loss.gilbert_elliott.GilbertElliott(prhk=None)
Bases: sim2net.packet_loss._packet_loss.PacketLoss

This class implements the Gilbert-Elliott packet loss model.

Parameters:

• prhk (tuple): a tuple that contains four model parameters: 0 6 𝑝, 𝑟, ℎ, 𝑘 6 1, respectively (each of
type float). The parameters default to the following values:

– 𝑝 = 0.00001333,

– 𝑟 = 0.00601795,

– ℎ = 0.55494900,

– 𝑘 = 0.99999900;

(which leads to error rate equal to 0.098% and the mean packet loss rate equal to 0.1% ([HH08])).

Raises:

• ValueError: raised when the given value any model parameter is less than zero or greater that one.

30 Chapter 3. Contents



Simple Network Simulator (sim2net) Documentation, Release

(At the beginning the model is in the G state.)

packet_loss()
Returns information about whether a transmitted packet has been lost or can be successfully received by
destination node(s) according to the Gilbert-Elliott packet loss model.

Returns: (bool) True if the packet has been lost, or False otherwise.

Package sim2net.placement

This package provides a collections of placement model classes.

A placement (or deployment) model describes a simulation area and a given number of nodes deployed in the area. It
provides also node positions in case of static networks or initial node positions for mobile environments.

Package modules:

• Module sim2net.placement._placement

• Module sim2net.placement.grid

• Module sim2net.placement.normal

• Module placement.uniform

See also:

sim2net.area

Module sim2net.placement._placement

Contains an abstract class that should be implemented by all placement classes.

class sim2net.placement._placement.Placement(name)
Bases: object

This class is an abstract class that should be implemented by all placement model classes.

Parameters:

• name (str): a name of the implemented placement model.

get_placement()
Generates placement positions and returns the result as a dictionary.

Returns: A dictionary containing the placement information.

Raises:

• NotImplementedError: this method is an abstract method.

logger
(Property) A logger object of the logging.Logger class with an appropriate channel name.

See also:

sim2net.utility.logger

static position_conflict(horizontal_coordinates, vertical_coordinates, index=-1)
If index is less than 0, checks whether the given coordinates are unique, that is, if no two points have the

3.3. Packages 31



Simple Network Simulator (sim2net) Documentation, Release

same horizontal and vertical coordinates. Otherwise, checks if there is a point that has the same coordinates
as these at the index position.

Parameters:

• horizontal_coordinates (list): a list of horizontal coordinates;

• vertical_coordinates (list): a list of vertical coordinates;

• index (int): an index of the coordinate lists; if greater than -1, it is checked whether there is a
point with the same horizontal and vertical coordinates as at index.

Returns: (int) an index of the coordinate that is in conflict, or -1 if the given coordinates are unique.

Raises:

• ValueError: if given coordinate lists have different lengths, or if a given value of the index
parameter is greater than the total number of coordinates.

Examples:

>>> Placement.position_conflict([1, 2, 2, 4], [5, 6, 6, 7])
2
>>> Placement.position_conflict([1, 2, 2, 4], [5, 6, 6, 7], 1)
2
>>> Placement.position_conflict([1, 2, 2, 4], [5, 6, 6, 7], 0)
-1

random_generator
(Property) An object representing the sim2net.utility.randomness._Randomness pseudo-
random number generator.

Module sim2net.placement.grid

Provides an implementation of the grid placement model.

In the grid placement model nodes are placed at intersections of a square or rectangular grid. Usually, the grid has
quadratic-shaped cells with edge length that is close to the communication radius of a node. It creates networks that
are regular in shape and provides excellent connectivity at a startup.

class sim2net.placement.grid.Grid(area, nodes_number, transmission_range)
Bases: sim2net.placement._placement.Placement

This class implements the grid placement model, in which a given number of nodes are placed at intersections
of a square or rectangular grid within a simulator area.

Parameters:

• area: an object representing the simulation area;

• nodes_number (int): a number of nodes to place within the simulation area;

• transmission_range (float): a value of the transmission (or communication) radius of nodes, that is,
the distance from a transmitter at which the signal strength remains above the minimum usable level.

Raises:

• ValueError: raised when: the given number of nodes or transmission range is less or equal to 0, or
when the given value of the area parameter is None.

_Grid__adjust_grid_dimensions(columns, rows)
Adjusts the given grid dimensions to the size of the simulation area. If the area shape is square and the grid
shape is rectangular, the longer side of the grid is placed along the horizontal x-axis of the simulation area.

32 Chapter 3. Contents



Simple Network Simulator (sim2net) Documentation, Release

If both shapes are rectangular, the longer side of the grid is placed along the longer size of the simulation
area.

Parameters:

• columns (int): a number of grid columns;

• rows (int): a number of grid rows.

Returns: A number of grid columns and rows as a tuple.

_Grid__get_grid_dimensions()
Calculates dimensions of the grid based on the number of nodes. If the number has a square root, the grid
shape will be a square, otherwise it will be a rectangular. In the worst case if the number of nodes is prime,
the number of rows (or columns) will be equal to one.

Returns: A number of grid columns and rows as a tuple.

_Grid__get_horizontal_coordinates(columns, rows, distance)
Generates horizontal coordinates of nodes based on the number of columns, rows and the distance between
nodes.

Returns: A list of horizontal coordinates.

_Grid__get_nodes_distance(columns, rows)
Calculates a distance between nodes in the same row and column based on the their transmission ranges.
The distance is also adjust to fit the dimensions of the simulation area.

Returns: A distance between nodes in the grid of type float.

_Grid__get_vertical_coordinates(columns, rows, distance)
Generates vertical coordinates of nodes based on the number of columns, rows and the distance between
nodes.

Returns: A list of vertical coordinates.

get_placement()
Generates grid placement coordinates for the given number of nodes and its transmission ranges and returns
the result as a dictionary.

Returns: A list of tuples of horizontal and vertical coordinates for each host.

Module sim2net.placement.normal

Provides an implementation of the normal placement model.

In the normal placement model, a simulation area of a given size is chosen and a given number of nodes are placed
over it with the normal, i.e. Gaussian, probability distribution.

class sim2net.placement.normal.Normal(area, nodes_number, standard_deviation=0.2)
Bases: sim2net.placement._placement.Placement

This class implements the normal placement model, in which a given number of nodes are placed over a simu-
lation area with the normal probability distribution.

Parameters:

• area: an object representing the simulation area;

• nodes_number (int): a number of nodes to place over the simulation area;

• standard_deviation (float): a value of the standard deviation (default: 0.2).

Raises:

3.3. Packages 33



Simple Network Simulator (sim2net) Documentation, Release

• ValueError: raised when the number of nodes is less or equal to 0, or when the given value of the
area parameter is None.

get_placement()
Generates normal (Gaussian) placement coordinates for the given number of nodes and returns the result
as a dictionary.

The means used here are computed as follows: 1
2 × 𝑎𝑟𝑒𝑎 𝑤𝑖𝑑𝑡ℎ and 1

2 × 𝑎𝑟𝑒𝑎 ℎ𝑒𝑖𝑔ℎ𝑡.

Returns: A list of tuples of horizontal and vertical coordinates for each host.

Module placement.uniform

Provides an implementation of the uniform placement model.

In the uniform placement model, a simulation area of a given size is chosen and a given number of nodes are placed
over it with the uniform probability distribution.

class sim2net.placement.uniform.Uniform(area, nodes_number)
Bases: sim2net.placement._placement.Placement

This class implements implements the uniform placement model, in which a given number of nodes are placed
over a simulation area with the uniform probability distribution.

Parameters:

• area: an object representing the simulation area;

• nodes_number (int): a number of nodes to place over the simulation area.

Raises:

• ValueError: raised when the number of nodes is less or equal to 0, or when the given value of the
area parameter is None.

get_placement()
Generates uniform placement coordinates for the given number of nodes and returns the result as a dictio-
nary.

Returns: A list of tuples of horizontal and vertical coordinates for each host.

Package sim2net.propagation

This package provides a collection of wireless signal propagation model classes.

A wireless transmission may be distorted by many effects such as free-space loss, refraction, diffraction, reflection or
absorption. Therefore, wireless propagation models describe the influence of environment on signal quality (mainly
as a function of frequency, distance or other conditions) and calculate the signal-to-noise ratio (SNR) at the receiver.
Then, it is assumed that if the SNR value is higher than some prescribed threshold, the signal can be received, and the
packet that is carried by the signal can be successfully received if the receiving node remains connected in this way
with the sending node at least for the duration of that packet transmission.

Package modules:

• Module sim2net.propagation._propagation

• Module sim2net.propagation.path_loss

34 Chapter 3. Contents



Simple Network Simulator (sim2net) Documentation, Release

See also:

sim2net.packet_loss

Module sim2net.propagation._propagation

Contains an abstract class that should be implemented by all wireless signal propagation model classes.

class sim2net.propagation._propagation.Propagation(name)
Bases: object

This class is an abstract class that should be implemented by all wireless signal propagation model classes.

Parameters:

• name (str): a name of the implemented placement model.

get_neighbors(coordinates)
Calculates identifiers of all nodes in a network that would be able to receive a wireless signal transmitted
from a source node, according to the implemented propagation model. All nodes in the network are
considered, one by one, as the source node.

Parameters:

• coordinates (list): a list of coordinates of all nodes in the simulated network at the current simu-
lation step.

Returns: A list that in position i is a list of all nodes that would be able to receive a wireless signal
transmitted by a node whose identifier is equal to i.

Raises:

• NotImplementedError: this method is an abstract method.

logger
(Property) A logger object of the logging.Logger class with an appropriate channel name.

See also:

sim2net.utility.logger

random_generator
(Property) An object representing the sim2net.utility.randomness._Randomness pseudo-
random number generator.

Module sim2net.propagation.path_loss

This module provides an implementation of the simplified path loss model.

The path loss model predicts the reduction in attenuation (power density) a signal encounters as it propagates through
space. In this simplified implementation, it is presumed that for all nodes that are within transmission range of each
other, the signal-to-noise ratio (SNR) is above the minimal usable level, and hence, the nodes are able to communicate
directly.

class sim2net.propagation.path_loss.PathLoss(transmission_range)
Bases: sim2net.propagation._propagation.Propagation

This class implements simplified path loss model in which the signal-to-noise ration is calculated on the given
value of the transmission range of nodes.

Parameters:

3.3. Packages 35



Simple Network Simulator (sim2net) Documentation, Release

• transmission_range (float): a value of the transmission (or communication) radius of nodes, that is,
the distance from a transmitter at which the signal strength remains above the minimum usable level.

Raises:

• ValueError: raised when the given transmission range is less or equal to 0.

_PathLoss__distance(source_coordinates, destination_coordinates)
Calculates the distance between source and destination nodes in Cartesian space.

Parameters:

• source_coordinates (list): values of the source node’s horizontal and vertical coordinates at the
current simulation step;

• destination_coordinates (list): values of the destination node’s horizontal and vertical coordi-
nates at the current simulation step.

Returns: The distance between source and destination nodes in Cartesian space of type float.

get_neighbors(coordinates)
Calculates identifiers of all nodes in a network that would be able to receive a wireless signal transmitted
from a source node, according to the implemented propagation model. All nodes in the network are
considered, one by one, as the source node.

Parameters:

• coordinates (list): a list of coordinates of all nodes in the simulated network at the current simu-
lation step.

Returns: A list that in position i is a list of all nodes that would be able to receive a wireless signal
transmitted by a node whose identifier is equal to i.

Examples:

>>> pathloss = PathLoss(1.0)
>>> coordinates = [[1.0, 2.0], [1.5, 2.5], [2.0, 3.0], [2.5, 3.5]]
>>> print pathloss.get_neighbors(coordinates)
[[1], [0, 2], [1, 3], [2]]
>>> coordinates = [[1.0, 2.0], [1.1, 2.1], [1.2, 2.2], [1.3, 2.3]]
>>> print pathloss.get_neighbors(coordinates)
[[1, 2, 3], [0, 2, 3], [0, 1, 3], [0, 1, 2]]

Package sim2net.speed

This package provides a collection of speed distribution classes.

Speed is a scalar quantity that describes the rate of change of a node position in a simulation area (see: sim2net.
area).

Note: In all speed distribution classes the quantity of speed should be considered as simulation area units per one
simulation time unit (see: sim2net._time).

For example, the value of speed equal to 5 would mean five units of simulation area per one unit of simulation time.

Package modules:

• Module sim2net.speed._speed

36 Chapter 3. Contents



Simple Network Simulator (sim2net) Documentation, Release

• Module sim2net.speed.constant

• Module sim2net.speed.normal

• Module sim2net.speed.uniform

See also:

sim2net.placement, sim2net._time

Module sim2net.speed._speed

Contains an abstract class that should be implemented by all speed distribution classes.

class sim2net.speed._speed.Speed(name)
Bases: object

This class is an abstract class that should be implemented by all speed distribution classes.

Parameters:

• name (str): a name of the implemented speed distribution.

current
(Property) A value of the current speed of type float.

Raises:

• NotImplementedError: this property is an abstract property.

get_new()
Assigns a new speed value.

Returns: (float) a new speed value.

Raises:

• NotImplementedError: this method is an abstract method.

logger
(Property) A logger object of the logging.Logger class with an appropriate channel name.

See also:

sim2net.utility.logger

random_generator
(Property) An object representing the sim2net.utility.randomness._Randomness pseudo-
random number generator.

Module sim2net.speed.constant

Provides an implementation of a constant node speed. In this case a speed of a node is constant at a given value.

class sim2net.speed.constant.Constant(speed)
Bases: sim2net.speed._speed.Speed

This class implements a constant node speed fixed at a given value.

Parameters:

• speed (float): a value of the node speed.

3.3. Packages 37



Simple Network Simulator (sim2net) Documentation, Release

Example:

>>> speed = Constant(5.0)
>>> speed.current
5.0
>>> speed.get_new()
5.0
>>> speed = Constant(-5.0)
>>> speed.current
5.0
>>> speed.get_new()
5.0

current
(Property) The absolute value of the current speed of type float.

get_new()
Returns the absolute value of the given node speed of type float.

Module sim2net.speed.normal

Provides an implementation of the normal speed distribution. In this case a speed of a node is assigned at random with
the normal, i.e. Gaussian, probability distribution.

class sim2net.speed.normal.Normal(mean=0.0, standard_deviation=0.2)
Bases: sim2net.speed._speed.Speed

This class implements the normal speed distribution that assigns node’s speeds with the Gaussian probability
distribution.

(Defaults to standard normal distribution.)

Parameters:

• mean (float): a value of the expectation (default: 0.0);

• standard_deviation (float): a value of the standard deviation (default: 0.2).

current
(Property) A value of the current speed of type float (or None if the value has yet not been assigned).

get_new()
Assigns a new speed value.

Warning: Depending on distribution parameters, negative values may be randomly selected.

Returns: (float) the absolute value of a new speed.

mean
(Property) A value of the expectation of type float.

Module sim2net.speed.uniform

Provides an implementation of the uniform speed distribution. In this case a speed of a node is assigned at random
with the uniform probability distribution.

38 Chapter 3. Contents



Simple Network Simulator (sim2net) Documentation, Release

class sim2net.speed.uniform.Uniform(minimal_speed, maximal_speed)
Bases: sim2net.speed._speed.Speed

This class implements the uniform speed distribution that assigns node’s speeds from a given range with equal
probability.

Parameters:

• minimal_speed (float): a value of a node’s minimal speed;

• maximal_speed (float): a value of a node’s maximal speed.

current
(Property) A value of the current speed of type float (or None if the value has yet not been assigned).

get_new()
Assigns a new speed value.

Warning: Depending on distribution parameters, negative values may be randomly selected.

Returns: (float) the absolute value of a new speed.

Package sim2net.utility

This package contains miscellaneous utility modules and classes.

Package modules:

• Module sim2net.utility.logger

• Module sim2net.utility.randomness

• Module sim2net.utility.validation

Module sim2net.utility.logger

Provides functions which implement an event logging system with the use of the logging module from the standard
library.

class sim2net.utility.logger.Sim2NetFormatter(time=None)
Bases: logging.Formatter

Implements a custom logging.Formatter that can also log simulation steps and time (see: sim2net.
_time).

Parameters:

• time: a simulation time object of the sim2net._time.Time class to log simulation steps and
time.

format(record)
Formats the specified record as text and adds the current simulations step and time if the time object is
present.

sim2net.utility.logger.__channel_string(channel)
Returns a logging channel string for a given string.

3.3. Packages 39



Simple Network Simulator (sim2net) Documentation, Release

sim2net.utility.logger.create_logger(time=None, level=None, handler=None, format-
ter=None)

Creates and configures a logger for the main logging channel.

If no handler is passed, the sim2net.utility.logger.Sim2NetFormatter formatter is used.

Parameters:

• time: a simulation time object of the sim2net._time.Time class to log simulation steps and
time;

• level: a logging level that will be set to the logger (and its handler if the handler is not passed as an
argument); the level can be passed as a string or a logging module’s level;

• handler: an object representing the handler to be used with the logger (see logging.handlers
in the standard library);

• formatter: an object representing the log format to be used with the logger’s handler (see logging.
Formatter class in the standard library).

Returns: A logging.Logger object for a newly created logger.

sim2net.utility.logger.get_logger(channel=None)
Returns a logger object. Multiple calls to this function with the same channel string will return the same object.

Parameters:

• channel (str): a string that represents a logging channel.

Returns: A logging.Logger object for the given logging channel or the main channel logger if channel
argument is None.

Examples:

>>> main_channel_logger = logger.create_logger()
>>> main_channel_logger = logger.get_logger()
>>> new_channel_logger = logger.get_logger('my_channel')

Module sim2net.utility.randomness

Provides a pseudo-random number generator.

class sim2net.utility.randomness._Randomness
Bases: object

This class provides a pseudo-random number generator with the use of the random module from the standard
library that produces a sequence of numbers that meet certain statistical requirements for randomness.

get_state()
Returns an object capturing the current internal state of the generator.

This object can be passed to set_state() to restore the state.

normal(mikro, sigma)
Returns a random floating point number with the normal (i.e. Gaussian) distribution.

Parameters:

• mikro (float): a value of the mean to be used by the generator;

• sigma (float): a value of the standard deviation to be used by the generator.

random_order(sequence)
Shuffles the given sequence in place.

40 Chapter 3. Contents



Simple Network Simulator (sim2net) Documentation, Release

set_state(generator_state)
Sets a new internal state of the generator.

The state can be obtained from a call to get_state() method.

Parameters:

• generator_state: an internal state of the generator to set.

Raises:

• ValueError: raised when a given value of the generator_state parameter is None.

uniform(begin, end)
Returns a random floating point number 𝑁 such that 𝑏𝑒𝑔𝑖𝑛 6 𝑁 6 𝑒𝑛𝑑 for 𝑏𝑒𝑔𝑖𝑛 6 𝑒𝑛𝑑 and 𝑒𝑛𝑑 6 𝑁 6
𝑏𝑒𝑔𝑖𝑛 for 𝑒𝑛𝑑 < 𝑏𝑒𝑔𝑖𝑛.

sim2net.utility.randomness.get_random_generator()
Returns an object representing the _Randomness pseudo-random number generator. Multiple calls to this
function will return the same object.

Module sim2net.utility.validation

Contains a collection of source code validation functions.

sim2net.utility.validation.check_argument_type(function, parameter, expected_type, ar-
gument, logger=None)

Checks whether a given argument is of a given type and raises an exception or reports a log message if the
argument’s type is inappropriate.

Checks whether a value of the argument parameter is of the expected_type type. If not, it raises an exception (if
logger object is None) or reports a log message (if logger object is passed) indicating an inappropriate type of
the parameter parameter in the function function (or method).

Parameters:

• function (str): a name of the function which argument is to be checked;

• parameter (str): a name of the parameter which argument is to be checked;

• expected_type: an expected type of the argument parameter;

• argument: a value of the argument that is to be checked;

• logger (logging.Logger): a logger object that will be used to write the log message.

Raises:

• TypeError: raised when the value of argument is not of the expected_type type and logger object is
not passed.

Example:

>>> check_argument_type('function_name', 'parameter_name', str, 'argument')

3.3. Packages 41



Simple Network Simulator (sim2net) Documentation, Release

42 Chapter 3. Contents



CHAPTER 4

Indices and tables

• genindex

• modindex

• search

43



Simple Network Simulator (sim2net) Documentation, Release

44 Chapter 4. Indices and tables



CHAPTER 5

Links

Repository https://github.com/mkalewski/sim2net

Bug reports https://github.com/mkalewski/sim2net/issues

Documentation https://sim2net.readthedocs.org/en/latest/

45

https://github.com/mkalewski/sim2net
https://github.com/mkalewski/sim2net/issues
https://sim2net.readthedocs.org/en/latest/


Simple Network Simulator (sim2net) Documentation, Release

46 Chapter 5. Links



CHAPTER 6

Copyright

Copyright (c) 2012-2014 Michal Kalewski <mkalewski at cs.put.poznan.pl>

This program comes with ABSOLUTELY NO WARRANTY.
THIS IS FREE SOFTWARE, AND YOU ARE WELCOME TO REDISTRIBUTE IT UNDER THE TERMS
AND CONDITIONS OF THE MIT LICENSE. YOU SHOULD HAVE RECEIVED A COPY OF THE
LICENSE ALONG WITH THIS SOFTWARE; IF NOT, YOU CAN DOWNLOAD A COPY FROM
HTTP://WWW.OPENSOURCE.ORG.

47



Simple Network Simulator (sim2net) Documentation, Release

48 Chapter 6. Copyright



Bibliography

[CGR11] Christian Cachin, Rachid Guerraoui, Luís Rodrigues. Introduction to Reliable and Secure Distributed Pro-
gramming, 2ed Edition. Springer-Verlag, 2011.

[LNR04] Guolong Lin, Guevara Noubir, Rajmohan Rajamaran. Mobility Models for Ad-Hoc Network Simulation. In
Proceedings of the 23rd Conference of the IEEE Communications Society (INFOCOM 2004), pp. 463-473. Hong
Kong, March 2004.

[CBD02] Tracy Camp, Jeff Boleng, Vanessa Davies. A Survey of Mobility Models for Ad-Hoc Network Research.
In Wireless Communications Mobile Computing. Special Issue on Mobile Ad Hoc Networking: Research, Trends
and Applications, vol. 2(5), 483–502. John Wiley & Sons, 2002.

[LH99] Ben Liang, Zygmunt J. Haas. Predictive Distance-Based Mobility Management for PCS Networks. In Pro-
ceedings of the 18th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM
1999), pp. 1377–1384, vol. 3. New York, NY, United States, March 1999.

[RMM01] Elizabeth M. Royer, P. Michael Melliar-Smithy, Louise E. Moser. An Analysis of the Optimum Node
Density for Ad Hoc Mobile Networks. In Proceedings of the IEEE International Conference on Communications
(ICC 2001), pp. 857–861, vol. 3. Helsinki, Finland, June 2001.

[JM96] David B. Johnson and David A. Maltz. Dynamic Source Routing in Ad Hoc Wireless Networks. In Mobile
Computing, edited by Tomasz Imielinski and Hank Korth, chapter 5, pp. 153–181. Kluwer Academic Publishers,
1996.

[BMJ+98] Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu, Jorjeta Jetcheva. A Performance Compar-
ison of Multi-hop Wireless Ad Hoc Network Routing Protocols. In Proceedings of the 4th Annual ACM/IEEE
International Conference on Mobile Computing and Networking (MobiCom 1998), pp. 85–97. Dallas, Texas,
United States, October 1998.

[Ell63] E. O. Elliott. Estimates of Error Rates for Codes on Burst-Noise Channels. In Bell System Technical Journal,
vol. 42(5), 1977–1997. Bell Laboratories, September 1963.

[Gil60] Edgar Nelson Gilbert. Capacity of a Burst-Noise Channel. In Bell System Technical Journal, vol. 39(5), 1253–
1265. Bell Laboratories, September 1960.

[HH08] Gerhard Haßlinger, Oliver Hohlfeld. The Gilbert-Elliott Model for Packet Loss in Real Time Services on the
Internet. In Proceedings of the 14th GI/ITG Conference on Measurement, Modelling and Evaluation of Computer
and Communication Systems (MMB 2008), pp. 269–286. Dortmund, Germany, April 2008.

49



Simple Network Simulator (sim2net) Documentation, Release

50 Bibliography



Python Module Index

s
sim2net, 8
sim2net._channel, 10
sim2net._network, 13
sim2net._time, 9
sim2net._version, 9
sim2net.application, 8
sim2net.area, 15
sim2net.area._area, 15
sim2net.area.rectangle, 16
sim2net.area.square, 17
sim2net.cli, 7
sim2net.cli.cli, 7
sim2net.failure, 17
sim2net.failure._failure, 18
sim2net.failure.crash, 18
sim2net.mobility, 20
sim2net.mobility._mobility, 21
sim2net.mobility.gauss_markov, 21
sim2net.mobility.nomadic_community, 24
sim2net.mobility.random_direction, 25
sim2net.mobility.random_waypoint, 26
sim2net.packet_loss, 29
sim2net.packet_loss._packet_loss, 29
sim2net.packet_loss.gilbert_elliott, 30
sim2net.placement, 31
sim2net.placement._placement, 31
sim2net.placement.grid, 32
sim2net.placement.normal, 33
sim2net.placement.uniform, 34
sim2net.propagation, 34
sim2net.propagation._propagation, 35
sim2net.propagation.path_loss, 35
sim2net.simulator, 15
sim2net.speed, 36
sim2net.speed._speed, 37
sim2net.speed.constant, 37
sim2net.speed.normal, 38
sim2net.speed.uniform, 38

sim2net.utility, 39
sim2net.utility.logger, 39
sim2net.utility.randomness, 40
sim2net.utility.validation, 41

51



Simple Network Simulator (sim2net) Documentation, Release

52 Python Module Index



Index

Symbols
_Communication (class in sim2net._network), 14
_Crash__crashes() (sim2net.failure.crash.Crash method),

19
_GaussMarkov__get_new_direction()

(sim2net.mobility.gauss_markov.GaussMarkov
method), 23

_GaussMarkov__step_move()
(sim2net.mobility.gauss_markov.GaussMarkov
method), 23

_GaussMarkov__velocity_recalculation()
(sim2net.mobility.gauss_markov.GaussMarkov
method), 23

_Grid__adjust_grid_dimensions()
(sim2net.placement.grid.Grid method), 32

_Grid__get_grid_dimensions()
(sim2net.placement.grid.Grid method), 33

_Grid__get_horizontal_coordinates()
(sim2net.placement.grid.Grid method), 33

_Grid__get_nodes_distance()
(sim2net.placement.grid.Grid method), 33

_Grid__get_vertical_coordinates()
(sim2net.placement.grid.Grid method), 33

_Input (class in sim2net._channel), 11
_Network__application() (sim2net._network.Network

method), 13
_Network__communication()

(sim2net._network.Network method), 13
_Network__failure() (sim2net._network.Network

method), 13
_Network__move() (sim2net._network.Network

method), 13
_Network__neighborhood() (sim2net._network.Network

method), 13
_NomadicCommunity__get_free_roam_area_edges()

(sim2net.mobility.nomadic_community.NomadicCommunity
method), 25

_NomadicCommunity__get_new_reference_point()
(sim2net.mobility.nomadic_community.NomadicCommunity

method), 25
_NomadicCommunity__get_new_relocation_time()

(sim2net.mobility.nomadic_community.NomadicCommunity
method), 25

_NomadicCommunity__reference_point_relocation()
(sim2net.mobility.nomadic_community.NomadicCommunity
method), 25

_Output (class in sim2net._channel), 11
_Output__get_transmission_neighbors()

(sim2net._channel._Output method), 12
_PathLoss__distance() (sim2net.propagation.path_loss.PathLoss

method), 36
_Randomness (class in sim2net.utility.randomness), 40
_Sim2Net__get_application_class()

(sim2net.simulator.Sim2Net method), 15
_Sim2Net__get_arguments()

(sim2net.simulator.Sim2Net method), 15
_Sim2Net__get_element() (sim2net.simulator.Sim2Net

method), 15
_Sim2Net__get_value() (sim2net.simulator.Sim2Net

method), 15
_Sim2Net__report_error() (sim2net.simulator.Sim2Net

method), 15
__channel_string() (in module sim2net.utility.logger), 39
_assign_new_destination()

(sim2net.mobility.random_waypoint.RandomWaypoint
method), 27

_assign_new_pause_time()
(sim2net.mobility.random_waypoint.RandomWaypoint
method), 27

_diagonal_trajectory() (sim2net.mobility.random_waypoint.RandomWaypoint
method), 27

_get_new_destination() (sim2net.mobility.nomadic_community.NomadicCommunity
method), 25

_get_new_destination() (sim2net.mobility.random_direction.RandomDirection
method), 26

_get_new_destination() (sim2net.mobility.random_waypoint.RandomWaypoint
method), 28

_get_new_pause_time() (sim2net.mobility.random_waypoint.RandomWaypoint
method), 28

53



Simple Network Simulator (sim2net) Documentation, Release

_parallel_trajectory() (sim2net.mobility.random_waypoint.RandomWaypoint
method), 28

_pause() (sim2net.mobility.random_waypoint.RandomWaypoint
method), 28

_step_move() (sim2net.mobility.random_waypoint.RandomWaypoint
method), 28

A
Application (class in sim2net.application), 8
Area (class in sim2net.area._area), 15

C
capture_packet() (sim2net._channel._Input method), 11
Channel (class in sim2net._channel), 11
check_argument_type() (in module

sim2net.utility.validation), 41
communication_receive() (sim2net._network.Network

method), 13
communication_send() (sim2net._network.Network

method), 14
Constant (class in sim2net.speed.constant), 37
Crash (class in sim2net.failure.crash), 18
create_logger() (in module sim2net.utility.logger), 39
current (sim2net.speed._speed.Speed attribute), 37
current (sim2net.speed.constant.Constant attribute), 38
current (sim2net.speed.normal.Normal attribute), 38
current (sim2net.speed.uniform.Uniform attribute), 39

D
deliver_packet() (sim2net._channel._Output method), 12

F
Failure (class in sim2net.failure._failure), 18
failure() (sim2net.application.Application method), 8
finalize() (sim2net._network.Network method), 14
finalize() (sim2net.application.Application method), 8
format() (sim2net.utility.logger.Sim2NetFormatter

method), 39

G
GaussMarkov (class in sim2net.mobility.gauss_markov),

22
get_area() (sim2net.area._area.Area method), 15
get_area() (sim2net.area.rectangle.Rectangle method), 16
get_area() (sim2net.area.square.Square method), 17
get_current_position() (sim2net.mobility._mobility.Mobility

method), 21
get_current_position() (sim2net.mobility.gauss_markov.GaussMarkov

method), 23
get_current_position() (sim2net.mobility.nomadic_community.NomadicCommunity

method), 25
get_current_position() (sim2net.mobility.random_waypoint.RandomWaypoint

method), 28

get_logger() (in module sim2net.utility.logger), 40
get_neighbors() (sim2net.propagation._propagation.Propagation

method), 35
get_neighbors() (sim2net.propagation.path_loss.PathLoss

method), 36
get_new() (sim2net.speed._speed.Speed method), 37
get_new() (sim2net.speed.constant.Constant method), 38
get_new() (sim2net.speed.normal.Normal method), 38
get_new() (sim2net.speed.uniform.Uniform method), 39
get_placement() (sim2net.placement._placement.Placement

method), 31
get_placement() (sim2net.placement.grid.Grid method),

33
get_placement() (sim2net.placement.normal.Normal

method), 34
get_placement() (sim2net.placement.uniform.Uniform

method), 34
get_random_generator() (in module

sim2net.utility.randomness), 41
get_state() (sim2net.utility.randomness._Randomness

method), 40
get_version() (in module sim2net._version), 9
GilbertElliott (class in

sim2net.packet_loss.gilbert_elliott), 30
Grid (class in sim2net.placement.grid), 32

H
height (sim2net.area._area.Area attribute), 16
height (sim2net.area.rectangle.Rectangle attribute), 17

I
initialize() (sim2net.application.Application method), 8

L
logger (sim2net.area._area.Area attribute), 16
logger (sim2net.failure._failure.Failure attribute), 18
logger (sim2net.mobility._mobility.Mobility attribute), 21
logger (sim2net.packet_loss._packet_loss.PacketLoss at-

tribute), 29
logger (sim2net.placement._placement.Placement at-

tribute), 31
logger (sim2net.propagation._propagation.Propagation

attribute), 35
logger (sim2net.speed._speed.Speed attribute), 37

M
main() (sim2net.application.Application method), 8
mean (sim2net.speed.normal.Normal attribute), 38
Mobility (class in sim2net.mobility._mobility), 21

N
Network (class in sim2net._network), 13
node_failure() (sim2net.failure._failure.Failure method),

18

54 Index



Simple Network Simulator (sim2net) Documentation, Release

node_failure() (sim2net.failure.crash.Crash method), 19
NomadicCommunity (class in

sim2net.mobility.nomadic_community), 24
Normal (class in sim2net.placement.normal), 33
Normal (class in sim2net.speed.normal), 38
normal() (sim2net.utility.randomness._Randomness

method), 40

O
ORIGIN (sim2net.area._area.Area attribute), 15

P
packet_loss() (sim2net.packet_loss._packet_loss.PacketLoss

method), 29
packet_loss() (sim2net.packet_loss.gilbert_elliott.GilbertElliott

method), 31
PacketLoss (class in sim2net.packet_loss._packet_loss),

29
PathLoss (class in sim2net.propagation.path_loss), 35
Placement (class in sim2net.placement._placement), 31
position_conflict() (sim2net.placement._placement.Placement

static method), 31
project_information() (in module sim2net._version), 9
Propagation (class in sim2net.propagation._propagation),

35

R
random_generator (sim2net.failure._failure.Failure

attribute), 18
random_generator (sim2net.mobility._mobility.Mobility

attribute), 21
random_generator (sim2net.packet_loss._packet_loss.PacketLoss

attribute), 30
random_generator (sim2net.placement._placement.Placement

attribute), 32
random_generator (sim2net.propagation._propagation.Propagation

attribute), 35
random_generator (sim2net.speed._speed.Speed at-

tribute), 37
random_order() (sim2net.utility.randomness._Randomness

method), 40
RandomDirection (class in

sim2net.mobility.random_direction), 26
RandomWaypoint (class in

sim2net.mobility.random_waypoint), 27
receive() (sim2net._network._Communication method),

14
receive_message() (sim2net._channel._Input method), 11
Rectangle (class in sim2net.area.rectangle), 16
run() (sim2net.simulator.Sim2Net method), 15

S
send() (sim2net._network._Communication method), 14
send_message() (sim2net._channel._Output method), 12

set_state() (sim2net.utility.randomness._Randomness
method), 40

setup() (sim2net._time.Time method), 9
Sim2Net (class in sim2net.simulator), 15
sim2net (module), 8
sim2net._channel (module), 10
sim2net._network (module), 13
sim2net._time (module), 9
sim2net._version (module), 9
sim2net.application (module), 8
sim2net.area (module), 15
sim2net.area._area (module), 15
sim2net.area.rectangle (module), 16
sim2net.area.square (module), 17
sim2net.cli (module), 7
sim2net.cli.cli (module), 7
sim2net.failure (module), 17
sim2net.failure._failure (module), 18
sim2net.failure.crash (module), 18
sim2net.mobility (module), 20
sim2net.mobility._mobility (module), 21
sim2net.mobility.gauss_markov (module), 21
sim2net.mobility.nomadic_community (module), 24
sim2net.mobility.random_direction (module), 25
sim2net.mobility.random_waypoint (module), 26
sim2net.packet_loss (module), 29
sim2net.packet_loss._packet_loss (module), 29
sim2net.packet_loss.gilbert_elliott (module), 30
sim2net.placement (module), 31
sim2net.placement._placement (module), 31
sim2net.placement.grid (module), 32
sim2net.placement.normal (module), 33
sim2net.placement.uniform (module), 34
sim2net.propagation (module), 34
sim2net.propagation._propagation (module), 35
sim2net.propagation.path_loss (module), 35
sim2net.simulator (module), 15
sim2net.speed (module), 36
sim2net.speed._speed (module), 37
sim2net.speed.constant (module), 37
sim2net.speed.normal (module), 38
sim2net.speed.uniform (module), 38
sim2net.utility (module), 39
sim2net.utility.logger (module), 39
sim2net.utility.randomness (module), 40
sim2net.utility.validation (module), 41
Sim2NetFormatter (class in sim2net.utility.logger), 39
simulation_frequency (sim2net._time.Time attribute), 10
simulation_period (sim2net._time.Time attribute), 10
simulation_step (sim2net._time.Time attribute), 10
simulation_time (sim2net._time.Time attribute), 10
Speed (class in sim2net.speed._speed), 37
Square (class in sim2net.area.square), 17
step() (sim2net._network.Network method), 14

Index 55



Simple Network Simulator (sim2net) Documentation, Release

T
tick() (sim2net._time.Time method), 10
Time (class in sim2net._time), 9
transmit_packets() (sim2net._channel._Output method),

12

U
Uniform (class in sim2net.placement.uniform), 34
Uniform (class in sim2net.speed.uniform), 38
uniform() (sim2net.utility.randomness._Randomness

method), 41

W
width (sim2net.area._area.Area attribute), 16
width (sim2net.area.rectangle.Rectangle attribute), 17
within() (sim2net.area._area.Area method), 16
within() (sim2net.area.rectangle.Rectangle method), 17

56 Index


	Installation
	1. Using the pip installation tool
	2. Manually from the source code

	``Hello World'' example
	Contents
	Command-line interface
	Synopsis
	Description

	sim2net.application.Application abstract class
	Default configuration

	Packages
	Package sim2net
	Package sim2net.area
	Package sim2net.failure
	Package sim2net.mobility
	Package sim2net.packet_loss
	Package sim2net.placement
	Package sim2net.propagation
	Package sim2net.speed
	Package sim2net.utility


	Indices and tables
	Links
	Copyright
	Bibliography
	Python Module Index

