

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	SilverFlask 0.1 alpha documentation

	SilverFlask
	Installation

	The basic building blocks

	User

	Tutorial
	Creating a simple page type

	Extending the page further

	Reference
	DataObject

	SiteTree

	Mixins

	User

	FileObject

	FileStorageBackend

 Copyright 2014, Wolf Vollprecht.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SilverFlask 0.1 alpha documentation

SilverFlask

SilverFlask aims to be the first full-featured CMS building on top of solid foundations such as Flask, SQLAlchemy, Jinja2, WTForms and a huge number of plugins built on top of these such as SQLAlchemy-continuum, Flask-User, Flask-Login and countless others.

It wants to be an environment that offers the whole slew of power experienced developers are accustomed to while provide an easy platform for.

SilverFlask is partly named after SilverStripe, one of the best and fully-featured CMS’s around in PHP land. However, for my taste it had a few shortcomings. Of course, PHP as a programming language is multitudes less pleasant than python. And unfortunately, SilverStripe is built around a framework that is more or less made only for the CMS. I personally don’t like this tight coupling as the framework has not gotten much exposure outside of the SilverStripe CMS world.
On the other hand, Flask is a very mature framework, and python is a lovely programming language.

Installation

Warning

SilverFlask is currently in a pre-alpha-stealth state. Don’t use it for anything serious.
That said, feel free to experiment with it as much as you’d like to!

	Clone repo: git clone https://github.com/wolfv/SilverFlask

	
	Create a virtualenv with Python 3 (the future is now):

	
	Linux: export VIRTUALENV_PYTHON=/usr/bin/python3

	OSX: export VIRTUALENV_PYTHON=/usr/local/bin/python3 on OS X with Homebrew [http://brew.sh/]

	I like virtualenvwrapper, instructions for Ubuntu here: Link [http://roundhere.net/journal/virtualenv-ubuntu-12-10/]

	Toggle the virtualenv with workon <yourvirtualenvname>

	When in the virtualenv, install all necessary packages via pip install -r requirements

	Use the manage.py script to create the database (defaults to an sqlite database.db in the app folder: python manage.py createdb

	Start the application server by entering python manage.py runserver

	Point your webbrowser to http://localhost:5000 to visit your first SilverFlask website

	Login as admin:admin on http://localhost:5000/admin

The basic building blocks

SilverFlask defines a number of basic building blocks for websites.

User

The user model for SilverFlask is already defined and wired up with Flask-Login and Flask-User to provide the whole array of features that you would come to expect from a modern web-application.

Query the current user with from silverflask.core import current_user

A Permission model is also included to provide fine-grained access control if needed in silverflask.models.Role.

 Copyright 2014, Wolf Vollprecht.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	SilverFlask 0.1 alpha documentation

Tutorial

This tutorial is trying to give a quick introduction in how to create your first website with SilverFlask.

Creating a simple page type

First, we will create a basic page type for our website. Therefore we need to subclass silverflask.models.SiteTree:

from silverflask.models import SiteTree

class SimplePage(SiteTree):
 db = {
 "content": "UnicodeText"
 }

Now you should point your browser to localhost:5000/admin/dev/build [http://localhost:5000/admin/dev/build] to automatically
generate the necessary database entries for you.

When you open admin [http://localhost:5000/admin] and check the “Add Pages” menu, you will
see our SimplePage as one of the available page types. You can even start
editing the page, save and publish it and it should render just fine in the
default template. Note that all of this functionality comes from the SiteTree

This is because we chose the name content for our db field, which is also
the standard name for the main content which is used in the default template.

We can also create a little script to create a new instance of this page:

from silverflask import db

sp = SimplePage()
sp.name = "What a beautiful title"
sp.content = "Interesting Content"
db.session.add(sp)
db.session.commit(sp)

This example also shows how the variables defined in db are added to the class
namespace and are accessible through their names.

All column types from sqlalchemy are available, such as

	Integer

	Text

	String (text, but with a maximum length)

	Boolean

	Date, and DateTime

	... (check sqla_types [http://docs.sqlalchemy.org/en/latest/core/type_basics.html]. for more)

Extending the page further

Suppose we want to add a cute little header image to the page, we can do that
easily by adding a has_one relation to the SimplePage. The relation
will point to the silverflask.models.ImageObject.

from silverflask.models import SiteTree

class SimplePage(SiteTree):
 db = {
 "content": "UnicodeText"
 }
 has_one = {
 "header_image": "ImageObject"
 }

The necessary database columns for this relation are automatically added to
the model.

Now you might wonder how to access this image – it’s easy. Relations are added
to the object in the same way as the database columns. So using

s.image

Will return you the image object that is related to the SimplePage.
There are actually several interesting functions defined on the silverflask.models.ImageObject
which you can utilize e.g. in the template.

 Copyright 2014, Wolf Vollprecht.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	SilverFlask 0.1 alpha documentation

Reference

DataObject

	
class silverflask.models.DataObject.DataObject

	The DataObject class is the basic building block of any CMS
Element. It is a mixin that provides three basic database columns:

Attributes:

	Variables:	
	id [http://docs.python.org/library/functions.html#id] – Primary key, integer id (use for joins and relationships)

	created_on – the datetime when the DataObject was created

	last_modified – the datetime when the DataObject was last modified

	
as_dict()

	Get object as dict. Very useful for json responses.
:return: dict with all database columns

	
classmethod get_cms_form()

	Build and return Form class.

If you want to define your custom CMS Object, you likely want to override the default CMS Form. E.g.:

from wtforms import fields
def get_cms_form(cls):
 form = super().get_cms_form()
 form.textfield = fields.StringField("Textfield")
 return form

	Returns:	Form Class (has to be instantiated!).

SiteTree

	
class silverflask.models.SiteTree.SiteTree

	The SiteTree is the database model from which all pages have to inherit.
It defines the parent/children relationships of the page tree.
It also defines everything that’s needed to get nice URL slugs working.

Mixins

Silverflask defines a number of mixins that can be utilized to enhance DataObjects (and are used in the SiteTree class for example).

	
class silverflask.mixins.OrderableMixin.OrderableMixin

	A mixin that makes a DataObject sortable by adding a sort_order database field.
Classes with this mixin automatically keep the sort_order in sync.

	
classmethod check_duplicates()

	Check the table for duplicates and if there are duplicates reindex
:return: nothing

	
init_order()

	Sort element to the end

	
insert_after(index, orderable_base_class=None, index_absolute=True, query=None)

	Inser after index variable

	Parameters:	
	index – index (this is the sort_order variable of the element that you want to insert after!)

	orderable_base_class – baseclass (useful in certain circumstances e.g. gridfields)

	Returns:	nothing

	
move_after(obj)

	Move current DataObject after index (= sort_order) of another element

	Parameters:	index – obj element where to move after or sort order of other elements

	Returns:	nothing

	
classmethod reindex()

	Reindexes the table.

The sort order field can have “jumps” in it (e.g. 1, 4, 5, 8, 9) and reindex brings that back
to a linearly ascending order: (1,2,3,4...)

	
class silverflask.mixins.VersionedMixin.VersionedMixin

	A mixin that adds versioning support to DataObjects.
It adds a new live table that saves the object on a publish operation,
a new query_live operator that queries the live versions of the object
and a versions relationship that saves all versions of this object (a version
is automatically created on a save operation).

	
can_publish()

	Override this function to control who is allowed to publish
pages in the CMS
:return: Boolean (True if allowed to publish)

	
mark_as_published()

	Create a copy of the current draft to the live table and
publish this DataObject (make it visible to the outside world).
:return: empty

User

	
class silverflask.models.User.User(username, password, email=None, is_enabled=True)

	The base User model. Defines the following fields:

username = String, and unique,
firstname, lastname = String

email = String, unique

The password is set with user.set_password(“password”), and then stored with
encryption.

FileObject

The file objects reflect the file items uploaded through the CMS. ImageObject is an inherited class which implements common image functionality, such as cropping and resizing.

	
class silverflask.models.FileObject.FileObject(file=None, location=None, folder=None)

	Contains file information

	Variables:	
	location – Location of the file

	name – Name of the file (usually filename without extension)

	type [http://docs.python.org/library/functions.html#type] – Contains

	
delete_file()

	Delete this file also from disk.

	
url()

	Return the url for this file (handled by the FileStorageBackend

	
class silverflask.models.FileObject.ImageObject(file=None, location=None, folder=None)

	A basic ImageObject, that inherits all properties from the file object
and adds some functionality related to images, such as cropping and resizing,
as well as caching the cropped and/or resized images.

	
resize(width=None, height=None, mode='crop', background='white')

	Resize image

	Parameters:	
	width – define width in pixels

	height – height in pixels. If no height is set, it will be
set to width (i.e. the result will be a square)

	mode – string, one of ‘crop’ (default), ‘pad’, ‘fit’ or ‘reshape’

	background – background color, as string (i.e. ‘blue’ or hex ‘#F0F000’).
As supported by the ImageColor module of Pillow.

FileStorageBackend

The FileStorageBackend is a class that abstracts away the underlying file storage. At the moment, the only implemented backend is the LocalFileStorageBackend which implements methods to save files to the local flask installation (defaults to the /static/uploads/ folder).

Another FileStorageBackend could, for example, be an implementation for a S3 Backend (e.g. using the boto library).

 Copyright 2014, Wolf Vollprecht.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	SilverFlask 0.1 alpha documentation

 Python Module Index

 s

 			

 		
 s	

 	[image: -]
 	
 silverflask	

 	
 	
 silverflask.mixins.OrderableMixin	

 	
 	
 silverflask.mixins.PolymorphicMixin	

 	
 	
 silverflask.mixins.VersionedMixin	

 	
 	
 silverflask.models.DataObject	

 	
 	
 silverflask.models.FileObject	

 	
 	
 silverflask.models.SiteTree	

 	
 	
 silverflask.models.User	

 Copyright 2014, Wolf Vollprecht.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	SilverFlask 0.1 alpha documentation

Index

 A
 | C
 | D
 | F
 | G
 | I
 | M
 | O
 | R
 | S
 | U
 | V

A

 	

 	as_dict() (silverflask.models.DataObject.DataObject method)

C

 	

 	can_publish() (silverflask.mixins.VersionedMixin.VersionedMixin method), [1]

 	

 	check_duplicates() (silverflask.mixins.OrderableMixin.OrderableMixin class method), [1]

D

 	

 	DataObject (class in silverflask.models.DataObject)

 	

 	delete_file() (silverflask.models.FileObject.FileObject method)

F

 	

 	FileObject (class in silverflask.models.FileObject)

G

 	

 	get_cms_form() (silverflask.models.DataObject.DataObject class method)

I

 	

 	ImageObject (class in silverflask.models.FileObject)

 	init_order() (silverflask.mixins.OrderableMixin.OrderableMixin method), [1]

 	

 	insert_after() (silverflask.mixins.OrderableMixin.OrderableMixin method), [1]

M

 	

 	mark_as_published() (silverflask.mixins.VersionedMixin.VersionedMixin method), [1]

 	

 	move_after() (silverflask.mixins.OrderableMixin.OrderableMixin method), [1]

O

 	

 	OrderableMixin (class in silverflask.mixins.OrderableMixin), [1]

R

 	

 	reindex() (silverflask.mixins.OrderableMixin.OrderableMixin class method), [1]

 	

 	resize() (silverflask.models.FileObject.ImageObject method)

S

 	

 	silverflask.mixins.OrderableMixin (module), [1]

 	silverflask.mixins.PolymorphicMixin (module), [1]

 	silverflask.mixins.VersionedMixin (module), [1]

 	silverflask.models.DataObject (module)

 	

 	silverflask.models.FileObject (module)

 	silverflask.models.SiteTree (module), [1]

 	silverflask.models.User (module)

 	SiteTree (class in silverflask.models.SiteTree), [1]

U

 	

 	url() (silverflask.models.FileObject.FileObject method)

 	

 	User (class in silverflask.models.User)

V

 	

 	VersionedMixin (class in silverflask.mixins.VersionedMixin), [1]

 Copyright 2014, Wolf Vollprecht.
 Created using Sphinx 1.3.1.

 _static/down.png

search.html

 Navigation

 		
 index

 		
 modules |

 		SilverFlask 0.1 alpha documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Wolf Vollprecht.
 Created using Sphinx 1.3.1.

_static/minus.png

_static/plus.png

_static/comment-close.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/comment-bright.png

_static/up.png

reference/reference.html

 Navigation

 		
 index

 		
 modules |

 		SilverFlask 0.1 alpha documentation »

SiteTree

		
class silverflask.models.SiteTree.SiteTree

		The SiteTree is the database model from which all pages have to inherit.
It defines the parent/children relationships of the page tree.
It also defines everything that’s needed to get nice URL slugs working.

Mixins

hh
Silverflask defines a number of mixins that can be utilized to enhance DataObjects (and are used in the SiteTree class for example).

		
class silverflask.mixins.OrderableMixin.OrderableMixin

		A mixin that makes a DataObject sortable by adding a sort_order database field.
Classes with this mixin automatically keep the sort_order in sync.

		
classmethod check_duplicates()

		Check the table for duplicates and if there are duplicates reindex
:return: nothing

		
init_order()

		Sort element to the end

		
insert_after(index, orderable_base_class=None, index_absolute=True, query=None)

		Inser after index variable

		Parameters:		
		index – index (this is the sort_order variable of the element that you want to insert after!)

		orderable_base_class – baseclass (useful in certain circumstances e.g. gridfields)

		Returns:		nothing

		
move_after(obj)

		Move current DataObject after index (= sort_order) of another element

		Parameters:		index – obj element where to move after or sort order of other elements

		Returns:		nothing

		
classmethod reindex()

		Reindexes the table.

The sort order field can have “jumps” in it (e.g. 1, 4, 5, 8, 9) and reindex brings that back
to a linearly ascending order: (1,2,3,4...)

		
class silverflask.mixins.VersionedMixin.VersionedMixin

		A mixin that adds versioning support to DataObjects.
It adds a new live table that saves the object on a publish operation,
a new query_live operator that queries the live versions of the object
and a versions relationship that saves all versions of this object (a version
is automatically created on a save operation).

		
can_publish()

		Override this function to control who is allowed to publish
pages in the CMS
:return: Boolean (True if allowed to publish)

		
mark_as_published()

		Create a copy of the current draft to the live table and
publish this DataObject (make it visible to the outside world).
:return: empty

 © Copyright 2014, Wolf Vollprecht.
 Created using Sphinx 1.3.1.

_static/down-pressed.png

_static/file.png

