
Signatory
Release 1.1.4

Patrick Kidger

Nov 18, 2019

DOCUMENTATION

1 Introduction 3

2 Installation 5
2.1 Install from source . 5

3 Library API 7
3.1 Signatures . 8
3.2 Logsignatures . 11
3.3 Path . 14
3.4 Utilities . 16

4 Examples 19
4.1 Simple example . 19
4.2 Online computation of signatures . 19
4.3 Combining signatures . 20
4.4 Signatures on intervals . 21
4.5 Translation invariance . 23
4.6 Using signatures in neural networks . 23

5 Citation 27

6 FAQ and Known Issues 29
6.1 Problems with importing or installing Signatory . 29
6.2 All other issues . 29

7 Advice on using signatures 31
7.1 What are signatures? . 31
7.2 Neural networks . 32
7.3 Kernels and Gaussian Processes . 32
7.4 Signatures vs. Logsignatures . 32

8 Source Code 33

9 Acknowledgements 35

Python Module Index 37

Index 39

i

ii

Signatory, Release 1.1.4

Differentiable computations of the signature and logsignature transforms, on both CPU and GPU.

The Signatory project is hosted on GitHub.

DOCUMENTATION 1

https://github.com/patrick-kidger/signatory

Signatory, Release 1.1.4

2 DOCUMENTATION

CHAPTER

ONE

INTRODUCTION

This is the documentation for the Signatory package, which provides facilities for calculating the signature and logsig-
nature transforms of streams of data.

If you want to get started on using the signature transform in your code then check out Simple example for a simple
demonstration.

If you want to know more about the mathematics of the signature transform and how to use it then see What are
signatures? for a very brief introduction. Further links to papers discussing the subject in more detail can also be
found there.

If you have any comments or queries about signatures or about this package (for example, bug reports or feature
requests) then open an issue on GitHub.

3

https://github.com/patrick-kidger/signatory

Signatory, Release 1.1.4

4 Chapter 1. Introduction

CHAPTER

TWO

INSTALLATION

Available for Python 2.7, Python 3.5, Python 3.6, Python 3.7 and Linux, Mac, Windows. Requires PyTorch 1.2.0 or
1.3.0.

Install via:

pip install signatory==<SIGNATORY_VERSION>.<TORCH_VERSION>

where <SIGNATORY_VERSION> is the version of Signatory you would like to download (the most recent version is
1.1.4) and <TORCH_VERSION> is the version of PyTorch you are using.

Example

For example, if you are using PyTorch 1.3.0 and want Signatory 1.1.4, then you should run:

pip install signatory==1.1.4.1.3.0

Yes, this looks a bit odd. This is needed to work around limitations of PyTorch and pip.

Take care not to run pip install signatory, as this will likely download the wrong version.

After installation, just import signatory inside Python.

If you have any problems with installation then check the FAQ. If that doesn’t help then feel free to open an issue.

2.1 Install from source

For most use-cases, the prebuilt binaries available as described above should be sufficient. However installing from
source is also perfectly feasible, and usually not too tricky.

You’ll need to have a C++ compiler installed and known to pip, and furthermore this must be the same compiler that
PyTorch uses. (This is msvc on Windows, gcc on Linux, and clang on Macs.) You must have already installed
PyTorch. (You don’t have to compile PyTorch itself from source, though!)

Then run either

pip install signatory==<SIGNATORY_VERSION>.<TORCH_VERSION> --no-binary signatory

(where <SIGNATORY_VERSION> and <TORCH_VERSION> are as above.)

or

5

http://pytorch.org/
https://github.com/pytorch/pytorch/issues/28754
https://www.python.org/dev/peps/pep-0440/
https://signatory.readthedocs.io/en/latest/pages/miscellaneous/faq.html#miscellaneous-faq-importing
https://github.com/patrick-kidger/signatory/issues
http://pytorch.org/

Signatory, Release 1.1.4

git clone https://github.com/patrick-kidger/signatory.git
cd signatory
python setup.py install

If you chose the first option then you’ll get just the files necessary to run Signatory.

If you choose the second option then tests, benchmarking code, and code to build the documentation will also be
provided. Subsequent to this,

• Tests can be run, see python command.py test --help.
This requires installing iisignature and pytest.

• Speed and memory benchmarks can be performed, see python command.py benchmark --help.
This requires installing iisignature, esig, and memory profiler.

• Documentation can be built via python command.py docs.
This requires installing Sphinx, sphinx_rtd_theme and py2annotate.

Note: If on Linux then the commands stated above should probably work.

If on Windows then it is probably first necessary to run a command of the form

"C:/Program Files (x86)/Microsoft Visual Studio/2017/Enterprise/VC/Auxiliary/Build/
→˓vcvars64.bat"

(the exact command will depend on your operating system and version of Visual Studio).

If on a Mac then the installation command should instead look like either

MACOSX_DEPLOYMENT_TARGET=10.9 CC=clang CXX=clang++ pip install signatory==<SIGNATORY_
→˓VERSION>.<TORCH_VERSION> --no-binary signatory

or

MACOSX_DEPLOYMENT_TARGET=10.9 CC=clang CXX=clang++ python setup.py install

depending on the choice of installation method.

A helpful point of reference for getting this to work might be the official build scripts for Signatory.

6 Chapter 2. Installation

https://github.com/bottler/iisignature
https://pytest.org
https://github.com/bottler/iisignature
https://pypi.org/project/esig/
https://pypi.org/project/memory-profiler/su
https://pypi.org/project/Sphinx/
https://pypi.org/project/sphinx-rtd-theme/
https://github.com/patrick-kidger/py2annotate
https://github.com/patrick-kidger/signatory/blob/master/.github/workflows/build.yml

CHAPTER

THREE

LIBRARY API

For quick reference these are a list of all provided functions, grouped by which reference page they are on.

Signatures

signatory.signature Applies the signature transform to a stream of data.
signatory.Signature torch.nn.Module wrapper around the

signatory.signature() function.
signatory.signature_channels Computes the number of output channels from a signa-

ture call.
signatory.extract_signature_term Extracts a particular term from a signature.
signatory.signature_combine Combines two signatures into a single signature.
signatory.multi_signature_combine Combines multiple signatures into a single signature.

Logsignatures

signatory.logsignature Applies the logsignature transform to a stream of data.
signatory.LogSignature torch.nn.Module wrapper around the

signatory.logsignature() function.
signatory.logsignature_channels Computes the number of output channels from

a logsignature call with mode in ("words",
"brackets").

signatory.signature_to_logsignature Calculates the logsignature corresponding to a signa-
ture.

signatory.SignatureToLogSignature torch.nn.Module wrapper around the
signatory.signature_to_logsignature()
function.

Path

signatory.Path Calculates signatures and logsignatures on intervals of
an input path.

Utilities

signatory.max_parallelism Gets or sets the maximum amount of parallelism used
in Signatory’s computations.

Continued on next page

7

https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://pytorch.org/docs/stable/nn.html#torch.nn.Module

Signatory, Release 1.1.4

Table 4 – continued from previous page
signatory.Augment Augmenting a stream of data before feeding it into a

signature is often useful; the hope is to obtain higher-
order information in the signature.

signatory.all_words Computes the collection of all words up to length
depth in an alphabet of size channels.

signatory.lyndon_words Computes the collection of all Lyndon words up to
length depth in an alphabet of size channels.

signatory.lyndon_brackets Computes the collection of all Lyndon words, in their
standard bracketing, up to length depth in an alphabet
of size channels.

3.1 Signatures

At the heart of the package is the signatory.signature() function.

Note: It comes with quite a lot of optional arguments, but most of them won’t need to be used for most use cases.
See Simple example for a straightforward look at how to use it.

signatory.signature(path: torch.Tensor, depth: int, stream: bool = False, basepoint: Union[bool,
torch.Tensor] = False, inverse: bool = False, initial: Union[None, torch.Tensor]
= None)→ torch.Tensor

Applies the signature transform to a stream of data.

The input path is expected to be a three-dimensional tensor, with dimensions (𝑁,𝐿,𝐶), where 𝑁 is the batch
size, 𝐿 is the length of the input sequence, and 𝐶 denotes the number of channels. Thus each batch element is
interpreted as a stream of data (𝑥1, . . . , 𝑥𝐿), where each 𝑥𝑖 ∈ R𝐶 .

Let 𝑓 = (𝑓1, . . . , 𝑓𝐶) : [0, 1] → R𝐶 , be the unique continuous piecewise linear path such that 𝑓(𝑖−1
𝑁−1) = 𝑥𝑖.

Then and the signature transform of depth depth is computed, defined by

Sig(path) =

⎛⎜⎝
⎛⎝ ∫︁

· · ·
∫︁

0<𝑡1<···<𝑡𝑘<1

𝑘∏︁
𝑗=1

d𝑓𝑖𝑗
d𝑡

(𝑡𝑗)d𝑡1 · · · d𝑡𝑘

⎞⎠
1≤𝑖1,...,𝑖𝑘≤𝐶

⎞⎟⎠
1≤𝑘≤depth

.

This gives a tensor of shape

(𝑁,𝐶 + 𝐶2 + · · ·+ 𝐶depth).

Parameters

• path (torch.Tensor) – The batch of input paths to apply the signature transform to.

• depth (int) – The depth to truncate the signature at.

• stream (bool, optional) – Defaults to False. If False then the usual signature trans-
form of the whole path is computed. If True then the signatures of all paths (𝑥1, . . . , 𝑥𝑗),
for 𝑗 = 2, . . . , 𝐿, are returned. (Or 𝑗 = 1, . . . , 𝐿 is basepoint is passed, see below.)

• basepoint (bool or torch.Tensor, optional) – Defaults to False. If basepoint is
True then an additional point 𝑥0 = 0 ∈ R𝐶 is prepended to the path before the signature
transform is applied. (If this is False then the signature transform is invariant to translations
of the path, which may or may not be desirable. Setting this to True removes this invariance.)
Alternatively it may be a torch.Tensor specifying the value of 𝑥0, in which case it
should have shape (𝑁,𝐶).

8 Chapter 3. Library API

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

Signatory, Release 1.1.4

• inverse (bool, optional) – Defaults to False. If True then it is in fact the inverse
signature that is computed. That is, we flip the input path along its stream dimension before
computing the signature. If stream is True then each sub-path is the same as before, and
are each individually flipped along their stream dimensions, and kept in the same order with
respect to each other. (But without the extra computational overhead of actually doing all
of these flips.) From a machine learning perspective it does not particularly matter whether
the signature or the inverse signature is computed - both represent essentially the same
information as each other.

• initial (None or torch.Tensor, optional) – Defaults to None. If it is a torch.
Tensor then it must be of size (𝑁,𝐶 + 𝐶2 + ...+ 𝐶depth), corresponding to the signature
of another path. Then this signature is pre-tensor-multiplied on to the signature of path.
For a more thorough explanation, see this example. (The appropriate modifications are made
if inverse=True or if basepoint.)

Returns

A torch.Tensor. Given an input torch.Tensor of shape (𝑁,𝐿,𝐶), and input arguments
depth, basepoint, stream, then the return value is, in pseudocode:

if stream:
if basepoint is True or isinstance(basepoint, torch.Tensor):

return torch.Tensor of shape (N, L, C + C^2 + ... + C^depth)
else:

return torch.Tensor of shape (N, L - 1, C + C^2 + ... + C^
→˓depth)
else:

return torch.Tensor of shape (N, C + C^2 + ... + C^depth)

Note that the number of output channels may be calculated via the convenience function
signatory.signature_channels().

class signatory.Signature(depth: int, stream: bool = False, inverse: bool = False, **kwargs: Any)
torch.nn.Module wrapper around the signatory.signature() function.

Parameters

• depth (int) – as signatory.signature().

• stream (bool, optional) – as signatory.signature().

• inverse (bool, optional) – as signatory.signature().

forward(path: torch.Tensor, basepoint: Union[bool, torch.Tensor] = False, initial: Union[None,
torch.Tensor] = None)→ torch.Tensor

The forward operation.

Parameters

• path (torch.Tensor) – As signatory.signature().

• basepoint (bool or torch.Tensor, optional) – As signatory.signature().

• initial (None or torch.Tensor, optional) – As signatory.signature().

Returns As signatory.signature().

signatory.signature_channels(channels: int, depth: int)→ int
Computes the number of output channels from a signature call. Specifically, it computes

channels + channels2 + · · ·+ channelsdepth.

Parameters

3.1. Signatures 9

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

Signatory, Release 1.1.4

• channels (int) – The number of channels in the input; that is, the dimension of the space
that the input path resides in.

• depth (int) – The depth of the signature that is being computed.

Returns An int specifying the number of channels in the signature of the path.

signatory.extract_signature_term(sigtensor: torch.Tensor, channels: int, depth: int) →
torch.Tensor

Extracts a particular term from a signature.

The signature to depth 𝑑 of a batch of paths in RC is a tensor with 𝐶 + 𝐶2 + · · · + 𝐶𝑑 channels. (See
signatory.signature().) This function extracts the depth term of that, returning a tensor with just
𝐶depth channels.

Parameters

• sigtensor (torch.Tensor) – The signature to extract the term from. Should be a
result from the signatory.signature() function.

• channels (int) – The number of input channels 𝐶.

• depth (int) – The depth of the term to be extracted from the signature.

Returns The torch.Tensor corresponding to the depth term of the signature.

signatory.signature_combine(sigtensor1: torch.Tensor, sigtensor2: torch.Tensor, input_channels:
int, depth: int, inverse: bool = False)→ torch.Tensor

Combines two signatures into a single signature.

Usage is most clear by example. See Combining signatures.

See also signatory.multi_signature_combine() for a more general version.

Parameters

• sigtensor1 (torch.Tensor) – The signature of a path, as returned by signatory.
signature(). This should be a two-dimensional tensor.

• sigtensor2 (torch.Tensor) – The signature of a second path, as returned by
signatory.signature(), with the same shape as sigtensor1. Note that when
the signature of the second path was created, it should have been called with basepoint
set to the final value of the path that created sigtensor1. (See Combining signatures.)

• input_channels (int) – The number of channels in the two paths that were used to
compute sigtensor1 and sigtensor2. This must be the same for both sigtensor1
and sigtensor2.

• depth (int) – The depth that sigtensor1 and sigtensor2 have been calculated to.
This must be the same for both sigtensor1 and sigtensor2.

• inverse (bool, optional) – Defaults to False. Whether sigtensor1 and
sigtensor2 were created with inverse=True. This must be the same for both
sigtensor1 and sigtensor2.

Returns Let path1 be the path whose signature is sigtensor1. Let path2 be the path whose
signature is sigtensor2. Then this function returns the signature of the concatenation of
path1 and path2 along their stream dimension.

Danger: There is a subtle bug which can occur when using this function incautiously. Make sure that
sigtensor2 is created with an appropriate basepoint, see Combining signatures.

If this is not done then the return value of this function will be essentially meaningless numbers.

10 Chapter 3. Library API

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

Signatory, Release 1.1.4

signatory.multi_signature_combine(sigtensors: List[torch.Tensor], input_channels: int, depth:
int, inverse: bool = False)→ torch.Tensor

Combines multiple signatures into a single signature.

See also signatory.signature_combine() for a simpler version.

Parameters

• sigtensors (list of torch.Tensor) – Signature of multiple paths, all of the same
shape. They should all be two-dimensional tensors.

• input_channels (int) – As signatory.signature_combine().

• depth (int) – As signatory.signature_combine().

• inverse (bool, optional) – As signatory.signature_combine().

Returns Let sigtensors be a list of tensors, call them sigtensor𝑖 for 𝑖 = 0, 1, . . . , 𝑘. Let path𝑖 be
the path whose signature is sigtensor𝑖. Then this function returns the signature of the concate-
nation of path𝑖 along their stream dimension.

Danger: Make sure that each element of sigtensors is created with an appropriate basepoint, as
with signatory.signature_combine().

3.2 Logsignatures

signatory.logsignature(path: torch.Tensor, depth: int, stream: bool = False, basepoint: Union[bool,
torch.Tensor] = False, inverse: bool = False, mode: str = ’words’) →
torch.Tensor

Applies the logsignature transform to a stream of data.

The modes argument determines how the logsignature is represented.

Note that if performing many logsignature calculations for the same depth and size of input, then you will see a
performance boost (at the cost of using a little extra memory) by using signatory.LogSignature instead
of signatory.logsignature().

Parameters

• path (torch.Tensor) – as signatory.signature().

• depth (int) – as signatory.signature().

• stream (bool, optional) – as signatory.signature().

• basepoint (bool or torch.Tensor, optional) – as signatory.signature().

• inverse (bool, optional) – as signatory.signature().

• mode (str, optional) – Defaults to "words". How the output should be presented.
Valid values are "words", "brackets", or "expand". Precisely what each of these
options mean is described in the “Returns” section below. For machine learning applica-
tions, "words" is the appropriate choice. The other two options are mostly only interesting
for mathematicians.

Returns

A torch.Tensor, of almost the same shape as the tensor returned from signatory.
signature() called with the same arguments.

3.2. Logsignatures 11

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

Signatory, Release 1.1.4

If mode == "expand" then it will be exactly the same shape as the returned tensor from
signatory.signature().

If mode in ("brackets", "words") then the channel dimension will instead be of
size signatory.logsignature_channels(path.size(-1), depth). (Where
path.size(-1) is the number of input channels.)

The different modes correspond to different mathematical representations of the logsignature.

Tip: If you haven’t studied tensor algebras and free Lie algebras, and none of the following
explanation makes sense to you, then you probably want to leave mode on its default value of
"words" and it will all be fine!

If mode == "expand" then the logsignature is presented as a member of the tensor algebra;
the numbers returned correspond to the coefficients of all words in the tensor algebra.

If mode == "brackets" then the logsignature is presented in terms of the coefficients of
the Lyndon basis of the free Lie algebra.

If mode == "words" then the logsignature is presented in terms of the coefficients of a par-
ticular computationally efficient basis of the free Lie algebra (that is not a Hall basis). Every
basis element is given as a sum of Lyndon brackets. When each bracket is expanded out and the
sum computed, the sum will contain precisely one Lyndon word (and some collection of non-
Lyndon words). Moreover every Lyndon word is represented uniquely in this way. We identify
these basis elements with each corresponding Lyndon word. This is natural as the coefficients
in this basis are found just by extracting the coefficients of all Lyndon words from the tensor
algebra representation of the logsignature.

In all cases, the ordering corresponds to the ordering on words given by first ordering the words
by length, and then ordering each length class lexicographically.

class signatory.LogSignature(depth: int, stream: bool = False, inverse: bool = False, mode: str =
’words’, **kwargs: Any)

torch.nn.Module wrapper around the signatory.logsignature() function.

This torch.nn.Module performs certain optimisations to allow it to calculate multiple logsignatures faster
than multiple calls to signatory.logsignature().

Specifically, these optimisations will apply if this torch.nn.Module is called with an input path with the
same number of channels as the last input path it was called with, as is likely to be very common in machine
learning set-ups. For larger depths or numbers of channels, this speedup will be substantial.

Parameters

• depth (int) – as signatory.logsignature().

• stream (bool, optional) – as signatory.logsignature().

• inverse (bool, optional) – as signatory.logsignature().

• mode (str, optional) – as signatory.logsignature().

forward(path: torch.Tensor, basepoint: Union[bool, torch.Tensor] = False)→ torch.Tensor
The forward operation.

Parameters

• path (torch.Tensor) – As signatory.logsignature().

• basepoint (bool or torch.Tensor, optional) – As signatory.
logsignature().

12 Chapter 3. Library API

https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

Signatory, Release 1.1.4

Returns As signatory.logsignature().

prepare(in_channels: int)→ None
Prepares for computing logsignatures for paths of the specified number of channels. This will be done
anyway automatically whenever this torch.nn.Module is called, if it hasn’t been called already; this
method simply allows to have it done earlier, for example when benchmarking.

Parameters in_channels (int) – The number of input channels of the path that this instance
will subsequently be called with. (corresponding to path.size(-1).)

signatory.logsignature_channels(in_channels: int, depth: int)→ int
Computes the number of output channels from a logsignature call with mode in ("words",
"brackets").

Parameters

• in_channels (int) – The number of channels in the input; that is, the dimension of
the space that the input path resides in. If calling signatory.logsignature() with
argument path then in_channels should be equal to path.size(-1).

• depth (int) – The depth of the signature that is being computed.

Returns An int specifying the number of channels in the logsignature of the path.

signatory.signature_to_logsignature(signature: torch.Tensor, channels: int, depth: int, stream:
bool = False, mode: str = ’words’)→ torch.Tensor

Calculates the logsignature corresponding to a signature.

Parameters

• signature (torch.Tensor) – The result of a call to signatory.signature().

• channels (int) – The number of input channels of the path that signatory.
signature() was called with.

• depth (int) – The value of depth that signatory.signature() was called with.

• stream (bool, optional) – Defaults to False. The value of stream that
signatory.signature() was called with.

• mode (str, optional) – Defaults to "words". As signatory.
logsignature().

Example

import signatory
import torch
batch, stream, channels = 8, 8, 8
depth = 3
path = torch.rand(batch, stream, channels)
signature = signatory.signature(path, depth)
logsignature = signatory.signature_to_logsignature(signature, channels, depth)

Returns A torch.Tensor representing the logsignature corresponding to the given signature.
See signatory.logsignature().

class signatory.SignatureToLogSignature(channels: int, depth: int, stream: bool = False,
mode: str = ’words’, **kwargs: Any)

torch.nn.Module wrapper around the signatory.signature_to_logsignature() function.

3.2. Logsignatures 13

https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/nn.html#torch.nn.Module

Signatory, Release 1.1.4

Calling this torch.nn.Module on an input signature with the same number of channels as
the last signature it was called with will be faster than multiple calls to the signatory.
signature_to_logsignature() function, in the same way that signatory.LogSignature will
be faster than signatory.logsignature().

Parameters

• channels (int) – as signatory.signature_to_logsignature().

• depth (int) – as signatory.signature_to_logsignature().

• stream (bool, optional) – as signatory.
signature_to_logsignature().

• mode (str, optional) – as signatory.signature_to_logsignature().

forward(signature: torch.Tensor)→ torch.Tensor
The forward operation.

Parameters signature (torch.Tensor) – As signatory.
signature_to_logsignature().

Returns As signatory.signature_to_logsignature().

3.3 Path

class signatory.Path(path: torch.Tensor, depth: int, basepoint: Union[bool, torch.Tensor] = False)
Calculates signatures and logsignatures on intervals of an input path.

By doing some precomputation, it can rapidly calculate the signature or logsignature over any slice of the input
path. This is particularly useful if you need the signature or logsignature of a path over many different intervals:
using this class will be much faster than computing the signature or logsignature of each sub-path each time.

Parameters

• path (torch.Tensor) – As signatory.signature().

• depth (int) – As signatory.signature().

• basepoint (bool or torch.Tensor, optional) – As signatory.
signature().

signature(start: Optional[int] = None, end: Optional[int] = None)→ torch.Tensor
Returns the signature on a particular interval.

Parameters

• start (int or None, optional) – Defaults to the start of the path. The start point
of the interval to calculate the signature on.

• end (int or None, optional) – Defaults to the end of the path. The end point of
the interval to calculate the signature on.

Returns

The signature on the interval [start, end].

In the simplest case, when path and depth are the arguments that this class was ini-
tialised with (and basepoint was not passed), then this function returns a value equal
to signatory.signature(path[start:end], depth).

In general, let p = torch.cat(self.path, dim=1), so that it is all given paths
(including those path from both initialistion and signatory.Path.update(), and

14 Chapter 3. Library API

https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor

Signatory, Release 1.1.4

any basepoint) concatenated together. Then this function will return a value equal to
signatory.signature(p[start:end], depth).

logsignature(start: Optional[int] = None, end: Optional[int] = None, mode: str = ’words’) →
torch.Tensor

Returns the logsignature on a particular interval.

Parameters

• start (int or None, optional) – As signatory.Path.signature().

• end (int or None, optional) – As signatory.Path.signature().

• mode (str, optional) – As signatory.logsignature().

Returns The logsignature on the interval [start, end]. See the documentation for
signatory.Path.signature().

update(path: torch.Tensor)→ None
Concatenates the given path onto the path already stored.

This means that the signature of the new overall path can now be asked for via signatory.Path.
signature(). Furthermore this will be dramatically faster than concatenating the two paths together
and then creating a new Path object: the ‘concatenation’ occurs implicitly, without actually involving any
recomputation or reallocation of memory.

Parameters path (torch.Tensor) – The path to concatenate on. As signatory.
signature().

property path
The path(s) that this Path was created with.

property depth
The depth that Path has calculated the signature to.

size(index: Optional[int] = None)→ Union[int, torch.Size]
The size of the input path. As torch.Tensor.size().

Parameters index (int or None, optional) – As torch.Tensor.size().

Returns As torch.Tensor.size().

property shape
The shape of the input path. As torch.Tensor.shape.

channels()→ int
The number of channels of the input stream.

signature_size(index: Optional[int] = None)→ Union[int, torch.Size]
The size of the signature of the path. As torch.Tensor.size().

Parameters index (int or None, optional) – As torch.Tensor.size().

Returns As torch.Tensor.size().

property signature_shape
The shape of the signature of the path. As torch.Tensor.shape.

signature_channels()→ int
The number of signature channels; as signatory.signature_channels().

logsignature_size(index: Optional[int] = None)→ Union[int, torch.Size]
The size of the logsignature of the path. As torch.Tensor.size().

Parameters index (int or None, optional) – As torch.Tensor.size().

3.3. Path 15

https://pytorch.org/docs/stable/tensors.html#torch.Tensor
https://pytorch.org/docs/stable/tensors.html#torch.Tensor.size
https://pytorch.org/docs/stable/tensors.html#torch.Tensor.size
https://pytorch.org/docs/stable/tensors.html#torch.Tensor.size
https://pytorch.org/docs/stable/tensors.html#torch.Tensor.size
https://pytorch.org/docs/stable/tensors.html#torch.Tensor.size
https://pytorch.org/docs/stable/tensors.html#torch.Tensor.size
https://pytorch.org/docs/stable/tensors.html#torch.Tensor.size
https://pytorch.org/docs/stable/tensors.html#torch.Tensor.size

Signatory, Release 1.1.4

Returns As torch.Tensor.size().

property logsignature_shape
The shape of the logsignature of the path. As torch.Tensor.shape.

logsignature_channels()→ int
The number of logsignature channels; as signatory.logsignature_channels().

Warning: If repeatedly making forward and backward passes (for example when training a neural network) and
you have a learnt layer before the signatory.Path, then make sure to construct a new signatory.Path
object for each forward pass.

Reusing the same object between forward passes will mean that signatures aren’t computed using the latest infor-
mation, as the internal buffers will still correspond to the data passed in when the signatory.Path object was
first constructed.

3.4 Utilities

The following miscellaneous operations are provided as a convenience.

signatory.max_parallelism(value: Optional[int] = None)→ int
Gets or sets the maximum amount of parallelism used in Signatory’s computations. Higher values will typically
result in quicker computations but will use more memory.

Calling without arguments will return the current value. Passing a value of 1 will disable parallelism. Passing
-1, math.inf, np.inf or float('inf') will enable unlimited parallelism.

class signatory.Augment(in_channels: int, layer_sizes: Tuple[int, ...], kernel_size: int, stride:
int = 1, padding: int = 0, dilation: int = 1, bias: bool = True, ac-
tivation: Callable[[torch.Tensor], torch.Tensor] = <function relu>, in-
clude_original: bool = True, include_time: bool = True, **kwargs: Any)

Augmenting a stream of data before feeding it into a signature is often useful; the hope is to obtain higher-order
information in the signature. One way to do this is in a data-dependent way is to apply a feedforward neural
network to sections of the stream, so as to obtain another stream; on this stream the signature is then applied;
that is what this torch.nn.Module does.

Thus this torch.nn.Module is essentially unrelated to signatures, but is provided as it is often useful in the
same context. As described in Deep Signature Transforms – Bonnier et al. 2019, it is often advantageous to
augment a path before taking the signature.

The input path is expected to be a three-dimensional tensor, with dimensions (𝑁,𝐿,𝐶), where 𝑁 is the batch
size, 𝐿 is the length of the input sequence, and 𝐶 denotes the number of channels. Thus each batch element is
interpreted as a stream of data (𝑥1, . . . , 𝑥𝐿), where each 𝑥𝑖 ∈ R𝐶 .

Then this stream may be ‘augmented’ via some function

𝜑 : R𝐶×𝑘 → R ̂︀𝐶
giving a stream of data

(𝜑(𝑥1, ...𝑥𝑘), . . . , 𝜑(𝑥𝑛−𝑘+1, . . . , 𝑥𝑛)) ,

which is essentially a three-dimensional tensor with dimensions (𝑁,𝐿− 𝑘 + 1, ̂︀𝐶).

16 Chapter 3. Library API

https://pytorch.org/docs/stable/tensors.html#torch.Tensor.size
https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://pytorch.org/docs/stable/nn.html#torch.nn.Module
https://arxiv.org/abs/1905.08494

Signatory, Release 1.1.4

Thus this essentially operates as a one dimensional convolution, except that a whole network is swept across the
input, rather than just a single convolutional layer.

Both the original stream and time can be specifically included in the augmentation. (This usually tends to give
better empirical results.) For example, if both include_original is True and include_time is True,
then each 𝜑(𝑥𝑖, ...𝑥𝑘+𝑖−1) is of the form (︂

𝑖

𝑇
, 𝑥𝑖, 𝜙(𝑥𝑖, ...𝑥𝑘+𝑖−1)

)︂
.

where 𝑇 is a constant appropriately chosen so that the first entry moves between 0 and 1 as 𝑖 varies. (Specifically,
𝑇 = 𝐿− 𝑘 + 1 + 2× padding.)

Parameters

• in_channels (int) – Number of channels 𝐶 in the input stream.

• layer_sizes (tuple of int) – Specifies the sizes of the layers of the feedforward
neural network to apply to the stream. The final value of this tuple specifies the number of
channels in the augmented stream, corresponding to the value ̂︀𝐶 in the preceding discussion.

• kernel_size (int) – Specifies the size of the kernel to slide over the stream, corre-
sponding to the value 𝑘 in the preceding discussion.

• stride (int, optional) – Defaults to 1. How far to move along the input stream
before re-applying the feedforward neural network. Thus the output stream is given by

(𝜑(𝑥1, . . . , 𝑥𝑘), 𝜑(𝑥1+stride, . . . , 𝑥𝑘+2×stride), 𝜑(𝑥1+2×stride, . . . , 𝑥𝑘+2×stride), . . .)

• padding (int, optional) – Defaults to 0. How much zero padding to add to either
end of the the input stream before sweeping the feedforward neural network along it.

• dilation (int, optional) – The spacing between input elements given to the feed-
forward neural network. Defaults to 1. Harder to describe; see the equivalent argument for
torch.nn.Conv1d.

• bias (bool, optional) – Defaults to True. Whether to use biases in the neural net-
work.

• activation (callable, optional) – Defaults to ReLU. The activation function to
use in the feedforward neural network.

• include_original (bool, optional) – Defaults to True. Whether or not to in-
clude the original stream (pre-augmentation) in the augmented stream.

• include_time (bool, optional) – Defaults to True. Whether or not to also aug-
ment the stream with a ‘time’ value. These are values in [0, 1] corresponding to how far
along the stream dimension the element is.

Note: Thus the resulting stream of data has shape (𝑁,𝐿,

out_channels = layer_sizes[-1]
if include_original:

out_channels += in_channels
if include_time:

out_channels += 1

forward(x: torch.Tensor)→ torch.Tensor
The forward operation.

3.4. Utilities 17

https://pytorch.org/docs/stable/nn.html#torch.nn.Conv1d

Signatory, Release 1.1.4

Parameters x (torch.Tensor) – The path to augment.

Returns The augmented path.

signatory.all_words(channels: int, depth: int)→ List[List[int]]
Computes the collection of all words up to length depth in an alphabet of size channels. Each letter
is represented by an integer 𝑖 in the range 0 ≤ 𝑖 < channels.

Signatures may be thought of as a sum of coefficients of words. This gives the words in the order that
they correspond to the values returned by signatory.signature().

Logsignatures may be thought of as a sum of coefficients of words. This gives the words in the order that
they correspond to the values returned by signatory.logsignature() with mode="expand".

Parameters

• channels (int) – The size of the alphabet.

• depth (int) – The maximum word length.

Returns A list of lists of integers. Each sub-list corresponds to one word. The words are
ordered by length, and then ordered lexicographically within each length class.

signatory.lyndon_words(channels: int, depth: int)→ List[List[int]]
Computes the collection of all Lyndon words up to length depth in an alphabet of size channels.
Each letter is represented by an integer 𝑖 in the range 0 ≤ 𝑖 < channels.

Logsignatures may be thought of as a sum of coefficients of Lyndon words. This gives the words
in the order that they correspond to the values returned by signatory.logsignature() with
mode="words".

Parameters

• channels (int) – The size of the alphabet.

• depth (int) – The maximum word length.

Returns A list of lists of integers. Each sub-list corresponds to one Lyndon word. The words
are ordered by length, and then ordered lexicographically within each length class.

signatory.lyndon_brackets(channels: int, depth: int)→ List[Union[int, List]]
Computes the collection of all Lyndon words, in their standard bracketing, up to length depth in an
alphabet of size channels. Each letter is represented by an integer 𝑖 in the range 0 ≤ 𝑖 < channels.

Logsignatures may be thought of as a sum of coefficients of Lyndon brackets. This gives the brack-
ets in the order that they correspond to the values returned by signatory.logsignature() with
mode="brackets".

Parameters

• channels (int) – The size of the alphabet.

• depth (int) – The maximum word length.

Returns A list. Each element corresponds to a single Lyndon word with its standard brack-
eting. The words are ordered by length, and then ordered lexicographically within each
length class.

18 Chapter 3. Library API

https://pytorch.org/docs/stable/tensors.html#torch.Tensor

CHAPTER

FOUR

EXAMPLES

4.1 Simple example

Here’s a very simple example on using signatory.signature().

import torch
import signatory
Create a tensor of shape (2, 10, 5)
Recall that the order of dimensions is (batch, stream, channel)
path = torch.rand(2, 10, 5)
Take the signature to depth 3
sig = signatory.signature(path, 3)
sig is of shape (2, 155)

In this example,path is a three dimensional tensor,and the returned tensor is two dimensional. The first dimen-
sion of path corresponds to the batch dimension,and indeed we can see that this dimension is also in the shape
of sig.

The second dimension of path corresponds to the ‘stream’ dimension,whilst the third dimension corresponds
to channels. Mathematically speaking,that means that each batch element of path is interpreted as a sequence
of points 𝑥1, . . . , 𝑥10,with each 𝑥𝑖 ∈ R5.

The output sig has batch dimension of size 2,just like the input. Its other dimension is of size 155. This is the
number of terms in the depth-3 signature of a path with 5 channels. (This can also be computed with the helper
function signatory.signature_channels().)

4.2 Online computation of signatures

Suppose we have the signature of a stream of data 𝑥1, . . . , 𝑥1000. Subsequently some more data arrives,say
𝑥1001, . . . , 𝑥1007. It is possible to calculate the signature of the whole stream of data 𝑥1, . . . , 𝑥1007 with just this
information. It is not necessary to compute the signature of the whole path from the beginning!

In code,this problem can be solved like this:

import torch
import signatory

Generate a path X
Recall that the order of dimensions is (batch, stream, channel)
X = torch.rand(1, 1000, 5)

(continues on next page)

19

Signatory, Release 1.1.4

(continued from previous page)

Calculate its signature to depth 3
sig_X = signatory.signature(X, 3)

Generate some more data for the path
Y = torch.rand(1, 7, 5)
Calculate the signature of the overall path
final_X = X[:, -1, :]
sig_XY = signatory.signature(Y, 3, basepoint=final_X, initial=sig_X)

This is equivalent to
XY = torch.cat([X, Y], dim=1)
sig_XY = signatory.signature(XY, 3)

As can be seen,two pieces of information need to be provided: the final value of X along the stream dimen-
sion,and the signature of X. But not X itself.

The first method (using the initial argument) will be much quicker than the second (simpler) method. The
first method efficiently uses just the new information Y,whilst the second method unnecessarily iterates over all
of the old information X.

In particular note that we only needed the last value of X. If memory efficiency is a concern,then by using the
first method we can discard the other 999 terms of X without an issue!

Note: If the signature of Y on its own was also of interest,then it is possible to compute this first,and then
combine it with sig_X to compute sig_XY. See Combining signatures.

4.3 Combining signatures

Suppose we have two paths,and want to combine their signatures. That is,we know the signatures of the two
paths,and would like to know the signature of the two paths concatenated together. This can be done with the
signatory.signature_combine() function.

import torch
import signatory

depth = 3
input_channels = 5
path1 = torch.rand(1, 10, input_channels)
path2 = torch.rand(1, 5, input_channels)
sig_path1 = signatory.signature(path1, depth)
sig_path2 = signatory.signature(path2, depth,

basepoint=path1[:, -1, :])

OPTION 1: efficient, using signature_combine
sig_combined = signatory.signature_combine(sig_path1, sig_path2,

input_channels, depth)

OPTION 2: inefficient, without using signature_combine
path_combined = torch.cat([path1, path2], dim=1)
sig_combined = signatory.signature(path_combined, depth)

(continues on next page)

20 Chapter 4. Examples

Signatory, Release 1.1.4

(continued from previous page)

Both options will produce the same value for sig_combined

Danger: Note in particular that the end of path1 is used as the basepoint when calculating
sig_path2 in Option 1. It is important that path2 starts from the same place that path1 finishes.
Otherwise there will be a jump between the end of path1 and the start of path2 which the signature will
not see.

If it is known that path1[:, -1, :] == path2[:, 0, :],so that in fact path1 does fin-
ish where path2 starts,then only in this case can the use of basepoint safely be skipped. (And if
basepoint is set to this value then it will not change the result.)

With Option 2 it is clearest what is being computed. However this is also going to be slower: the signature
of path1 is already known,but Option 2 does not use this information at all,and instead performs a lot of
unnecessary computation. Furthermore its calculation requires holding all of path1 in memory,instead of just
path1[:, -1, :].

Note how with Option 1,once sig_path1 has been computed,then the only thing that must now be held
in memory is sig_path1 and path1[:, -1, :]. This means that the amount of memory required is
independent of the length of path1. Thus if path is very long,or can grow to arbitrary length as time goes
by,then the use of this option (over Option 2) is crucial.

Tip: Combining signatures in this way is the most sensible way to do things if the signature of path2 is
actually desirable information on its own.

However if only the signature of the combined path is of interest,then this can be computed even more efficiently
by

sig_path1 = signatory.signature(path1, depth)
sig_combined = signatory.signature(path2, depth,

basepoint=path1[:, -1, :],
initial=sig_path1)

For further examples of this nature,see Online computation of signatures.

4.4 Signatures on intervals

The basic signatory.signature() function computes the signature of a whole stream of data. Some-
times we have a whole stream of data,and then want to compute the signature of just the data sitting in some
subinterval.

Naively,we could just slice it:

import torch
import signatory
WARNING! THIS IS SLOW AND INEFFICIENT CODE
path = torch.rand(1, 1000, 5)
sig1 = signatory.signature(path[:, :40, :], 3)

(continues on next page)

4.4. Signatures on intervals 21

Signatory, Release 1.1.4

(continued from previous page)

sig2 = signatory.signature(path[:, 300:600, :], 3)
sig3 = signatory.signature(path[:, 400:990, :], 3)
sig4 = signatory.signature(path[:, 700:, :], 3)
sig5 = signatory.signature(path, 3)

However in this scenario it is possible to be much more efficient by doing some precomputation,which can then
allow for computing such signatures very rapidly. This is done by the signatory.Path class.

import torch
import signatory

path = torch.rand(1, 1000, 5)
path_class = signatory.Path(path, 3)
sig1 = path_class.signature(0, 40)
sig2 = path_class.signature(300, 600)
sig3 = path_class.signature(400, 990)
sig4 = path_class.signature(700, None)
sig5 = path_class.signature()

In fact,the signatory.Path class supports adding data to it as well:

import torch
import signatory

path1 = torch.rand(1, 1000, 5)
path_class = signatory.Path(path1, 3)
path_class is considering a path of length 1000
calculate signatures as normal
sig1 = path_class.signature(40, None)
sig2 = path_class.signature(500, 600)
more data arrives
path2 = torch.rand(1, 200, 5)
path_class.update(path2)
path_class is now considering a path of length 1200
sig3 = path_class.signature(900, 1150)

Note: To be able to compute signatures over intervals like this,then of course signatory.Path must hold
information about the whole stream of data in memory.

If only the signature of the whole path is of interest then the main signatory.signature() function will
work fine.

If the signature of a path for which data continues to arrive (analogous to the use of signatory.Path.
update() above) is of interest,then see Online computation of signatures,which demonstrates how to effi-
ciently use the signatory.signature() function in this way.

If the signature on adjacent disjoint intervals is required,and the signature on the union of these intervals is
desired,then see Combining signatures for how to compute the signature on each of these intervals,and how
to efficiently combine them to find the signature on larger intervals. This then avoids the overhead of the
signatory.Path class.

22 Chapter 4. Examples

Signatory, Release 1.1.4

4.5 Translation invariance

The signature is translation invariant. That is,given some stream of data 𝑥1, . . . , 𝑥𝑛 with 𝑥𝑖 ∈ R𝑐,and some
𝑦 ∈ R𝑐,then the signature of 𝑥1, . . . , 𝑥𝑛 is equal to the signature of 𝑥1 + 𝑦, . . . , 𝑥𝑛 + 𝑦.

Sometimes this is desirable,sometimes it isn’t. If it isn’t desirable,then the simplest solution is to add a ‘base-
point’. That is,add a point 0 ∈ R𝑐 to the start of the path. This will allow us to notice any translations,as the
signature of 0, 𝑥1, . . . , 𝑥𝑛 and the signature of 0, 𝑥1 + 𝑦, . . . , 𝑥𝑛 + 𝑦 will be different.

In code,this can be accomplished very easily by using the basepoint argument. Simply set it to True to add
such a basepoint to the path before taking the signature:

import torch
import signatory
path = torch.rand(2, 10, 5)
sig = signatory.signature(path, 3, basepoint=True)

4.6 Using signatures in neural networks

In principle a simple augment-signature-linear model is enough to achieve universal approximation:

import signatory
import torch
from torch import nn

class SigNet(nn.Module):
def __init__(self, in_channels, out_dimension, sig_depth):

super(SigNet, self).__init__()
self.augment = signatory.Augment(in_channels=in_channels,

layer_sizes=(),
kernel_size=1,
include_original=True,
include_time=True)

self.signature = signatory.Signature(depth=sig_depth)
+1 because signatory.Augment is used to add time as well
sig_channels = signatory.signature_channels(channels=in_channels + 1,

depth=sig_depth)
self.linear = torch.nn.Linear(sig_channels,

out_dimension)

def forward(self, inp):
inp is a three dimensional tensor of shape (batch, stream, in_channels)
x = self.augment(inp)
if x.size(1) <= 1:

raise RuntimeError("Given an input with too short a stream to take the
→˓"

" signature")
x in a three dimensional tensor of shape (batch, stream, in_channels +

→˓1),
as time has been added as a value
y = self.signature(x, basepoint=True)
y is a two dimensional tensor of shape (batch, terms), corresponding to

(continues on next page)

4.5. Translation invariance 23

Signatory, Release 1.1.4

(continued from previous page)

the terms of the signature
z = self.linear(y)
z is a two dimensional tensor of shape (batch, out_dimension)
return z

Whilst in principle this exhibits universal approximation,adding some learnt transformation before the signature
transform tends to improve things. See Deep Signature Transforms – Bonnier et al. 2019. Thus we might
improve our model:

import signatory
import torch
from torch import nn

class SigNet2(nn.Module):
def __init__(self, in_channels, out_dimension, sig_depth):

super(SigNet2, self).__init__()
self.augment = signatory.Augment(in_channels=in_channels,

layer_sizes=(8, 8, 2),
kernel_size=4,
include_original=True,
include_time=True)

self.signature = signatory.Signature(depth=sig_depth)
+3 because signatory.Augment is used to add time, and 2 other channels,
as well
sig_channels = signatory.signature_channels(channels=in_channels + 3,

depth=sig_depth)
self.linear = torch.nn.Linear(sig_channels,

out_dimension)

def forward(self, inp):
inp is a three dimensional tensor of shape (batch, stream, in_channels)
x = self.augment(inp)
if x.size(1) <= 1:

raise RuntimeError("Given an input with too short a stream to take the
→˓"

" signature")
x in a three dimensional tensor of shape (batch, stream, in_channels +

→˓3)
y = self.signature(x, basepoint=True)
y is a two dimensional tensor of shape (batch, sig_channels),
corresponding to the terms of the signature
z = self.linear(y)
z is a two dimensional tensor of shape (batch, out_dimension)
return z

The signatory.Signature layer can be used multiple times in a neural network. In this next example the
first signatory.Signature layer is called with stream as True,so that the stream dimension is preserved.
This means that the signatures of all intermediate streams are returned as well. So as we still have a stream
dimension,it is reasonable to take the signature again.

import signatory
import torch

(continues on next page)

24 Chapter 4. Examples

https://arxiv.org/abs/1905.08494

Signatory, Release 1.1.4

(continued from previous page)

from torch import nn

class SigNet3(nn.Module):
def __init__(self, in_channels, out_dimension, sig_depth):

super(SigNet3, self).__init__()
self.augment1 = signatory.Augment(in_channels=in_channels,

layer_sizes=(8, 8, 4),
kernel_size=4,
include_original=True,
include_time=True)

self.signature1 = signatory.Signature(depth=sig_depth,
stream=True)

+5 because self.augment1 is used to add time, and 4 other
channels, as well
sig_channels1 = signatory.signature_channels(channels=in_channels + 5,

depth=sig_depth)
self.augment2 = signatory.Augment(in_channels=sig_channels1,

layer_sizes=(8, 8, 4),
kernel_size=4,
include_original=False,
include_time=False)

self.signature2 = signatory.Signature(depth=sig_depth,
stream=False)

4 because that's the final layer size in self.augment2
sig_channels2 = signatory.signature_channels(channels=4,

depth=sig_depth)
self.linear = torch.nn.Linear(sig_channels2, out_dimension)

def forward(self, inp):
inp is a three dimensional tensor of shape (batch, stream, in_channels)
a = self.augment1(inp)
if a.size(1) <= 1:

raise RuntimeError("Given an input with too short a stream to take the
→˓"

" signature")
a in a three dimensional tensor of shape (batch, stream, in_channels +

→˓5)
b = self.signature1(a, basepoint=True)
b is a three dimensional tensor of shape (batch, stream, sig_channels1)
c = self.augment2(b)
if c.size(1) <= 1:

raise RuntimeError("Given an input with too short a stream to take the
→˓"

" signature")
c is a three dimensional tensor of shape (batch, stream, 4)
d = self.signature2(c, basepoint=True)
d is a two dimensional tensor of shape (batch, sig_channels2)
e = self.linear(d)
e is a two dimensional tensor of shape (batch, out_dimension)
return e

4.6. Using signatures in neural networks 25

Signatory, Release 1.1.4

26 Chapter 4. Examples

CHAPTER

FIVE

CITATION

If you found this library useful in your research,please consider citing

@misc{signatory,
title={{Signatory: differentiable computations of the signature and

→˓logsignature transforms, on both CPU and GPU}},
author={Kidger, Patrick},
note={\texttt{https://github.com/patrick-kidger/signatory}},
year={2019}

}

27

Signatory, Release 1.1.4

28 Chapter 5. Citation

CHAPTER

SIX

FAQ AND KNOWN ISSUES

If you have a question and don’t find an answer here then do please open an issue.

6.1 Problems with importing or installing Signatory

• I get an ImportError: DLL load failed: The specified procedure could
not be found. when I try to import Signatory.

This appears to be caused by using old versions of Python,e.g. 3.6.6 instead of 3.6.9. Upgrading your
version of Python seems to resolve the issue.

• I get an Import Error: ... Symbol not found: ... when I try to import Signatory.

This occurs when the version of PyTorch you have installed is different to the version of PyTorch that your
copy of Signatory is compiled for. Make sure that you have specified the correct version of PyTorch when
downloading Signatory; see the installation instructions.

6.2 All other issues

• What’s the difference between Signatory and iisignature?

The essential difference (and the reason for Signatory’s existence) is that iisignature is limited to the CPU,whilst
Signatory is for both CPU and GPU. Signatory is also typically faster even on the CPU,thanks to parallelisation
and algorithmic improvements. Other than that,iisignature is NumPy-based,whilst Signatory uses PyTorch.
There are also a few differences in the provided functionality; each package provides some operations that the
other doesn’t.

• Exceptions messages aren’t very helpful on a Mac.

This isn’t an issue directly to do with Signatory. We use pybind11 to translate C++ exceptions to Python
exceptions,and some part of this process breaks down when on a Mac. If you’re trying to debug your code then
the best (somewhat unhelpful) advice is to try running the problematic code on either Windows or Linux to
check what the error message is.

29

https://github.com/patrick-kidger/signatory/issues/new
https://github.com/bottler/iisignature

Signatory, Release 1.1.4

30 Chapter 6. FAQ and Known Issues

CHAPTER

SEVEN

ADVICE ON USING SIGNATURES

7.1 What are signatures?

If you’re reading this then it’s probably because you already know what the signature transform is,and are
looking to use it in your project. But in case you’ve stumbled across this and are curious what this ‘signature’
thing is. . .

The signature transform is a transformation that takes in a stream of data (often a time series),and returns a
collection of statistics about that stream of data,called the signature. This collection of statistics determines the
path essentially uniquely. Importantly,the signature is rich enough that every continuous function of the input
stream may be approximated arbitrarily well by a linear function of its signature; the signature transform is what
we call a universal nonlinearity. If you’re doing machine learning then you probably understand why this is
such a desirable property!

The definition of the signature transform can be a little bit intimidating -

Definition

Let x = (𝑥1, . . . , 𝑥𝑛),where 𝑥𝑖 ∈ R𝑑. Linearly interpolate x into a path 𝑓 = (𝑓1, . . . , 𝑓𝑑) : [0, 1] → R𝑑. The
signature of x is defined as Sig(x) = Sig(𝑓),where

Sig(𝑓) =

⎛⎜⎝
⎛⎝ ∫︁

· · ·
∫︁

0<𝑡1<···<𝑡𝑘<1

𝑘∏︁
𝑗=1

d𝑓 𝑖𝑗

d𝑡
(𝑡𝑗)d𝑡1 · · · d𝑡𝑘

⎞⎠
1≤𝑖1,...,𝑖𝑘≤𝑑

⎞⎟⎠
𝑘≥0

.

But if you’re just using the signature transform then you don’t need to worry about really understanding what
all of that means – just how to use it. Computing it is somewhat nontrivial. Now if only someone had already
written a package to compute it for you. . .

In principle the signature transform is quite similar to the Fourier transform: it is a transformation that can be
applied to a stream of data which extracts certain information. The Fourier transform describes frequencies;
meanwhile the signature most naturally describes order and area. The order of events,potentially in different
channels,is a particularly easy thing to understand using the signature. Similarly various notions of area are also
easy to understand.

Note: It turns out that order and area are actually in some sense the same concept. For a (very simplistic)
example of this: consider the functions 𝑓(𝑥) = 𝑥(1−𝑥) and 𝑔(𝑥) = 𝑥(𝑥− 1) for 𝑥 ∈ [0, 1]. Then the area of 𝑓
is
∫︀ 1

0
𝑓(𝑥)d𝑥 = 1

6 whilst the area of 𝑔 is
∫︀ 1

0
𝑔(𝑥)d𝑥 = −1

6 . Meanwhile,the graph of 𝑓 goes up then down,whilst
the graph of 𝑔 goes down then up: the order of the ups and downs corresponds to the area.

31

Signatory, Release 1.1.4

Check out this for a primer on the use of the signature transform in machine learning,just as a feature transfor-
mation,and this for a more in-depth look at integrating the signature transform into neural networks.

7.2 Neural networks

The universal nonlinearity property (mentioned here) requires the whole,infinite,signature. This doesn’t fit in
your computer’s memory. The solution is simple: truncate the signature to some finite collection of statistics,and
then embed it within a nonlinear model,like a neural network. The signature transform now instead acts as a
pooling function,doing a provably good job of extracting information.

Have a look at this for a more in-depth look at integrating it into neural neural networks.

As a general recommendation:

• The number of terms in signatures can grow rapidly with depth and number of channels,so experiment
with what is an acceptable amount of work.

• Place small stream-preserving neural networks before the signature transform; these typically greatly
enhance the power of the signature transform. This can be done easily with the signatory.Augment
class.

• It’s often worth augmenting the input stream with an extra ‘time’ dimension. This can be done easily
with the signatory.Augment class. (Have a look at Appendix A of this for an understanding of what
augmenting with time gives you,and when you may or may not want to do it.)

7.3 Kernels and Gaussian Processes

The signature may be used to define a universal kernel for sequentially ordered data.

See here for using signatures with kernels,and here for using signatures with Gaussian Processes.

7.4 Signatures vs. Logsignatures

Signatures can get quite large. This is in fact the whole point of them! They provide a way to linearise all
possible functions of their input. In contrast logsignatures tend to be reasonably modestly sized.

If you know that you want to try and capture particularly high order interactions between your input channels
then you may prefer to use logsignatures over signatures,as this will capture this the same information,but in a
more information-dense way. This comes with a price though,as the logsignature is somewhat slower to compute
than the signature.

Note that as the logsignature is computed by going via the signature,it is not more memory-efficient to compute
the logsignature than the signature.

32 Chapter 7. Advice on using signatures

https://arxiv.org/abs/1603.03788
https://arxiv.org/abs/1905.08494
https://arxiv.org/abs/1905.08494
https://arxiv.org/abs/1905.08494
http://jmlr.org/papers/v20/16-314.html
https://arxiv.org/abs/1906.08215

CHAPTER

EIGHT

SOURCE CODE

The Signatory project is hosted on GitHub.

33

https://github.com/patrick-kidger/signatory

Signatory, Release 1.1.4

34 Chapter 8. Source Code

CHAPTER

NINE

ACKNOWLEDGEMENTS

The Python bindings for the C++ code were written with the aid of pybind11.

For NumPy-based CPU-only signature calculations,you may also be interested in the iisignature package. The
notes accompanying the iisignature project greatly helped with the implementation of Signatory.

35

https://github.com/pybind/pybind11
https://github.com/bottler/iisignature

Signatory, Release 1.1.4

36 Chapter 9. Acknowledgements

PYTHON MODULE INDEX

s
signatory, 7

37

Signatory, Release 1.1.4

38 Python Module Index

INDEX

A
all_words() (in module signatory),18
Augment (class in signatory),16

C
channels() (signatory.Path method),15

D
depth() (signatory.Path property),15

E
extract_signature_term() (in module signatory),10

F
forward() (signatory.LogSignature method),12
forward() (signatory.Signature method),9
forward() (signatory.SignatureToLogSignature method),14

L
LogSignature (class in signatory),12
logsignature() (in module signatory),11
logsignature() (signatory.Path method),15
logsignature_channels() (in module signatory),13
logsignature_channels() (signatory.Path method),16
logsignature_shape() (signatory.Path property),16
logsignature_size() (signatory.Path method),15
lyndon_brackets() (in module signatory),18
lyndon_words() (in module signatory),18

M
max_parallelism() (in module signatory),16
multi_signature_combine() (in module signatory),10

P
Path (class in signatory),14
path() (signatory.Path property),15
prepare() (signatory.LogSignature method),13

S
shape() (signatory.Path property),15
signatory (module),7

Signature (class in signatory),9
signature() (in module signatory),8
signature() (signatory.Path method),14
signature_channels() (in module signatory),9
signature_channels() (signatory.Path method),15
signature_combine() (in module signatory),10
signature_shape() (signatory.Path property),15
signature_size() (signatory.Path method),15
signature_to_logsignature() (in module signatory),13
SignatureToLogSignature (class in signatory),13
size() (signatory.Path method),15

U
update() (signatory.Path method),15

39

	Introduction
	Installation
	Install from source

	Library API
	Signatures
	Logsignatures
	Path
	Utilities

	Examples
	Simple example
	Online computation of signatures
	Combining signatures
	Signatures on intervals
	Translation invariance
	Using signatures in neural networks

	Citation
	FAQ and Known Issues
	Problems with importing or installing Signatory
	All other issues

	Advice on using signatures
	What are signatures?
	Neural networks
	Kernels and Gaussian Processes
	Signatures vs. Logsignatures

	Source Code
	Acknowledgements
	Python Module Index
	Index

