
show
Release 1.4.7

Mar 23, 2017

Contents

1 Diving In 3
1.1 This Just In . 4

2 Collections and Items 5

3 Object Properties 7

4 Wax On, Wax Off 9

5 How Things Are Shown 11

6 Where Am I? 13

7 What’s Changed 15

8 Function Call and Return 17

9 Discovering What’s There 19

10 Interactive Limitations 21

11 API 23

12 Notes 27

13 Installation 29
13.1 Testing . 29

14 Change Log 31

Python Module Index 35

i

ii

show, Release 1.4.7

show provides simple, effective debug printing.

Every language has features to print text, but they’re seldom optimized for printing debugging information. show is.
It provides a simple, DRY mechanism to “show what’s going on”–to identify what values are associated with program
variables in a neat, labeled fashion. For instance:

from show import show

x = 12
nums = list(range(4))

show(x, nums)

yields:

x: 12 nums: [0, 1, 2, 3]

You could of course get the same output with Python’s standard print statement/function:

print("x: {} nums: {}".format(x, nums))

But that’s much more verbose, and unlike show, it’s fails the DRY principle.

But while avoiding a few extra characters of typing and a little extra program complexity is nice–very nice, actually–
show goes well beyond that. It has methods to show all local variables which have recently changed, to trace the
parameters and return values of function calls, and other useful information that you simply cannot get without
a lot of needless extra work and a lot of extra lines mucking up your program source. And if you run show.
prettyprint(), values will be automagically highlighted with Pygments, which is very helpful when you’re
displaying complex objects, dictionaries and other structures.

As just one exmaple, if you have a lot of output flowing by, and it’s hard to see your debugging output, just:

show(x, y, z, style='red')

And now you have debug output that clearly stands out from the rest. Or show.set(style='blue') and now all
your debug output is colorized.

But “debug printing is so very 1989!” you may say. “We now have logging, logging, embedded assertions, unit tests,
interactive debuggers. We don’t need debug printing.”

Have to disagree with you there. All those tools are grand, but often the fastest, simplest way to figure out what’s
going in a program is to print values and watch what happens the program runs. Having a simple, effective way to do
that doesn’t replacing logging, assertsions, unit testing, and debuggers; it’s a effective complement to them. One that
is especially useful in two parts of the development process:

1. In exploratory programming, where the values coming back from new or external functions (say, some package’s
API with which you may not be intimately familiar) aren’t well-known to you.

2. In debugging, where the assumptions embedded into the code are clearly, at some level, not being met. Else you
wouldn’t need to debug.

In either case, knowing what values are actually happening, and figuring them out without a lot of extra effort or
complexity–well, it doesn’t matter how many unit tests or logging statements you have, that’s still of value.

Every language has features to print text, but they’re seldom optimized for printing debugging information. show is.
It provides a simple, DRY mechanism to “show what’s going on.”

Contents 1

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
http://pygments.org/

show, Release 1.4.7

2 Contents

CHAPTER 1

Diving In

Sometimes programs print so that users can see things, and sometimes they print so that developers can. show() is
for developers, helping rapidly print the current state of variables. A simple invocation:

show(x)

replaces require the craptastic repetitiveness of:

print "x: {0}".format(x)

If you’d like to see where the data is being produced,:

show.set(where=True)
show(d)

will turn on location reporting, such as:

__main__():21: d: 'this'

The where property, along with most every option, can be set permanently, over the scope of a where block, or on a
call-by-call basis. show is built atop the options module for configuration management, and the output management
of say. All say options are available. If you show() a literal string, it will be interpolated as it would be in say:

show("{n} iterations, still running")

yields something like:

14312 iterations, still running

But:

s = '{n} iterations'
show(s)

yields:

3

http://pypi.python.org/pypi/options
http://pypi.python.org/pypi/say

show, Release 1.4.7

s: '{n} iterations'

See say say for additional detail on its operation. show directly supports many say methods such as
blank_lines, hr, sep, and title which are meant to simplify and up-level common formatting tasks.

This Just In

A new capability is to differentially set the formatting parameters on a method by method basis. For example, if you
want to see separators in green and function call/return annotations in red:

show.sep.set(style='green')
show.inout.set(style='red')

You could long do this on a call-by-call basis, but being able to set the defaults just for specific methods allows you
to get more formatting in with fewer characters typed. This capability is available on a limited basis: primarily for
format-specific calls (blanklines, hr, sep, and title) and for one core inspection call (the inout decorator).
It will be extended, and mapped back to underlying say and options features over time.

4 Chapter 1. Diving In

http://pypi.python.org/pypi/say

CHAPTER 2

Collections and Items

The goal of show is to provide the most useful information possible, in the quickest and simplest way. Not requiring
programmers to explicitly restate values and names in print statements is the start, but it also provides some addi-
tional functions that provide a bit more semantic value. For example, say.items() is designed to make printing
collections easy. It shows not just the values, but also the cardinality (i.e., length) of the collection:

nums = list(range(4))
show.items(nums)

yields:

nums (4 items): [0, 1, 2, 3]

5

show, Release 1.4.7

6 Chapter 2. Collections and Items

CHAPTER 3

Object Properties

show.props(x)

shows the properties of object x. (“Properties” here is generic language for “values” or “attributes” associated with
an object, and isn’t used in the technical sense of Python properties.) Properties will be listed alphabetically, but
with those starting with underscores (_), usually indicating “private” data, sorted after those that are conventionally
considered public.

If x has real @property members, those too displayed. However, other class attributes that x rightfully inherits, but
that are not directly present in the x instance, will not be displayed.

An optional second parameter can determine which properties are shown. E.g.:

show.props(x, 'name,age')

Or if you prefer the keyword syntax, this is equivalent to:

show(x, props='name,age')

Or if you’d like all properties except a few:

show.props(x, omit='description blurb')

7

show, Release 1.4.7

8 Chapter 3. Object Properties

CHAPTER 4

Wax On, Wax Off

Often it’s convenient to only display debugging information under some conditions, but not others, such as when a
debug flag is set. That often leads to multi-line conditionals such as:

if debug:
print "x:", x, "y:", y, "z:", z

With show it’s a bit easier. There’s a keyword argument, also called show, that controls whether anything is shown.
If it’s truthy, it shows; falsy, ad it doesn’t:

show(x, y, z, show=debug)

You can set the show flag more globally:

show.set(show=False)

You can also make multiple show instances that can be separately controlled:

show_verbose = show.clone()
show_verbose.set(show=verbose_flag)
show_verbose(x, y, z)

For a more fire-and-forget experience, try setting visibility with a lambda parameter:

debug = True
show.set(show=lambda: debug)

Then, whenever debug is truthy, values will be shown. When debug is falsy, values will not be shown.

When you really, truly want show‘s output to disappear, and want to minimize overhead, but don’t want to change
your source code (lest you need those debug printing statements again shortly), try:

show = noshow

This one line will replace the show object (and any of its clones) with parallel NoShow objects that simply don’t do
anything or print any output.

9

show, Release 1.4.7

Note: This assignment should be done in a global context. If done inside a function, you’ll need to add a correspond-
ing global show declaration.

As an alternative, you can:

from show import show
from show import noshow as show

Then comment out the‘‘noshow‘‘ line for debugging, or the show line for production runs.

Note: A little care is required to configure global non-showing behavior if you’re using show‘s function decorators
such as @show.inout. Decorators are evaluated earlier in program execution than the “main flow” of program
execution, so it’s a good idea to define the lambda or noshow control of visibility at the top of your program.

10 Chapter 4. Wax On, Wax Off

CHAPTER 5

How Things Are Shown

By default, show uses Python’s repr() function to format values. You may prefer some other kind of representation
or formatting, however. For example, the pprint module pretty-prints data structures. You can set it to be the default
formatter:

from pprint import pformat
show.set(fmtfunc=pformat)

Or to configure separate data and code formatters:

show.set(fmtfunc=lambda x: pformat(x, indent=4, width=120, depth=5))
show.set(fmtcode=lambda x: highlight(x, ...))

As a convenience, the show.prettyprint() configures pygments and pprint in concert to more attractively
display text on ANSI terminals. Just run it once after importing show. It also takes indent, depth, and width
options for pformat and the style (style name) option for pygments. Some style names to try:

monokai manni rrt perldoc borland colorful default
murphy vs trac tango fruity autumn bw emacs vim pastie
friendly native

11

show, Release 1.4.7

12 Chapter 5. How Things Are Shown

CHAPTER 6

Where Am I?

In addition to the where parameter that may be turned on for each show call (or in general), there is a method:

show.where()

intended to display a “flag” or indicator in output where particular debugging output originated. You may not want
location on all the time, but an occasional oriented signpost can help.

13

show, Release 1.4.7

14 Chapter 6. Where Am I?

CHAPTER 7

What’s Changed

show.changed()

will display the value of local variables. When invoked again, only those variables that have changed (since the last
show.changed() in the same context) will be displayed. For example:

def f():
x = 4
show.changed()
x += 1
retval = x * 3
show.changed()
return retval

When run will display:

x: 4
x: 5 retval: 15

You may omit some local variables if you like. By default, those starting with underscores (_) will be omitted, as
will those containing functions, methods, builtins, and other parts Python program infrastructure. If you’d like to add
those, or global variables into the mix, that’s easily done:

show.changed(_private, MY_GLOBAL_VAR)

Will start watching those.

15

show, Release 1.4.7

16 Chapter 7. What’s Changed

CHAPTER 8

Function Call and Return

It’s often helpful to know what a function’s parameters and corresponding return values were, and it can be annoying
to manually print them out. No matter. Show has two decorators to make this easy:

@show.inout
def g(a):

b = 3
a += b
return a

g(4)

Displays:

g(a=4)
g(a=4) -> 7

The first line indicates the function being called. Additional debugging or program output may follow it. The second
line here is displayed when the function returns. It reminds us what the parameters were, and then shows what return
value resulted. If you like, you can specify the styling of these calls, e.g. with @show.inout(style='red').

While printing both the call entry and exit is often helpful, especially if many lines of output (or potential program
crashes) may intervene. But in cases where a more compact, “only the results, please” print is desired, show takes a
parameter that will show only function returns: @show.inout(only="out"). Function calls sans returns will be
show if only='in'.

You may find it useful that inout is an individually-styleable method. To highlight function entry and exit points,
try:

show.inout.set(style='red')

Note: The @show.retval decorator has been deprecated, and will soon be removed. Please shift to @show.
inout variants instead.

17

show, Release 1.4.7

18 Chapter 8. Function Call and Return

CHAPTER 9

Discovering What’s There

It’s often helpful to figure out “what am I dealing with here? what attributes or methods or properties are available to
me?” This is where show.dir comes into play. You could do show(dir(x)), but show.dir(x) will provides
more information, and does so more compactly. It also allows you to filter out the often huge hubbub of some objects.
By default, it doesn’t show any attributes starting with double underscore __. You can control what’s omitted with the
omit keyword argument. show.dir(x, omit=None) shows everything, while show.dir(x, omit='_*
proxy*') omits all the methods starting with an underscore or the word “proxy.”

19

show, Release 1.4.7

20 Chapter 9. Discovering What’s There

CHAPTER 10

Interactive Limitations

As of version 1.4, show has good support for IPython, either running in a terminal window or in a Jupyter Notebook.

It’s support for the plain interactive Python REPL is much weaker. Call it experimental. It works well at the interactive
prompt, and within imported modules. It cannot, however, be used within functions and classes defined within the
interactive session. This is a result of how Python supports–or rather, fails to support–introspection for interactively-
defined code. Whether this is a hard limit, or something that can be worked around over time, remains to be seen. (See
e.g. this discussion).

Python under Windows does not support readline the same way it is supported on Unix, Linux, and Mac OS X.
Experimental support is provided for the use of pyreadline under Windows to correct this variance. This feature
is yet untested. Works/doesn’t work reports welcome!

If you want to work interactively, strongly advise you do so uner IPython not the stock REPL. Even better, in Jupyter
Notebook, which is an excellent work environment in a way that the stock REPL never will be.

21

http://stackoverflow.com/questions/13204161/how-to-access-the-calling-source-line-from-interactive-shell

show, Release 1.4.7

22 Chapter 10. Interactive Limitations

CHAPTER 11

API

Debugging print features.

class show.core.NoShow(**kwargs)
A Show variant that shows nothing. Maintains just enough context to respond as a real Show would. Any clones
will also be ‘‘NoShow‘‘s–again, to retain similarity. Designed to squelch all output in efficient way, but not
requiring any changes to the source code. Maintains just enough context to

blank_lines(*args, **kwargs)
Fake entry point. Does nothing, returns immediately.

changed(*args, **kwargs)
Fake entry point. Does nothing, returns immediately.

clone(**kwargs)
Create a child instance whose options are chained to this instance’s options (and thence to Show.options).
kwargs become the child instance’s overlay options. Because of how the source code is parsed, clones
must be named via simple assignment.

dir(*args, **kwargs)
Fake entry point. Does nothing, returns immediately.

hr(*args, **kwargs)
Fake entry point. Does nothing, returns immediately.

inout(*args, **kwargs)
Fake entry point. Does nothing, returns immediately.

items(*args, **kwargs)
Fake entry point. Does nothing, returns immediately.

locals(*args, **kwargs)
Fake entry point. Does nothing, returns immediately.

props(*args, **kwargs)
Fake entry point. Does nothing, returns immediately.

retval(*args, **kwargs)
Fake entry point. Does nothing, returns immediately.

23

show, Release 1.4.7

title(*args, **kwargs)
Fake entry point. Does nothing, returns immediately.

class show.core.Show(**kwargs)
Show objects print debug output in a ‘name: value’ format that is convenient for discovering what’s going on as
a program runs.

arg_format(name, value, caller, opts)
Format a single argument. Strings returned formatted.

arg_format_dir(name, value, caller, opts)
Format a single argument to show items of a collection.

arg_format_items(name, value, caller, opts)
Format a single argument to show items of a collection.

arg_format_props(name, value, caller, opts, ignore_funky=True)
Format a single argument to show properties.

call_location(caller)
Create a call location string indicating where a show() was called.

changed(*args, **kwargs)
Show the local variables, then again only when changed.

clone(**kwargs)
Create a child instance whose options are chained to this instance’s options (and thence to Show.options).
kwargs become the child instance’s overlay options. Because of how the source code is parsed, clones
must be named via simple assignment.

code_repr(code)
Return a formatted string for code. If there are any internal brace characters, they are doubled so that they
are not interpreted as format template characters when the composed string is eventually output by say.

dir(*args, **kwargs)
Show the attributes possible for the given object(s)

get_arg_tuples(caller, values)
Return a list of argument (name, value) tuples. :caller: The calling frame. :values: The with the given
values.

inout(*dargs, **dkwargs)
Show arguments to a function. Decorator itself may take arguments, or not. Whavevs.

items(*args, **kwargs)
Show items of a collection.

locals(*args, **kwargs)
Show all local vars, plus any other values mentioned.

method_push(base_options, method_name, kwargs)
Transitional helper function to simplify the grabbing of method-specific arguments. Will be phased out as
the learnings about method arguments are piped back into Options and a more long-term API is completed.

pprint(*args, **kwargs)
Show the objects as displayed by pprint. Not well integrated as yet. Just a start.

prettyprint(mode=’ansi’, sep=’ ‘, indent=4, width=120, depth=5, style=’friendly’)
Convenience method to turn on pretty-printing. Mode can be text or ansi.

props(*args, **kwargs)
Show properties of objects.

24 Chapter 11. API

show, Release 1.4.7

retval(func)
Decorator that shows arguments to a function, and return value, once the function is complete. Similar to
inout, but only displays once function has returned.

set(**kwargs)
Change the values of the show.

value_repr(value)
Return a repr() string for value that has any brace characters (e.g. for dict–and in Python
3, set`--literals) doubled so that they are not interpreted as format
template characters when the composed string is eventually output by
``say.

where(*args, **kwargs)
Show where program execution currently is. Can be used with normal output, but generally is intended as
a marker.

25

show, Release 1.4.7

26 Chapter 11. API

CHAPTER 12

Notes

• show is in its early days. Over time, it will provide additional context-specific output helpers. For example, the
“diff” views of py.test seem a high-value enhancement.

• show depends on introspection, with its various complexities and limitations. It assumes that all objects are
new-style classes, and that your program has not excessively fiddled with class data. Diverge from these as-
sumptions, and all bets are off.

• Automated multi-version testing managed with the wonderful pytest and tox. Successfully packaged for, and
tested against, most late-model versions of Python: 2.7, 3.3, 3.4, 3.5, and 3.6, as well as PyPy 5.6.0 (based on
2.7.12) and PyPy3 5.5.0 (based on 3.3.5).

• The author, Jonathan Eunice or @jeunice on Twitter welcomes your comments and suggestions.

27

http://pypi.python.org/pypi/pytest
http://pypi.python.org/pypi/tox
mailto:jonathan.eunice@gmail.com
http://twitter.com/jeunice

show, Release 1.4.7

28 Chapter 12. Notes

CHAPTER 13

Installation

To install or upgrade to the latest version:

pip install -U show

To easy_install under a specific Python version (3.4 in this example):

python3.4 -m easy_install --upgrade show

(You may need to prefix these with sudo to authorize installation. In environments without super-user privileges, you
may want to use pip‘s --user option, to install only for a single user, rather than system-wide.)

Testing

If you wish to run the module tests locally, you’ll need to install pytest and tox. For full testing, you will also need
pytest-cov and coverage. Then run one of these commands:

tox # normal run - speed optimized
tox -e py27 # run for a specific version only (e.g. py27, py34)
tox -c toxcov.ini # run full coverage tests

The provided tox.ini and toxcov.ini config files do not define a preferred package index / repository. If you
want to use them with a specific (presumably local) index, the -i option will come in very handy:

tox -i INDEX_URL

29

show, Release 1.4.7

30 Chapter 13. Installation

CHAPTER 14

Change Log

1.4.7 (March 9, 2017)

Bumped test coverage to 80%. In the process, discovered and fixed some bugs with show.props. Most
things that can be basically unit-tested, are. Largest remaining test coverage gaps concern operation under
different I/O managers–esp. IPython and the standard Python REPL–that will require integration testing.

1.4.6 (March 1, 2017)

Quashed second bug related to IPython and its %run command, especially as used by the Enthought
Canopy IDE.

1.4.5 (March 1, 2017)

Fixed problem with IPython when program run with the %run command. Fix esp. important for users of
Enthought Canopy IDE, which uses this mode of execution extensively.

1.4.4 (February 19, 2017)

Tweak show.prettyprint() to not automatically multi-line all show output. If you want multi-line
output, either set show.prettyprint(sep='\m') to globalize that preference, or use show(...,
sep='\n) each time you want multi-line.

1.4.3 (February 2, 2017)

Bug fix: When show.set(prefix=...) or other settings were used, duplicate behaviors could occur, like two
prefix strings printing, not just one. Also, support for Python 2.6 has been restored. Not that you should
still be using that antiquated buggy. But if you are, show will once again work for you, given removal of
the preventing dependency (stuf).

1.4.2 (January 30, 2017)

Fixed bug when location display is active (e.g. after show.set(where=True)) in IPython. Now correctly
identifies what cell code was executed in.

1.4.0 (January 27, 2017)

Finally have good support for IPython, either in a Notebook or in a terminal/console. Suddenly, interactive
use does not minimize show’s usefulness (though the standard REPL still has glitches).

31

show, Release 1.4.7

1.3.2 (January 26, 2017)

Fixes nasty packaging bug (failure to bundle astor sub-package into source distributions) that didn’t show
up in testing.

1.3.0 (January 25, 2017)

Python 3.5 and 3.6 now pass formal verification. This required embedding a ‘nightly’ build of astor 0.6
that has not yet made it to PyPI. Given the shift from codegen to newer astor AST-to-source library,
bumping minor version.

1.2.7 (January 23, 2017)

Updated dependencies to support Python 3.5 and 3.6. These versions do not yet pass formal validation,
but they do seem to work in informal testing. This is the start of a push to fully support these most recent
Python implementations, and to improve support for interactive code (REPL or Jupyter Notebook).

1.2.6 (September 1, 2015)

Tweaks and testing for new version of underlying options module that returns operation to Python 2.6.

1.2.4 (August 26, 2015)

Major documentation reorg.

1.2.3 (August 25, 2015)

Code cleanups and additional testing. Test coverage now 77%.

1.2.1 (August 21, 2015)

Added ability to give @show.inout decorator its own parameters. Deprecated @show.retval,
which is now redunant with @show.inout(only=''out'').

Test coverage bumped to 71%.

1.2.0 (August 18, 2015)

Added show.where() as a marker for “where am I now?” Improved docs, esp. for where, inout,
and retval methods. Improved testing. Now at 67% line coverage.

1.1.1 (August 17, 2015)

Updated testing strategy to integrate automated test coverage metrics. Immediate test and code improve-
ments as a result. Initial coverage was 53%. Releasing now at 57%.

Clearly backed out Python 3.5 support for the moment. The AST Call signature has changed notably.
Will need to deep-dive to fix that.

1.1.0 (August 16, 2015)

Fixed problem with underlying say object interactions. Some doc and testing tweaks.

1.0.4 (July 22, 2015)

Updated config, docs, and testing matrix.

1.0.2 (September 16, 2013)

Improved pretty printing of code snippets for @show.inout and @show.retval decorators.

Made show also accept lambdas to link to variable values.

Added noshow object for easy turning off of showing.

General cleanups. Tightened imports. Tweaked docs. Switched to FmtException from say>=1.0.
4, and separated extensions into own module.

32 Chapter 14. Change Log

show, Release 1.4.7

Drove version information into version.py

1.0.1 (September 9, 2013)

Moved main documentation to Sphinx format in ./docs, and hosted the long-form documentation on
readthedocs.org. README.rst now an abridged version/teaser for the module.

1.0.0 (September 9, 2013)

Improved robustness for interactive use. If names cannot be detected, still gives value result with ?
pseudo-name.

Improved type names for show.dir and show.props

Improved show.inout with full call string on function return. A bit verbose in small tests, but too easy
to lose “what was this called with??” context in real-scale usage unless there is clear indication of how
the function was called.

Improved omission of probably useless display properties via omit keyword.

Began to add support for showing properties even when proxied through another object. Currently limited
to selected SQLAlchemy and Flask proxies. More to come.

Cleaned up source for better (though still quite imperfect), PEP8 conformance

Bumped version number to 1.0 as part of move to semantic versioning, or at least enough of it so as to
not screw up Python installation procedures (which don’t seem to understand 0.401 is a lesser version that
0.5, because 401 > 5).

Probably several other things I’ve now forgotten.

33

http://semver.org

show, Release 1.4.7

34 Chapter 14. Change Log

Python Module Index

s
show.core, 23

35

show, Release 1.4.7

36 Python Module Index

Index

A
arg_format() (show.core.Show method), 24
arg_format_dir() (show.core.Show method), 24
arg_format_items() (show.core.Show method), 24
arg_format_props() (show.core.Show method), 24

B
blank_lines() (show.core.NoShow method), 23

C
call_location() (show.core.Show method), 24
changed() (show.core.NoShow method), 23
changed() (show.core.Show method), 24
clone() (show.core.NoShow method), 23
clone() (show.core.Show method), 24
code_repr() (show.core.Show method), 24

D
dir() (show.core.NoShow method), 23
dir() (show.core.Show method), 24

G
get_arg_tuples() (show.core.Show method), 24

H
hr() (show.core.NoShow method), 23

I
inout() (show.core.NoShow method), 23
inout() (show.core.Show method), 24
items() (show.core.NoShow method), 23
items() (show.core.Show method), 24

L
locals() (show.core.NoShow method), 23
locals() (show.core.Show method), 24

M
method_push() (show.core.Show method), 24

N
NoShow (class in show.core), 23

P
pprint() (show.core.Show method), 24
prettyprint() (show.core.Show method), 24
props() (show.core.NoShow method), 23
props() (show.core.Show method), 24

R
retval() (show.core.NoShow method), 23
retval() (show.core.Show method), 24

S
set() (show.core.Show method), 25
Show (class in show.core), 24
show.core (module), 23

T
title() (show.core.NoShow method), 24

V
value_repr() (show.core.Show method), 25

W
where() (show.core.Show method), 25

37

	Diving In
	This Just In

	Collections and Items
	Object Properties
	Wax On, Wax Off
	How Things Are Shown
	Where Am I?
	What's Changed
	Function Call and Return
	Discovering What's There
	Interactive Limitations
	API
	Notes
	Installation
	Testing

	Change Log
	Python Module Index

