

show

show provides simple, effective debug printing.

Every
language has features to print text, but they’re seldom optimized for
printing debugging information. show is. It provides a simple, DRY
mechanism to “show what’s going on”–to identify what
values are associated with program variables in a neat,
labeled fashion. For instance:

from show import show

x = 12
nums = list(range(4))

show(x, nums)

yields:

x: 12 nums: [0, 1, 2, 3]

You could of course get the same output with Python’s standard
print statement/function:

print("x: {} nums: {}".format(x, nums))

But that’s much more verbose, and unlike show, it’s fails the
DRY [https://en.wikipedia.org/wiki/Don%27t_repeat_yourself] principle.

But while avoiding a few extra characters of typing and a little extra
program complexity is nice–very nice, actually–show goes well beyond
that. It has methods to show all local variables which have recently
changed, to trace the parameters and return values of function calls, and
other useful information that you simply cannot get without a lot of
needless extra work and a lot of extra lines mucking up your program source.
And if you run show.prettyprint(), values will be
automagically highlighted with Pygments [http://pygments.org/], which is
very helpful when you’re displaying complex objects, dictionaries and
other structures.

As just one exmaple, if you have a lot of output flowing by, and it’s hard
to see your debugging output, just:

show(x, y, z, style='red')

And now you have debug output that clearly stands out from the rest. Or
show.set(style='blue') and now all your debug output is colorized.

But “debug printing is so very 1989!” you may say. “We now have logging,
logging, embedded assertions, unit tests,
interactive debuggers. We don’t need debug printing.”

Have to disagree with you there. All those tools are grand, but often
the fastest, simplest way to figure out what’s going in a program
is to print values
and watch what happens the program runs. Having a simple, effective way
to do that doesn’t replacing logging, assertsions, unit testing, and
debuggers; it’s a effective complement to them. One that is especially
useful in two parts of the development process:

	In exploratory programming, where the values coming back from new
or external functions (say, some package’s API with which you may
not be intimately familiar) aren’t well-known to you.

	In debugging, where the assumptions embedded into the code are
clearly, at some level, not being met. Else you wouldn’t need to
debug.

In either case, knowing what values are actually happening, and figuring
them out without a lot of extra effort or complexity–well, it doesn’t matter
how many unit tests or logging statements you have, that’s still of value.

Every
language has features to print text, but they’re seldom optimized for
printing debugging information. show is. It provides a simple, DRY
mechanism to “show what’s going on.”

	Diving In

	Collections and Items

	Object Properties

	Wax On, Wax Off

	How Things Are Shown

	Where Am I?

	What’s Changed

	Function Call and Return

	Discovering What’s There

	Interactive Limitations

	API

	Notes

	Installation

	Change Log

Diving In

Sometimes programs print so that users can see things, and sometimes they print
so that developers can. show() is for developers, helping
rapidly print the current state of variables. A simple invocation:

show(x)

replaces require the craptastic
repetitiveness of:

print "x: {0}".format(x)

If you’d like to see where the data is being produced,:

show.set(where=True)
show(d)

will turn on location reporting, such as:

__main__():21: d: 'this'

The where property, along with most every option, can be set
permanently, over the scope of a where block, or on
a call-by-call basis.
show is built atop the options [http://pypi.python.org/pypi/options] module
for configuration management, and the output management of
say [http://pypi.python.org/pypi/say]. All say options are available. If you
show() a literal string, it will be interpolated as it would be in say:

show("{n} iterations, still running")

yields something like:

14312 iterations, still running

But:

s = '{n} iterations'
show(s)

yields:

s: '{n} iterations'

See say say [http://pypi.python.org/pypi/say] for additional detail on its
operation. show directly supports many say methods such as
blank_lines, hr, sep, and title which are meant to simplify
and up-level common formatting tasks.

This Just In

A new capability is to differentially set the formatting parameters on
a method by method basis. For example, if you want to see separators
in green and function call/return annotations in red:

show.sep.set(style='green')
show.inout.set(style='red')

You could long do this on a call-by-call basis, but being able to set the
defaults just for specific methods allows you to get more formatting in
with fewer characters typed. This capability is available on a limited
basis: primarily for format-specific calls (blanklines, hr, sep,
and title) and for one core inspection call (the inout decorator).
It will be extended, and mapped back to underlying say and options
features over time.

Collections and Items

The goal of show is to provide the most useful information possible,
in the quickest and simplest way. Not requiring programmers to explicitly
restate values and names in print statements is the start, but it also
provides some additional functions that provide a bit more semantic value.
For example, say.items() is designed to make printing collections easy.
It shows not just the values, but also the cardinality (i.e., length) of the
collection:

nums = list(range(4))
show.items(nums)

yields:

nums (4 items): [0, 1, 2, 3]

Object Properties

show.props(x)

shows the properties of object x. (“Properties” here
is generic language for “values” or “attributes” associated with
an object, and isn’t used in the technical sense of Python properties.)
Properties will be listed alphabetically, but with those starting with underscores
(_), usually indicating “private” data, sorted after those that are
conventionally considered public.

If x has real @property members, those too displayed. However, other class
attributes that x rightfully inherits, but that are not directly present in the
x instance, will not be displayed.

An optional second
parameter can determine which properties are shown. E.g.:

show.props(x, 'name,age')

Or if you prefer the keyword syntax, this is equivalent to:

show(x, props='name,age')

Or if you’d like all properties except a few:

show.props(x, omit='description blurb')

Wax On, Wax Off

Often it’s convenient to only display debugging information under some conditions,
but not others,
such as when a debug flag is set. That often leads to multi-line conditionals
such as:

if debug:
 print "x:", x, "y:", y, "z:", z

With show it’s a bit easier. There’s a keyword argument, also called
show, that controls whether anything is shown. If it’s truthy, it shows;
falsy, ad it doesn’t:

show(x, y, z, show=debug)

You can set the show flag more globally:

show.set(show=False)

You can also make multiple show instances that can be separately controlled:

show_verbose = show.clone()
show_verbose.set(show=verbose_flag)
show_verbose(x, y, z)

For a more fire-and-forget experience, try setting visibility with a lambda
parameter:

debug = True
show.set(show=lambda: debug)

Then, whenever debug is truthy, values will be shown. When debug is
falsy, values will not be shown.

When you really, truly want show‘s output to
disappear, and want to minimize
overhead, but don’t want to
change your source code (lest you need those debug printing statements again
shortly), try:

show = noshow

This one line will replace the show object (and any of its clones) with
parallel NoShow objects that simply don’t do anything or print any output.

Note

This assignment should be done in a global context. If done inside a
function, you’ll need to add a corresponding global show declaration.

As an alternative, you can:

from show import show
from show import noshow as show

Then comment out the``noshow`` line for debugging, or the show line for production
runs.

Note

A little care is required to configure global non-showing behavior
if you’re using show‘s function decorators such as @show.inout.
Decorators are evaluated earlier in program execution than the “main flow”
of program execution, so it’s a good idea to define the lambda or noshow
control of visibility at the top of your program.

How Things Are Shown

By default, show uses Python’s repr() function to format
values. You may prefer some other kind of representation or formatting,
however. For example, the pprint module pretty-prints data structures.
You can set it to be the default formatter:

from pprint import pformat
show.set(fmtfunc=pformat)

Or to configure separate data and
code formatters:

show.set(fmtfunc=lambda x: pformat(x, indent=4, width=120, depth=5))
show.set(fmtcode=lambda x: highlight(x, ...))

As a convenience, the show.prettyprint() configures
pygments and
pprint in concert to more attractively display text on
ANSI terminals. Just run it once after importing show.
It also takes indent, depth, and width options
for pformat and the style (style name) option for pygments.
Some style names to try:

monokai manni rrt perldoc borland colorful default
murphy vs trac tango fruity autumn bw emacs vim pastie
friendly native

Where Am I?

In addition to the where parameter that may be turned on for each
show call (or in general), there is a method:

show.where()

intended to display a “flag” or indicator in output where particular
debugging output originated. You may not want location on all the time,
but an occasional oriented signpost can help.

What’s Changed

show.changed()

will display the value of local variables. When invoked again, only those
variables that have changed (since the last show.changed() in the same context)
will be displayed. For example:

def f():
 x = 4
 show.changed()
 x += 1
 retval = x * 3
 show.changed()
 return retval

When run will display:

x: 4
x: 5 retval: 15

You may omit some local variables if you like.
By default, those starting with underscores (_) will be omitted, as
will those containing functions, methods, builtins, and other parts Python
program infrastructure. If you’d like to add those, or global variables into
the mix, that’s easily done:

show.changed(_private, MY_GLOBAL_VAR)

Will start watching those.

Function Call and Return

It’s often helpful to know what a function’s parameters and corresponding
return values were, and it can be annoying to manually print them out.
No matter. Show has two decorators to make this easy:

@show.inout
def g(a):
 b = 3
 a += b
 return a

g(4)

Displays:

g(a=4)
g(a=4) -> 7

The first line indicates the function being called. Additional debugging
or program output may follow it.
The second line here is displayed when the
function returns. It reminds us what the parameters were, and then shows
what return value resulted. If you like, you can specify the styling
of these calls, e.g. with @show.inout(style='red').

While printing both the call entry and exit is often helpful, especially
if many lines of output (or potential program crashes) may intervene. But
in cases where a more compact, “only the results, please” print is desired,
show takes a parameter that will show only function returns:
@show.inout(only="out"). Function calls sans
returns will be show if only='in'.

You may find it useful that inout is an individually-styleable method.
To highlight function entry and exit points, try:

show.inout.set(style='red')

Note

The @show.retval decorator has been deprecated, and will soon
be removed. Please shift to @show.inout variants instead.

Discovering What’s There

It’s often helpful to figure out “what am I dealing with here? what attributes
or methods or properties are available to me?” This is where show.dir comes
into play. You could do show(dir(x)), but show.dir(x) will provides more
information, and does so more compactly. It also allows you to filter out the
often huge hubbub of some objects. By default, it doesn’t show any attributes
starting with double underscore __. You can control what’s omitted with the
omit keyword argument. show.dir(x, omit=None) shows everything, while
show.dir(x, omit='_* proxy*') omits all the methods starting with an
underscore or the word “proxy.”

Interactive Limitations

As of version 1.4, show has good support for IPython, either running in a
terminal window or in a Jupyter Notebook.

It’s support for the plain interactive Python REPL is much weaker. Call it
experimental. It works well at the interactive prompt, and within imported
modules. It cannot, however, be used within functions and classes defined within
the interactive session. This is a result of how Python supports–or rather,
fails to support–introspection for interactively-defined code. Whether this is
a hard limit, or something that can be worked around over time, remains to be
seen. (See e.g. this discussion [http://stackoverflow.com/questions/13204161/how-to-access-the-calling-source-line-from-interactive-shell]).

Python under Windows does not support readline the same way it is supported on
Unix, Linux, and Mac OS X. Experimental support is provided for the use of
pyreadline under Windows to correct this variance. This feature is yet
untested. Works/doesn’t work reports welcome!

If you want to work interactively, strongly advise you do so uner IPython not
the stock REPL. Even better, in Jupyter Notebook, which is an excellent work
environment in a way that the stock REPL never will be.

API

Debugging print features.

	
class show.core.NoShow(**kwargs)

	A Show variant that shows nothing. Maintains just enough context to respond
as a real Show would. Any clones will also be ``NoShow``s–again, to retain
similarity. Designed to squelch all output in efficient way, but not
requiring any changes to the source code. Maintains just enough context to

	
blank_lines(*args, **kwargs)

	Fake entry point. Does nothing, returns immediately.

	
changed(*args, **kwargs)

	Fake entry point. Does nothing, returns immediately.

	
clone(**kwargs)

	Create a child instance whose options are chained to this instance’s
options (and thence to Show.options). kwargs become the child instance’s
overlay options. Because of how the source code is parsed, clones must
be named via simple assignment.

	
dir(*args, **kwargs)

	Fake entry point. Does nothing, returns immediately.

	
hr(*args, **kwargs)

	Fake entry point. Does nothing, returns immediately.

	
inout(*args, **kwargs)

	Fake entry point. Does nothing, returns immediately.

	
items(*args, **kwargs)

	Fake entry point. Does nothing, returns immediately.

	
locals(*args, **kwargs)

	Fake entry point. Does nothing, returns immediately.

	
props(*args, **kwargs)

	Fake entry point. Does nothing, returns immediately.

	
retval(*args, **kwargs)

	Fake entry point. Does nothing, returns immediately.

	
title(*args, **kwargs)

	Fake entry point. Does nothing, returns immediately.

	
class show.core.Show(**kwargs)

	Show objects print debug output in a ‘name: value’ format that
is convenient for discovering what’s going on as a program runs.

	
arg_format(name, value, caller, opts)

	Format a single argument. Strings returned formatted.

	
arg_format_dir(name, value, caller, opts)

	Format a single argument to show items of a collection.

	
arg_format_items(name, value, caller, opts)

	Format a single argument to show items of a collection.

	
arg_format_props(name, value, caller, opts, ignore_funky=True)

	Format a single argument to show properties.

	
call_location(caller)

	Create a call location string indicating where a show() was called.

	
changed(*args, **kwargs)

	Show the local variables, then again only when changed.

	
clone(**kwargs)

	Create a child instance whose options are chained to this instance’s
options (and thence to Show.options). kwargs become the child instance’s
overlay options. Because of how the source code is parsed, clones must
be named via simple assignment.

	
code_repr(code)

	Return a formatted string for code. If there are any internal brace
characters, they are doubled so that they are not interpreted as format
template characters when the composed string is eventually output by
say.

	
dir(*args, **kwargs)

	Show the attributes possible for the given object(s)

	
get_arg_tuples(caller, values)

	Return a list of argument (name, value) tuples.
:caller: The calling frame.
:values: The with the given values.

	
inout(*dargs, **dkwargs)

	Show arguments to a function. Decorator itself may
take arguments, or not. Whavevs.

	
items(*args, **kwargs)

	Show items of a collection.

	
locals(*args, **kwargs)

	Show all local vars, plus any other values mentioned.

	
method_push(base_options, method_name, kwargs)

	Transitional helper function to simplify the grabbing of
method-specific arguments. Will be phased out as the learnings
about method arguments are piped back into Options and a more
long-term API is completed.

	
pprint(*args, **kwargs)

	Show the objects as displayed by pprint. Not well
integrated as yet. Just a start.

	
prettyprint(mode='ansi', sep=' ', indent=4, width=120, depth=5, style='friendly')

	Convenience method to turn on pretty-printing. Mode can be text or ansi.

	
props(*args, **kwargs)

	Show properties of objects.

	
retval(func)

	Decorator that shows arguments to a function, and return value, once
the function is complete. Similar to inout, but only displays once
function has returned.

	
set(**kwargs)

	Change the values of the show.

	
value_repr(value)

	Return a repr() string for value that has any brace characters (e.g.
for dict–and in Python 3, set`--literals) doubled so that they
are not interpreted as format template characters when the composed string
is eventually output by ``say.

	
where(*args, **kwargs)

	Show where program execution currently is. Can be used with
normal output, but generally is intended as a marker.

Notes

	show is in its early days. Over time, it will provide additional
context-specific output helpers. For example, the “diff” views of py.test
seem a high-value enhancement.

	show depends on introspection, with its various complexities and
limitations. It assumes that all objects are new-style classes, and that
your program has not excessively fiddled with class data. Diverge from these
assumptions, and all bets are off.

	Automated multi-version testing managed with the wonderful pytest [http://pypi.python.org/pypi/pytest] and tox [http://pypi.python.org/pypi/tox]. Successfully packaged for, and
tested against, most late-model versions of Python: 2.7, 3.3,
3.4, 3.5, and 3.6, as well as PyPy 5.6.0 (based on 2.7.12) and PyPy3 5.5.0
(based on 3.3.5).

	The author, Jonathan Eunice or
@jeunice on Twitter [http://twitter.com/jeunice]
welcomes your comments and suggestions.

Installation

To install or upgrade to the latest version:

pip install -U show

To easy_install under a specific Python version (3.4 in this example):

python3.4 -m easy_install --upgrade show

(You may need to prefix these with sudo to authorize
installation. In environments without super-user privileges, you may want to
use pip‘s --user option, to install only for a single user, rather
than system-wide.)

Testing

If you wish to run the module tests locally, you’ll need to install
pytest and tox. For full testing, you will also need pytest-cov
and coverage. Then run one of these commands:

tox # normal run - speed optimized
tox -e py27 # run for a specific version only (e.g. py27, py34)
tox -c toxcov.ini # run full coverage tests

The provided tox.ini and toxcov.ini config files do not define
a preferred package index / repository. If you want to use them with
a specific (presumably local) index, the -i option will come in
very handy:

tox -i INDEX_URL

Change Log

1.4.7 (March 9, 2017)

Bumped test coverage to 80%. In the process, discovered and fixed
some bugs with show.props. Most things that can be basically
unit-tested, are. Largest remaining test coverage gaps concern
operation under different I/O managers–esp. IPython and the
standard Python REPL–that will require integration testing.

1.4.6 (March 1, 2017)

Quashed second bug related to IPython and its %run command,
especially as used by the Enthought Canopy IDE.

1.4.5 (March 1, 2017)

Fixed problem with IPython when program run with the %run
command. Fix esp. important for users of Enthought Canopy IDE,
which uses this mode of execution extensively.

1.4.4 (February 19, 2017)

Tweak show.prettyprint() to not automatically multi-line all
show output. If you want multi-line output, either set
show.prettyprint(sep='\m') to globalize that preference, or
use show(..., sep='\n) each time you want multi-line.

1.4.3 (February 2, 2017)

Bug fix: When show.set(prefix=...) or other settings were used,
duplicate behaviors could occur, like two prefix strings printing,
not just one. Also, support for Python 2.6 has been restored. Not
that you should still be using that antiquated buggy. But if you
are, show will once again work for you, given removal of the
preventing dependency (stuf).

1.4.2 (January 30, 2017)

Fixed bug when location display is active (e.g. after
show.set(where=True)) in IPython. Now correctly identifies what
cell code was executed in.

1.4.0 (January 27, 2017)

Finally have good support for IPython, either in a Notebook or in
a terminal/console. Suddenly, interactive use does not minimize
show’s usefulness (though the standard REPL still has glitches).

1.3.2 (January 26, 2017)

Fixes nasty packaging bug (failure to bundle astor sub-package
into source distributions) that didn’t show up in testing.

1.3.0 (January 25, 2017)

Python 3.5 and 3.6 now pass formal verification. This required
embedding a ‘nightly’ build of astor 0.6 that has not yet made it
to PyPI. Given the shift from codegen to newer astor AST-to-source
library, bumping minor version.

1.2.7 (January 23, 2017)

Updated dependencies to support Python 3.5 and 3.6. These versions
do not yet pass formal validation, but they do seem to work in
informal testing. This is the start of a push to fully support
these most recent Python implementations, and to improve support
for interactive code (REPL or Jupyter Notebook).

1.2.6 (September 1, 2015)

Tweaks and testing for new version of underlying options
module that returns operation to Python 2.6.

1.2.4 (August 26, 2015)

Major documentation reorg.

1.2.3 (August 25, 2015)

Code cleanups and additional testing. Test coverage now 77%.

1.2.1 (August 21, 2015)

Added ability to give @show.inout decorator its own
parameters. Deprecated @show.retval, which is now redunant
with @show.inout(only=''out'').

Test coverage bumped to 71%.

1.2.0 (August 18, 2015)

Added show.where() as a marker for “where am I now?” Improved
docs, esp. for where, inout, and retval methods.
Improved testing. Now at 67% line coverage.

1.1.1 (August 17, 2015)

Updated testing strategy to integrate automated test coverage
metrics. Immediate test and code improvements as a result. Initial
coverage was 53%. Releasing now at 57%.

Clearly backed out Python 3.5 support for the moment. The AST
Call signature has changed notably. Will need to deep-dive to
fix that.

1.1.0 (August 16, 2015)

Fixed problem with underlying say object interactions. Some
doc and testing tweaks.

1.0.4 (July 22, 2015)

Updated config, docs, and testing matrix.

1.0.2 (September 16, 2013)

Improved pretty printing of code snippets for @show.inout and
@show.retval decorators.

Made show also accept lambdas to link to variable values.

Added noshow object for easy turning off of showing.

General cleanups. Tightened imports. Tweaked docs. Switched to
FmtException from say>=1.0.4, and separated extensions
into own module.

Drove version information into version.py

1.0.1 (September 9, 2013)

Moved main documentation to Sphinx format in ./docs, and hosted
the long-form documentation on readthedocs.org. README.rst now an
abridged version/teaser for the module.

1.0.0 (September 9, 2013)

Improved robustness for interactive use. If names cannot be
detected, still gives value result with ? pseudo-name.

Improved type names for show.dir and show.props

Improved show.inout with full call string on function return.
A bit verbose in small tests, but too easy to lose “what was this
called with??” context in real-scale usage unless there is clear
indication of how the function was called.

Improved omission of probably useless display properties via
omit keyword.

Began to add support for showing properties even when proxied
through another object. Currently limited to selected SQLAlchemy
and Flask proxies. More to come.

Cleaned up source for better (though still quite imperfect), PEP8
conformance

Bumped version number to 1.0 as part of move to semantic
versioning [http://semver.org], or at least enough of it so as
to not screw up Python installation procedures (which don’t seem
to understand 0.401 is a lesser version that 0.5, because 401 >
5).

Probably several other things I’ve now forgotten.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 show	

 	
 	
 show.core	

Index

 A
 | B
 | C
 | D
 | G
 | H
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | V
 | W

A

 	
 	arg_format() (show.core.Show method)

 	arg_format_dir() (show.core.Show method)

 	
 	arg_format_items() (show.core.Show method)

 	arg_format_props() (show.core.Show method)

B

 	
 	blank_lines() (show.core.NoShow method)

C

 	
 	call_location() (show.core.Show method)

 	changed() (show.core.NoShow method)

 	(show.core.Show method)

 	
 	clone() (show.core.NoShow method)

 	(show.core.Show method)

 	code_repr() (show.core.Show method)

D

 	
 	dir() (show.core.NoShow method)

 	(show.core.Show method)

G

 	
 	get_arg_tuples() (show.core.Show method)

H

 	
 	hr() (show.core.NoShow method)

I

 	
 	inout() (show.core.NoShow method)

 	(show.core.Show method)

 	
 	items() (show.core.NoShow method)

 	(show.core.Show method)

L

 	
 	locals() (show.core.NoShow method)

 	(show.core.Show method)

M

 	
 	method_push() (show.core.Show method)

N

 	
 	NoShow (class in show.core)

P

 	
 	pprint() (show.core.Show method)

 	prettyprint() (show.core.Show method)

 	
 	props() (show.core.NoShow method)

 	(show.core.Show method)

R

 	
 	retval() (show.core.NoShow method)

 	(show.core.Show method)

S

 	
 	set() (show.core.Show method)

 	
 	Show (class in show.core)

 	show.core (module)

T

 	
 	title() (show.core.NoShow method)

V

 	
 	value_repr() (show.core.Show method)

W

 	
 	where() (show.core.Show method)

Overview

show provides simple, effective debug printing.

Every
language has features to print text, but they’re seldom optimized for
printing debugging information. show is. It provides a simple, DRY
mechanism to “show what’s going on”–to identify what
values are associated with program variables in a neat,
labeled fashion. For instance:

from show import show

x = 12
nums = list(range(4))

show(x, nums)

yields:

x: 12 nums: [0, 1, 2, 3]

You could of course get the same output with Python’s standard
print statement/function:

print("x: {} nums: {}".format(x, nums))

But that’s much more verbose, and unlike show, it’s fails the
DRY [https://en.wikipedia.org/wiki/Don%27t_repeat_yourself] principle.

But while avoiding a few extra characters of typing and a little extra
program complexity is nice–very nice, actually–show goes well beyond
that. It has methods to show all local variables which have recently
changed, to trace the parameters and return values of function calls, and
other useful information that you simply cannot get without a lot of
needless extra work and a lot of extra lines mucking up your program source.

But “debug printing is so very 1989!” you may say. “We now have logging,
logging, embedded assertions, unit tests,
interactive debuggers. We don’t need debug printing.”

Have to disagree with you there. All those tools are grand, but often
the fastest, simplest way to figure out what’s going in a program
is to print values
and watch what happens the program runs. Having a simple, effective way
to do that doesn’t replacing logging, assertsions, unit testing, and
debuggers; it’s a effective complement to them. One that is especially
useful in two parts of the development process:

	In exploratory programming, where the values coming back from new
or external functions (say, some package’s API with which you may
not be intimately familiar) aren’t well-known to you.

	In debugging, where the assumptions embedded into the code are
clearly, at some level, not being met. Else you wouldn’t need to
debug.

In either case, knowing what values are actually happening, and figuring
them out without a lot of extra effort or complexity–well, it doesn’t matter
how many unit tests or logging statements you have, that’s still of value.

Every
language has features to print text, but they’re seldom optimized for
printing debugging information. show is. It provides a simple, DRY
mechanism to “show what’s going on.”

 _static/comment-bright.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		show

 		Diving In

 		Collections and Items

 		Object Properties

 		Wax On, Wax Off

 		How Things Are Shown

 		Where Am I?

 		What's Changed

 		Function Call and Return

 		Discovering What's There

 		Interactive Limitations

 		API

 		Notes

 		Installation

 		Change Log

_static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/up-pressed.png

