
SHOW Documentation
Release 0.8.2

Joseph Durel

Jan 30, 2018

Contents:

1 Tutorial 3
1.1 Including & Compiling . 3
1.2 Creating a Server . 3
1.3 Handling a Connection . 4
1.4 Reading Requests . 4
1.5 Sending Responses . 5

2 Classes & Types 7
2.1 Classes . 7
2.2 Types . 11
2.3 Throwables . 12

3 Functions 15

4 Constants 17
4.1 Version . 17

5 Separate Utilities 19
5.1 Base-64 Encoding . 19

6 Indices and tables 21

i

ii

SHOW Documentation, Release 0.8.2

SHOW is designed to be an idiomatic library for standalone webserver applications written for modern C++. SHOW
is simple in the same way the standard library is simple — it doesn’t make any design decisions for the programmer,
instead giving them a set of primitives for building an HTTP web application.

Both HTTP/1.0 and HTTP/1.1 are supported. SHOW assumes a modern approach to application hosting, and is
intended to be run behind a full reverse proxy such as NGINX. As such, SHOW will not support HTTP/2 or TLS
(HTTPS). Instead, you should write your applications to serve local HTTP/1.0 and HTTP/1.1 requests.

SHOW uses the zlib license. C++11 support and a POSIX operating system are required.

Contents: 1

https://nginx.org/
https://github.com/JadeMatrix/SHOW/blob/master/LICENSE

SHOW Documentation, Release 0.8.2

2 Contents:

CHAPTER 1

Tutorial

This shows the basic usage of SHOW; see the examples for a more thorough introduction.

1.1 Including & Compiling

For GCC and Clang, you can either link show.hpp to one of your standard include search paths, or use the -I flag to
tell the compiler where too find the header:

clang++ -I "SHOW/src/" ...

SHOW is entirely contained in a single header file, you have to do then is include SHOW using #include <show.
hpp>. With either compiler you’ll also need to specify C++11 support with -std=c++11.

If you use CMake and don’t have SHOW linked to said include path, you’ll need to include the following in your
CMakeLists.txt:

include_directories("SHOW/src/")

replacing "SHOW/src/" with wherever you’ve cloned or installed SHOW. Switch to C++11 mode with:

set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_STANDARD_REQUIRED ON)

1.2 Creating a Server

To start serving requests, first create a server object:

show::server my_server(
"0.0.0.0", // IP address on which to serve
9090, // Port on which to serve

);

3

https://github.com/JadeMatrix/SHOW/tree/master/examples
https://cmake.org/

SHOW Documentation, Release 0.8.2

That’s it, you’ve made a server that sits there forever until it gets a connection, then hangs. Not terribly useful, but
that’s easy to fix.

1.3 Handling a Connection

For each call of my_server.serve() a single connection object will be returned or a
connection_timeout thrown. You may want to use something like this:

while(true)
try
{

show::connection connection(my_server.serve());
// handle request(s) here

}
catch(const show::connection_timeout& ct)
{

std::cout
<< "timed out waiting for a connection, looping..."
<< std::endl

;
continue;

}

The server listen timeout can be a positive number, 0, or -1. If it is -1, the server will continue listening until interrupted
by a signal; if 0, server::serve() will throw a connection_timeout immediately unless connections are
available.

The connection is now independent from the server. You can adjust the connection’s timeout independently using
connection::timeout(). You can also pass it off to a worker thread for processing so your server can continue
accepting other connections; this is usually how you’d implement a real web application.

1.4 Reading Requests

request objects have a number of const fields containing the HTTP request’s metadata; you can see descriptions
of them all in the docs for the class.

Note that these fields do not include the request content, if any. This is because HTTP allows the request content to be
streamed to the server. In other words, the server can interpret the headers then wait for the client to send data over a
period of time. For this purpose, request inherits from std::streambuf, implementing the read/get functional-
ity. You can use the raw std::streambuf methods to read the incoming data, or create a std::istream from
the request object for std::cin-like behavior.

For example, if your server is expecting the client to POST a single integer, you can use:

show::request request(test_server.serve());

std::istream request_content_stream(request);

int my_integer;
request_content_stream >> my_integer;

Please note that the above is not terribly safe; production code should include various checks to guard against buggy
or malignant clients.

Also note that individual request operations may timeout, so the entire serve code should look like this:

4 Chapter 1. Tutorial

SHOW Documentation, Release 0.8.2

while(true)
try
{

show::connection connection(my_server.serve());
try
{

show::request request(connection);
std::istream request_content_stream(request);
int my_integer;
request_content_stream >> my_integer;
std::cout << "client sent " << my_integer << "\n";

}
catch(const show::connection_timeout& ct)
{

std::cout << "got a request, but client disconnected!" << std::endl;
}
catch(const show::connection_timeout& ct)
{

std::cout << "got a request, but client timed out!" << std::endl;
}

}
catch(const show::connection_timeout& ct)
{

std::cout << "timed out waiting for a connection, looping..." << std::endl;
continue;

}

If this feels complicated, it is. Network programming like this reveals the worst parts of distributed programming, as
there’s a lot that can go wrong between the client and the server.

Another thing to keep in mind is that HTTP/1.1 — and HTTP/1.0 with an extension — allow multiple requests to
be pipelined on the same TCP connection. SHOW can’t know with certainty where on the connection one request
ends and another starts — it’s just the nature of pipelined HTTP. Sure, the Content-Length header could be used, and
chunked transfer encoding has well-established semantics, but if the client uses neither it is up to your application to
figure out the end of the request’s content. In general, you should reject requests whose length you can’t readily figure
out, but SHOW leaves that decision up to the programmer. But you should never try to create a request from a
connection before you’ve finished reading the content from a previous request.

See also:

• std::streambuf on cppreference.com

• std::istream on cppreference.com

• std::cin on cppreference.com

1.5 Sending Responses

Sending responses is slightly more involved than reading basic requests. Say you want to send a “Hello World”
message for any incoming request. First, start with a string containing the response message:

std::string response_content = "Hello World";

Next, create a headers object to hold the content type and length headers (note that header values must be strings):

show::headers_t headers = {
{ "Content-Type", { "text/plain" } },

1.5. Sending Responses 5

https://en.wikipedia.org/wiki/Chunked_transfer_encoding
http://en.cppreference.com/w/cpp/io/basic_streambuf
http://en.cppreference.com/w/cpp/io/basic_istream
http://en.cppreference.com/w/cpp/io/cin

SHOW Documentation, Release 0.8.2

{ "Content-Length", {
std::to_string(response_content.size())

} }
};

Since it’s a std::map, you can also add headers to a headers_t like this:

headers["Content-Type"].push_back("text/plain");

Then, set the HTTP status code for the response to the generic 200 OK:

show::response_code code = {
200,
"OK"

};

Creating a response object requires the headers and response code to have been decided already, as they are marshalled
(serialized) and buffered for sending as soon as the object is created. A response object also needs to know which
request it is in response to. While there’s nothing preventing you from creating multiple responses to a single request
this way, most of the time that will break your application.

Create a response like this:

show::response response(
connection,
show::http_protocol::HTTP_1_0,
code,
headers

);

Finally, send the response content. Here, a std::ostream is used, as response inherits from and implements the
write/put functionality of std::streambuf:

std::ostream response_stream(&response);
response_stream << response_content;

See also:

• std::map on cppreference.com

• std::ostream on cppreference.com

• std::streambuf on cppreference.com

6 Chapter 1. Tutorial

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.cppreference.com/w/cpp/container/map
http://en.cppreference.com/w/cpp/io/basic_ostream
http://en.cppreference.com/w/cpp/io/basic_streambuf

CHAPTER 2

Classes & Types

2.1 Classes

The public interfaces to the main SHOW classes are documented on the following pages:

2.1.1 Server

class server
The server class serves as the basis for writing an HTTP application with SHOW. Creating a server object allows
the application to handle HTTP requests on a single IP/port combination.

server(const std::string &address, unsigned int port, int timeout = -1)
Constructs a new server to serve on the given IP address and port. The IP address will typically be
localhost/0.0.0.0/::. The port should be some random higher-level port chosen for the appli-
cation.

The timeout is the maximum number of seconds serve() will wait for an incoming connection be-
fore throwing connection_timeout. A value of 0 means that serve() will return immediately if
there are no connections waiting to be served; -1 means serve() will wait forever (until the program is
interrupted).

~server()
Destructor for a server; any existing connections made from this server will continue to function

connection serve()
Either returns the next connection waiting to be served or throws connection_timeout.

const std::string &address() const
Get the address this server is servering on

unsigned int port() const
Get the port this server is servering on

int timeout() const
Get the current timeout of this server

7

SHOW Documentation, Release 0.8.2

int timeout(int)
Set the timeout of this server to a number of seconds, 0, or -1

2.1.2 Connection

class connection
Objects of this type represent a connection between a single client and a server. A connection object can be used
to generate request objects; one in the case of HTTP/1.0 or multiple in the case of HTTP/1.1.

The connection class has no public constructor (besides the move constructor), and can only be created by
calling server::serve().

connection(connection&&)
Explicit move constructor as one can’t be generated for this class

~connection()
Destructor for a connection, which closes it; any requests or responses created on this connection can no
longer be read from or written to

const std::string &client_address() const
The IP address of the connected client

unsigned int client_port() const
The port of the connected client

const std::string &server_address() const
The address of the server handling the connection

unsigned int server_port() const
The port of the server handling the connection

int timeout() const
Get the current timeout of this connection, initially inherited from the server the connection is created from

int timeout(int)
Set the timeout of this connection independently of the server; the argument is a number of seconds, 0, or
-1

See also:

• server::timeout()

2.1.3 Request

class request : public std::streambuf
Represents a single request sent by a client. Inherits from std::streambuf, so it can be used as-is or with a
std::istream.

See also:

• std::streambuf on cppreference.com

• std::istream on cppreference.com

enum content_length_flag
A utility type for unknown_content_length() with the values:

8 Chapter 2. Classes & Types

http://en.cppreference.com/w/cpp/language/move_constructor
http://en.cppreference.com/w/cpp/io/basic_streambuf
http://en.cppreference.com/w/cpp/io/basic_istream

SHOW Documentation, Release 0.8.2

Value Evaluates to
NO false
YES true
MAYBE true

const std::string &client_address() const
The IP address of the client that sent the request

const unsigned int client_port() const
The port of the client that sent the request

bool eof() const
Returns whether or not the request, acting as a std::streambuf, has reached the end of the request
contents. Always returns false if the content length is unknown.

See also:

• unknown_content_length()

request(connection&)
Constructs a new request on a connection. Blocks until a connection is sent, the connection timeout is
reached, or the client disconnects. May also throw request_parse_error if the data sent by the
client cannot be understood as an HTTP request.

See also:

• connection_timeout

• client_disconnected

request(request&&)
Explicit move constructor as one can’t be generated for this class

void flush()
Flushes the request contents from the buffer, putting it in a state where the next request can be extracted.
It is only safe to call this function if unknown_content_length() evaluates to false.

http_protocol protocol() const
The HTTP protocol used by the request. If NONE, it’s usually safe to assume HTTP/1.0. If UNKNOWN,
typically either a 400 Bad Request should be returned, just assume HTTP/1.0 to be permissive, or try to
interpret something from protocol_string().

const std::string &protocol_string() const
The raw protocol string sent in the request, useful if protocol() is UNKNOWN

const std::string &method() const
The request method as a capitalized ASCII string. While the HTTP protocol technically does not restrict
the available methods, typically this will be one of the following:

2.1. Classes 9

http://en.cppreference.com/w/cpp/language/move_constructor

SHOW Documentation, Release 0.8.2

GET Common methods
POST
PUT
DELETE
OPTIONS Useful for APIs
PATCH Relatively uncommon methods
TRACE
HEAD
CONNECT

See also:

• List of common HTTP methods on Wikipedia for descriptions of the methods

const std::vector<std::string> &path() const
The request path separated into its elements, each of which has been URL- or percent-decoded. For
example:

/foo/bar/hello+world/%E3%81%93%E3%82%93%E3%81%AB%E3%81%A1%E3%81%AF

becomes:

{
"foo",
"bar"
"hello world",
""

}

const query_args_type &query_args() const
The request query arguments. SHOW is very permissive in how it parses query arguments:

Query string Interpreted as
?foo=1&bar=2 { { "foo", { "1" } }, { "bar", { "2" } } }
?foo=bar=baz { { "foo", { "baz" } }, { "bar", { "baz" } } }
?foo=&bar=baz { { "foo", { "" } }, { "bar", { "baz" } } }
?foo&bar=1&bar=2 { { "foo", { "" } }, { "bar", { "1", "2" } } }

const headers_type &headers() const
The request headers

See also:

• List of common HTTP headers on Wikipedia

content_length_flag unknown_content_length() const
Whether the content length of the request could be interpreted

This member may be a bit confusing because it is “un-known” rather than “know”. It’s convenient for
content_length_flag to evaluate to a boolean value, but there are two possible reasons the content
length would be unknown. Either

1. the request did not send a Content-Length header, or

2. the value supplied is not an integer or multiple Content-Length headers were sent.

10 Chapter 2. Classes & Types

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods
https://en.wikipedia.org/wiki/List_of_HTTP_header_fields

SHOW Documentation, Release 0.8.2

In many languages (including C++), 0 is false and any other value is true; so the boolean value needs
to be false for a known content length and true for anything else.

unsigned long long content_length() const
The number of bytes in the request content; only holds a meaningful value if
unknown_content_length() is YES/true

2.1.4 Response

class response : public std::streambuf
Represents a single response to a request. Inherits from std::streambuf, so it can be used as-is or with a
std::ostream.

SHOW does not prevent mutliple response from being created or sent for a single request. Most of the time this
is something that would break the application; however, under certain conditions in HTTP/1.1 multiple 100-type
responses can be sent before a final 200+ response.

See also:

• std::streambuf on cppreference.com

• std::ostream on cppreference.com

response(connection&, http_protocol, const response_code&, const headers_t&)
Constructs a new response to the client who made a connection. The protocols, response code, and headers
are immediately buffered and cannot be changed after the response is created, so they have to be passed to
the constructor.

~response()
Destructor for a response object; ensures the response is flushed

virtual void flush()
Ensure the content currently written to the request is sent to the client

2.2 Types

enum http_protocol
Symbolizes the possibly HTTP protocols understood by SHOW. The enum members are:

HTTP_1_0 HTTP/1.0
HTTP_1_1 HTTP/1.1
NONE The request did not specify a protocol version
UNKOWN The protocol specified by the request wasn’t recognized

There is no HTTP_2 as SHOW is not intended to handle HTTP/2 requests. These are much better handled by a
reverse proxy such as NGINX, which will convert them into HTTP/1.0 or HTTP/1.1 requests for SHOW.

class response_code
A simple utility struct that encapsulates the numerical code and description for an HTTP status code. An
object of this type can easily be statically initialized like so:

show::response_code rc = { 404, "Not Found" };

2.2. Types 11

http://en.cppreference.com/w/cpp/io/basic_streambuf
http://en.cppreference.com/w/cpp/io/basic_ostream
https://wiki.nginx.org/

SHOW Documentation, Release 0.8.2

See the list of HTTP status codes on Wikipedia for an easy reference for the standard code & description values.

The two fields are defined as:

unsigned short code

std::string description

class query_args_type
An alias for std::map< std::string, std::vector< std::string > >, and can be statically
initialized like one:

show::query_args_type args = {
{ "tag", { "foo", "bar" } },
{ "page", { "3" } }

};

This creates a variable args which represents the query string ?tag=foo&tag=bar&page=3.

See also:

• std::map on cppreference.com

• std::vector on cppreference.com

class headers_type
An alias for std::map< std::string, std::vector< std::string >,
show::_less_ignore_case_ASCII >, where show::_less_ignore_case_ASCII is a case-
insensitive compare for std::map.

While HTTP header names are typically given in Dashed-Title-Case, they are technically case-insensitive.
Additionally, in general a given header name may appear more than once in a request or response. This type
satisfies both these constraints.

Headers can be statically initialized:

show::headers_type headers = {
{ "Content-Type", { "text/plain" } },
{ "Set-Cookie", {

"cookie1=foobar",
"cookie2=SGVsbG8gV29ybGQh"

} }
};

See also:

• std::map on cppreference.com

• std::vector on cppreference.com

2.3 Throwables

Not all of these strictly represent an error state when throw; some signal common situations that should be treated very
much in the same way as exceptions. SHOW’s throwables are broken into two categories — connection interruptions
and exceptions.

12 Chapter 2. Classes & Types

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.cppreference.com/w/cpp/container/map
http://en.cppreference.com/w/cpp/container/vector
http://en.cppreference.com/w/cpp/container/map
http://en.cppreference.com/w/cpp/container/map
http://en.cppreference.com/w/cpp/container/vector

SHOW Documentation, Release 0.8.2

2.3.1 Connection interruptions

class connection_interrupted
A common base class for both types of connection interruptions

class connection_timeout : public connection_interrupted
An object of this type will be thrown in two general situations:

• A server object timed out waiting for a new connection

• A connection, request, or response timed out reading from or sending to a client

In the first situation, generally the application will simply loop and start waiting again. In the second case, the
application may want to close the connection or continue waiting with either the same timoute or some kind of
falloff. Either way the action will be application-specific.

class client_disconnected : public connection_interrupted
This is thrown when SHOW detects that a client has broken connection with the server and no further commu-
nication can occur.

2.3.2 Exceptions

See also:

• std::runtime_error on cppreference.com

class socket_error : std::runtime_error
An unrecoverable, low-level error occurred inside SHOW. If thrown while handling a connection, the connection
will no longer be valid but the server should be fine. If thrown while creating or working with a server, the server
object itself is in an unrecoverable state and can no longer serve.

The nature of this error when thrown by a server typically implies trying again will not work. If the application
is designed to serve on a single IP/port, you will most likely want to exit the program with an error.

class request_parse_error : std::runtime_error
Thrown when creating a request object from a connection and SHOW encounters something it can’t manage to
interpret into a request.

As parsing the offending request almost certainly failed midway, garbage data will likely in the connection’s
buffer. Currently, the only safe way to handle this exception is to close the connection.

class url_decode_error : std::runtime_error
Thrown by url_decode() when the input is not a valid URL- or percent-encoded string.

Note: url_encode() shouldn’t throw an exception, as any string can be converted to percent-encoding.

2.3. Throwables 13

http://en.cppreference.com/w/cpp/error/runtime_error/runtime_error
https://en.wikipedia.org/wiki/Percent-encoding

SHOW Documentation, Release 0.8.2

14 Chapter 2. Classes & Types

CHAPTER 3

Functions

std::string url_encode(const std::string &o, bool use_plus_space = true)
URL-encode a string o, escaping all reserved, special, or non-ASCII characters with percent-encoding.

If use_plus_space is true, spaces will be replaced with + rather than %20.

std::string url_decode(const std::string&)
Decode a URL- or percent-encoded string. Throws url_decode_error if the input string is not validly
encoded.

15

https://en.wikipedia.org/wiki/Percent-encoding
https://en.wikipedia.org/wiki/Percent-encoding

SHOW Documentation, Release 0.8.2

16 Chapter 3. Functions

CHAPTER 4

Constants

All constants are const-qualified.

4.1 Version

The version sub-namespace contains information about the current SHOW version. It has the following members:

std::string name
The proper name of SHOW as it should appear referenced in headers, log messages, etc.

int major
The major SHOW version (X.0.0)

int minor
The minor SHOW version (0.X.0)

int revision
The SHOW version revision (0.0.X)

std::string string
A string representing the major, minor, and revision version numbers

17

SHOW Documentation, Release 0.8.2

18 Chapter 4. Constants

CHAPTER 5

Separate Utilities

These are some useful utilities included with SHOW, but in their own header files so they’re optional.

5.1 Base-64 Encoding

These are utilities for handling base64-encoded strings, very commonly used for transporting binary data in web
applications. They are included in show/base64.hpp.

string base64_encode(const std::string &o, const char *chars = base64_chars_standard)
Base64-encode a string o using the character set chars, which must point to a char array of length 64.

See also:

• base64_chars_standard

• base64_chars_urlsafe

std::string base64_decode(const std::string &o, const char *chars = base64_chars_standard)
Decode a base64-encoded string o using the character set chars, which must point to a char array of length
64. Throws a base64_decode_error if the input is not encoded against chars or has incorrect padding.

See also:

• base64_chars_standard

• base64_chars_urlsafe

class base64_decode_error : exception
Thrown by base64_decode() when the input is not valid base64.

Note: base64_encode() shouldn’t throw an exception, as any string can be converted to base-64.

19

https://en.wikipedia.org/wiki/Base64

SHOW Documentation, Release 0.8.2

char *base64_chars_standard
The standard set of base64 characters for use with base64_encode() and base64_decode()

char *base64_chars_urlsafe
The URL_safe set of base64 characters for use with base64_encode() and base64_decode(), making
the following replacements:

• +→ -

• /→ _

20 Chapter 5. Separate Utilities

CHAPTER 6

Indices and tables

• genindex

• search

21

SHOW Documentation, Release 0.8.2

22 Chapter 6. Indices and tables

Index

S
show::base64_chars_standard (C++ member), 19
show::base64_chars_urlsafe (C++ member), 20
show::base64_decode (C++ function), 19
show::base64_decode_error (C++ class), 19
show::base64_encode (C++ function), 19
show::client_disconnected (C++ class), 13
show::connection (C++ class), 8
show::connection::~connection (C++ function), 8
show::connection::client_address (C++ function), 8
show::connection::client_port (C++ function), 8
show::connection::connection (C++ function), 8
show::connection::server_address (C++ function), 8
show::connection::server_port (C++ function), 8
show::connection::timeout (C++ function), 8
show::connection_interrupted (C++ class), 13
show::connection_timeout (C++ class), 13
show::headers_type (C++ class), 12
show::http_protocol (C++ enum), 11
show::query_args_type (C++ class), 12
show::request (C++ class), 8
show::request::client_address (C++ function), 9
show::request::client_port (C++ function), 9
show::request::content_length (C++ function), 11
show::request::content_length_flag (C++ enum), 8
show::request::eof (C++ function), 9
show::request::flush (C++ function), 9
show::request::headers (C++ function), 10
show::request::method (C++ function), 9
show::request::path (C++ function), 10
show::request::protocol (C++ function), 9
show::request::protocol_string (C++ function), 9
show::request::query_args (C++ function), 10
show::request::request (C++ function), 9
show::request::unknown_content_length (C++ function),

10
show::request_parse_error (C++ class), 13
show::response (C++ class), 11
show::response::~response (C++ function), 11

show::response::flush (C++ function), 11
show::response::response (C++ function), 11
show::response_code (C++ class), 11
show::response_code::code (C++ member), 12
show::response_code::description (C++ member), 12
show::server (C++ class), 7
show::server::~server (C++ function), 7
show::server::address (C++ function), 7
show::server::port (C++ function), 7
show::server::serve (C++ function), 7
show::server::server (C++ function), 7
show::server::timeout (C++ function), 7
show::socket_error (C++ class), 13
show::url_decode (C++ function), 15
show::url_decode_error (C++ class), 13
show::url_encode (C++ function), 15
show::version::major (C++ member), 17
show::version::minor (C++ member), 17
show::version::name (C++ member), 17
show::version::revision (C++ member), 17
show::version::string (C++ member), 17

23

	Tutorial
	Including & Compiling
	Creating a Server
	Handling a Connection
	Reading Requests
	Sending Responses

	Classes & Types
	Classes
	Types
	Throwables

	Functions
	Constants
	Version

	Separate Utilities
	Base-64 Encoding

	Indices and tables

