
Shout
Release 0.2.3

Mar 05, 2018

Contents

1 Why Shout 3

2 Get Shout 5

3 Index 7
3.1 Guide . 7
3.2 API Documentation . 9

i

ii

Shout, Release 0.2.3

Loud Python messaging.

Shout is a single module providing simple messaging vocabulary for small applications. Shout is NOT a distributed
messaging framework.

from shout import Message, hears, shout

class WhoAreYou(Message):
pass

@hears(WhoAreYou)
def lucky_day():

return "We are..."

@hears(WhoAreYou)
def dusty_bottoms():

return "The threeee..."

@hears(WhoAreYou)
def ned_nederlander():

return "Amigos!!"

msg = shout(WhoAreYou)
print("".join(msg.results))

We are...The threeee...Amigos!!

Contents 1

https://travis-ci.org/danbradham/shout
https://coveralls.io/r/danbradham/shout?branch=master

Shout, Release 0.2.3

2 Contents

CHAPTER 1

Why Shout

• Decoupling of a GUI and it’s behavior

– PySide/PyQt signals are bound to widgets making it harder to decouple widgets. You have to explicitly
connect each widget’s signals with their slots which could live deep in a hierarchy of widgets.

– Shout Messages are classes themselves, readily available to all other objects in their scope. Shout from
inside, outside, top, or bottom of a widget hierarchy, Messages will still get to where they need to go!

• Shout is a single module, easily included with any package.

• It’s easy and fun to use.

3

Shout, Release 0.2.3

4 Chapter 1. Why Shout

CHAPTER 2

Get Shout

Shout is available through the python package index as pyshout.

pip install pyshout

• Note that only the python package name is pyshout, the module it installs is simply shout.

5

Shout, Release 0.2.3

6 Chapter 2. Get Shout

CHAPTER 3

Index

3.1 Guide

This section provides everything you need to know about using Shout.

3.1.1 Creating a Message

Start by importing the essentials from shout.

from shout import Message, has_ears, hears, shout

Now we can create a new type of Message.

class MyMessage(Message):
pass

Our Message type will allow us to shout() args and kwargs around our application. But, before we can do that. . .

3.1.2 Who is Listening?

Let’s make a function that can actually hear us shout() our Message s.

@hears(MyMessage, inside="A")
def maximum(msg):

return upper(msg) + "!!"

maximum()will hear all MyMessage shouts inside room “A”. In this case only one type of Messagewill be heard,
but multiple Message s can be passed as args to hears(). Additionally multiple rooms can be passed as a tuple
to the inside keyword argument. If you don’t pass any room names to inside, your function will listen in the default
room, “void”.

7

Shout, Release 0.2.3

3.1.3 Does your class have ears?

You’re every day class doesn’t have ears so it’s methods won’t be able to hear any shouted Message s. It’s super
simple to give a class ears, just decorate it with has_ears()!

@has_ears
class Volumes(object):

@hears(MyMessage)
def low(msg):

return lower(msg)

@hears(MyMessage)
def medium(msg):

return msg.title()

@hears(MyMessage)
def high(msg):

return upper(msg)

v = Volumes()

Once we’ve given our class ears, the last thing we have to do is create an instance of it. On instantiation the bound
methods are added as listeners to the appropriate Message s.

3.1.4 Shout at the top of your lungs!

We’ve got our Message and a bunch of listeners, now we can shout all we want to.

m = shout(MyMessage, "hello there", inside="A")

Now we’ve shouted a Message and we’ve got a Message instance bound to m. Message instances have a bunch
of useful attributes.

print "args, kwargs: ", m.args, m.kwargs
print "response: ", m.response
print "success: ", m.success
print "exception: ", m.exc

args, kwargs: ("hello there",), {}
response: ["HELLO THERE!!"]
success: True
exception: None

Cool, but, judging from the response, none of our methods in Volumes heard us shout. That’s because we shouted
inside room “A”. Let’s see what happens if we shout again but this time, not explicitly passing a room to the inside
keyword.

m = shout(MyMessage, "hello again")

print "args, kwargs: ", m.args, m.kwargs
print "response: ", m.response
print "success: ", m.success
print "exception: ", m.exc

args, kwargs: ("hello again",), {}
response: ["hello again", "Hello Again", "HELLO AGAIN"]

8 Chapter 3. Index

Shout, Release 0.2.3

success: True
exception: None

There we go! This time we’ve shouted inside the default room “void”, reaching all of our Volumes instance’s
listeners. It’s important to note that while we only passed one argument in our shouts, any arg, kwarg signature is
supported. Message signatures should be set by their listeners. So, if you have multiple listeners for the same type
of Message, ensure that they all take the same parameters.

3.1.5 Debugging

Shout has extensive logging which is turned off by default.

import logging
shout_logger = logging.getLogger('Shout!')
shout_logger.setLevel(logging.DEBUG)

This will set Shouts logger level to logging.DEBUG. Printing out a ton of useful messages! You can also log to a file.

3.2 API Documentation

3.2.1 Message

class shout.Message(*args, **kwargs)
Message s keep track of their listeners and the various rooms they are listening to. Instances of Message
hold args and kwargs and when shout() is called these are passed to all the appropraite listeners. All return
values of listeners are collected in response. If all listeners execute correctly success is set to True. Any
Exception raised by a listener will halt the shout after binding exc to the offending Exception.

Parameters

• args – Arguments to shout

• kwargs – Keyword Arguments to shout

static create(name)
Dynamically create a new type of Message.

Parameters name – The __class__.__name__ to use.

shout()
Sends the instances args and kwargs to the appropriate listeners.

3.2.2 hears

shout.hears(*args, **kwargs)
Decorates functions and methods, adding them as listeners to the specified Message s.

Parameters

• args – Message s this function will hear.

• inside – Tuple of rooms this function will hear.

3.2. API Documentation 9

Shout, Release 0.2.3

3.2.3 has_ears

shout.has_ears(cls)
Class decorator that enables hears() decorator to be used on class methods.

3.2.4 shout

shout.shout(msg_type, *args, **kwargs)
A grammatically pleasant way to shout a Message.

shout(Message, “Hello”, inside=”A”) == Message(“Hello”, inside=”A”).shout()

Parameters

• msg_type – The type of Message to shout.

• args – The args to pass to the Message.

• kwargs – The kwargs to pass to the Message.

• inside – The rooms to shout inside.

3.2.5 shout_logging

10 Chapter 3. Index

Index

C
create() (shout.Message static method), 9

H
has_ears() (in module shout), 10
hears() (in module shout), 9

M
Message (class in shout), 9

S
shout() (in module shout), 10
shout() (shout.Message method), 9

11

	Why Shout
	Get Shout
	Index
	Guide
	API Documentation

