

 Navigation

 	
 index

 	
 next |

 	Shiva 0.9.0 documentation

Shiva-Server documentation

Contents:

	Intro

	Installation
	Prerequisites

	Installing from source

	Installing using pip

	Configuration
	SECRET_KEY

	DEBUG mode

	Indexing your music
	Restricting extensions

	Scanning directories

	Shiva client
	Wish you were here

	Base Resources
	/artists

	/albums

	/tracks

	Track creation

	/tracks/<int:id>/lyrics

	The fulltree modifier

	Pagination

	Using slugs instead of IDs

	Meta Resources
	/random

	/whatsnew

	Format conversion
	Absolute paths

	Your converter sucks

	The MimeType class

	The MIMETYPES config

	Cross Origin Resource Sharing

	Users
	User creation

	Authentication

	Role-based Access Control

	Playlists
	/playlists

	Adding tracks

	Removing tracks

	Admin utility

	Want to contribute?
	Sending code

	Reporting bugs

	Wish list
	Assumptions

Indices and tables

	Index

	Module Index

	Search Page

What is Shiva?

The Mozilla Hacks blog kindly published a nice article that explains the ideas
that inspire this software:
Shiva: More than a RESTful API to your music collection [https://hacks.mozilla.org/2013/03/shiva-more-than-a-restful-api-to-your-music-collection/].

Why Shiva?

Shiva is the name of the crater [https://en.wikipedia.org/wiki/Shiva_crater]
that would have been created by the
K-Pg event [https://en.wikipedia.org/wiki/Cretaceous%E2%80%93Paleogene_extinction_event]
that extincted the dinosaurs [https://www.youtube.com/watch?v=dlAeN3Qxlvc].

License

Please read the LICENSE file distributed with this software.

Disclaimer

Remember that when using this software you must comply with your country’s
laws. You and only you will be held responsible for any law infringement
resulting from the misuse of this software.

That said, have fun.

 Copyright 2014, Alvaro Mouriño.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Shiva 0.9.0 documentation

Intro

Shiva is, technically speaking, a RESTful API to your music collection. It
indexes your music and exposes an API with the metadata of your files so you
can then perform queries on it and organize it as you wish.

On a higher level, however, Shiva aims to be a free (as in freedom and beer)
alternative to popular music services. It was born with the goal of giving back
the control over their music and privacy to the users, protecting them from the
industry’s obsession with control.

It’s not intended to compete directly with online music services, but to be an
alternative that you can install and modify to your needs. You will own the
music in your server. Nobody but you (or whoever you give permission) will be
able to delete files or modify the files’ metadata to correct it when it’s
wrong. And of course, it will all be available to any device with Internet
connection.

You will also have a clean, RESTful API to your music without restrictions. You
can grant access to your friends and let them use the service or, if they have
their own Shiva instances, let both servers talk to each other and share the
music transparently.

To sum up, Shiva is a distributed social network for sharing music.

Read more on https://hacks.mozilla.org/2013/03/shiva-more-than-a-restful-api-to-your-music-collection/

 Copyright 2014, Alvaro Mouriño.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Shiva 0.9.0 documentation

Installation

Before installing shiva there are some dependencies that you have to take care
of.

Prerequisites

You are going to need:

	ffmpeg

	libxml C headers

	python headers

	sqlite (optional)

If you want Shiva to automatically fetch artists’ images from Last.FM while
indexing you are going to need an API key. You can get one at
http://www.last.fm/api/account/create

This makes the whole indexing slower because issues a request on a per-album
and per-artist basis, but does a lot of work automatically for you.

By default Shiva uses a SQLite database, but this can be overriden.

To install all the dependencies on Debian (and derivatives):

sudo apt-get install libxml2-dev libxslt-dev ffmpeg python-dev sqlite

For simplicity, you can just run:

sudo apt-get install `cat dependencies.apt`

If at some point of the installation process you get the error:

/usr/bin/ld: cannot find -lz

You also need the package lib32z1-dev

On Mac OS X with homebrew [http://mxcl.github.com/homebrew/] you can get the
libxml headers with:

brew install libxml2 libxslt

On Mac OS X sqlite should come pre-installed. If it’s not:

brew install sqlite

Installing from source

	Get the source:

$ git clone https://github.com/tooxie/shiva-server.git
$ cd shiva-server

	Create and activate your virtalenv (highly recommended):

$ virtualenv .virtualenv
$ source .virtualenv/bin/activate

	Install:

$ python setup.py develop

	Rename shiva/config/local.py.example to local.py:

$ cp shiva/config/local.py.example shiva/config/local.py

See `Configuration`_ for more info.

	Edit it and configure the directories to scan for music.
	See `Scanning directories`_ for more info.

	Run the indexer:

$ shiva-indexer

	Run the file server:

$ shiva-fileserver

	Run the server in a different console:

$ shiva-server

	Point your browser to a Resource, like: http://127.0.0.1:9002/artists (See
`Base Resources`_)

Installing using pip

You can install Shiva through pip, running the following command:

$ pip install shiva

That will automatically download and install Shiva and all its dependencies.

Note: This will install the latest release, which may contain bugs and lack
some features. It is highly recommended that you install the latest development
version, following the manual installation guide above.

 Copyright 2014, Alvaro Mouriño.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Shiva 0.9.0 documentation

Configuration

Shiva looks for config files in the following places:

	config/local.py relative to the directory where Shiva is installed.

	If an environment variable $SHIVA_CONFIG is set, then is assumed to be
pointing to a config file.

	$XDG_CONFIG_HOME/shiva/config.py which defauls to
$HOME/.config/shiva/config.py.

If all 3 files exist, then all 3 will be read and overriden in that same order,
so $XDG_CONFIG_HOME/shiva/config.py will take precedence over
config/local.py.

SECRET_KEY

It’s mandatory that you define a SECRET_KEY in your local configuration
file, shiva-server won’t start otherwise. However, shiva will suggest you
one which will be based on all printable characters, except for spaces and
quotes. Read the source of shiva.utils.randstr for more information.

The key will be used to sign the authentication tokens, so make sure that it’s
long, random, and securely generated. Don’t ever use any 3rd party service for
this.

DEBUG mode

It’s possible to load settings specific for debugging. If you have the
following in any of your config files:

DEBUG = True

Then Shiva will also try to load this configuration files:

	config/debug.py relative to the directory where Shiva is installed.

	$XDG_CONFIG_HOME/shiva/debug.py which defauls to
$HOME/.config/shiva/debug.py.

In this case $XDG_CONFIG_HOME/shiva/debug.py will also have precedence over
config/debug.py.

 Copyright 2014, Alvaro Mouriño.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Shiva 0.9.0 documentation

Indexing your music

The indexer receives the following command line arguments.

	--lastfm

	--hash

	--nometadata

	--reindex

	--write-every=<num>

If you set the --lastfm flag Shiva will retrieve artist and album images
from Last.FM, but for this to work you need to get an API key (see
`Prerequisites`_) and include it in your local.py config file.

When --hash is present, Shiva will hash every file using the md5 algorithm,
in order to find duplicates, which will be ignored. Note that this will
decrease indexing speed notably.

The --nometadata option saves dummy tracks with only path information,
ignoring the file’s metadata. This means that albums and artists will not be
saved, but indexing will be as fast as it gets.

If both the --nometadata and --lastfm flags are set, --nometadata
will take precedence and --lastfm will be ignored.

With --reindex the whole database will be dropped and recreated. Be
careful, all existing information will be deleted. If you just want to
update your music collection, run the indexer again without the
--reindex option.

The indexer is optimized for performance; hard drive hits, like file reading or
DB queries, are done as few as possible. As a consequence, memory usage is
quite heavy. Keep that in mind when indexing large collections.

To keep memory usage down, you can use the --write-every parameter. It
receives a number and will write down to disk and clear cache after that many
tracks indexed. If you pass 1, it will completely ignore cache and just write
every track to disk. This has the lowest possible memory usage, but as a
downside, indexing will be much slower.

It’s up to you to find a good balance between the size of your music collection
and the available RAM that you have.

Restricting extensions

If you want to limit the extensions of the files to index, just add the
following config to your local.py file:

ALLOWED_FILE_EXTENSIONS = ('mp3', 'ogg')

That way only ‘mp3’ and ‘ogg’ files will be indexed.

Scanning directories

To tell Shiva which directories to scan for music, you will have to configure
your shiva/config/local.py file. There you will find a MEDIA_DIRS
option where you need to supply MediaDir objects.

This object allows for media configuration. By instantiating a MediaDir
class you can tell Shiva where to look for the media files and how to serve
those files. It’s possible to configure the system to look for files on a
directory and serve those files through a different server.

MediaDir(root='/srv/http', dirs=('/music', '/songs'),
 url='http://localhost:8080/')

Given that configuration Shiva will scan the directories /srv/http/music
and /srv/http/songs for media files, but they will be served through
http://localhost:8080/music/ and http://localhost:8080/songs/.

If just a dir is provided you will also need to run the file server, as
mentioned in the installation guide. This is a simple file server, for testing
purposes only. Do NOT use in a live environment.

MediaDir('/home/fatmike/music')

For more information, check the source of shiva/media.py.

 Copyright 2014, Alvaro Mouriño.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Shiva 0.9.0 documentation

Shiva client

The Shiva-Client [https://github.com/tooxie/shiva-client] is a web-based
front-end for Shiva-Server built as a single page application using HTML5
technologies. It includes its own test web server so you don’t need to install
one.

Wish you were here

Or you can also build your own client and put your own ideas into practice. I
encourage you to do so. Build your own music player that meets your exact
needs.

Feel free to issue a PR [https://github.com/tooxie/shiva-server/pulls] if
you need new functionality in Shiva.

 Copyright 2014, Alvaro Mouriño.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Shiva 0.9.0 documentation

Base Resources

You have the following resources available:

	/artists

	/artists/<int:artist_id>

	/artists/<int:artist_id>/shows

	/albums

	/albums/<int:album_id>

	/tracks

	/tracks/<int:track_id>

	/tracks/<int:track_id>/lyrics

And some meta resources:

	/random/<str:resource_name>

	/whatsnew

	/clients

	/about

/artists

Example response for the request GET /artists/3:

{
 "name": "Eterna Inocencia",
 "image": "http://userserve-ak.last.fm/serve/_/8339787/Eterna+Inocencia+Eterna.jpg",
 "uri": "/artists/3",
 "slug": "eterna-inocencia",
 "id": 3
}

Fields

	id: The object’s ID.

	image: Link to a photo. (Provided by last.fm)

	name: The artist’s name.

	slug: A slug [https://en.wikipedia.org/wiki/Slug_(web_publishing)#Slug]
of the artist’s name.

	uri: The URI of this resource’s instance.

/artists/<int:id>/shows

Information provided by BandsInTown [http://www.bandsintown.com/]. This is
the only resource that is not cached in the local database given to it’s
dynamic nature.

Example response for the request GET /artists/1/shows:

[
 {
 "other_artists": [
 {
 "mbid": "5c210861-2ce2-4be3-9307-bbcfc361cc01",
 "facebook_tour_dates_url": "http://bnds.in/kVwY1Y",
 "image_url": "http://www.bandsintown.com/Pennywise/photo/medium.jpg",
 "name": "Pennywise",
 }
],
 "artists": [
 {
 "id": 1,
 "uri": "/artists/1"
 }
],
 "tickets_left": true,
 "title": "Lagwagon @ Commodore Ballroom in Vancouver, Canada",
 "venue": {
 "latitude": "49.2805760",
 "name": "Commodore Ballroom",
 "longitude": "-123.1207430"
 },
 "id": "6041814",
 "datetime": "Thu, 21 Feb 2013 19:00:00 -0000"

 }
]

Fields

	other_artists: A list with artists that are not in Shiva’s database.
	mbid: MusicBrainz.org ID.

	facebook_tour_dates_url: URI to BandsInTown’s Facebook app for this
artist.

	image_url: URI to an image of the artist.

	name: Name of the artist.

	artists: A list of artist resources.

	tickets_left: A boolean representing the availability (or not) of
tickets for the concert.

	title: The title of the event.

	venue: A structure identifying the venue where the event takes place.
	latitude: Venue’s latitude.

	name: Venue’s name.

	longitude: Venue’s longitude.

	id: BandsInTown’s ID for this event.

	datetime: String representation of the date and time of the show.

Parameters

The Shows resource accepts, optionally, two pairs of parameters:

	latitude and longitude

	country and city

By providing one of this two pairs you can filter down the result list only to
a city. If only one of the pair is provided (e.g., only city) will be ignored,
and if both pairs are provided, the coordinates will take precedence.

/albums

Example response for the request GET /albums/9:

{
 "artists": [
 {
 "id": 2,
 "uri": "/artists/2"
 },
 {
 "id": 5,
 "uri": "/artists/5"
 }
],
 "name": "NOFX & Rancid - BYO Split Series (Vol. III)",
 "year": 2002,
 "uri": "/albums/9",
 "cover": "http://userserve-ak.last.fm/serve/300x300/72986694.jpg",
 "id": 9,
 "slug": "nofx-rancid-byo-split-series-vol-iii"
}

Fields

	artists: A list of the artists involved in that record.

	cover: A link to an image of the album’s cover. (Provided by last.fm)

	id: The object’s ID.

	name: The album’s name.

	slug: A slug [https://en.wikipedia.org/wiki/Slug_(web_publishing)#Slug]
of the album’s name.

	uri: The URI of this resource’s instance.

	year: The release year of the album.

Filtering

The album list accepts an artist parameter in which case will filter the
list of albums only to those corresponding to that artist.

Example response for the request GET /albums?artist=7:

[
 {
 "artists": [
 {
 "id": 7,
 "uri": "/artists/7"
 }
],
 "name": "Anesthesia",
 "year": 1995,
 "uri": "/albums/12",
 "cover": "http://userserve-ak.last.fm/serve/300x300/3489534.jpg",
 "id": 12,
 "slug": "anesthesia"
 },
 {
 "artists": [
 {
 "id": 7,
 "uri": "/artists/7"
 }
],
 "name": "Kum Kum",
 "year": 1996,
 "uri": "/albums/27",
 "cover": "http://userserve-ak.last.fm/serve/300x300/62372889.jpg",
 "id": 27,
 "slug": "kum-kum"
 }
]

Giving ‘0’ instead you get the albums with no artist. If the argument is
non-numeric you will get a 400 Bad Request error.

/tracks

Example response for the request GET /tracks/510:

{

 "ordinal": 4,
 "bitrate": 128,
 "slug": "dinosaurs-will-die",
 "album": {
 "id": 35,
 "uri": "/albums/35"
 },
 "title": "Dinosaurs Will Die",
 "artist": {
 "id": 2,
 "uri": "/artists/2"
 },
 "uri": "/tracks/510",
 "id": 510,
 "length": 180,
 "files": {
 "audio/mp3": "http://localhost:8080/nofx-pump_up_the_valuum/04. Dinosaurs Will Die.mp3",
 "audio/ogg": "/tracks/510/convert?mimetype=audio%2Fogg"
 }

}

Fields

	album: The album to which this track belongs.

	bitrate: In MP3s this value is directly proportional to the sound
quality [https://en.wikipedia.org/wiki/Bit_rate#MP3].

	id: The object’s ID.

	length: The length in seconds of the track.

	ordinal: The ordinal [https://en.wikipedia.org/wiki/Ordinal_number] of
this track with respect to this album.

	slug: A slug [https://en.wikipedia.org/wiki/Slug_(web_publishing)#Slug]
of the track’s title.

	title: The title of the track.

	uri: The URI of this resource’s instance.

	files: A list of URIs to access the files in the different formats,
according to the MEDIA_DIRS setting.

Filtering by artist

Example response for the request GET /tracks?artist=16:

[
 {
 "ordinal": 1,
 "bitrate": 196,
 "slug": "pay-cheque-heritage-ii",
 "album": {
 "id": 36,
 "uri": "/albums/36"
 },
 "title": "Pay Cheque (Heritage II)",
 "artist": {
 "id": 16,
 "uri": "/artists/16"
 },
 "uri": "/tracks/523",
 "id": 523,
 "length": 189,
 "files": {
 "audio/mp3": "http://localhost:8080/ftd-2003-sofa_so_good/01 For The Day - Pay Cheque (Heritage II).mp3",
 "audio/ogg": "/tracks/523/convert?mimetype=audio%2Fogg"
 }
 },
 {
 "ordinal": 2,
 "bitrate": 186,
 "slug": "in-your-dreams",
 "album": {
 "id": 36,
 "uri": "/albums/36"
 },
 "title": "In Your Dreams",
 "artist": {
 "id": 16,
 "uri": "/artists/16"
 },
 "uri": "/tracks/531",
 "id": 531,
 "length": 171,
 "files": {
 "audio/mp3": "http://localhost:8080/ftd-2003-sofa_so_good/02 For The Day - In Your Dreams.mp3",
 "audio/ogg": "/tracks/523/convert?mimetype=audio%2Fogg"
 }
 }
]

Giving ‘0’ instead you get the tracks with no artist. If the argument is
non-numeric you will get a 400 Bad Request error.

Filtering by album

Example response for the request GET /tracks?album=18:

[

 {
 "album": {
 "id": 18,
 "uri": "/albums/18"
 },
 "length": 132,
 "files": {
 "audio/mp3": "http://localhost:8080/flip-keep_rockin/flip-01-shapes.mp3",
 "audio/ogg": "/tracks/277/convert?mimetype=audio%2Fogg"
 }
 "ordinal": 1,
 "title": "Shapes",
 "slug": "shapes",
 "artist": {
 "id": 9,
 "uri": "/artists/9"
 },
 "bitrate": 192,
 "id": 277,
 "uri": "/tracks/277"
 },
 {
 "album": {
 "id": 18,
 "uri": "/albums/18"
 },
 "length": 118,
 "files": {
 "audio/mp3": "http://localhost:8080/flip-keep_rockin/flip-02-stucked_to_the_ground.mp3",
 "audio/ogg": "/tracks/281/convert?mimetype=audio%2Fogg"
 }
 "ordinal": 2,
 "title": "Stucked to The Ground",
 "slug": "stucked-to-the-ground",
 "artist": {
 "id": 9,
 "uri": "/artists/9"
 },
 "bitrate": 192,
 "id": 281,
 "uri": "/tracks/281"
 }
]

Giving ‘0’ instead you get the tracks with no album. If the argument is
non-numeric you will get a 400 Bad Request error.

Listing orphan tracks

It is possible to obtain the list of tracks with no album by giving ‘0’ to the
album parameter. The same is true for the artist parameter. By
combining both (/tracks?album=0&artist=0) you can get the list of “orphan”
tracks.

Track creation

To create a track, POST a Multipart-Encoded file as a track argument to
the /tracks resource. This is the only required parameter. If you include
the arguments artist_id or album_id, it will take precedence and the
file’s metadata for artist (or album) will be ignored. If you send multimple
IDs, they will all be used, but if any of them doesn’t exist in the DB, the
system will return a 400 Bad Request and the track won’t be saved.

curl -F "track=@file.mp3" -F "artist_id=1" -F "artist_id=17" http://127.0.0.1:9002/tracks

Use the query arguments hash_file and no_metadata to define if the file
gets hashed and its metadata read.

curl -F "track=@file.mp3" http://127.0.0.1:9002/tracks?hash_file=true&no_metadata=true

/tracks/<int:id>/lyrics

Example response for the request GET /tracks/256/lyrics:

{
 "track": {
 "id": 256,
 "uri": "/tracks/256"
 },
 "source_uri": "http://lyrics.com/eterna-inocencia/my-family/",
 "id": 6,
 "uri": "/lyrics/6"
}

Fields

	id: The object’s ID.

	source_uri: The URI where the lyrics were fetched from.

	track: The track for which the lyrics are.

	uri: The URI of this resource’s instance.

Adding more lyric sources

Everytime you request a lyric, Shiva checks if there’s a lyric associated with
that track in the database. If it’s there it will immediately retrieve it,
otherwise will iterate over a list of scrapers, asking each one of them if they
can fetch it. This list is in your local config file and looks like this:

SCRAPERS = {
 'lyrics': (
 'modulename.ClassName',
),
}

This will look for a class ClassName in shiva/lyrics/modulename.py. If
more scrapers are added, each one of them is called sequentially, until one of
them finds the lyrics and the rest are not executed.

Adding scrapers

If you want to add your own scraper just create a file under the lyrics
directory, let’s say mylyrics.py with this structure:

from shiva.lyrics import LyricScraper

class MyLyricsScraper(LyricScraper):
 """ Fetches lyrics from mylyrics.com """

 def fetch(self, artist, title):
 # Magic happens here

 if not lyrics:
 return False

 self.lyrics = lyrics
 self.source = lyrics_url

 return True

And then add it to the scrapers list:

SCRAPERS = {
 'lyrics': (
 'modulename.ClassName',
 'mylyrics.MyLyricsScraper',
),
}

Remember that the fetch() method has to return True in case the lyrics
were found or False otherwise. It must also store the URL where they were
fetched from in self.source. That’s where Shiva looks for the information.

Shiva will not store the actual lyrics, only the URI where the lyric was
found.

For more details check the source of the other scrapers.

The fulltree modifier

The three main resources accept a fulltree parameter when retrieving an
instance.
Those are:

	/artists/<int:artist_id>

	/albums/<int:album_id>

	/tracks

	/tracks/<int:track_id>

Whenever you set fulltree to any value that evaluates to True (i.e.,
any string except 'false' and '0') Shiva will include not only the
information of the object you are requesting, but also the child objects.

Here’s an example response for the request GET /artists/2?fulltree=true:

{
 "name": "Eterna Inocencia",
 "image": "http://userserve-ak.last.fm/serve/_/8339787/Eterna+Inocencia+Eterna.jpg",
 "uri": "/artists/2",
 "events_uri": null,
 "id": 2,
 "slug": "eterna-inocencia",
 "albums": [
 {
 "artists": [
 {
 "id": 2,
 "uri": "/artists/2"
 }
],
 "name": "Tomalo Con Calma EP",
 "year": 2002,
 "uri": "/albums/2",
 "cover": "http://spe.fotolog.com/photo/30/54/51/alkoldinamita/1230537010699_f.jpg",
 "id": 2,
 "slug": "tomalo-con-calma-ep",
 "tracks": [
 {
 "album": {
 "id": 2,
 "uri": "/albums/2"
 },
 "length": 161,
 "files": {
 "audio/mp3": "http://127.0.0.1:8001/eterna_inocencia/tomalo-con-calma.mp3",
 "audio/ogg": "/tracks/27/convert?mimetype=audio%2Fogg"
 }
 "ordinal": 0,
 "title": "02 - Rio Lujan",
 "slug": "02-rio-lujan",
 "artist": {
 "id": 2,
 "uri": "/artists/2"
 },
 "bitrate": 192,
 "id": 27,
 "uri": "/tracks/27"
 },
 {
 "album": {
 "id": 2,
 "uri": "/albums/2"
 },
 "length": 262,
 "files": {
 "audio/mp3": "http://127.0.0.1:8001/eterna_inocencia/estoy-herido-en-mi-interior.mp3",
 "audio/ogg": "/tracks/28/convert?mimetype=audio%2Fogg"
 }
 "ordinal": 0,
 "title": "03 - Estoy herido en mi interior",
 "slug": "03-estoy-herido-en-mi-interior",
 "artist": {
 "id": 2,
 "uri": "/artists/2"
 },
 "bitrate": 192,
 "id": 28,
 "uri": "/tracks/28"
 },
]
 }
]
}

Using fulltree on tracks

The behaviour on a track resource is a little different. In the previous
example tracks are the leaves of the tree, but when the full tree of a track is
requested then all the scraped resources are also included, like lyrics.

This is not the default behaviour to avoid DoS’ing scraped websites when
fetching the complete discography of an artist.

Note that if you request the list of tracks with fulltree, only the related
resources will be included (i.e.: artists and albums) but not the scraped ones.

Using fulltree on artists

The tree for artists will contain the extra field no_album_tracks, which is
simply a list of tracks that are not related to any album:

no_album_tracks: [
 {
 album: null,
 artist: {
 id: 4,
 uri: "/artists/4"
 },
 bitrate: 192,
 files: {
 audio/mp3: "http://127.0.0.1:8001/music/dead_fish-1998-sirva-se/14-dead_fish-the_party-buc.mp3",
 audio/ogg: "/tracks/82/convert?mimetype=audio%2Fogg"
 },
 id: 82,
 length: 1,
 ordinal: 0,
 slug: "14-dead-fish-the-party-buc",
 title: "14-dead fish-the party-buc",
 uri: "/tracks/82"
 }
],

Pagination

All the listings are not paginated by default. Whenever you request a list of
either artists, albums or tracks the server will retrieve every possible
result unless otherwise specified.

It is possible to paginate results by passing the page_size and the
page parameters to the resource. They must both be present and be positive
integers. If not, they will both be ignored and the whole set of elements
will be retrieved.

An example request is GET /artists?page_size=10&page=3.

Using slugs instead of IDs

In previous versions of Shiva it was possible to use slugs instead of ID to
request a specific resource. This is not possible anymore, since we use
UUID [http://en.wikipedia.org/wiki/Universally_unique_identifier] values as
IDs, and it’s not possible to differentiate slugs from UUIDs without hitting
the database every time. For performance reasons, slugs as record identifiers
were discarded completely. However, slugs are still generated, stored, and
present in the resulting JSON. Feel free to use them, but Shiva doesn’t commit
to keeping them unique.

Uniqueness of slugs

Slugs are not unique. Shiva does not commit to keeping slugs unique. For this
reason, don’t use them as identifiers.

 Copyright 2014, Alvaro Mouriño.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Shiva 0.9.0 documentation

Meta Resources

Meta resources are simply dynamic or informational resources with no relation
to any database model in particular. They are:

	/random/<str:resource_name>

	/whatsnew

	/clients

	/about

/random

You can request a random instance of a given resource for artists, albums
or tracks. To do so you need to issue a GET request on one of the following
resources:

	/random/artist

	/random/album

	/random/track

They all will return a consistent structure containing id and uri, as
in this example response for the request GET /random/artist:

{
 "id": 3,
 "uri": "/artist/3"
}

You will have to issue another request to obtain the details of the instance.

/whatsnew

There’s a special resource that lets you query the database to retrieve all the
resources older than a given date, at the same time:

/whatsnew?since=YYYYMMDD

This will return an object with the following format:

{
 "artists": [],
 "albums": [
 {
 "id": 10,
 "uri": "/album/10"
 }
],
 "tracks": [
 {
 "id": 121,
 "uri": "/track/121"
 },
 {
 "id": 122,
 "uri": "/track/122"
 }
],
}

 Copyright 2014, Alvaro Mouriño.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Shiva 0.9.0 documentation

Format conversion

No matter in which format files were indexed, it is possible to convert tracks
to serve them in different formats. For this you are going to need ffmpeg
installed in your system.

If you have fmpeg compiled but not installed, you can give Shiva the path
to the binary in a setting, in this format:

FFMPEG_PATH = '/usr/bin/ffmpeg'

You will notice that track objects contain a files attribute:

{
 "id": 510,
 "uri": "/track/510",
 "files": {
 "audio/mp3": "http://localhost:8080/nofx-pump_up_the_valuum/04. Dinosaurs Will Die.mp3",
 "audio/ogg": "/track/510/convert?mimetype=audio%2Fogg"
 }
}

In that attribute you will find a list of all the supported formats. That list
is generated from the MIMETYPES setting (see The MIMETYPES config). Just
follow the link of the format you need and Shiva will convert it if necessary
and serve it for you. As a client, that’s all you care about.

But you may have noticed that the URI for the audio/ogg format goes through
Shiva. This is because the file has not been yet converted, once you call that
URI, Shiva will convert the file on the fly, cache it and redirect to the file.
The next time the same track is requested, if the file exists it will be served
through the file server instead of Shiva:

{
 "id": 510,
 "uri": "/track/510",
 "files": {
 "audio/mp3": "http://localhost:8080/nofx-pump_up_the_valuum/04. Dinosaurs Will Die.mp3",
 "audio/ogg": "http://localhost:8080/nofx-pump_up_the_valuum/04. Dinosaurs Will Die.ogg"
 }
}

It’s completely transparent for the client. If you want an OGG file, you just
follow the “audio/ogg” URI blindly, and you will get your file. The first time
will take a little longer, though.

Absolute paths

If you need absolute paths for your /convert URIs, just set the
SERVER_URI setting in your local config, it will be prepended to all the
URIs:

SERVER_URI = 'http://127.0.0.1:9002'

Example output:

{
 "files": {
 "audio/mp3": "http://127.0.0.1:8001/flip-keep_rockin/flip-10-away_from_the_sun.mp3",
 "audio/ogg": "http://127.0.0.1:9002/track/1/convert?mimetype=audio%2Fogg"
 },
 "album": {
 "id": 1,
 "uri": "http://127.0.0.1:9002/album/1"
 },
 "length": 168,
 "number": 10,
 "title": "Away From The Sun",
 "slug": "away-from-the-sun",
 "artist": {
 "id": 1,
 "uri": "http://127.0.0.1:9002/artist/1"
 },
 "bitrate": 192000,
 "id": 1,
 "uri": "http://127.0.0.1:9002/track/1"
}

Remember to leave out trailing slashes.

Your converter sucks

So, you don’t want to use ffmpeg, or you want to call it with different
parameters, or chache files differently. That’s ok, I won’t take it personally.

To overwrite the Converter class to use, just define it in your config:

from shiva.myconverter import MyBetterConverter

CONVERTER_CLASS = MyBetterConverter

One option is to extend shiva.converter.Converter and overwrite the methods
that offend you.

The other option is to write a completely new Converter class. If you do so,
make sure to have at least the following 3 methods:

	__init__(Track track, (str, MimeType) mimetype): Constructor accepting a
path to a file and a mimetype, which could be a string in the form of
‘type/subtype’, or a MimeType instance.

	convert(): Converts to a different format.

	get_uri(): Retrieves the URI to the converted file.

The shiva.resources.ConvertResource class makes use of them.

The MimeType class

All mimetypes are represented by a shiva.media.MimeType class. The
constructor receives the following parameters:

	type: Would be audio in audio/ogg.

	subtype: Would be ogg in audio/ogg.

	extension: The extension that converted files should have.

	acodec and/or vcodec: The codecs used by Converter.convert().
Find out the available codecs running:

$ ffmpeg -codecs

The MIMETYPES config

You will see in your config file:

MIMETYPES = (
 MimeType(type='audio', subtype='mp3', extension='mp3',
 acodec='libmp3lame'),
 MimeType(type='audio', subtype='ogg', extension='ogg',
 acodec='libvorbis'),
)

Keep in mind that an invalid MimeType in this config will raise an
InvalidMimeTypeError exception.

 Copyright 2014, Alvaro Mouriño.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Shiva 0.9.0 documentation

Cross Origin Resource Sharing

CORS [http://de.wikipedia.org/wiki/Cross-Origin_Resource_Sharing] support is
disabled by default because it’s a browser-specific feature, and Shiva doesn’t
assume that the clients are browsers.

To enable CORS you have to set the following in your local.py file:

CORS_ENABLED = True

Now Shiva will add the following header to each response:

Access-Control-Allow-Origin: *
Access-Control-Allow-Headers: Accept, Content-Type, Origin, X-Requested-With

If you want to limit it to a single origin, then define a tuple with the
accepted domains:

CORS_ALLOWED_ORIGINS = ('napster.com', 'slsknet.org')

Or simply a string:

CORS_ALLOWED_ORIGINS = 'napster.com'

When a domain (or a tuple of domains) is defined, Shiva will check the request
against it. If they match, a header is added:

Access-Control-Allow-Origin: http://napster.com

 Copyright 2014, Alvaro Mouriño.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Shiva 0.9.0 documentation

Users

Shiva has a very light user implementation. The idea of users is not to keep a
complex profile of a person, but to serve as an authentication mechanism.

A user consists of:

	E-mail.

	Password.

	An ‘is_public’ flag.

	An ‘is_active’ flag.

	An ‘is_admin’ flag.

	A creation date.

User creation

Issue a POST request to the /users resource. Note the the GET
method will only list those users whose is_public attribute is set to
True.

curl -d "email=herp@derp.com" http://127.0.0.1:9002/users

Authentication

Authentication is done against the /users/login endpoint. You will receive
a token that, if the ALLOW_ANONYMOUS_ACCESS setting is set to False
(which by default it is), has to be included with every request for as long as
it’s valid. Once it is no longer valid you will get a 401 Unauthorized and
will have to re-authenticate.

curl -d "email=herp@derp.com" -d "password=s3cr37" http://127.0.0.1:9002/users/login

It will return something like:

{
 "token": "eyJhbGciOiJIUzI1NiIsImV4cCI6MTQxMTUwNDczMywiaWF0IjoxNDExNTAzMjkzfQ.eyJwayI6MX0.7vNzVWGr-gJX7qygFJKM5x6dCVZapKTSsI2IzwYggLY"
}

You then need to include that token with your every request:

curl http://127.0.0.1:9002/tracks?token=$AUTH_TOKEN

Role-based Access Control

The concept of Roles is very limited in Shiva. There are 3 possible roles:

	User

	Admin

	Shiva

The first 2 are assigned to users, the last one is only used by other Shiva
instances to communicate with each other. Please note that this functionality
is not yet implemented.

To create a normal user (i.e. either User or Admin roles) use the command
shiva-admin user add.

A role-authentication failure will result in a 401 Forbidden status code.

 Copyright 2014, Alvaro Mouriño.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Shiva 0.9.0 documentation

Playlists

Playlists are a way of logically grouping tracks by arbitrary conditions
defined by the user.

/playlists

Example response for the request GET /playlists/1:

{
 "creation_date": "Mon, 29 Sep 2014 22:28:29 -0000",
 "id": 1,
 "length": 4,
 "name": "Classic essentials",
 "read_only": true,
 "tracks": [
 {
 "id": 3,
 "index": 0,
 "uri": "/tracks/3"
 },
 {
 "id": 1,
 "index": 1,
 "uri": "/tracks/1"
 },
 {
 "id": 2,
 "index": 2,
 "uri": "/tracks/2"
 },
 {
 "id": 4,
 "index": 3,
 "uri": "/tracks/4"
 }
],
 "user": {
 "id": 1,
 "uri": "/users/1"
 }
}

Fields

	id: The object’s ID.

	creation_date: The time the playlist was created.

	length: The tracks count.

	name: The playlist’s name.

	read_only: When set to True (the default) only the creator of the
playlist can add/remove tracks to it.

	tracks: The list of tracks contained by the playlist.

	tracks.index: The track’s (0-based) position in the playlist.

	user: The creator of the playlist.

Filtering

It’s possible to get only the playlists for a certain user by using the
user query parameter: /playlists?user=1

Adding tracks

To add a track to a playlist you have to issue a POST request to
/playlists/<id>/add with the parameters track, which is a track id, and
index, which is the 0-based position the track should occuppy in the
playlist. Example:

If the index value is largen than the number of items in the playlist, a
400 Bad Request will be returned. If the playlist is empty, send
index=0. If all went ok, you will get a 204 No Content status code.

Removing tracks

The procedure for removing tracks is very similar to the addition, the main
difference is that the request is issued against the /playlist/<id>/remove
endpoint:

You don’t have to include the track id in this case, only the index is
enough. Just like the addition, if the value of index is greater than the
number of tracks in the playlist, you will get a 400 Bad Request. If all
went ok, a 204 No Content will be returned.

 Copyright 2014, Alvaro Mouriño.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Shiva 0.9.0 documentation

Admin utility

The utility shiva-admin will let you do some basic management tasks. The
following commands are available:

	user create [<email>]

	user activate <email_or_id>

	user deactivate <email_or_id>

	user delete <email_or_id>

For more information run shiva-admin --help.

 Copyright 2014, Alvaro Mouriño.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Shiva 0.9.0 documentation

Want to contribute?

There are many ways you can contribute:

	File bug reports.

	Implement new features.

	Build your own client.

	Write documentation.

	Write tests.

	Talk about Shiva.
	Write an article.

	Give a talk.

	Use it!

If you build a client or write an article about Shiva, let us know and we’ll
include it in our documentation.

Sending code

If you want to implement a new feature or fix a bug, remember that every PR
that you issue must:

	Strictly follow the PEP8 [http://www.python.org/dev/peps/pep-0008/].

	Include documentation, if applicable.
	Detailed documentation of the new feature.

	Update old documentation for functionality changes.

	Include tests.

	Not break previous tests.

The CI tool [https://travis-ci.org/tooxie/shiva-server] will check for most
of this, so make sure the build passes.

Reporting bugs

Please report bugs, recommend enhancements or ask questions in our
issue tracker [https://github.com/tooxie/shiva-server/issues]. Before
reporting bugs please make sure of the following:

	The bug was not previously reported.

	You have the latest version installed.

	The bug is not actually a feature.

 Copyright 2014, Alvaro Mouriño.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Shiva 0.9.0 documentation

Wish list

This is a (possible incomplete) list of ideas that may be eventually
implemented. With time we will see which of them make sense (or not) and work
on them (or not). We may add things that are not documented here as well.

	Index also images and videos.

	Batch-edit ID3 tags.

	Download your tracks in batch.

	Users.
	Join by invitation

	Favourite artists.

	Playlists.

	Play count.

	Share your music with your friends.

	Share your music with your friends’ servers.

	Listen to your friends’ music.

	They can also upload their music.

	Stream audio and video. (Radio mode)

	Set up a radio and collaboratively pick the music. (Would this belong to
Shiva or to another service consuming Shiva’s API?)

	Tabs.

Assumptions

For the sake of simplicity many assumptions were made that will eventually be
worked on and improved/removed.

	Only music files. No videos. No images.

	No update of files’ metadata when DB info changes.

 Copyright 2014, Alvaro Mouriño.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Shiva 0.9.0 documentation

Index

 Copyright 2014, Alvaro Mouriño.
 Created using Sphinx 1.2.2.

 search.html

 Navigation

 		
 index

 		Shiva 0.9.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Alvaro Mouriño.
 Created using Sphinx 1.2.2.

_static/comment-bright.png

_static/down.png

_static/comment.png

_static/up-pressed.png

_static/plus.png

_static/comment-close.png

_static/file.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/up.png

_static/minus.png

