

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Shardmonster 0.2.0 documentation

Introduction to Shardmonster

Mongo has great support for sharding. However, the system must be entirely the
same version. This means that you cannot selectively move data from Mongo 2.4 to
Mongo 3.0 (for example). Big bang upgrades of databases are scary (and we’ve had
downtime in the past when we tried to do an upgrade to 2.6). Writing this
ourselves allows us to move data between different shards of differing versions
at will.

Terminology

This is made more difficult by the fact that a Mongo server can contain multiple
databases.

Cluster - The complete set of mongo servers that store all data.

Location - A server (or replica set) combined with a database name that
contains data. A single cluster will contain multiple locations.

Realm - A collection that spans the cluster. May have data stored
in multiple versions of Mongo. A realm may span multiple locations (depending on
how much the data has been sharded). A cluster may contain multiple realms of
data.

Shard - A set of data denoted by a field (the shard field) and a value (the
shard key). The shard, during a migration, may be stored in multiple locations.
A realm typically contains multiple shards. A location also contains multiple
shards.

Further documentation

	Getting Started
	Connecting the Controller

	Activate Caching

	Describe Clusters

	Create Realms

	Preparing for Queries

	Move some data around

	Where is my data?

	API

	How it works
	Realms

	Shard data

	Migration phases

	Developing Shardmonster
	Running tests

	Building Docs

Indices and tables

	Index

	Module Index

 Copyright 2015, Colin Howe.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shardmonster 0.2.0 documentation

Getting Started

Connecting the Controller

Shardmonster relies on a connection to a controller. This is where all the
shard metadata is stored. It is recommended that metadata is stored on a
dedicated cluster. This helps ensure that reads/writes to metadata are very
fast.

import shardmonster
shardmonster.connect_to_controller(
 "mongodb://localhost:27017/?replicaset=cluster-1",
 "sharding_db"

Activate Caching

Shardmonster makes use of caching of metadata to ensure that queries are as fast
as possible. The cache length is set in seconds. All migrations are paused for
at least as long as the cache length to ensure caches are clear before writes
are moved to new locations. Having a high cache time will make migrations
slower. Having a low cache time will result in more hits to the metadata
cluster.

shardmonster.activate_caching(5)

Describe Clusters

A cluster describes a replica set that is to store data. Typically, you will
have multiple clusters with data spread across them.

shardmonster.ensure_cluster_exists(
 'cluster-1', 'mongodb://localhost:27017/?replicaset=cluster-1')

Create Realms

A realm is a sharded collection. To create a realm you need to have defined a
field to use as a shard field - this will be used to determine on which shard a
document belongs.

The shard field must only contain strings or integers. No other data type is
currently supported here.

Create a realm called messages that is a sharded version of the
messages_coll collection. By default shards will go to some_db on
cluster-1. The data will be sharded by the field called "account".
shardmonster.ensure_realm_exists(
 'messages', 'account', 'messages_coll', 'cluster-1/some_db')

Preparing for Queries

To actually do sharded queries and inserts you will need a handle to a shard
aware collection.

sharded_collection = \
 shardmonster.make_collection_shard_aware("messages")
sharded_collection.insert({"text": "Hello!", "account": 5})

Move some data around

Before a shard can be moved to a new cluster it must be first placed at rest at
its current location.

Following on from the previous block...
Set all data in the messages realm with an account value of 5 to be at
rest on cluster-1. As the data is already there this does do any movement
of data.
shardmonster.set_shard_at_rest('messages', 5, 'cluster-1/some_db')

Once this is done the data can be migrated to a new location:

This moves data from the messages collection with an account value of 5
to a different cluster. The method returns when it is completed.
shardmonster.do_migration('messages', 5, 'cluster-2/some_other_db')

Where is my data?

After you’ve been using shardmonster for some time you might want some help
interrogating your data and finding out where it is.

>>> shardmonster.where_is('messages', 5)
'cluster-2/some_other_db'

 Copyright 2015, Colin Howe.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shardmonster 0.2.0 documentation

API

	
shardmonster.activate_caching(timeout)

	Activates caching of metadata.

	Parameters:	timeout (int) – Number of seconds to cache metadata for.

Caching is generally a good thing. However, during a migration there will be
a pause equal to whatever the caching timeout. This is to avoid stale reads
and writes when the source of truth for a shard changes location.

	
shardmonster.connect_to_controller(uri, db_name)

	Connects to the controlling database. This contains information about
the realms, shards and clusters.

	Parameters:	
	uri (str) – The Mongo URI to connect to. This should typically detail
several replica members to ensure connectivity.

	db_name (str) – The name of the database to connect to on the given
replica set.

	
shardmonster.do_migration(collection_name, shard_key, new_location)

	Migrates the data with the given shard key in the given collection to
the new location. E.g.

>>> do_migration('some_collection', 1, 'cluster-1/some_db')

Would migrate everything from some_collection where the shard field is set
to 1 to the database some_db on cluster-1.

	Parameters:	
	collection_name (str) – The name of the collection to migrate

	shard_key – The key of the shard that is to be moved

	new_location (str) – Location that the shard should be moved to in the
format “cluster/database”.

This method blocks until the migration is completed.

	
shardmonster.ensure_cluster_exists(name, uri)

	Ensures that a cluster with the given name exists. If it doesn’t exist,
a new cluster definition will be created using name and uri. If it does
exist then no changes will be made.

	Parameters:	
	name (str) – The name of the cluster

	uri (str) – The URI to use for the cluster

	
shardmonster.ensure_realm_exists(name, shard_field, collection_name, default_dest)

	Ensures that a realm of the given name exists and matches the expected
settings.

	Parameters:	
	name (str) – The name of the realm

	shard_field – The field in documents that should be used as the shard
field. The only supported values that can go in this field are strings
and integers.

	collection_name (str) – The name of the collection that this realm
corresponds to. In general, the collection name should match the realm
name.

	default_dest (str) – The default destination for any data that isn’t
explicitly sharded to a specific location.

	Returns:	None

	
shardmonster.make_collection_shard_aware(collection_name)

	Returns a new object that proxies the given collection and makes it
shard aware.

	
shardmonster.set_shard_at_rest(realm, shard_key, location, force=False)

	Marks a shard as being at rest in the given location. This is used for
initiating shards in preparation for migration. Unless force is True this
will raise an exception if a shard is already at rest in a specific
location.

	Parameters:	
	realm (str) – The name of the realm for the shard

	shard_key – The key of the shard

	location (str) – The location that the data is at (or should be in the
case of a brand new shard)

	force (bool) – Force a shard to be placed at rest in a specific location
even if it has already been placed somewhere.

	Returns:	None

	
shardmonster.where_is(collection_name, shard_key)

	Returns a string of the form cluster/database that says where a
particular shard of data resides.

	Parameters:	
	collection_name – The collection name for the shard

	shard_key – The shard key to look for

	
shardmonster.wipe_metadata()

	Wipes all metadata. Should only be used during testing. There is no undo.

Wipes caches as well.

 Copyright 2015, Colin Howe.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shardmonster 0.2.0 documentation

How it works

Realms

A realm is a mapping describing a collection’s sharding strategy. It consists of
documents of the form:

{
 name: 'some-realm',
 shard_field: 'some-field',
 collection: 'collection-name',
 default_location: 'cluster/database'
}

Shard data

There is a shards collection that stores documents of the form:

{
 realm: 'some-realm',
 shard_key: 'some-key',
 status: 'migrating-copy'
 | 'migrating-sync'
 | 'post-migration-paused-at-source'
 | 'post-migration-paused-at-destination'
 | 'post-migration-delete'
 | 'at-rest',
 location: 'cluster/database'
}

This describes the position of the data where some-field is equal to some-key.
In the event that the data is in a migrating phase then there will be
additional fields:

new_location: 'cluster2/database',

Migration phases

Copy

The copy phase is copying all data that matches the shard query from the current
location to the new location. Once this phase is finished, the sync phase
begins.

During this phase all reads and writes will go to the original location of the
data.

Sync

The sync phase is where the oplog is replayed since the start of the migration.

Once the oplog is replayed and we are close to realtime the post migration
pause begins.

During this phase all reads and writes will go to the original location of the
data.

Post migration pause at source

Once data has been migrated the shard will enter a pause state. This allows for
someone (or something) to verify that the data has been migrated successfully
and everything is OK. This state shouldn’t really be needed, but, it’s a
nice safety valve during testing.

During this phase all reads and writes will go to the original location of the
data. The oplog continues to be synced during this period.

Post migration pause at destination

Once any data validation has been performed the shard will be moved to
“paused at destination”. During this phase all reads will go to the
new location of the data. Writes will be suspended. The oplog continues to be
synced during this period to catch any stragglers.

Due to the suspension of writes during this period it is expected that this
phase will be very short.

Post migration delete

Once a shard has been migrated the original location should have the data
removed. Doing this deletion helps with reducing the amount of query
customisation that has to happen to cope with data being in two places at once.

Crucially, the oplog is NOT synced during this phase. That would copy the
deletes and lead to all kinds of sadness. Specifically, the removal of most of
the data.

Only once this phase is completed is the shard moved to at rest and the
location field is updated.

At rest

Data that is at rest is no longer being migrated in any form. Lookups for
shard information will be cached for a short length of time.

 Copyright 2015, Colin Howe.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Shardmonster 0.2.0 documentation

Developing Shardmonster

Running tests

> cp sample_test_settings.py test_settings.py

Update test_settings.py to reflect your local environment.

> python setup.py nosetests

Building Docs

> python setup.py build_sphinx

 Copyright 2015, Colin Howe.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Shardmonster 0.2.0 documentation

 Python Module Index

 s

 			

 		
 s	

 	
 	
 shardmonster	

 Copyright 2015, Colin Howe.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Shardmonster 0.2.0 documentation

Index

 A
 | C
 | D
 | E
 | M
 | S
 | W

A

 	

 	activate_caching() (in module shardmonster)

C

 	

 	connect_to_controller() (in module shardmonster)

D

 	

 	do_migration() (in module shardmonster)

E

 	

 	ensure_cluster_exists() (in module shardmonster)

 	

 	ensure_realm_exists() (in module shardmonster)

M

 	

 	make_collection_shard_aware() (in module shardmonster)

S

 	

 	set_shard_at_rest() (in module shardmonster)

 	

 	shardmonster (module)

W

 	

 	where_is() (in module shardmonster)

 	

 	wipe_metadata() (in module shardmonster)

 Copyright 2015, Colin Howe.
 Created using Sphinx 1.3.1.

 _static/minus.png

_static/comment.png

_static/plus.png

_static/up.png

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

_static/down.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		
 modules |

 		Shardmonster 0.2.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Colin Howe.
 Created using Sphinx 1.3.1.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Shardmonster 0.2.0 documentation »

 All modules for which code is available

		shardmonster.api

		shardmonster.connection

		shardmonster.metadata

		shardmonster.sharder

 © Copyright 2015, Colin Howe.
 Created using Sphinx 1.3.1.

_static/up-pressed.png

