
SensorBee Documentation
Release 0.4

Preferred Networks, Inc.

Jun 20, 2017

Contents

I Preface 3

II Tutorial 13

III The BQL Language 43

IV Server Programming 93

V Reference 137

VI Indices and Tables 195

i

ii

SensorBee Documentation, Release 0.4

Contents:

Contents 1

SensorBee Documentation, Release 0.4

2 Contents

Part I

Preface

3

SensorBee Documentation, Release 0.4

This is the official documentation of SensorBee. It describes all the functionality that the current version of SensorBee
officially supports.

This document is structured as follows:

• Preface, this part, provides general information of SensorBee.

• Part I is an introduction for new users through some tutorials.

• Part II documents the syntax and specification of the BQL language.

• Part III describes information for advanced users about extensibility capabilities of the server.

• Reference contains reference information about BQL statements, built-in components, and client programs.

5

SensorBee Documentation, Release 0.4

6

CHAPTER 1

What is SensorBee?

SensorBee is an open source, lightweight, stateful streaming data processing engine for the Internet of Things (IoT).
SensorBee is designed to be used for streaming ETL (Extract/Transform/Load) at the edge of the network including
Fog Computing. In ETL operations, SensorBee mainly focuses on data transformation and data enrichment, espe-
cially using machine learning. SensorBee is very small (stand-alone executable file size < 30MB) and runs on small
computers such as Raspberry Pi.

The processing flow in SensorBee is written in BQL, a dialect of CQL (Continuous Query Language), which is similar
to SQL but extended for streaming data processing. Its internal data structure (tuple) is compatible to JSON documents
rather than rows in RDBMSs. Therefore, in addition to regular SQL expressions, BQL implements JSON notation and
type conversions that work well with JSON. BQL is also schemaless at the moment to support rapid prototyping and
integration.

Note: Supporting a schema in SensorBee is being planned to increase its robustness, debuggability, and speed.
However, the version that will support the feature has not been decided yet.

SensorBee manages user-defined states (UDSs) and BQL utilizes those states to perform stateful processing on stream-
ing data. An example of stateful processing is machine learning. Via a Python extension, SensorBee supports deep
learning using Chainer, a flexible deep learning framework developed by Preferred Networks, Inc. and Preferred In-
frastructure, Inc. The combination of SensorBee and Chainer enables users to support not only online analysis but also
online training of deep learning models at the edge of the network with the help of GPUs. Preprocessing of data and
feature extraction from preprocessed results can be written in BQL. The results can be computed in an online manner
and directly connected to deep learning models implemented with Chainer.

By combining JSON-like data structure of BQL and machine learning, SensorBee becomes good at handling unstruc-
tured data such as text written in natural languages and even video streams, which are not well supported by most
data processing engines. Therefore, SensorBee can operate, for example, between a video camera and Cloud-based
(semi-structured) data analytics services so that those services don’t have to analyze raw video images and can only
utilize the information extracted from them by SensorBee.

SensorBee can be extended to work with existing databases or data processing solutions by developing data source
or sink plugins. For example, it officially provides plugins for fluentd, an open source data collector, and has various
input and output plugins for major databases and Cloud services.

7

http://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-overview.pdf
http://chainer.org/
https://www.preferred-networks.jp/
https://preferred.jp/
https://preferred.jp/
http://www.fluentd.org/

SensorBee Documentation, Release 0.4

SensorBee has not been designed for:

• very large scale data processing

• massively parallel streaming data processing

• accurate numerical computation without any error

8 Chapter 1. What is SensorBee?

CHAPTER 2

Conventions

The following conventions are used in the synopsis of a command:

• Brackets ([and]) indicate optional parts.

– Some statements such as SELECT have [and] as a part of the statement. In that case, those brackets are
enclosed with single quotes (').

• Braces ({ and }) and vertical lines (|) indicate that one of candidates in braces must be chosen (e.g. one of a,
b, or c has to be selected {a | b | c}).

• Dots (...) mean that the preceding element can be repeated.

• Commands that are to be run in a normal system shell are prefixed with a dollar sign ($).

Types and keywords in BQL are written with fixed-size fonts.

9

SensorBee Documentation, Release 0.4

10 Chapter 2. Conventions

CHAPTER 3

Further Information

Besides this documentation, there’re other resources about SensorBee:

Website

http://sensorbee.io/ has general information about SensorBee.

Github

The sensorbee organization contains SensorBee’s core source code repository and its official plugins.

Mailing Lists

There are two Google Groups for discussion and questions about SensorBee: https://groups.google.
com/forum/#!forum/sensorbee (English) and https://groups.google.com/forum/#!forum/sensorbee-ja
(Japanese).

11

http://sensorbee.io/
https://github.com/sensorbee
https://groups.google.com/forum/#!forum/sensorbee
https://groups.google.com/forum/#!forum/sensorbee
https://groups.google.com/forum/#!forum/sensorbee-ja

SensorBee Documentation, Release 0.4

12 Chapter 3. Further Information

Part II

Tutorial

13

SensorBee Documentation, Release 0.4

The following chapters gives an introduction to SensorBee.

15

SensorBee Documentation, Release 0.4

16

CHAPTER 4

Getting Started

To get started with SensorBee, this chapter introduces word counting as the first tutorial. It covers the following topics:

• How to install and set up SensorBee

• How to build a custom sensorbee command

• How to use the sensorbee command

• How to query the SensorBee server with sensorbee shell and BQL

Prerequisites

SensorBee requires Go 1.4 or later to be installed and its development environment ($GOPATH etc.) to be set up
correctly. Also, Git needs to be installed.

This tutorial assumes that readers know about basic Linux commands and basics of SQL.

SensorBee itself doesn’t have to be installed at this point.

Word Count Example

As the first tutorial, this section shows a word count example. All programs and configuration files required for this
tutorial are provided in the wordcount package of the Github repository https://github.com/sensorbee/tutorial.

Installing Word Count Example Package

The first thing that needs to be done is to go get the word count example package in the repository:

$ go get github.com/sensorbee/tutorial/wordcount

17

https://github.com/sensorbee/tutorial

SensorBee Documentation, Release 0.4

This command clones the repository to $GOPATH/src/github.com/sensorbee/tutorial/wordcount
and also downloads all dependencies. In the config subdirectory of that path, there are configuration files for
building and running SensorBee. After go get successfully downloaded the package, copy those configuration files
to another temporary directory (replace /path/to/ with an appropriate path):

$ mkdir -p /path/to/wordcount
$ cp $GOPATH/src/github.com/sensorbee/tutorial/wordcount/config/* \

/path/to/wordcount/
$ ls /path/to/wordcount
build.yaml
sensorbee.yaml
wordcount.bql

Everything necessary to try this tutorial is ready now except SensorBee. The next step is to build a custom
sensorbee command that includes the plugins needed for this tutorial.

Building a sensorbee Executable

To build a sensorbee executable, the build_sensorbee program needs to be installed. To do so, issue the
following command:

$ go get gopkg.in/sensorbee/sensorbee.v0/...

The build_sensorbee program is used to build a custom sensorbee executable with plugins provided by
developers.

Then, move to the directory that has configuration files previously copied from the tutorial package and execute
build_sensorbee:

$ cd /path/to/wordcount
/path/to/wordcount$ build_sensorbee
/path/to/wordcount$ ls
build.yaml
sensorbee
sensorbee.yaml
sensorbee_main.go
wordcount.bql

There are two new files in the directory: sensorbee and sensorbee_main.go. Both of them are automatically
generated by the build_sensorbee command. sensorbee is the command to run the SensorBee server or shell.
Under the hood, this command is built from sensorbee_main.go using go build.

build_sensorbee builds a sensorbee command according to the configuration in build.yaml:

/path/to/wordcount$ cat build.yaml
plugins:

- github.com/sensorbee/tutorial/wordcount/plugin

Inserting a new go path to the plugin section adds a new plugin to the sensorbee command, but this tutorial only
uses the wordcount plugin above. Other tutorials will cover this configuration file in more depth.

Run the Server

After building the sensorbee command having plugins for this tutorial, run it as a server:

18 Chapter 4. Getting Started

SensorBee Documentation, Release 0.4

/path/to/wordcount$./sensorbee run
INFO[0000] Setting up the server context config={"logging":
{"log_dropped_tuples":false,"min_log_level":"info","summarize_dropped_tuples":
false,"target":"stderr"},"network":{"listen_on":":15601"},"storage":{"uds":
{"params":{},"type":"in_memory"}},"topologies":{}}
INFO[0000] Starting the server on :15601

sensorbee run runs the SensorBee server. It writes some log messages to stdout but they can be ignored at the
moment. It provides a HTTP JSON API and listens on :15601 by default. However, the API isn’t directly used in
this tutorial. Instead of controlling the server via the API, this tutorial shows how to use the sensorbee shell
command and the BQL language, which is similar to SQL but has some extensions for streaming data.

To test if the server has successfully started, run the following command in another terminal:

$ curl http://localhost:15601/api/v1/runtime_status
{"gomaxprocs":1,"goroot":"/home/pfn/go","goversion":"go1.4.2",
"hostname":"sensorbee-tutorial","num_cgo_call":0,"num_cpu":4,
"num_goroutine":13,"pid":33267,"user":"pfn",
"working_directory":"/path/to/wordcount/"}

The server is correctly working if a response like this returned.

Setting Up a Topology

Once the server has started, open another window or use screen/tmux to have another terminal to interact with the
server. The server does nothing just after it started up. There are a few steps required to enjoy interacting with stream
data.

Firstly, to allow the server to process some data, it needs to have a topology. A topology is a similar concept to a
“database” in RDBMSs. It has processing components such as data sources, continuous views, and so on. Use the
sensorbee topology create command to create a new topology wordcount for the tutorial:

/path/to/wordcount$./sensorbee topology create wordcount
/path/to/wordcount$ echo $?
0

$? (the return code of the ./sensorbee command) will be 0 if the command was successful. Otherwise, it will be
non-zero. Be careful to write ./sensorbee (and not omit the ./) in order to use the executable from your current
directory, which has the correct plugins baked in.

Note: Almost everything in SensorBee is volatile at the moment and is reset every time the server restarts. A topology
is dropped when the server shuts down, too. Therefore, sensorbee topology create wordcount needs to
be run on each startup of the server until it is specified in a config file for sensorbee run later.

In the next step, start sensorbee shell:

/path/to/wordcount$./sensorbee shell -t wordcount
wordcount>

-t wordcount means that the shell connects to the wordcount topology just created. Now it’s time to try some
BQL statements. To start, try the EVAL statement, which evaluates arbitrary expressions supported by BQL:

wordcount> EVAL 1 + 1;
2
wordcount> EVAL power(2.0, 2.5);

4.2. Word Count Example 19

SensorBee Documentation, Release 0.4

5.65685424949238
wordcount> EVAL "Hello" || ", world!";
"Hello, world!"

BQL also supports one line comments:

wordcount> -- This is a comment
wordcount>

Finally, create a source which generates stream data or reads input data from other stream data sources:

wordcount> CREATE SOURCE sentences TYPE wc_sentences;
wordcount>

This CREATE SOURCE statement creates a source named sentences. Its type is wc_sentences and it is pro-
vided by a plugin in the wordcount package. This source emits, on a regular basis, a random sentence having several
words with the name of a person who wrote a sentence. To receive data (i.e. tuples) emitted from the source, use the
SELECT statement:

wordcount> SELECT RSTREAM * FROM sentences [RANGE 1 TUPLES];
{"name":"isabella","text":"dolor consequat ut in ad in"}
{"name":"sophia","text":"excepteur deserunt officia cillum lorem excepteur"}
{"name":"sophia","text":"exercitation ut sed aute ullamco aliquip"}
{"name":"jacob","text":"duis occaecat culpa dolor veniam elit"}
{"name":"isabella","text":"dolore laborum in consectetur amet ut nostrud ullamco"}
...

Type C-c (also known as Ctrl+C to some people) to stop the statement. Details of the statement are not described
for now, but this is basically same as the SELECT statement in SQL except two things: RSTREAM and RANGE. Those
concepts will briefly be explained in the next section.

Querying: Basics

This subsection introduces basics of querying with BQL, i.e., the SELECT statement. Since it is very similar to SQL’s
SELECT and some basic familiarity with SQL is assumed, two concepts that don’t exist in SQL are described first.
Then, some features that are also present in SQL will be covered.

Stream-Related Operators

BQL’s SELECT statement has two components related to stream data processing: stream-to-relation operators and
relation-to-stream operators.

Note: Skip the description of stream-to-relations and relation-to-stream operators if these aren’t clear enough at the
moment.

A stream-to-relation operator is an operator that literally converts a stream of tuples to relations (i.e., records in a table
of the database). What it actually does is to define a window having a finite set of tuples on a stream. The operator is
written as [RANGE n TUPLES] or [RANGE n SECONDS]. [RANGE n TUPLES] creates a window containing
the last 𝑛 tuples in the stream. [RANGE n SECONDS], on the other hand, creates a window holding tuples observed
in past 𝑛 seconds (more precisely, the duration between the oldest and newest tuple is at most 𝑛 seconds).

SELECT RSTREAM * FROM sentences [RANGE 1 TUPLES];

20 Chapter 4. Getting Started

SensorBee Documentation, Release 0.4

The previous example uses a stream-to-relation operator [RANGE 1 TUPLES], i.e., each window only has a single
tuple in it. This window can be thought of as the input relation for a SQL-like SELECT statement.

Another concept that doesn’t exist in SQL is a relation-to-stream operator. It converts a relation, which is a result of
the SELECT statement, to a stream of tuples. There are three types of operators:

• RSTREAM

• ISTREAM

• DSTREAM

RSTREAM emits all tuples in the relation resulting every time a new tuple arrives and the result is updated. ISTREAM
only emits tuples that are in the current window and weren’t in the previous window, that is, it emits tuples having
newly been inserted into the current relation. DSTREAM only emits tuples in the previous relation, that is, it emits
tuples deleted in the current relation.

In the previous example, RSTREAM is used as a relation-to-stream operator. Since the resulting relation is same as the
input relation (i.e. window), it only has one tuple in it.

Note: The difference between using RSTREAM and ISTREAM should be described a little here. Assume that a source
s emits following 4 tuples with timestamps 𝑡1 to 𝑡4:

t1: {"a": 1}
t2: {"a": 2}
t3: {"a": 2}
t4: {"a": 3}

When selecting these tuples by

SELECT RSTREAM * FROM s [RANGE 1 TUPLES];

the resulting output for each timestamp would be:

t1: {"a": 1}
t2: {"a": 2}
t3: {"a": 2}
t4: {"a": 3}

These tuples are identical to what the source s has emitted. On the other hand, when ISTREAM is used instead of
RSTREAM in the previous SELECT statement, the statement emits only three tuples:

t1: {"a": 1}
t2: {"a": 2}
t4: {"a": 3}

The reason why it happens is that the resulting relation wasn’t updated at 𝑡3 since both relations at 𝑡2 and 𝑡3 have the
same tuple {"a": 2} as a result.

In other words, when using ISTREAM with [RANGE 1 TUPLES], a resulting tuple is emitted only when it’s dif-
ferent from the previous resulting tuple. In contrast, RSTREAM emits the resulting tuple every time regardless of its
value.

Therefore, when the stream-to-relation operator is [RANGE 1 TUPLES], basically prefer RSTREAM to ISTREAM
unless there’s a strong reason to use ISTREAM. It leads to less confusing results.

To learn more about these operators, see Queries after finishing this tutorial.

4.2. Word Count Example 21

SensorBee Documentation, Release 0.4

Selection

The SELECT statement can partially pick up some fields of input tuples:

wordcount> SELECT RSTREAM name FROM sentences [RANGE 1 TUPLES];
{"name":"isabella"}
{"name":"isabella"}
{"name":"jacob"}
{"name":"isabella"}
{"name":"jacob"}
...

In this example, only the name field is picked up from input tuples that have “name” and “text” fields.

BQL is schema-less at the moment and the format of output tuples emitted by a source must be documented by that
source’s author. The SELECT statement is only able to report an error at runtime when processing a tuple, not at the
time when it is sent to the server. This is a drawback of being schema-less.

Filtering

The SELECT statement supports filtering with the WHERE clause as SQL does:

wordcount> SELECT RSTREAM * FROM sentences [RANGE 1 TUPLES] WHERE name = "sophia";
{"name":"sophia","text":"anim eu occaecat do est enim do ea mollit"}
{"name":"sophia","text":"cupidatat et mollit consectetur minim et ut deserunt"}
{"name":"sophia","text":"elit est laborum proident deserunt eu sed consectetur"}
{"name":"sophia","text":"mollit ullamco ut sunt sit in"}
{"name":"sophia","text":"enim proident cillum tempor esse occaecat exercitation"}
...

This filters out sentences from the user sophia. Any expression which results in a bool value can be written in the
WHERE clause.

Grouping and Aggregates

The GROUP BY clause is also available in BQL:

wordcount> SELECT ISTREAM name, count(*) FROM sentences [RANGE 60 SECONDS]
GROUP BY name;

{"count":1,"name":"isabella"}
{"count":1,"name":"emma"}
{"count":2,"name":"isabella"}
{"count":1,"name":"jacob"}
{"count":3,"name":"isabella"}
...
{"count":23,"name":"jacob"}
{"count":32,"name":"isabella"}
{"count":33,"name":"isabella"}
{"count":24,"name":"jacob"}
{"count":14,"name":"sophia"}
...

This statement creates groups of users in a 60 second-long window. It returns pairs of a user and the number of
sentences that have been written by that user in the past 60 seconds. In addition to count, BQL also provides built-in
aggregate functions such as min, max, and so on.

22 Chapter 4. Getting Started

SensorBee Documentation, Release 0.4

Also note that the statement above uses ISTREAM rather than RSTREAM. The statement only reports a new count for
an updated user while RSTREAM reports counts for all users every time it receives a tuple. Seeing the example of
outputs from the statements with RSTREAM and ISTREAM makes it easier to understand their behaviors. When the
statement receives isabella, emma, isabella, jacob, and isabella in this order, RSTREAM reports results
as shown below (with some comments):

wordcount> SELECT RSTREAM name, count(*) FROM sentences [RANGE 60 SECONDS]
GROUP BY name;

-- receive "isabella"
{"count":1,"name":"isabella"}
-- receive "emma"
{"count":1,"name":"isabella"}
{"count":1,"name":"emma"}
-- receive "isabella"
{"count":2,"name":"isabella"}
{"count":1,"name":"emma"}
-- receive "jacob"
{"count":2,"name":"isabella"}
{"count":1,"name":"emma"}
{"count":1,"name":"jacob"}
-- receive "isabella"
{"count":3,"name":"isabella"}
{"count":1,"name":"emma"}
{"count":1,"name":"jacob"}

On the other hand, ISTREAM only emits tuples updated in the current resulting relation:

wordcount> SELECT ISTREAM name, count(*) FROM sentences [RANGE 60 SECONDS]
GROUP BY name;

-- receive "isabella"
{"count":1,"name":"isabella"}
-- receive "emma", the count of "isabella" isn't updated
{"count":1,"name":"emma"}
-- receive "isabella"
{"count":2,"name":"isabella"}
-- receive "jacob"
{"count":1,"name":"jacob"}
-- receive "isabella"
{"count":3,"name":"isabella"}

This is one typical situation where ISTREAM works well.

Tokenizing Sentences

To perform word counting, sentences that are contained in sources need to be split up into words. Imagine there
was a user-defined function (UDF) tokenize(sentence) returning an array of strings:

SELECT RSTREAM name, tokenize(text) AS words FROM sentences ...

A resulting tuple of this statement would look like:

{
"name": "emma",
"words": ["exercitation", "ut", "sed", "aute", "ullamco", "aliquip"]

}

4.2. Word Count Example 23

SensorBee Documentation, Release 0.4

However, to count words with the GROUP BY clause and the count function, the tuple above further needs to be
split into multiple tuples so that each tuple has one word instead of an array:

{"name": "emma", "word": "exercitation"}
{"name": "emma", "word": "ut"}
{"name": "emma", "word": "sed"}
{"name": "emma", "word": "aute"}
{"name": "emma", "word": "ullamco"}
{"name": "emma", "word": "aliquip"}

With such a stream, the statement below could easily compute the count of each word:

SELECT ISTREAM word, count(*) FROM some_stream [RANGE 60 SECONDS]
GROUP BY word;

To create a stream like this from tuples emitted from sentences, BQL has the concept of a user-defined stream-
generating function (UDSF). A UDSF is able to emit multiple tuples from one input tuple, something that can-
not be done with the SELECT statement itself. The wordcount package from this tutorial provides a UDSF
wc_tokenizer(stream, field), where stream is the name of the input stream and field is the name
of the field containing a sentence to be tokenized. Both arguments need to be string values.

wordcount> SELECT RSTREAM * FROM wc_tokenizer("sentences", "text") [RANGE 1 TUPLES];
{"name":"ethan","text":"duis"}
{"name":"ethan","text":"lorem"}
{"name":"ethan","text":"adipiscing"}
{"name":"ethan","text":"velit"}
{"name":"ethan","text":"dolor"}
...

In this example, wc_tokenizer receives tuples from the sentences stream and tokenizes sentences contained in
the text field of input tuples. Then, it emits each tokenized word as a separate tuple.

Note: As shown above, a UDSF is one of the most powerful tools to extend BQL’s capability. It can virtually do
anything that can be done for stream data. To learn how to develop it, see User-Defined Stream-Generating Functions.

Creating a Stream

Although it is now possible to count tokenized words, it is easier to have something like a “view” in SQL to avoid
writing wc_tokenizer("sentences", "text") every time issuing a new query. BQL has a stream (a.k.a a
continuous view), which just works like a view in RDBMSs. A stream can be created using the CREATE STREAM
statement:

wordcount> CREATE STREAM words AS
SELECT RSTREAM name, text AS word
FROM wc_tokenizer("sentences", "text") [RANGE 1 TUPLES];

wordcount>

This statement creates a new stream called words. The stream renames text field to word. The stream can be
referred by the FROM clause of the SELECT statement as follows:

wordcount> SELECT RSTREAM * FROM words [RANGE 1 TUPLES];
{"name":"isabella","word":"pariatur"}
{"name":"isabella","word":"adipiscing"}
{"name":"isabella","word":"id"}

24 Chapter 4. Getting Started

SensorBee Documentation, Release 0.4

{"name":"isabella","word":"et"}
{"name":"isabella","word":"aute"}
...

A stream can be specified in the FROM clause of multiple SELECT statements and all those statements will receive the
same tuples from the stream.

Counting Words

After creating the words stream, words can be counted as follows:

wordcount> SELECT ISTREAM word, count(*) FROM words [RANGE 60 SECONDS]
GROUP BY word;

{"count":1,"word":"aute"}
{"count":1,"word":"eu"}
{"count":1,"word":"quis"}
{"count":1,"word":"adipiscing"}
{"count":1,"word":"ut"}
...
{"count":47,"word":"mollit"}
{"count":35,"word":"tempor"}
{"count":100,"word":"in"}
{"count":38,"word":"sint"}
{"count":79,"word":"dolor"}
...

This statement counts the number of occurrences of each word that appeared in the past 60 seconds. By creating
another stream based on the SELECT statement above, further statistical information can be obtained:

wordcount> CREATE STREAM word_counts AS
SELECT ISTREAM word, count(*) FROM words [RANGE 60 SECONDS]
GROUP BY word;

wordcount> SELECT RSTREAM max(count), min(count)
FROM word_counts [RANGE 60 SECONDS];

{"max":52,"min":52}
{"max":120,"min":52}
{"max":120,"min":50}
{"max":165,"min":50}
{"max":165,"min":45}
...
{"max":204,"min":31}
{"max":204,"min":30}
{"max":204,"min":29}
{"max":204,"min":28}
{"max":204,"min":27}
...

The CREATE STREAM statement above creates a new stream word_counts. The next SELECT statement com-
putes the maximum and minimum counts over words observed in past 60 seconds.

Using a BQL File

All statements above will be cleared once the SensorBee server is restarted. By using a BQL file, a topology can be
set up on each startup of the server. A BQL file can contain multiple BQL statements. For the statements used in this
tutorial, the file would look as follows:

4.2. Word Count Example 25

SensorBee Documentation, Release 0.4

CREATE SOURCE sentences TYPE wc_sentences;

CREATE STREAM words AS
SELECT RSTREAM name, text AS word

FROM wc_tokenizer("sentences", "text") [RANGE 1 TUPLES];

CREATE STREAM word_counts AS
SELECT ISTREAM word, count(*)

FROM words [RANGE 60 SECONDS]
GROUP BY word;

Note: A BQL file cannot have the SELECT statement because it runs continuously until it is manually stopped.

To run the BQL file on the server, a configuration file for sensorbee run needs to be provided in YAML format.
The name of the configuration file is often sensorbee.yaml. For this tutorial, the file has the following content:

topologies:
wordcount:
bql_file: wordcount.bql

topologies is one of the top-level parameters related to topologies in the server. It has names of topologies to
be created on startup. In the file above, there’s only one topology wordcount. Each topology has a bql_file
parameter to specify which BQL file to execute. The wordcount.bql file was copied to the current directory
before and the configuration file above specifies it.

With this configuration file, the SensorBee server can be started as follows:

/path/to/wordcount$./sensorbee run -c sensorbee.yaml
./sensorbee run -c sensorbee.yaml
INFO[0000] Setting up the server context config={"logging":
{"log_dropped_tuples":false,"min_log_level":"info","summarize_dropped_tuples":
false,"target":"stderr"},"network":{"listen_on":":15601"},"storage":{"uds":
{"params":{},"type":"in_memory"}},"topologies":{"wordcount":{"bql_file":
"wordcount.bql"}}}
INFO[0000] Setting up the topology topology=wordcount
INFO[0000] Starting the server on :15601

As written in log messages, the topology wordcount is created before the server actually starts.

Summary

This tutorial provided a brief overview of SensorBee through word counting. First of all, it showed how to build a
custom sensorbee command to work with the tutorial. Second, running the server and setting up a topology with
BQL was explained. Then, querying streams and how to create a new stream using SELECT was introduced. Finally,
word counting was performed over a newly created stream and BQL statements that create a source and streams were
persisted in a BQL file so that the server can re-execute those statements on startup.

In subsequent sections, there are more tutorials and samples to learn how to integrate SensorBee with other tools and
libraries.

26 Chapter 4. Getting Started

CHAPTER 5

Using Machine Learning

This chapter describes how to use machine learning on SensorBee.

In this tutorial, SensorBee retrieves tweets written in English from Twitter’s public stream using Twitter’s Sample API.
SensorBee adds two labels to each tweet: age and gender. Tweets are labeled (“classified”) using machine learning.

The following sections shows how to install dependencies, set them up, and apply machine learning to tweets using
SensorBee.

Note: Due to the way the Twitter client receives tweets from Twitter, the behavior of this tutorial demonstration does
not seem very smooth. For example, the client gets around 50 tweets in 100ms, then stops for 900ms, and repeats the
same behavior every second. So, it is easy to get the misperception that SensorBee and its machine learning library
are doing mini-batch processing, but they actually do not.

Prerequisites

This tutorial requires following software to be installed:

• Ruby 2.1.4 or later

– https://www.ruby-lang.org/en/documentation/installation/

• Elasticsearch 2.2.0 or later

– https://www.elastic.co/products/elasticsearch

To check that the data arrives properly in Elasticsearch and to show see this data could be visualized, also install:

• Kibana 4.4.0 or later

– https://www.elastic.co/products/kibana

However, explanations on how to configure and use Kibana for data visualization are not part of this tutorial. It is
assumed that Elasticsearch and Kibana are running on the same host as SensorBee. However, SensorBee can be
configured to use services running on a different host.

27

https://www.ruby-lang.org/en/documentation/installation/
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/kibana

SensorBee Documentation, Release 0.4

In addition, Go 1.4 or later and Git are required, as described in Getting Started.

Quick Set Up Guide

If there are no Elasticsearch and Kibana instances that can be used for this tutorial, they need to be installed. Skip this
subsection if they are already installed. In case an error occurs, look up the documentation at http://www.elastic.co/.

Installing and Running Elasticsearch

Download the package from https://www.elastic.co/downloads/elasticsearch and extract the compressed file. Then,
run bin/elasticsearch in the directory with the extracted files:

/path/to/elasticserach-2.2.0$ bin/elasticsearch
... log messages ...

Note that a Java runtime is required to run the command above.

To see if Elasticsearch is running, access the server with curl command:

$ curl http://localhost:9200/
{

"name" : "Peregrine",
"cluster_name" : "elasticsearch",
"version" : {
"number" : "2.2.0",
"build_hash" : "8ff36d139e16f8720f2947ef62c8167a888992fe",
"build_timestamp" : "2016-01-27T13:32:39Z",
"build_snapshot" : false,
"lucene_version" : "5.4.1"

},
"tagline" : "You Know, for Search"

}

Installing and Running Kibana

Download the package from https://www.elastic.co/downloads/kibana and extract the compressed file. Then, run
bin/kibana in the directory with the extracted files:

/path/to/kibana-4.4.0$ bin/kibana
... log messages ...

Access http://localhost:5601/ with a Web browser. Kibana is running correctly if it shows a page saying “Configure
an index pattern”. Since Elasticsearch does not have any data yet, no more operation is necessary at the moment. In
the Running SensorBee section further configuration steps are described.

Installation and Setup

At this point, the environment described in the previous section is assumed to be installed correctly and working. Now,
some more components needs to be set up before continuing this tutorial.

28 Chapter 5. Using Machine Learning

http://www.elastic.co/
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/kibana
http://localhost:5601/

SensorBee Documentation, Release 0.4

Installing the Tutorial Package

To setting up the system, go get the tutorial package first:

$ go get github.com/sensorbee/tutorial/ml

The package contains configuration files in the config subdirectory that are necessary for the tutorial. Create a
temporary directory and copy those files to the directory (replace /path/to/ with an appropriate path):

$ mkdir -p /path/to/sbml
$ cp -r $GOPATH/src/github.com/sensorbee/tutorial/ml/config/* /path/to/sbml/
$ cd /path/to/sbml
/path/to/sbml$ ls
Gemfile
build.yaml
fluent.conf
sensorbee.yaml
train.bql
twitter.bql
uds

Installing and Running fluentd

This tutorial, and SensorBee, relies on fluentd. fluentd is an open source data collector that provides many input and
output plugins to connect with a wide variety of databases including Elasticsearch. Skip this subsection if fluentd is
already installed.

To install fluentd for this tutorial, bundler needs to be installed with the gem command. To see if it’s already installed,
run gem list. Something like bundler (1.11.2) shows up if it’s already installed:

/path/to/sbml$ gem list | grep bundler
bundler (1.11.2)
/path/to/sbml$

Otherwise, install bundler with gem install bundler. It may require admin privileges (i.e. sudo):

/path/to/sbml$ gem install bundler
Fetching: bundler-1.11.2.gem (100%)
Successfully installed bundler-1.11.2
Parsing documentation for bundler-1.11.2
Installing ri documentation for bundler-1.11.2
Done installing documentation for bundler after 3 seconds
1 gem installed
/path/to/sbml$

After installing bundler, run the following command to install fluentd and its plugins under the /path/to/sbml
directory (in order to build the gems, you may have to install Ruby header files before):

/path/to/sbml$ bundle install --path vendor/bundle
Fetching gem metadata from https://rubygems.org/............
Fetching version metadata from https://rubygems.org/..
Resolving dependencies...
Installing cool.io 1.4.3 with native extensions
Installing multi_json 1.11.2
Installing multipart-post 2.0.0
Installing excon 0.45.4

5.2. Installation and Setup 29

http://www.fluentd.org/

SensorBee Documentation, Release 0.4

Installing http_parser.rb 0.6.0 with native extensions
Installing json 1.8.3 with native extensions
Installing msgpack 0.5.12 with native extensions
Installing sigdump 0.2.4
Installing string-scrub 0.0.5 with native extensions
Installing thread_safe 0.3.5
Installing yajl-ruby 1.2.1 with native extensions
Using bundler 1.11.2
Installing elasticsearch-api 1.0.15
Installing faraday 0.9.2
Installing tzinfo 1.2.2
Installing elasticsearch-transport 1.0.15
Installing tzinfo-data 1.2016.1
Installing elasticsearch 1.0.15
Installing fluentd 0.12.20
Installing fluent-plugin-elasticsearch 1.3.0
Bundle complete! 2 Gemfile dependencies, 20 gems now installed.
Bundled gems are installed into ./vendor/bundle.
/path/to/sbml$

With --path vendor/bundle option, all Ruby gems required for this tutorial is locally installed in the /path/
to/sbml/vendor/bundle directory. To confirm whether fluentd is correctly installed, run the command below:

/path/to/sbml$ bundle exec fluentd --version
fluentd 0.12.20
/path/to/sbml$

If it prints the version, the installation is complete and fluentd is ready to be used.

Once fluentd is installed, run it with the provided configuration file:

/path/to/sbml$ bundle exec fluentd -c fluent.conf
2016-02-05 16:02:10 -0800 [info]: reading config file path="fluent.conf"
2016-02-05 16:02:10 -0800 [info]: starting fluentd-0.12.20
2016-02-05 16:02:10 -0800 [info]: gem 'fluentd' version '0.12.20'
2016-02-05 16:02:10 -0800 [info]: gem 'fluent-plugin-elasticsearch' version '1.3.0'
2016-02-05 16:02:10 -0800 [info]: adding match pattern="sensorbee.tweets" type="...
2016-02-05 16:02:10 -0800 [info]: adding source type="forward"
2016-02-05 16:02:10 -0800 [info]: using configuration file: <ROOT>

<source>
@type forward
@id forward_input

</source>
<match sensorbee.tweets>
@type elasticsearch
host localhost
port 9200
include_tag_key true
tag_key @log_name
logstash_format true
flush_interval 1s

</match>
</ROOT>
2016-02-05 16:02:10 -0800 [info]: listening fluent socket on 0.0.0.0:24224

Some log messages are truncated with ... at the end of each line.

The configuration file fluent.conf is provided as a part of this tutorial. It defines a data source using
in_forward and a destination that is connected to Elasticsearch. If the Elasticserver is running on a different

30 Chapter 5. Using Machine Learning

SensorBee Documentation, Release 0.4

host or using a port number different from 9200, edit fluent.conf:

<source>
@type forward
@id forward_input

</source>
<match sensorbee.tweets>

@type elasticsearch
host {custom host name}
port {custom port number}
include_tag_key true
tag_key @log_name
logstash_format true
flush_interval 1s

</match>

Also, feel free to change other parameters to adjust the configuration to the actual environment. Parameters for the
Elasticsearch plugin are described at https://github.com/uken/fluent-plugin-elasticsearch.

Create Twitter API Key

This tutorial requires Twitter’s API keys. To create keys, visit Application Management. Once a new application is
created, click the application and its “Keys and Access Tokens” tab. The page should show 4 keys:

• Consumer Key (API Key)

• Consumer Secret (API Secret)

• Access Token

• Access Token Secret

Then, create the api_key.yaml in the /path/to/sbml directory and copy keys to the file as follows:

/path/to/sbml$ cat api_key.yaml
consumer_key: <Consumer Key (API Key)>
consumer_secret: <Consumer Secret (API Secret)>
access_token: <Access Token>
access_token_secret: <Access Token Secret>

Replace each key’s value with the actual values shown in Twitter’s application management page.

Running SensorBee

All requirements for this tutorial have been installed and set up. The next step is to install build_sensorbee, then
build and run the sensorbee executable:

/path/to/sbml$ go get gopkg.in/sensorbee/sensorbee.v0/...
/path/to/sbml$ build_sensorbee
sensorbee_main.go
/path/to/sbml$./sensorbee run -c sensorbee.yaml
INFO[0000] Setting up the server context config={"logging":
{"log_dropped_tuples":false,"min_log_level":"info","summarize_dropped_tuples":
false,"target":"stderr"},"network":{"listen_on":":15601"},"storage":{"uds":
{"params":{"dir":"uds"},"type":"fs"}},"topologies":{"twitter":{"bql_file":
"twitter.bql"}}}

5.3. Running SensorBee 31

https://github.com/uken/fluent-plugin-elasticsearch
https://apps.twitter.com/

SensorBee Documentation, Release 0.4

INFO[0000] Setting up the topology topology=twitter
INFO[0000] Starting the server on :15601

Because SensorBee loads pre-trained machine learning models on its startup, it may take a while to set up a topology.
After the server shows the message Starting the server on :15601, access Kibana at http://localhost:
5601/. If the setup operations performed so far have been successful, it returns the page as shown below with a
green “Create” button:

(If the button is not visible, see the section on Troubleshooting below.) Click the “Create” button to work with data
coming from SensorBee. After the action is completed, you should see a list of fields that were found in the data

32 Chapter 5. Using Machine Learning

http://localhost:5601/
http://localhost:5601/

SensorBee Documentation, Release 0.4

stored so far. If you click “Discover” in the top menu, a selection of the tweets and a diagram with the tweet frequency
should be visible.

Kibana can now be used to visualize and search through the data in Elasticsearch. Although this tutorial doesn’t
describe the usage of Kibana, many tutorials and examples can be found on the Web. The picture below shows an
example chart showing some classification metrics:

5.3. Running SensorBee 33

SensorBee Documentation, Release 0.4

Troubleshooting

If Kibana doesn’t show the “Create” button, something may not be working properly. First, enter sensorbee
shell to see SensorBee is working:

/path/to/sbml$./sensorbee shell -t twitter
twitter>

Then, issue the following SELECT statement:

twitter> SELECT RSTREAM * FROM public_tweets [RANGE 1 TUPLES];
... tweets show up here ...

If the statement returns an error or it doesn’t show any tweet:

1. the host may not be connected to Twitter. Check the internet connection with commands such as ping.

2. The API key written in api_key.yaml may be wrong.

When the statement above shows tweets, query another stream:

twitter> SELECT RSTREAM * FROM labeled_tweets [RANGE 1 TUPLES];
... tweets show up here ...

If the statement doesn’t show any tweets, the format of tweets may have been changed since the time of this writing.
If so, modify BQL statements in twitter.bql to support the new format. BQL Statements and Plugins describes
what each statement does.

When the statement above prints tweets, fluentd or Elasticsearch may have not been started yet. Check they’re running
correctly.

For other errors, report them to https://github.com/sensorbee/tutorial.

BQL Statements and Plugins

This section describes how SensorBee produced the output that was seen in the previous section: How it loads tweets
from Twitter, preprocesses tweets for machine learning, and finally classifies tweets to extract demographic informa-
tion of each tweets. twitter.bql in the config directory contains all BQL statements used in this tutorial.

The following subsections explains what each statement does. To interact with some streams created by twitter.
bql, open another terminal (while the sensorbee instance from the previous section is still running) and launch
sensorbee shell:

/path/to/sbml$./sensorbee shell -t twitter
twitter>

In the following sections of this tutorial, statements prefixed with twitter> can be executed in the SensorBee shell;
statements without this prefix are statements from the twitter.bql file.

Creating a Twitter Source

This tutorial does not work without retrieving the public timeline of Twitter using the Sample API. The Sample API
is provided for free to retrieve a portion of tweets sampled from the public timeline.

The github.com/sensorbee/twitter package provides a plugin for public time line retrieval. The source provided
by that plugin has the type twitter_public_stream. The plugin can be registered to the SensorBee

34 Chapter 5. Using Machine Learning

https://github.com/sensorbee/tutorial
https://github.com/sensorbee/twitter/

SensorBee Documentation, Release 0.4

server by adding github.com/sensorbee/twitter/plugin to the build.yaml configuration file for
build_sensorbee. Now consider the first statement in the twitter.bql file:

CREATE SOURCE public_tweets TYPE twitter_public_stream
WITH key_file = "api_key.yaml";

This statement creates a new source with the name public_tweets. To retrieve raw tweets from that source, run
the following SELECT statement in the SensorBee shell:

twitter> SELECT RSTREAM * FROM public_tweets [RANGE 1 TUPLES];

Note: For simplicity, a relative path is specified as the key_file parameter. However, it is usually recommended
to pass an absolute path when running the SensorBee server as a daemon.

Preprocessing Tweets and Extracting Features for Machine Learning

Before applying machine learning to tweets, they need to be converted into another form of information so that machine
learning algorithms can utilize them. The conversion consists of two tasks: preprocessing and feature extraction.
Preprocessing generally involves data cleansing, filtering, normalization, and so on. Feature extraction transforms
preprocessed data into several pieces of information (i.e. features) that machine learning algorithms can “understand”.

Which preprocessing or feature extraction methods are required for machine learning varies depending on the format
or data type of input data or machine learning algorithms to be used. Therefore, this tutorial only shows one example
of applying a classification algorithm to English tweets.

Selecting Meaningful Fields of English Tweets

Because this tutorial aims at English tweets, tweets written in other languages needs to be removed. This can be done
with the WHERE clause, as you can check in the SensorBee shell:

twitter> SELECT RSTREAM * FROM public_tweets [RANGE 1 TUPLES]
WHERE lang = "en";

Tweets have the lang field and it can be used for the filtering.

In addition to it, not all fields in a raw tweet will be required for machine learning. Thus, removing unnecessary fields
keeps data simple and clean:

CREATE STREAM en_tweets AS
SELECT RSTREAM

"sensorbee.tweets" AS tag, id_str AS id, lang, text,
user.screen_name AS screen_name, user.description AS description

FROM public_tweets [RANGE 1 TUPLES]
WHERE lang = "en";

This statement creates a new stream en_tweets. It only selects English tweets by WHERE lang = "en".
"sensorbee.tweets" AS tag is used by fluentd sink later. The items in that stream will look like:

{
"tag": "sensorbee.tweets",
"id": "the string representation of tweet's id",
"lang": "en",
"text": "the contents of the tweet",
"screen_name": "user's @screen_name",

5.4. BQL Statements and Plugins 35

SensorBee Documentation, Release 0.4

"description": "user's profile description"
}

Note: AS in user.screen_name AS screen_name is required at the moment. Without it, the field would
have the name like col_n. This is because user.screen_name could be evaluated as a JSON Path and might
result in multiple return values so that it cannot properly be named. This specification might be going to be changed
in the future version.

Removing Noise

Noise that is meaningless and could be harmful to machine learning algorithms needs to be removed. The field of
natural language processing (NLP) has developed many methods for this purpose and they can be found in a wide
variety of articles. However, this tutorial only applies some of the most basic operations on each tweets.

CREATE STREAM preprocessed_tweets AS
SELECT RSTREAM

filter_stop_words(
nlp_split(

nlp_to_lower(filter_punctuation_marks(text)),
" ")) AS text_vector,

filter_stop_words(
nlp_split(

nlp_to_lower(filter_punctuation_marks(description)),
" ")) AS description_vector,

*
FROM en_tweets [RANGE 1 TUPLES];

The statement above creates a new stream preprocessed_tweets from en_tweets. It adds two fields to
the tuple emitted from en_tweets: text_vector and description_vector. As for preprocessing, the
statement applies following methods to text and description fields:

• Remove punctuation marks

• Change uppercase letters to lowercase

• Remove stopwords

First of all, punctuation marks are removed by the user-defined function (UDF) filter_puncuation_marks.
It is provided in a plugin for this tutorial in the github.com/sensorbee/tutorial/ml package. The UDF
removes some punctuation marks such as ”,”, ”.”, or “()” from a string.

Note: Emoticons such as ”:)” may play a very important role in classification tasks like sentiment estimation.
However, filter_punctuation_marks simply removes most of them for simplicity. Develop a better UDF to
solve this issue as an exercise.

Second, all uppercase letters are converted into lowercase letters by the nlp_to_lower UDF. The UDF is registered
in github.com/sensorbee/nlp/plugin. Because a letter is mere byte code and the values of “a” and “A” are
different, machine learning algorithms consider “word” and “Word” have different meanings. To avoid that confusion,
all letters should be “normalized”.

Note: Of course, some words should be distinguished by explicitly starting with an uppercase. For example, “Mike”
could be a name of a person, but changing it to “mike” could make the word vague.

36 Chapter 5. Using Machine Learning

SensorBee Documentation, Release 0.4

Finally, all stopwords are removed. Stopwords are words that appear too often and don’t provide any insight for clas-
sification. Stopword filtering in this tutorial is done in two steps: tokenization and filtering. To perform a dictionary-
based stopword filtering, the content of a tweet needs to be tokenized. Tokenization is a process that converts a
sentence into a sequence of words. In English, “I like sushi” will be tokenized as ["I", "like", "sushi"].
Although tokenization isn’t as simple as just splitting words by white spaces, the preprocessed_tweets stream
simply does it for simplicity using the UDF nlp_split, which is defined in the github.com/sensorbee/nlp
package. nlp_split takes two arguments: a sentence and a splitter. In the statement, contents are split by a white
space. nlp_split returns an array of strings. Then, the UDF filter_stop_words takes the return value of
nlp_split and removes stopwords contained in the array. filter_stop_word is provided as a part of this
tutorial in the github.com/sensorbee/tutorial/ml package. It’s a mere example UDF and doesn’t provide
perfect stopword filtering.

As a result, both text_vector and description_vector have an array of words like ["i", "want",
"eat", "sushi"] created from the sentence I want to eat sushi..

Preprocessing shown so far is very similar to the preprocessing required for full-text search engines. There should be
many valuable resources among that field including Elasticsearch.

Note: For other preprocessing approaches such as stemming, refer to natural language processing textbooks.

Creating Features

In NLP, a bag-of-words representation is usually used as a feature for machine learning algorithms. A bag-of-words
consists of pairs of a word and its weight. Weight could be any numerical value and usually something related to term
frequency (TF) is used. A sequence of the pairs is called a feature vector.

A feature vector can be expressed as an array of weights. Each word in all tweets observed by a machine learning
algorithm corresponds to a particular position of the array. For example, the weight of the word “want” may be 4th
element of the array.

A feature vector for NLP data could be very long because tweets contains many words. However, each vector would be
sparse due to the maximum length of tweets. Even if machine learning algorithms observe more than 100,000 words
and use them as features, each tweet only contains around 30 or 40 words. Therefore, each feature vector is very
sparse, that is, only a small number its elements have non-zero weight. In such cases, a feature vector can effectively
expressed as a map:

{
"word": weight,
"word": weight,
...

}

This tutorial uses online classification algorithms that are imported from Jubatus, a distributed online machine learning
server. These algorithms accept the following form of data as a feature vector:

{
"word1": 1,
"key1": {

"word2": 2,
"word3": 1.5,

},
"word4": [1.1, 1.2, 1.3]

}

5.4. BQL Statements and Plugins 37

http://jubat.us/en/

SensorBee Documentation, Release 0.4

The SensorBee terminology for that kind of data structure is “map”. A map can be nested and its value can be an array
containing weights. The map above is converted to something like:

{
"word1": 1,
"key1/word2": 2,
"key1/word3": 1.5,
"word4[0]": 1.1,
"word4[1]": 1.2,
"word4[2]": 1.3

}

The actual feature vectors for the tutorial are created in the fv_tweets stream:

CREATE STREAM fv_tweets AS
SELECT RSTREAM
{

"text": nlp_weight_tf(text_vector),
"description": nlp_weight_tf(description_vector)

} AS feature_vector,
tag, id, screen_name, lang, text, description

FROM preprocessed_tweets [RANGE 1 TUPLES];

As described earler, text_vector and description_vector are arrays of words. The nlp_weight_tf
function defined in the github.com/sensorbee/nlp package computes a feature vector from an array. The
weight is term frequency (i.e. the number of occurrences of a word). The result is a map expressing a sparse vector
above. To see how the feature_vector looks like, just issue a SELECT statement for the fv_tweets stream.

All required preprocessing and feature extraction have been completed and it’s now ready to apply machine learning
to tweets.

Applying Machine Learning

The fv_tweets stream now has all the information required by a machine learning algorithm to classify tweets. To
apply the algorithm for each tweets, pre-trained machine learning models have to be loaded:

LOAD STATE age_model TYPE jubaclassifier_arow
OR CREATE IF NOT SAVED
WITH label_field = "age", regularization_weight = 0.001;

LOAD STATE gender_model TYPE jubaclassifier_arow
OR CREATE IF NOT SAVED
WITH label_field = "gender", regularization_weight = 0.001;

In SensorBee, machine learning models are expressed as user-defined states (UDSs). In the statement above, two
models are loaded: age_model and gender_model. These models contain the necessary information to classify
gender and age of the user of each tweet. The model files are located in the uds directory that was copied from the
package’s config directory beforehand:

/path/to/sbml$ ls uds
twitter-age_model-default.state
twitter-gender_model-default.state

These filenames were automatically assigned by SensorBee server when the SAVE STATE statement was issued. It
will be described later.

Both models have the type jubaclassifier_arow imported from Jubatus. The UDS type is implemented in the
github.com/sensorbee/jubatus/classifier package. jubaclassifier_arow implements the AROW online linear

38 Chapter 5. Using Machine Learning

https://github.com/sensorbee/jubatus/classifier

SensorBee Documentation, Release 0.4

classification algorithm [Crammer09]. Parameters specified in the WITH clause are related to training and will be
described later.

After loading the models as UDSs, the machine learning algorithm is ready to work:

CREATE STREAM labeled_tweets AS
SELECT RSTREAM

juba_classified_label(jubaclassify("age_model", feature_vector)) AS age,
juba_classified_label(jubaclassify("gender_model", feature_vector)) AS gender,
tag, id, screen_name, lang, text, description

FROM fv_tweets [RANGE 1 TUPLES];

The labeled_tweets stream emits tweets with age and gender labels. The jubaclassify UDF performs
classification based on the given model.

twitter> EVAL jubaclassify("gender_model", {
"text": {"i": 1, "wanna": 1, "eat":1, "sushi":1},
"description": {"i": 1, "need": 1, "sushi": 1}

});
{"male":0.021088751032948494,"female":-0.020287269726395607}

jubaclassify returns a map of labels and their scores as shown above. The higher the score of a label, the more
likely a tweet has the label. To choose the label having the highest score, the juba_classified_label function
is used:

twitter> EVAL juba_classified_label({
"male":0.021088751032948494,"female":-0.020287269726395607});

"male"

jubaclassify and juba_classified_label functions are also defined in the github.com/
sensorbee/jubatus/classifier package.

Inserting Labeled Tweets Into Elasticsearch via Fluentd

Finally, tweets labeled by machine learning need to be inserted into Elasticsearch for visualization. This is done via
fluentd which was previously set up.

CREATE SINK fluentd TYPE fluentd;
INSERT INTO fluentd from labeled_tweets;

SensorBee provides fluentd plugins in the github.com/sensorbee/fluentd package. The fluentd sink
write tuples into fluentd’s forward input plugin running on the same host.

After creating the sink, the INSERT INTO statement starts writing tuples from a source or a stream into it. This
statement is the last one in the twitter.bql file and also concludes this section. All the steps from connecting to
the Twitter API, transforming tweets and analyzing them using Jubatus have been shown in this section. As the last
part of this tutorial, it will be shown how the training of the previously loaded model files has been done.

Training

The previous section used the machine learning models that were already trained but it was not described how to train
them. This section explains how machine learning models can be trained with BQL and the sensorbee command.

5.5. Training 39

SensorBee Documentation, Release 0.4

Preparing Training Data

Because the machine learning algorithm used in this tutorial is supervised learning, it requires a training data set to
create models. Training data is a pair of original data and its label. There is no common format of a training data set
and a format can vary depending on use cases. In this tutorial, a training data set consists of multiple lines each of
which has exactly one JSON object.

{"description":"I like sushi.", ...}
{"text":"I wanna eat sushi.", ...}
...

In addition, each JSON object needs to have two fields “age” and “gender”:

{"age":"10-19","gender":"male", ...other original fields...}
{"age":"20-29","gender":"female", ...other original fields...}
...

In the pre-trained model, age and gender have following labels:

• age

– 10-19

– 20-29

– 30-39

– 40-49

– 50<

• gender

– male

– female

Both age and gender can have additional labels if necessary. Labels can be empty if they are not known for sure. After
annotating each tweet, the training data set needs to be saved as training_tweets.json in the /path/to/
sbml directory.

The training data set used for the pre-trained models contains 4974 gender labels and 14747 age labels.

Training

Once the training data set has been prepared, the models can be trained with the following command:

/path/to/sbml$./sensorbee runfile -t twitter -c sensorbee.yaml -s '' train.bql

sensorbee runfile executes BQL statements written in a given file, e.g. train.bql in the command above.
-t twittermeans the name of the topology is twitter. The name is used for the filenames of saved models later.
-c sensorbee.yaml passes the same configuration file as the one used previously. -s '' means sensorbee
runfile saves all UDSs after the topology stops.

After running the command above, two models (UDSs) are saved in the uds directory. The saved model can be loaded
by the LOAD STATE statement.

40 Chapter 5. Using Machine Learning

SensorBee Documentation, Release 0.4

BQL Statements

All BQL statements for training are written in train.bql. Most statements in the file overlap with twitter.bql,
so only differences will be explained.

CREATE STATE age_model TYPE jubaclassifier_arow
WITH label_field = "age", regularization_weight = 0.001;

CREATE SINK age_model_trainer TYPE uds WITH name = "age_model";

CREATE STATE gender_model TYPE jubaclassifier_arow
WITH label_field = "gender", regularization_weight = 0.001;

CREATE SINK gender_model_trainer TYPE uds WITH name = "gender_model";

These statements create UDSs for machine learning models of age and gender classifications. CREATE STATE
statements are same as ones in twitter.bql. The CREATE SINK statements above create new sinks with the type
uds. The uds sink writes tuples into the UDS specified as name if the UDS supports it. jubaclassifier_arow
supports writing tuples. When a tuple is written to it, it trains the model with the tuple having training data. It assumes
that the tuple has two fields: a feature vector field and a label field. By default, a feature vector and a label are obtained
by the feature_vector field and the label field in a tuple, respectively. In this tutorial, each tuple has two labels:
age and gender. Therefore, the field names of those fields need to be customized. The field names can be specified
by the label_field parameter in the WITH clause of the CREATE STATE statement. In the statements above,
age_model and gender_model UDSs obtain labels from the age field and the gender field, respectively.

CREATE PAUSED SOURCE training_data TYPE file WITH path = "training_tweets.json";

This statement creates a source which inputs tuples from a file. training_tweets.json is the file prepared
previously and contains training data. The source is created with the PAUSED flag, so it doesn’t emit any tuple until
all other components in the topology are set up and the RESUME SOURCE statement is issued.

en_tweets, preprocessed_tweets, and fv_tweets streams are same as ones in twitter.bql except
that the tweets are emitted from the file source rather than the twitter_public_stream source.

CREATE STREAM age_labeled_tweets AS
SELECT RSTREAM * FROM fv_tweets [RANGE 1 TUPLES] WHERE age != "";

CREATE STREAM gender_labeled_tweets AS
SELECT RSTREAM * FROM fv_tweets [RANGE 1 TUPLES] WHERE gender != "";

These statements create new sources that only emit tuples having a label for training.

INSERT INTO age_model_trainer FROM age_labeled_tweets;
INSERT INTO gender_model_trainer FROM gender_labeled_tweets;

Then, those filtered tuples are written into models (UDSs) via the uds sinks created earlier.

RESUME SOURCE training_data;

All streams are set up and the training_data source is finally resumed. With the sensorbee runfile com-
mand, all statements run until all tuples emitted from the training_data source are processed.

When BQL statements are run on the server, the SAVE STATE statement is usually used to save UDSs. However,
sensorbee runfile optionally saves UDSs after the topology is stopped. Therefore, train.bql doesn’t issue
SAVE STATE statements.

Evaluation

Evaluation tools are being developed.

5.5. Training 41

SensorBee Documentation, Release 0.4

Online Training

All machine learning algorithms provided by Jubatus are online algorithms, that is, models can incrementally be
trained every time a new training data is given. In contrast to online algorithms, batch algorithms requires all training
data for each training. Since online machine learning algorithms don’t have to store training data locally, they can
train models from streaming data.

If training data can be obtained by simple rules, training and classification can be applied to streaming data concur-
rently in the same SensorBee server. In other words, a UDS can be used for training and classification.

42 Chapter 5. Using Machine Learning

Part III

The BQL Language

43

SensorBee Documentation, Release 0.4

This part describes the use of the BQL Language in SensorBee. It starts with describing the general syntax of BQL,
then explain how to create the structures for data in-/output and stateful operations. After that, the general processing
model and the remaining BQL query types are explained. Finally, a list of operators and functions that can be used in
BQL expressions is provided.

45

SensorBee Documentation, Release 0.4

46

CHAPTER 6

BQL Syntax

Lexical Structure

BQL has been designed to be easy to learn for people who have used SQL before. While keywords and commands
differ in many cases, the basic structure, set of tokens, operators etc. is the same. For example, the following is
(syntactically) valid BQL input:

SELECT RSTREAM given_name, last_name FROM persons [RANGE 1 TUPLES] WHERE age > 20;

CREATE SOURCE s TYPE fluentd WITH host="example.com", port=12345;

INSERT INTO file FROM data;

This is a sequence of three commands, one per line (although this is not required; more than one command can be on
a line, and commands can span multiple lines where required). Additionally, comments can occur in BQL input. They
are effectively equivalent to whitespace.

The type of commands that can be used in BQL is described in Input/Output/State Definition and Queries.

Identifiers and Keywords

Tokens such as SELECT, CREATE, or INTO in the example above are examples of keywords, that is, words that
have a fixed meaning in the BQL language. The tokens persons and file are examples of identifiers. They
identify names of streams, sources, or other objects, depending on the command they are used in. Therefore they are
sometimes simply called “names”. Keywords and identifiers have the same lexical structure, meaning that one cannot
know whether a token is an identifier or a keyword without knowing the language.

BQL identifiers and keywords must begin with a letter (a-z). Subsequent characters can be letters, underscores, or
digits (0-9). Keywords and unquoted identifiers are in general case insensitive.

However, there is one important difference between SQL and BQL when it comes to “column identifiers”. In BQL,
there are no “columns” with names that the user can pick herself, but “field selectors” that describe the path to a value
in a JSON-like document imported from outside the system. Therefore field selectors are case-sensitive (in order to

47

SensorBee Documentation, Release 0.4

be able to deal with input of the form {"a": 1, "A": 2}) and also there is a form that allows to use special
characters; see Field Selectors for details.

Note: There is a list of reserved words that cannot be used as identifiers to avoid confusion. This list can be found at
https://github.com/sensorbee/sensorbee/blob/master/core/reservedwords.go. However, this restriction does not apply
to field selectors.

Constants

There are multiple kinds of implicitly-typed constants in BQL: strings, decimal numbers (with and without fractional
part) and booleans. Constants can also be specified with explicit types, which can enable more accurate representation
and more efficient handling by the system. These alternatives are discussed in the following subsections.

String Constants

A string constant in BQL is an arbitrary sequence of characters bounded by double quotes ("), for example "This
is a string". To include a double-quote character within a string constant, write two adjacent double quotes,
e.g., "Dianne""s horse".

No escaping for special characters is supported at the moment, but any valid UTF-8 encoded byte sequence can be
used. See the string data type reference for details.

Numeric Constants

There are two different numeric data types in BQL, int and float, representing decimal numbers without and with
fractional part, respectively.

An int constant is written as

[-]digits

A float constant is written as

[-]digits.digits

Scientific notation (1e+10) as well as Infinity and NaN cannot be used in BQL statements.

Some example of valid numerical constants:

42
3.5
-36

See the type references for int and float for details.

Note: For some operations/functions it makes a difference whether int or float is used (e.g., 2/3 is 0, but 2.0/3
is 0.666666). Be aware of that when writing constants in BQL statements.

48 Chapter 6. BQL Syntax

https://github.com/sensorbee/sensorbee/blob/master/core/reservedwords.go

SensorBee Documentation, Release 0.4

Boolean Constants

There are two keywords for the two possible boolean values, namely true and false.

See the bool data type reference for details.

Operators

An operator is a sequence of the items from the following list:

+
-

*
/
<
>
=
!
%

See the chapter on Operators for the complete list of operators in BQL. There are no user-defined operators at the
moment.

Special Characters

Some characters that are not alphanumeric have a special meaning that is different from being an operator. Details on
the usage can be found at the location where the respective syntax element is described. This section only exists to
advise the existence and summarize the purposes of these characters.

• Parentheses (()) have their usual meaning to group expressions and enforce precedence. In some cases paren-
theses are required as part of the fixed syntax of a particular BQL command.

• Brackets ([]) are used in Array Constructors and in Field Selectors, as well as in Stream-to-Relation Operators.

• Curly brackets ({}) are used in Map Constructors

• Commas (,) are used in some syntactical constructs to separate the elements of a list.

• The semicolon (;) terminates a BQL command. It cannot appear anywhere within a command, except within a
string constant or quoted identifier.

• The colon (:) is used to separate stream names and field selectors, and within field selectors to select array
slices (see Extended Descend Operators).

• The asterisk (*) is used in some contexts to denote all the fields of a table row (see Notes on Wildcards). It also
has a special meaning when used as the argument of an aggregate function, namely that the aggregate does not
require any explicit parameter.

• The period (.) is used in numeric constants and to denote descend in field selectors.

Comments

A comment is a sequence of characters beginning with double dashes and extending to the end of the line, e.g.:

-- This is a standard BQL comment

C-style (multi-line) comments cannot be used.

6.1. Lexical Structure 49

SensorBee Documentation, Release 0.4

Operator Precedence

The following table shows the operator precedence in BQL:

Operator/Element Description
:: typecast
- unary minus
* / % multiplication, division, modulo
+ - addition, subtraction
IS IS NULL etc.
(any other operator) e.g., ||
= != <> <= < >= > comparison operator
NOT logical negation
AND logical conjunction
OR logical disjunction

Value Expressions

Value expressions are used in a variety of contexts, such as in the target list or filter condition of the SELECT command.
The expression syntax allows the calculation of values from primitive parts using arithmetic, logical, set, and other
operations.

A value expression is one of the following:

• A constant or literal value

• A field selector

• A row metadata reference

• An operator invocation

• A function call

• An aggregate expression

• A type cast

• An array constructor

• A map constructor

• Another value expression in parentheses (used to group subexpressions and override precedence)

The first option was already discussed in Constants. The following sections discuss the remaining options.

Field Selectors

In SQL, each table has a well-defined schema with columns, column names and column types. Therefore, a column
name is enough to check whether that column exists, what type it has and if the type that will be extracted matches the
type expected by the surrounding expression.

In BQL, each row corresponds to a JSON-like object, i.e., a map with string keys and values that have one of several
data types (see Data Types and Conversions). In particular, nested maps and arrays are commonplace in the data
streams used with BQL. For example, a row could look like:

50 Chapter 6. BQL Syntax

SensorBee Documentation, Release 0.4

{"ids": [3, 17, 21, 5],
"dists": [
{"other": "foo", "value": 7},
{"other": "bar", "value": 3.5}

],
"found": true}

To deal with such nested data structures, BQL uses a subset of JSON Path to address values in a row.

Basic Descend Operators

In general, a JSON Path describes a path to a certain element of a JSON document. Such a document is looked at as
a rooted tree and each element of the JSON Path describes how to descend from the current node to a node one level
deeper, with the start node being the root. The basic rules are:

• If the current node is a map, then

.child_key

or

["child_key"]

mean “descend to the child node with the key child_key”. The second form must be used if the key name
has a non-identifier shape (e.g., contains spaces, dots, brackets or similar). It is an error if the current node is
not a map. It is an error if the current node does not have such a child node.

• If the current node is an array, then

[k]

means “descend to the (zero-based) 𝑘-th element in the array”. Negative indices count from the end end of the
array (as in Python). It is an error if the current node is not an array. It is an error if the given index is out of
bounds.

The first element of a JSON Path must always be a “map access” component (since the document is always a map)
and the leading dot must be omitted.

For example, ids[1] in the document given above would return 17, dists[-2].other would return foo
and just dists would return the array [{"other": "foo", "value": 7}, {"other": "bar",
"value": 3.5}].

Extended Descend Operators

There is limited support for array slicing and recursive descend:

• If the current node is a map or an array, then

..child_key

returns an array of all values below the current node that have the key child_key. However, once a node with
key child_key has been found, it will be returned as is, even if it may possibly itself contain that key again.

This selector cannot be used as the first component of a JSON Path. It is an error if the current node is not a map
or an array. It is not an error if there is no child element with the given key.

• If the current node is an array, then

6.2. Value Expressions 51

http://goessner.net/articles/JsonPath/

SensorBee Documentation, Release 0.4

[start:end]

returns an array of all values with the indexes in the range [start, end − 1]. One or both of start and end can
be omitted, meaning “from the first element” and “until the last element”, respectively.

[start:end:step]

returns an array of all elements with the indexes [start, start+step, start+2 ·step, · · ·, end−1] if step is positive,
or [start, start − step, start − 2 · step, · · ·, end + 1] if it is negative. (This description is only true for positive
indices, but in fact also negative indices can be used, again counting from the end of the array.) In general, the
behavior has been implemented to be very close to Python’s list slicing.

These selectors cannot be used as the first component of a JSON Path. It is an error if it can be decided
independent of the input data that the specified values do not make sense (e.g., step is 0, or end is larger than
start but step is negative), but slices that will always be empty (e.g., [2:2]) are valid. Also, if it depends
on the input data whether a slice specification is valid or not (e.g., [4:-4]) it is not an error, but an empty array
is returned.

• If the slicing or recursive descend operators are followed by ordinary JSON Path operators as described before,
their meaning changes to ”... for every element in the array”. For example, list[1:3].foo has the same
result as [list[1].foo, list[2].foo, list[3].foo] (except that the latter would fail if list is
not long enough) or a Python list comprehension such as [x.foo for x in list[1:3]]. However, it is
not possible to chain multiple list-returning operators: list[1:3]..foo or foo..bar..hoge are invalid.

Examples

Given the input data

{
"foo": [

{"hoge": [
{"a": 1, "b": 2},
{"a": 3, "b": 4}],

"bar": 5},
{"hoge": [

{"a": 5, "b": 6},
{"a": 7, "b": 8}],

"bar": 2},
{"hoge": [

{"a": 9, "b": 10}],
"bar": 8}

],
"nantoka": {"x": "y"}

}

the following table is supposed to illustrate the effect of various JSON Path expressions.

52 Chapter 6. BQL Syntax

SensorBee Documentation, Release 0.4

Path Result
nantoka {"x": "y"}
nantoka.x "y"
nantoka["x"] "y"
foo[0].bar 5
foo[0].hoge[-1].a 3
["foo"][0]["hoge"][-1]["a"] 3
foo[1:2].bar [2, 8]
foo..bar [5, 2, 8]
foo..hoge[0].b [2, 6, 10]

Row Metadata References

Metadata is the data that is attached to a tuple but which cannot be accessed as part of the normal row data.

Tuple Timestamp

At the moment, the only metadata that can be accessed from within BQL is a tuple’s system timestamp (the time that
was set by the source that created it). This timestamp can be accessed using the ts() function. If multiple streams
are joined, a stream prefix is required to identify the input tuple that is referred to, i.e.,

stream_name:ts()

Operator Invocations

There are three possible syntaxes for an operator invocation:

expression operator expression

operator expression

expression operator

See the section Operators for details.

Function Calls

The syntax for a function call is the name of a function, followed by its argument list enclosed in parentheses:

function_name([expression [, expression ...]])

For example, the following computes the square root of 2:

sqrt(2);

The list of built-in functions is described in section Functions.

6.2. Value Expressions 53

SensorBee Documentation, Release 0.4

Aggregate Expressions

An aggregate expression represents the application of an aggregate function across the rows selected by a query. An
aggregate function reduces multiple inputs to a single output value, such as the sum or average of the inputs. The
syntax of an aggregate expression is the following:

function_name(expression [, ...] [order_by_clause])

where function_name is a previously defined aggregate and expression is any value expression that does not itself
contain an aggregate expression. The optional order_by_clause is described below.

In BQL, aggregate functions can take aggregate and non-aggregate parameters. For example, the string_agg
function can be called like

string_agg(name, ", ")

to return a comma-separated list of all names in the respective group. However, the second parameter is not an
aggregation parameter, so for a statement like

SELECT RSTREAM string_agg(name, sep) FROM ...

sep must be mentioned in the GROUP BY clause.

For many aggregate functions (e.g., sum or avg), the order of items in the group does not matter. However, for other
functions (e.g., string_agg) the user has certain expectations with respect to the order that items should be fed into
the aggregate function. In this case, the order_by_clause with the syntax

ORDER BY expression [ASC | DESC] [, expression [ASC | DESC] ...]

can be used. The rows that are fed into the aggregate function are sorted by the values of the given expression in
ascending (default) or descending mode. For example,

string_agg(first_name || " " || last_name, "," ORDER BY last_name)

will create a comma-separated list of names, ordered ascending by the last name.

See Aggregate Functions for a list of built-in aggregate functions.

Type Casts

A type cast specifies a conversion from one data type to another. BQL accepts two equivalent syntaxes for type casts:

CAST(expression AS type)
expression::type

When a cast is applied to a value expression, it represents a run-time type conversion. The cast will succeed only if a
suitable type conversion operation has been defined, see Conversions.

Array Constructors

An array constructor is an expression that builds an array value using values for its member elements. A simple array
constructor consists of a left square bracket [, a list of expressions (separated by commas) for the array element values,
and finally a right square bracket]. For example:

SELECT RSTREAM [7, 2 * stream:a, true, "blue"] FROM ...

54 Chapter 6. BQL Syntax

SensorBee Documentation, Release 0.4

Each element of the array can have a different type. In particular, the wildcard is also allowed as an expression and
will include the whole current row (i.e., a map) as an array element.

Note: Single-element arrays of strings could also be interpreted as JSON Paths and are therefore required to have a
trailing comma after their only element: ["foo",]

Map Constructors

A map constructor is an expression that builds a map value using string keys and arbitrary values for its member
elements. A simple map constructor consists of a left curly bracket {, a list of "key": value pairs (separated by
commas) for the map elements, and finally a right curly bracket }. For example:

SELECT RSTREAM {"a_const": 7, "prod": 2 * stream:a} FROM ...

The keys must be string literals (i.e., they cannot be computed expressions); in particular they must be written using
double quotes. The values can be arbitrary expressions, including a wildcard.

Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or function are not
necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then other subex-
pressions might not be evaluated at all. For instance, if one wrote:

true OR somefunc()

then somefunc() would (probably) not be called at all. The same would be the case if one wrote:

somefunc() OR true

Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found in some pro-
gramming languages.

Calling Functions

BQL allows functions to be called using only the positional notation. In positional notation, a function call is written
with its argument values in the same order as they are defined in the function declaration. Therefore, while some
parameters of a function can be optional, these parameters can only be omitted at the end of the parameter list.

For example,

log(100)
log(100, 2)

are both valid function calls computing the logarithm of a function. The first one uses the default value 10 for the
logarithm base, the second one uses the given value 2.

6.3. Calling Functions 55

SensorBee Documentation, Release 0.4

56 Chapter 6. BQL Syntax

CHAPTER 7

Input/Output/State Definition

To process streams of data, that data needs to be imported into SensorBee and the processing results have to be exported
from it. This chapter introduces input and output components in BQL. It also describes how BQL supports stateful
data processing using user-defined states (UDSs).

Data Input

BQL inputs a stream of data using a source. A source receives data defined and generated outside SensorBee, converts
that data into tuples, and finally emits tuples for further processing. This section describes how a source can be created,
operated, and dropped.

Creating a Source

A source can be created using the CREATE SOURCE statement.

CREATE SOURCE logs TYPE file WITH path = "access_log.jsonl";

In this example, a source named logs is created and it has the type file. The file source type has a required
parameter called path. The parameter is specified in the WITH clause. Once a source is created, other components
described later can read tuples from the source and compute results based on them.

When multiple parameters are required, they should be separated by commas:

CREATE SOURCE src TYPE some_type
WITH param1 = val1, param2 = val2, param3 = val3;

Each source type has its own parameters and there is no parameter that is common to all source types.

Source types can be registered to the SensorBee server as plugins. To learn how to develop and register a source
plugin, see Source Plugins.

57

SensorBee Documentation, Release 0.4

Built-in Sources

BQL has a number of built-in source types.

file

The file type provides a source that inputs tuples from an existing file.

node_statuses

The node_statuses source periodically emits tuples with information about nodes in a topology. The
status includes connected nodes, number of tuples emitted from or written to the node, and so on.

edge_statuses

The edge_statuses source periodically emits tuples with information about each edge (a.k.a.
pipe) that connects a pair of nodes. Although this information is contained in tuples emitted from
node_statuses source, the edge_statuses source provides more edge-centric view of IO sta-
tuses.

dropped_tuples

The dropped_tuples emits tuples dropped from a topology. It only reports once per tuple. Tuples
are often dropped from a topology because a source or a stream is not connected to any other node or a
SELECT statement tries to look up a nonexistent field of a tuple.

Pausing and Resuming a Source

By default, a source starts emitting tuples as soon as it is created. By adding the PAUSED keyword to the CREATE
SOURCE statement, it creates a source that is paused on startup:

CREATE PAUSED SOURCE logs TYPE file WITH path = "access_log.jsonl";

The RESUME SOURCE statement makes a paused source emit tuples again:

RESUME SOURCE logs;

The statement takes the name of the source to be resumed.

A source can be paused after it is created by the PAUSE SOURCE statement:

PAUSE SOURCE logs;

The statement also takes the name of the source to be paused.

Not all sources support PAUSE SOURCE and RESUME SOURCE statements. Issuing statements to those sources
results in an error.

Rewinding a Source

Some sources can be rewound, that is, they emit tuples again starting from the beginning. The REWIND SOURCE
statement rewinds a source if the source supports the statement:

REWIND SOURCE logs;

The statement takes the name of the source to be rewound. Issuing the statement to sources that don’t support rewind-
ing results in an error.

58 Chapter 7. Input/Output/State Definition

SensorBee Documentation, Release 0.4

Dropping a Source

The DROP SOURCE statement drops (i.e. removes) a source from a topology:

DROP SOURCE logs;

The statement takes the name of the source to be dropped. Other nodes in a topology cannot refer to the source once
it’s dropped. Also, nodes connected to a source may be stopped cascadingly when the source gets dropped.

Data Output

Results of tuple processing need to be emitted to systems or services running outside the SensorBee server in order to
work with them as part of a larger system. A sink receives the results of computations performed within the SensorBee
server and sends them to the outside world. This section explains how sinks are operated in BQL.

Creating a Sink

A sink can be created by the CREATE SINK statement:

CREATE SINK filtered_logs TYPE file WITH path = "filtered_access_log.jsonl";

The statement is very similar to the CREATE SOURCE statement. It takes the name of the new sink, its type, and
parameters. Multiple parameters can also be provided as a list separated by commas. Each sink type has its own
parameters and there is no parameter that is common to all sink types.

Sink types can also be registered to the SensorBee server as plugins. To learn how to develop and register a sink
plugin, see Sink Plugins.

Built-in Sinks

BQL has a number of built-in sink types.

file

The file type provides a sink that writes tuples to a file.

stdout

A stdout sink writes output tuples to stdout.

uds

A uds sink passes tuples to user-defined states, which is described later.

Writing Data to a Sink

The INSERT INTO statement writes data to a sink:

INSERT INTO filtered_logs FROM filtering_stream;

The statement takes the name of sink to be written and the name of a source or a stream, which will be described in
following chapters.

7.2. Data Output 59

SensorBee Documentation, Release 0.4

Dropping a Sink

The DROP SINK statement drops a sink from a topology:

DROP SINK filtered_logs;

The statement takes the name of the sink to be dropped. The sink cannot be accessed once it gets dropped. All
INSERT INTO statements writing to the dropped sink are also stopped.

Stateful Data Processing

SensorBee supports user-defined states (UDSs) to perform stateful streaming data processing. Such processing in-
cludes not only aggregates such as counting but also machine learning, adaptive sampling, and so on. In natural
language processing, dictionaries or configurations for tokenizers can also be considered as states.

This section describes operations involving UDSs. Use cases of UDSs are described in the tutorials and how to develop
a custom UDS is explained in the server programming part.

Creating a UDS

A UDS can be created using the CREATE STATE statement:

CREATE STATE age_classifier TYPE jubaclassifier_arow
WITH label_field = "age", regularization_weight = 0.001;

This statement creates a UDS named age_classifier with the type jubaclassifier_arow. It has two
parameters: label_field and regularization_weight. Each UDS type has its own parameters and there is
no parameter that is common to all UDS types.

A UDS is usually used via user-defined functions (UDFs) that know about the internals of a specific UDS type. See
server programming part for details.

Saving a State

The SAVE STATE statement persists a UDS:

SAVE STATE age_classifier;

The statement takes the name of the UDS to be saved. After the statement is issued, SensorBee saves the state based
on the given configuration. The location and the format of saved data depend on the run-time configuration and are
unknown to users.

The SAVE STATE statement may take a TAG to support versioning of the saved data:

SAVE STATE age_classifier TAG initial;
-- or
SAVE STATE age_classifier TAG trained;

When the TAG clause is omitted, default will be the default tag name.

60 Chapter 7. Input/Output/State Definition

SensorBee Documentation, Release 0.4

Loading a State

The LOAD STATE loads a UDS that was previously saved with the SAVE STATE statement:

LOAD STATE age_classifier TYPE jubaclassifier_arow;

The statement takes the name of the UDS to be loaded and its type name.

The LOAD STATE statements may also take a TAG:

LOAD STATE age_classifier TYPE jubaclassifier_arow TAG initial;
-- or
LOAD STATE age_classifier TYPE jubaclassifier_arow TAG trained;

The UDS needs to have been saved with the specified tag before. When the TAG clause is omitted, it’s same as:

LOAD STATE age_classifier TYPE jubaclassifier_arow TAG default;

The LOAD STATE statement fails if no saved state with the given name and type exists. In that case, to avoid failure
and instead create a new “empty” instance, the OR CREATE IF NOT SAVED clause can be added:

LOAD STATE age_classifier TYPE jubaclassifier_arow
OR CREATE IF NOT SAVED

WITH label_field = "age", regularization_weight = 0.001;

If there is a saved state, this statement will load it, otherwise create a new state with the given parameters. This variant,
too, can be used with the TAG clause:

LOAD STATE age_classifier TYPE jubaclassifier_arow TAG trained
OR CREATE IF NOT SAVED

WITH label_field = "age", regularization_weight = 0.001;

Dropping a State

The DROP STATE statement drops a UDS from a topology:

DROP STATE age_classifier;

The statement takes the name of the UDS to be dropped. Once a UDS is dropped, it can no longer be referred to by
any statement unless it is cached somewhere.

7.3. Stateful Data Processing 61

SensorBee Documentation, Release 0.4

62 Chapter 7. Input/Output/State Definition

CHAPTER 8

Queries

The previous chapters described how to define data sources and sinks to communicate with the outside world. Now
it is discussed how to transform the data stream from those sources and write it to the defined sinks - that is, how to
actually process data.

Processing Model

Overview

The processing model in BQL is similar to what is explained in [cql]. In this model, each tuple in a stream has the
shape (𝑡, 𝑑), where 𝑡 is the original timestamp and 𝑑 the data contained.

In order to execute SQL-like queries, a finite set of tuples from the possibly unbounded stream, a relation, is required.
In the processing step at time 𝑡*, a stream-to-relation operator 𝑅 that converts a certain set of tuples in the stream
to a relation 𝑅(𝑡*) is used. This relation is then processed with a relation-to-relation operator 𝑂 that is expressed in
a form very closely related to an SQL SELECT statement. Finally, a relation-to-stream operator 𝑆 will emit certain
rows from the output relation 𝑂(𝑅(𝑡*)) into the output stream, possibly taking into account the results of the previous
execution step 𝑂(𝑅(𝑡*prev)). This process is illustrated in the following figure:

63

SensorBee Documentation, Release 0.4

This three-step pipeline is executed for each tuple, but only for one tuple at a time. Therefore, during execution
there is a well-defined “current tuple”. This also means that if there is no tuple in the input stream for a long time,
transformation functions will not be called.

Now the kind of stream-to-relation and relation-to-stream operators that can be used in BQL is explained.

Stream-to-Relation Operators

In BQL, there are two different stream-to-relation operators, a time-based one and a tuple-based one. They are also
called “window operators”, since they define a sliding window on the input stream. In terms of BQL syntax, the
window operator is given after a stream name in the FROM clause within brackets and using the RANGE keyword, for
example:

... FROM events [RANGE 5 SECONDS] ...

... FROM data [RANGE 10 TUPLES] ...

... FROM left [RANGE 2 SECONDS], right [RANGE 5 TUPLES] ...

From an SQL point of view, it makes sense to think of stream [RANGE window-spec] as the table to operate
on.

The time-based operator is used with a certain time span 𝐼 (such as 60 seconds) and at point in time 𝑡* uses all tuples
in the range [𝑡* − 𝐼, 𝑡*] to create the relation 𝑅(𝑡*).

Valid time spans are positive integer or float values, followed by the SECONDS or MILLISECONDS keyword, for
example [RANGE 3.5 SECONDS] or [RANGE 200 MILLISECONDS] are valid specifications. The maximal
allowed values are 86,400 for SECONDS and 86,400,000 for MILLISECONDS, i.e., the maximal window size is one
day.

Note:

• The point in time 𝑡* is not the “current time” (however that would be defined), but it is equal to the timestamp
of the current tuple. This approach means that a stream can be reprocessed with identical results independent
of the system clock of some server. Also it is not necessary to worry about a delay until a tuple arrives in the
system and is processed there.

64 Chapter 8. Queries

SensorBee Documentation, Release 0.4

• It is assumed that the tuples in the input stream arrive in the order of their timestamps. If timestamps are out of
order, the window contents are not well-defined.

• The sizes of relations 𝑅(𝑡*1) and 𝑅(𝑡*2) can be different, since there may be more or less tuples in the given time
span. However, there is always at least one tuple in the relation (the current one).

The tuple-based operator is used with a number 𝑘 and uses the last 𝑘 tuples that have arrived (or all tuples that have
arrived when this number is less than 𝑘) to create the relation 𝑅(𝑡*). The example figure above shows a tuple-based
window with 𝑘 = 3.

Valid ranges are positive integral values, followed by the TUPLES keyword, for example [RANGE 10 TUPLES] is
a valid specification. The maximal allowed value is 1,048,575.

Note:

• The timestamps of tuples do not have any effect with this operator, they can also be out of order. Only the
order in which the tuples arrived is important. (Note that for highly concurrent systems, “order” is not always a
well-defined term.)

• At the beginning of stream processing, when less than 𝑘 tuples have arrived, the size of the relation will be less
than 𝑘.1 As soon as 𝑘 tuples have arrived, the relation size will be constant.

Relation-to-Stream Operators

Once a resulting relation 𝑂(𝑅(𝑡*)) is computed, tuples in the relation need to be output as a stream again. In BQL,
there are three relation-to-stream operators, RSTREAM, ISTREAM and DSTREAM. They are also called “emit oper-
ators”, since they control how tuples are emitted into the output stream. In terms of BQL syntax, the emit operator
keyword is given after the SELECT keyword, for example:

SELECT ISTREAM uid, msg FROM ...

The following subsections describe how each operator works. To illustrate the effects of each operator, a visual
example is provided afterwards.

RSTREAM Operator

When RSTREAM is specified, all tuples in the relation are emitted. In particular, a combination of RSTREAM with a
RANGE 1 TUPLES window operator leads to 1:1 input/output behavior and can be processed by a faster execution
plan than general statements.

In contrast,

SELECT RSTREAM * FROM src [RANGE 100 TUPLES];

emits (at most) 100 tuples for every tuple in src.

ISTREAM Operator

When ISTREAM is specified, all tuples in the relation that have not been in the previous relation are emitted. (The “I”
in ISTREAM stands for “insert”.) Here, “previous” refers to the relation that was computed for the tuple just before

1 Sometimes this leads to unexpected effects or complicated workarounds, while the cases where this is a useful behavior may be few. Therefore
this behavior may change in future version.

8.1. Processing Model 65

SensorBee Documentation, Release 0.4

the current tuple. Therefore the current relation can contain at most one row that was not in the previous relation and
thus ISTREAM can emit at most one row in each run.

In section 4.3.2 of [streamsql], it is highlighted that for the “is contained in previous relation” check, a notion of
equality is required; in particular there are various possibilities how to deal with multiple tuples that have the same
value. In BQL tuples with the same value are considered equal, so that if the previous relation contains the values {𝑎, 𝑏}
and the current relation contains the values {𝑏, 𝑎}, then nothing is emitted. However, multiplicities are respected, so
that if the previous relation contains the values {𝑏, 𝑎, 𝑏, 𝑎} and the current relation contains {𝑎, 𝑏, 𝑎, 𝑎}, then one 𝑎 is
emitted.

As an example for a typical use case,

SELECT ISTREAM * FROM src [RANGE 1 TUPLES];

will drop subsequent duplicates, i.e., emit only the first occurrence of a series of tuples with identical values.

To illustrate the multiplicity counting,

SELECT ISTREAM 1 FROM src [RANGE 3 TUPLES];

will emit three times 1 and then nothing (because after the first three tuples processed, both the previous and the current
relation always look like {1, 1, 1}.)

DSTREAM Operator

The DSTREAM operator is very similar to ISTREAM, except that it emits all tuples in the previous relation that are
not also contained in the current relation. (The “D” in DSTREAM stands for “delete”.) Just as ISTREAM, equality
is computed using value comparison and multiplicity counting is used: If the previous relation contains the values
{𝑎, 𝑎, 𝑏, 𝑎} and the current relation contains {𝑏, 𝑏, 𝑎, 𝑎}, then one 𝑎 is emitted.

As an example for a typical use case,

SELECT DSTREAM * FROM src [RANGE 1 TUPLES];

will emit only the last occurrence of a series of tuples with identical values.

To illustrate the multiplicity counting,

SELECT DSTREAM 1 FROM src [RANGE 3 TUPLES];

will never emit anything.

Examples

To illustrate the difference between the three emit operators, a concrete example shall be presented. Consider the
following statement (where *STREAM is a placeholder for one of the emit operators):

SELECT *STREAM id, price FROM stream [RANGE 3 TUPLES] WHERE price < 8;

This statement just takes the id and price key-value pairs of every tuple and outputs them untransformed.

In the following table, the leftmost column shows the data of the tuple in the stream, next to that is the contents of the
current window 𝑅(𝑡*), then the results of the relation-to-relation operator 𝑂(𝑅(𝑡*)). In the table below, there is the
list of items that would be output by the respective emit operator.

66 Chapter 8. Queries

SensorBee Documentation, Release 0.4

Internal Transformations

Current Tuple’s Data Current Window 𝑅(𝑡*) Output Relation 𝑂(𝑅(𝑡*))

(last three tuples)
{"id": 1, "price": 3.5} {"id": 1, "price": 3.5} {"id": 1, "price": 3.5}

{"id": 2, "price": 4.5} {"id": 1, "price": 3.5}
{"id": 2, "price": 4.5}

{"id": 1, "price": 3.5}
{"id": 2, "price": 4.5}

{"id": 3, "price": 10.5} {"id": 1, "price": 3.5}
{"id": 2, "price": 4.5}
{"id": 3, "price": 10.5}

{"id": 1, "price": 3.5}
{"id": 2, "price": 4.5}

{"id": 4, "price": 8.5} {"id": 2, "price": 4.5}
{"id": 3, "price": 10.5}
{"id": 4, "price": 8.5}

{"id": 2, "price": 4.5}

{"id": 5, "price": 6.5} {"id": 3, "price": 10.5}
{"id": 4, "price": 8.5}
{"id": 5, "price": 6.5}

{"id": 5, "price": 6.5}

Emitted Tuple Data

RSTREAM ISTREAM DSTREAM
{"id": 1, "price": 3.5} {"id": 1, "price": 3.5}

{"id": 1, "price": 3.5}
{"id": 2, "price": 4.5}

{"id": 2, "price": 4.5}

{"id": 1, "price": 3.5}
{"id": 2, "price": 4.5}

{"id": 2, "price": 4.5} {"id": 1, "price": 3.5}

{"id": 5, "price": 6.5} {"id": 5, "price": 6.5} {"id": 2, "price": 4.5}

Selecting and Transforming Data

In the previous section, it was explained how BQL converts stream data into relations and back. This section is about
how this relational data can be selected and transformed. This functionality is exactly what SQL’s SELECT statement
was designed to do, and so in BQL the SELECT syntax is mimicked as much as possible. (Some basic knowledge
of what the SQL SELECT statement does is assumed.) However, as opposed to the SQL data model, BQL’s input
data is assumed to be JSON-like, i.e., with varying shapes, nesting levels, and data types; therefore the BQL SELECT
statement has a number of small differences to SQL’s SELECT.

Overview

The general syntax of the SELECT command is

SELECT emit_operator select_list FROM table_expression;

The emit_operator is one of the operators described in Relation-to-Stream Operators. The following subsections
describe the details of select_list and table_expression.

8.2. Selecting and Transforming Data 67

SensorBee Documentation, Release 0.4

Table Expressions

A table expression computes a table. The table expression contains a FROM clause that is optionally followed by
WHERE, GROUP BY, and HAVING clauses:

... FROM table_list [WHERE filter_expression]
[GROUP BY group_list] [HAVING having_expression]

The FROM Clause

The FROM clause derives a table from one or more other tables given in a comma-separated table reference list.

FROM table_reference [, table_reference [, ...]]

In SQL, each table_reference is (in the simplest possible case) an identifier that refers to a pre-defined table,
e.g., FROM users or FROM names, addresses, cities are valid SQL FROM clauses.

In BQL, only streams have identifiers, so in order to get a well-defined relation, a window specifier as explained in
Stream-to-Relation Operators must be added. In particular, the examples just given for SQL FROM clauses are all not
valid in BQL, but the following are:

FROM users [RANGE 10 TUPLES]

FROM names [RANGE 2 TUPLES], addresses [RANGE 1.5 SECONDS], cities [RANGE 200
→˓MILLISECONDS]

Using Stream-Generating Functions

BQL also knows “user-defined stream-generating functions” (UDSFs) that transform a stream into another stream and
can be used, for example, to output multiple output rows per input row; something that is not possible with standard
SELECT features. (These are similar to “Table Functions” in PostgreSQL.) Such UDSFs can also be used in the FROM
clause: Instead of using a stream’s identifier, use the function call syntax function(param, param, ...)
with the UDSF name as the function name and the base stream’s identifiers as parameters (as a string, i.e., in double
quotes), possibly with other parameters. For example, if there is a UDSF called duplicate that takes the input
stream’s name as the first parameter and the number of copies of each input tuple as the second, this would look as
follows:

FROM duplicate("products", 3) [RANGE 10 SECONDS]

Table Joins

If more than one table reference is listed in the FROM clause, the tables are cross-joined (that is, the Cartesian product
of their rows is formed). The syntax table1 JOIN table2 ON (...) is not supported in BQL. The result of
the FROM list is an intermediate virtual table that can then be subject to transformations by the WHERE, GROUP BY,
and HAVING clauses and is finally the result of the overall table expression.

Table Aliases

A temporary name can be given to tables and complex table references to be used for references to the derived table
in the rest of the query. This is called a “table alias”. To create a table alias, write

68 Chapter 8. Queries

SensorBee Documentation, Release 0.4

FROM table_reference AS alias

The use of table aliases is optional, but helps to shorten statements. By default, each table can be addressed us-
ing the stream name or the UDSF name, respectively. Therefore, table aliases are only mandatory if the same
stream/UDSF is used multiple times in a join. Taking aliases into account, each name must uniquely refer to one
table. FROM stream [RANGE 1 TUPLES], stream [RANGE 2 TUPLES] or FROM streamA [RANGE
1 TUPLES], streamB [RANGE 2 TUPLES] AS streamA are not valid, but FROM stream [RANGE 1
TUPLES] AS streamA, stream [RANGE 2 TUPLES] AS streamB and also FROM stream [RANGE
1 TUPLES], stream [RANGE 2 TUPLES] AS other are.

The WHERE Clause

The syntax of the WHERE clause is

WHERE filter_expression

where filter_expression is any expression with a boolean value. (That is, WHERE 6 is not a valid filter, but
WHERE 6::bool is.)

After the processing of the FROM clause is done, each row of the derived virtual table is checked against the search
condition. If the result of the condition is true, the row is kept in the output table, otherwise (i.e., if the result is false or
null) it is discarded. The search condition typically references at least one column of the table generated in the FROM
clause; this is not required, but otherwise the WHERE clause will be fairly useless.

As BQL does not support the table1 JOIN table2 ON (condition) syntax, any join condition must always
be given in the WHERE clause.

The GROUP BY and HAVING Clauses

After passing the WHERE filter, the derived input table might be subject to grouping, using the GROUP BY clause,
and elimination of group rows using the HAVING clause. They basically have the same semantics as explained in the
PostgreSQL Documentation, section 7.2.3

One current limitation of BQL row grouping is that only simple columns can be used in the GROUP BY list, no com-
plex expressions are allowed. For example, GROUP BY round(age/10) cannot be used in BQL at the moment.

Select Lists

As shown in the previous section, the table expression in the SELECT command constructs an intermediate virtual
table by possibly combining tables, views, eliminating rows, grouping, etc. This table is finally passed on to processing
by the “select list”. The select list determines which elements of the intermediate table are actually output.

Select-List Items

As in SQL, the select list contains a number of comma-separated expressions:

SELECT emit_operator expression [, expression] [...] FROM ...

In general, items of a select list can be arbitrary Value Expressions. In SQL, tables are strictly organized in “rows” and
“columns” and the most important elements in such expressions are therefore column references.

In BQL, each input tuple can be considered a “row”, but the data can also be unstructured and the notion of a “column”
is not sufficient. (In fact, each row corresponds to a map object.) Therefore, BQL uses JSON Path to address data in

8.2. Selecting and Transforming Data 69

http://www.postgresql.org/docs/9.5/static/queries-table-expressions.html#QUERIES-GROUP
http://goessner.net/articles/JsonPath/

SensorBee Documentation, Release 0.4

each row. If only one table is used in the FROM clause and only top-level keys of each JSON-like row are referenced,
the BQL select list looks the same as in SQL:

SELECT RSTREAM a, b, c FROM input [RANGE 1 TUPLES];

If the input data has the form {"a": 7, "b": "hello", "c": false}, then the output will look exactly
the same. However, JSON Path allows to access nested elements as well:

SELECT RSTREAM a.foo.bar FROM input [RANGE 1 TUPLES];

If the input data has the form {"a": {"foo": {"bar": 7}}}, then the output will be {"col_0": 7}.
(See paragraph Column Labels below for details on output key naming, and the section Field Selectors for details
about the available syntax for JSON Path expressions.)

Table Prefixes

Where SQL uses the dot in SELECT left.a, right.b to specify the table from which to use a column, JSON
Path uses the dot to describe a child relation in a single JSON element as shown above. Therefore to avoid ambiguity,
BQL uses the colon (:) character to separate table and JSON Path:

SELECT RSTREAM left:foo.bar, right:hoge FROM ...

If there is just one table to select from, the table prefix can be omitted, but then it must be omitted in all expressions
of the statement. If there are multiple tables in the FROM clause, then table prefixes must be used.

Column Labels

The result value of every expression in the select list will be assigned to a key in the output row. If not explicitly
specified, these output keys will be "col_0", "col_1", etc. in the order the expressions were specified in the select
list. However, in some cases a more meaningful output key is chosen by default, as already shown above:

• If the expression is a single top-level key (like a), then the output key will be the same.

• If the expression is a simple function call (like f(a)), then the output key will be the function name.

• If the expression refers the timestamp of a tuple in a stream (using the stream:ts() syntax), then the output
key will be ts.

• If the expression is the wildcard (*), then the input will be copied, i.e., all keys from the input document will be
present in the output document.

The output key can be overridden by specifying an ... AS output_key clause after an expression. For the
example above,

SELECT RSTREAM a.foo.bar AS x FROM input [RANGE 1 TUPLES];

will result in an output row that has the shape {"x": 7} instead of {"col_0": 7}. Note that it is possible to
use the same column label multiple times, but in this case it is undefined which of the values with the same alias will
end up in that output key.

To place values at other places than the top level of an output row map, a subset of the JSON Path syntax described in
Field Selectors can be used for column labels as well. Where such a selector describes the position in a map uniquely,
the value will be placed at that location. For the input data example above,

SELECT RSTREAM a.foo.bar AS x.y[3].z FROM input [RANGE 1 TUPLES];

70 Chapter 8. Queries

SensorBee Documentation, Release 0.4

will result in an output document with the following shape:

{"x": {"y": [null, null, null, {"z": 7}]}}

That is, a string child_key in the column label hierarchy will assume a map at the corresponding position and put
the value in that map using child_key as a key; a numeric index [n] will assume an array and put the value in
the n-th position, padded with NULL items before if required. Negative list indices cannot be used. Also, Extended
Descend Operators cannot be used.

It is safe to assign multiple values to non-overlapping locations of an output row created this way, as shown below:

SELECT RSTREAM 7 AS x.y[3].z, "bar" AS x.foo, 17 AS x.y[0]
FROM input [RANGE 1 TUPLES];

This will create the following output row:

{"x": {"y": [17, null, null, {"z": 7}], "foo": "bar"}}

However, as the order in which the items of the select list are processed is not defined, it is not safe to override values
placed by one select list item from another select list item. For example,

SELECT RSTREAM [1, 2, 3] AS x, 17 AS x[1] ...

does not guarantee a particular output. Also, statements such as

SELECT RSTREAM 1 AS x.y, 2 AS x[1] ...

will lead to errors because x cannot be a map and an array at the same time.

Notes on Wildcards

In SQL, the wildcard (*) can be used as a shorthand expression for all columns of an input table. However, due to the
strong typing in SQL’s data model, name and type conflicts can still be checked at the time the statement is analyzed.
In BQL’s data model, there is no strong typing, therefore the wildcard operator must be used with a bit of caution. For
example, in

SELECT RSTREAM * FROM left [RANGE 1 TUPLES], right [RANGE 1 TUPLES];

if the data in the left stream looks like {"a": 1, "b": 2} and the data in the right stream looks like
{"b": 3, "c": 4}, then the output document will have the keys a, b, and c, but the value of the b key is
undefined.

To select all keys from only one stream, the colon notation (stream:*) as introduced above can be used.

The wildcard can be used with a column alias as well. The expression * AS foo will nest the input document under
the given key foo, i.e., input {"a": 1, "b": 2} is transformed to {"foo": {"a": 1, "b": 2}}.

On the other hand, it is also possible to use the wildcard as an alias, as in foo AS *. This will have the opposite
effect, i.e., it takes the contents of the foo key (which must be a map itself) and pulls them up to top level, i.e.,
{"foo": {"a": 1, "b": 2}} is transformed to {"a": 1, "b": 2}.

Note that any name conflicts that arise due to the use of the wildcard operator (e.g., in *, a:*, b:*, foo AS *,
bar AS *) lead to undefined values in the column with the conflicting name. However, if there is an explicitly
specified output key, this will always be prioritized over a key originating from a wildcard expression.

8.2. Selecting and Transforming Data 71

SensorBee Documentation, Release 0.4

Examples

Single Input Stream

Select List Input Row Output Row
a {"a": 1, "b": 2} {"a": 1}
a, b {"a": 1, "b": 2} {"a": 1, "b": 2}
a + b {"a": 1, "b": 2} {"col_0": 3}
a, a + b {"a": 1, "b": 2} {"a": 1, "col_1": 3}

* {"a": 1, "b": 2} {"a": 1, "b": 2}

Join on Two Streams l and r

Select List Input Row (l) Input Row (r) Output Row
l:a {"a": 1, "b":

2}
{"c": 3, "d":
4}

{"a": 1}

l:a, r:c {"a": 1, "b":
2}

{"c": 3, "d":
4}

{"a": 1, "c": 3}

l:a + r:c {"a": 1, "b":
2}

{"c": 3, "d":
4}

{"col_0": 4}

l:* {"a": 1, "b":
2}

{"c": 3, "d":
4}

{"a": 1, "b": 2}

l:*, r:c
AS b

{"a": 1, "b":
2}

{"c": 3, "d":
4}

{"a": 1, "b": 3}

l:*, r:* {"a": 1, "b":
2}

{"c": 3, "d":
4}

{"a": 1, "b": 2, "c": 3,
"d": 4}

* {"a": 1, "b":
2}

{"c": 3, "d":
4}

{"a": 1, "b": 2, "c": 3,
"d": 4}

* {"a": 1, "b":
2}

{"b": 3, "d":
4}

{"a": 1, "b": (undef.),
"d": 4}

Building Processing Pipelines

The SELECT statement as described above returns a data stream (where the transport mechanism depends on the client
in use), but often an unattended processing pipeline (i.e., running on the server without client interaction) needs to set
up. In order to do so, a stream can be created from the results of a SELECT query and then used afterwards like an
input stream. (The concept is equivalent to that of an SQL VIEW.)

The statement used to create a stream from an SELECT statement is:

CREATE STREAM stream_name AS select_statement;

For example:

CREATE STREAM odds AS SELECT RSTREAM * FROM numbers [RANGE 1 TUPLES] WHERE id % 2 = 1;

If that statement is issued correctly, subsequent statements can refer to stream_name in their FROM clauses.

If a stream thus created is no longer needed, it can be dropped using the DROP STREAM command:

DROP STREAM stream_name;

72 Chapter 8. Queries

SensorBee Documentation, Release 0.4

Expression Evaluation

To evaluate expressions outside the context of a stream, the EVAL command can be used. The general syntax is

EVAL expression;

and expression can generally be any expression, but it cannot contain references to any columns, aggregate func-
tions or anything that only makes sense in a stream processing context.

For example, in the SensorBee Shell, the following can be done:

> EVAL "foo" || "bar";
foobar

8.4. Expression Evaluation 73

SensorBee Documentation, Release 0.4

74 Chapter 8. Queries

CHAPTER 9

Data Types and Conversions

This chapter describes data types defined in BQL and how their type conversion works.

Overview

BQL has following data types:

Type name Description Example
null Null type NULL
bool Boolean true
int 64-bit integer 12
float 64-bit floating point number 3.14
string String "sensorbee"
blob Binary large object A blob value cannot directly be written in BQL.
timestamp Datetime information in UTC A timestamp value cannot directly be written in BQL.
array Array [1, "2", 3.4]
map Map with string keys {"a": 1, "b": "2", "c": 3.4}

These types are designed to work well with JSON. They can be converted to or from JSON with some restrictions.

Note: User defined types are not available at the moment.

Types

This section describes the detailed specification of each type.

75

SensorBee Documentation, Release 0.4

null

The type null only has one value: NULL, which represents an empty or undefined value.

array can contain NULL as follows:

[1, NULL, 3.4]

map can also contain NULL as its value:

{
"some_key": NULL

}

This map is different from an empty map {} because the key "some_key" actually exists in the map but the empty
map doesn’t even have a key.

NULL is converted to null in JSON.

bool

The type bool has two values: true and false. In terms of a three-valued logic, NULL represents the third state,
“unknown”.

true and false are converted to true and false in JSON, respectively.

int

The type int is a 64-bit integer type. Its minimum value is -9223372036854775808 and its maximum value is
+9223372036854775807. Using an integer value out of this range result in an error.

Note: Due to bug #56 the current minimum value that can be parsed is actually -9223372036854775807.

An int value is converted to a number in JSON.

Note: Some implementations of JSON use 64-bit floating point number for all numerical values. Therefore, they
might not be able to handle integers greater than or equal to 9007199254740992 (i.e. 2^53) accurately.

float

The type float is a 64-bit floating point type. Its implementation is IEEE 754 on most platforms but some platforms
could use other implementations.

A float value is converted to a number in JSON.

Note: Some expressions and functions may result in an infinity or a NaN. Because JSON doesn’t have an infinity or
a NaN notation, they will become null when they are converted to JSON.

76 Chapter 9. Data Types and Conversions

https://github.com/sensorbee/sensorbee/issues/56

SensorBee Documentation, Release 0.4

string

The type string is similar to SQL’s type text. It may contain an arbitrary length of characters. It may contain any
valid UTF-8 character including a null character.

A string value is converted to a string in JSON.

blob

The type blob is a data type for any variable length binary data. There is no way to write a value directly in BQL yet,
but there are some ways to use blob in BQL:

• Emitting a tuple containing a blob value from a source

• Casting a string encoded in base64 to blob

• Calling a function returning a blob value

A blob value is converted to a base64-encoded string in JSON.

timestamp

The type timestamp has date and time information in UTC. timestamp only guarantees precision in microsec-
onds. There is no way to write a value directly in BQL yet, but there are some ways to use blob in BQL:

• Emitting a tuple containing a timestamp value from a source

• Casting a value of a type that is convertible to timestamp

• Calling a function returning a timestamp value

A timestamp value is converted to a string in RFC3339 format with nanosecond precision in JSON:
"2006-01-02T15:04:05.999999999Z07:00". Although the format can express nanoseconds, timestamp
in BQL only guarantees microsecond precision as described above.

array

The type array provides an ordered sequence of values of any type, for example:

[1, "2", 3.4]

An array value can also contain another array or map as a value:

[
[1, "2", 3.4],
[

["4", 5.6, 7],
[true, false, NULL],
{"a": 10}

],
{

"nested_array": [12, 34.5, "67"]
}

]

An array value is converted to an array in JSON.

9.2. Types 77

SensorBee Documentation, Release 0.4

map

The type map represents an unordered set of key-value pairs. A key needs to be a string and a value can be of any
type:

{
"a": 1,
"b": "2",
"c": 3.4

}

A map value can contain another map or array as its value:

{
"a": {

"aa": 1,
"ab": "2",
"ac": 3.4

},
"b": {

"ba": {"a": 10},
"bb": ["4", 5.6, 7],
"bc": [true, false, NULL]

},
"c": [12, 34.5, "67"]

}

A map is converted to an object in JSON.

Conversions

BQL provides a CAST(value AS type) operator, or value::type as syntactic sugar, that converts the given
value to a corresponding value in the given type, if those types are convertible. For example, CAST(1 AS string),
or 1::string, converts an int value 1 to a string value and results in "1". Converting to the same type as the
value’s type is valid. For instance, "str"::string does not do anything and results in "str".

The following types are valid for the target type of CAST operator:

• bool

• int

• float

• string

• blob

• timestamp

Specifying null, array, or map as the target type results in an error.

This section describes how type conversions work in BQL.

Note: Converting a NULL value into any type results in NULL and it is not explicitly described in the subsections.

78 Chapter 9. Data Types and Conversions

SensorBee Documentation, Release 0.4

To bool

Following types can be converted to bool:

• int

• float

• string

• blob

• timestamp

• array

• map

From int

0 is converted to false. Other values are converted to true.

From float

0.0, -0.0, and NaN are converted to false. Other values including infinity result in true.

From string

Following values are converted to true:

• "t"

• "true"

• "y"

• "yes"

• "on"

• "1"

Following values are converted to false:

• "f"

• "false"

• "n"

• "no"

• "off"

• "0"

Comparison is case-insensitive and leading and trailing whitespaces in a value are ignored. For example, " tRuE
"::bool is true. Converting a value that is not mentioned above results in an error.

From blob

An empty blob value is converted to false. Other values are converted to true.

9.3. Conversions 79

SensorBee Documentation, Release 0.4

From timestamp

January 1, year 1, 00:00:00 UTC is converted to false. Other values are converted to true.

From array

An empty array is converted to false. Other values result in true.

From map

An empty map is converted to false. Other values result in true.

To int

Following types can be converted to int:

• bool

• float

• string

• timestamp

From bool

true::int results in 1 and false::int results in 0.

From float

Converting a float value into an int value truncates the decimal part. That is, for positive numbers it results in the
greatest int value less than or equal to the float value, for negative numbers it results in the smallest int value
greater than or equal to the float value:

1.0::int -- => 1
1.4::int -- => 1
1.5::int -- => 1
2.01::int -- => 2
(-1.0)::int -- => -1
(-1.4)::int -- => -1
(-1.5)::int -- => -1
(-2.01)::int -- => -2

The conversion results in an error when the float value is out of the valid range of int values.

From string

When converting a string value into an int value, CAST operator tries to parse it as an integer value. If the string
contains a float-shaped value (even if it is "1.0"), conversion fails.

"1"::int -- => 1

80 Chapter 9. Data Types and Conversions

SensorBee Documentation, Release 0.4

The conversion results in an error when the string value contains a number that is out of the valid range of int
values, or the value isn’t a number. For example, "1a"::string results in an error even though the value starts
with a number.

From timestamp

A timestamp value is converted to an int value as the number of full seconds elapsed since January 1, 1970 UTC:

("1970-01-01T00:00:00Z"::timestamp)::int -- => 0
("1970-01-01T00:00:00.123456Z"::timestamp)::int -- => 0
("1970-01-01T00:00:01Z"::timestamp)::int -- => 1
("1970-01-02T00:00:00Z"::timestamp)::int -- => 86400
("2016-01-18T09:22:40.123456Z"::timestamp)::int -- => 1453108960

To float

Following types can be converted to float:

• bool

• int

• string

• timestamp

From bool

true::float results in 1.0 and false::float results in 0.0.

From int

int values are converted to the nearest float values:

1::float -- => 1.0
((9000000000000012345::float)::int)::string -- => "9000000000000012288"

From string

A string value is parsed and converted to the nearest float value:

"1.1"::float -- => 1.1
"1e-1"::float -- => 0.1
"-1e+1"::float -- => -10.0

From timestamp

A timestamp value is converted to a float value as the number of seconds (including a decimal part) elapsed since
January 1, 1970 UTC. The integral part of the result contains seconds and the decimal part contains microseconds:

9.3. Conversions 81

SensorBee Documentation, Release 0.4

("1970-01-01T00:00:00Z"::timestamp)::float -- => 0.0
("1970-01-01T00:00:00.000001Z"::timestamp)::float -- => 0.000001
("1970-01-02T00:00:00.000001Z"::timestamp)::float -- => 86400.000001

To string

Following types can be converted to string:

• bool

• int

• float

• blob

• timestamp

• array

• map

From bool

true::string results in "true", false::string results in "false".

Note: Keep in mind that casting the string "false" back to boolean results in the true value as described above.

From int

A int value is formatted as a signed decimal integer:

1::string -- => "1"
(-24)::string -- => "-24"

From float

A float value is formatted as a signed decimal floating point. Scientific notation is used when necessary:

1.2::string -- => "1.2"
10000000000.0::string -- => "1e+10"

From blob

A blob value is converted to a string value encoded in base64.

Note: Keep in mind that the blob/string conversion using CAST always involves base64 encoding/decoding. It
is not possible to see the single bytes of a blob using only the CAST operator. If there is a source that emits blob
data where it is known that this is actually a valid UTF-8 string (for example, JSON or XML data), the interpretation
“as a string” (as opposed to “to string”) must be performed by a UDF.

82 Chapter 9. Data Types and Conversions

SensorBee Documentation, Release 0.4

From timestamp

A timestamp value is formatted in RFC3339 format with nanosecond precision: "2006-01-02T15:04:05.
999999999Z07:00".

From array

An array value is formatted as a JSON array:

[1, "2", 3.4]::string -- => "[1,""2"",3.4]"

From map

A map value is formatted as a JSON object:

{"a": 1, "b": "2", "c": 3.4}::string -- => "{""a"":1,""b"":""2"",""c"":3.4}"

To timestamp

Following types can be converted to timestamp:

• int

• float

• string

From int

An int value to be converted to a timestamp value is assumed to have the number of seconds elapsed since January
1, 1970 UTC:

0::timestamp -- => 1970-01-01T00:00:00Z
1::timestamp -- => 1970-01-01T00:00:01Z
1453108960::timestamp -- => 2016-01-18T09:22:40Z

From float

An float value to be converted to a timestamp value is assumed to have the number of seconds elapsed since
January 1, 1970 UTC. Its integral part should have seconds and decimal part should have microseconds:

0.0::timestamp -- => 1970-01-01T00:00:00Z
0.000001::timestamp -- => 1970-01-01T00:00:00.000001Z
86400.000001::timestamp -- => 1970-01-02T00:00:00.000001Z

From string

A string value is parsed in RFC3339 format, or RFC3339 with nanosecond precision format:

9.3. Conversions 83

SensorBee Documentation, Release 0.4

"1970-01-01T00:00:00Z"::timestamp -- => 1970-01-01T00:00:00Z
"1970-01-01T00:00:00.000001Z"::timestamp -- => 1970-01-01T00:00:00.000001Z
"1970-01-02T00:00:00.000001Z"::timestamp -- => 1970-01-02T00:00:00.000001Z

Converting ill-formed string values to timestamp results in an error.

84 Chapter 9. Data Types and Conversions

CHAPTER 10

Operators

This chapter introduces operators used in BQL.

Arithmetic Operators

BQL provides the following arithmetic operators:

Operator Description Example Result
+ Addition 6 + 1 7
- Subtraction 6 - 1 5
+ Unary plus +4 4
- Unary minus -4 -4

* Multiplication 3 * 2 6
/ Division 7 / 2 3
% Modulo 5 % 3 2

All operators accept both integers and floating point numbers. Integers and floating point numbers can be mixed in a
single arithmetic expression. For example, 3 + 5 * 2.5 is valid.

Note: Unary minus operators can be applied to a value multiple times. However, each unary minus operators must
be separated by a space like - - -3 because -- and succeeding characters are parsed as a comment. For example,
---3 is parsed as -- and a comment body -3.

String Operators

BQL provides the following string operators:

Operator Description Example Result
|| Concatenation "Hello" || ", world" "Hello, world"

85

SensorBee Documentation, Release 0.4

|| only accepts strings and NULL. For example, "1" || 2 results in an error. When one operand is NULL, the result
is also NULL. For instance, NULL || "str", "str" || NULL, and NULL || NULL result in NULL.

Comparison Operators

BQL provides the following comparison operators:

Operator Description Example Result
< Less than 1 < 2 true
> Greater than 1 > 2 false
<= Less than or equal to 1 <= 2 true
>= Greater than or equal to 1 >= 2 false
= Equal to 1 = 2 false
<> or != Not equal to 1 != 2 true
IS NULL Null check false IS NULL false
IS NOT NULL Non-null check false IS NOT NULL true

All comparison operators return a boolean value.

<, >, <=, and >= are only valid when

1. either both operands are numeric values (i.e. integers or floating point numbers)

2. or have the same type and that type is comparable.

The following types are comparable:

• null

• int

• float

• string

• timestamp

Valid examples are as follows:

• 1 < 2.1

– Integers and floating point numbers can be compared.

• "abc" > "def"

• 1::timestamp <= 2::timestamp

• NULL > "a"

– This expression is valid although it always results in NULL. See NULL Comparison below.

=, <>, and != are valid for any type even if both operands have different types. When the types of operands are differ-
ent, = results in false; <> and != return true. (However, integers and floating point numbers can be compared, for
example 1 = 1.0 returns true.) When operands have the same type, = results in true if both values are equivalent
and others return false.

Note: Floating point values with the value NaN are treated specially as per the underlying floating point implementa-
tion. In particular, = comparison will always be false if one or both of the operands is NaN.

86 Chapter 10. Operators

SensorBee Documentation, Release 0.4

NULL Comparison

In a three-valued logic, comparing any value with NULL results in NULL. For example, all of following expressions
result in NULL:

• 1 < NULL

• 2 > NULL

• "a" <= NULL

• 3 = NULL

• NULL = NULL

• NULL <> NULL

Therefore, do not look for NULL values with expression = NULL. To check if a value is NULL or not, use IS
NULL or IS NOT NULL operator. expression IS NULL operator returns true only when an expression is
NULL.

Note: [NULL] = [NULL] and {"a": NULL} = {"a": NULL} result in true although it contradict the
three-valued logic. This specification is provided for convenience. Arrays or maps often have NULL to indicate that
there’s no value for a specific key but the key actually exists. In other words, {"a": NULL, "b": 1} and
{"b": 1} are different. Therefore, NULL in arrays and maps are compared as if it’s a regular value. Unlike NULL,
comparing NaN floating point values always results in false.

Presence/Absence Check

In BQL, the JSON object {"a": 6, "b": NULL} is different from {"a": 6}. Therefore, when accessing
b in the latter object, the result is not NULL but an error. To check whether a key is present in a map, the following
operators can be used:

Operator Description Example Example Input Result
IS MISSING Absence Check b IS MISSING {"a": 6} true
IS NOT MISSING Presence Check b IS NOT MISSING {"a": 6} false

Since the presence/absence check is done before the value is actually extracted from the map, only JSON Path expres-
sions can be used with IS [NOT] MISSING, not arbitrary expressions. For example, a + 2 IS MISSING is not
a valid expression.

Logical Operators

BQL provides the following logical operators:

Operator Description Example Result
AND Logical and 1 < 2 AND 2 < 3 true
OR Logical or 1 < 2 OR 2 > 3 true
NOT Logical negation NOT 1 < 2 false

Logical operators also follow the three-valued logic. For example, true AND NULL and NULL OR false result
in NULL.

10.4. Presence/Absence Check 87

SensorBee Documentation, Release 0.4

88 Chapter 10. Operators

CHAPTER 11

Functions

BQL provides a number of built-in functions that are described in this chapter. Function names and meaning of
parameters have been heavily inspired by PostgreSQL. However, be aware that the accepted and returned types may
differ as there is no simple mapping between BQL and SQL data types. See the Function Reference for details about
each function’s behavior.

Numeric Functions

General Functions

The table below shows some common mathematical functions that can be used in BQL.

89

http://www.postgresql.org/docs/9.5/static/functions.html

SensorBee Documentation, Release 0.4

Function Description
abs(x) absolute value
cbrt(x) cube root
ceil(x) round up to nearest integer
degrees(x) radians to degrees
div(y, x) integer quotient of y/x
exp(x) exponential
floor(x) round down to nearest integer
ln(x) natural logarithm
log(x) base 10 logarithm
log(b, x) logarithm to base b
mod(y, x) remainder of y/x
pi() “𝜋” constant
power(a, b) a raised to the power of b
radians(x) degrees to radians
round(x) round to nearest integer
sign(x) sign of the argument (-1, 0, +1)
sqrt(x) square root
trunc(x) truncate toward zero
width_bucket(x, l, r, c) bucket of x in a histogram

Pseudo-Random Functions

The table below shows functions for generating pseudo-random numbers.

Function Description
random() random value in the range 0.0 <= 𝑥 < 1.0
setseed(x) set seed (−1.0 <= 𝑥 <= 1.0) for subsequent random() calls

Trigonometric Functions

Finally, the table below shows the available trigonometric functions.

Function Description
acos(x) inverse cosine
asin(x) inverse sine
atan(x) inverse tangent
cos(x) cosine
cot(x) cotangent
sin(x) sine
tan(x) tangent

String Functions

The table below shows some common functions for strings that can be used in BQL.

90 Chapter 11. Functions

SensorBee Documentation, Release 0.4

Function Description
bit_length(s) number of bits in string
btrim(s) remove whitespace from the start/end of s
btrim(s, chars) remove chars from the start/end of s
char_length(s) number of characters in s
concat(s [, ...]) concatenate all arguments
concat_ws(sep, s [, ...]) concatenate arguments s with separator
format(s, [x, ...]) format arguments using a format string
lower(s) convert s to lower case
ltrim(s) remove whitespace from the start of s
ltrim(s, chars) remove chars from the start of s
md5(s) MD5 hash of s
octet_length(s) number of bytes in s
overlay(s, r, from) replace substring
overlay(s, r, from, for) replace substring
rtrim(s) remove whitespace from the end of s
rtrim(s, chars) remove chars from the end of s
sha1(s) SHA1 hash of s
sha256(s) SHA256 hash of s
strpos(s, t) location of substring t in s
substring(s, r) extract substring matching regex r from s
substring(s, from) extract substring
substring(s, from, for) extract substring
upper(s) convert s to upper case

Time Functions

Function Description
distance_us(u, v) signed temporal distance from u to v in microseconds
clock_timestamp() current date and time (changes during statement execution)
now() date and time when processing of current tuple was started

Array Functions

Function Description
array_length(a) number of elements in an array

Other Scalar Functions

Function Description
coalesce(x [, ...]) return first non-null input parameter

Aggregate Functions

Aggregate functions compute a single result from a set of input values. The built-in normal aggregate functions
are listed in the table below. The special syntax considerations for aggregate functions are explained in Aggregate

11.3. Time Functions 91

SensorBee Documentation, Release 0.4

Expressions.

Function Description
array_agg(x) input values, including nulls, concatenated into an array
avg(x) the average (arithmetic mean) of all input values
bool_and(x) true if all input values are true, otherwise false
bool_or(x) true if at least one input value is true, otherwise false
count(x) number of input rows for which x is not null
count(*) number of input rows
json_object_agg(k, v) aggregates name/value pairs as a map
max(x) maximum value of x across all input values
median(x) the median of all input values
min(x) minimum value of x across all input values
string_agg(x, sep) input values concatenated into a string, separated by sep
sum(x) sum of x across all input values

92 Chapter 11. Functions

Part IV

Server Programming

93

SensorBee Documentation, Release 0.4

This part describes the extensibility of the SensorBee server. Topics covered in this part are advanced and should be
read after understanding the basics of SensorBee and BQL.

Because SensorBee is mainly written in The Go Programming Language, understanding the language before reading
this part is also recommended. A Tour of Go is an official tutorial and is one of the best tutorials of the language. It runs
on web browsers and does not require any additional software installation. After learning the language, How to Write
Go Code helps to understand how to use the go tool and the standard way to develop Go packages and applications.

This part assumes that the go tool is installed and the development environment including Go’s environment variables
like GOROOT or GOPATH is appropriately set up. SensorBee requires Go 1.4 or later.

95

https://golang.org/
https://tour.golang.org/
https://golang.org/doc/code.html
https://golang.org/doc/code.html

SensorBee Documentation, Release 0.4

96

CHAPTER 12

Extending the SensorBee Server and BQL

Many features of the server and BQL can be extended by plugins. This chapter describes what types of features can
be extended by users. Following chapters in this part describes how to develop those features in specific programming
languages.

User-Defined Functions

A user-defined function (UDF) is a function that is implemented by a user and registered in the SensorBee server.
Once it is registered, it be called from BQL statements:

SELECT RSTREAM my_udf(field) FROM src [RANGE 1 TUPLES];

A UDF behaves just like a built-in function. A UDF can take an arbitrary number of arguments. Each argument can
be any of built-in types and can receive multiple types of values. A UDF can also support a variable-length argument.
A UDF has a single return value of any built-in type. When multiple return values are required, a UDF can return the
value as an array.

Note: BQL currently does not support CREATE FUNCTION statements like well-known RDBMSs. UDFs can only
be added through Go programs.

User-Defined Aggregate Functions

A user-defined aggregate function (UDAF) is a function similar to a UDF but can take aggregation parameters (see
Aggregate Expressions) as arguments in addition to regular arguments.

97

SensorBee Documentation, Release 0.4

User-Defined Stream-Generating Functions

Stream-generating functions can also be user-defined. There are two types of UDSFs. The first type behaves like a
source, which is not connected to any input stream and generates tuples proactively:

... FROM my_counter() [RANGE ...

my_counter above may emit tuples like {"count": 1}.

This type of UDSFs are called source-like UDSFs.

The other type is called a stream-like UDSF and behaves just like a stream, which receives tuples from one or more
incoming streams or sources. It receives names of streams or sources as its arguments:

... FROM my_udsf("another_stream", "yet_another_stream", other_params) [RANGE ...

Note that there is no rule on how to define UDFS’s arguments. Thus, the order and the use of arguments depend on
each UDFS. For example, a UDFS might take an array of string containing names of input streams as its first
argument: my_union(["stream1", "stream2", "stream3"]). Names of input stream do not even need
to be located at the beginning of the argument list: my_udfs2(1, "another_stream") is also possible.

Using UDSFs is a very powerful way to extend BQL since they can potentially do anything that the SELECT cannot
do.

User-Defined States

A user-defined state (UDS) can be provided to support stateful data processing (see Stateful Data Processing). A UDS
is usually provided with a set of UDFs that manipulate the state. Those UDFs take the name of the UDS as a string
argument:

CREATE STATE event_id_seq TYPE snowflake_id WITH machine_id = 1;
CREATE STREAM events_with_id AS

SELECT snowflake_id("event_id_seq"), * FROM events [RANGE 1 TUPLES];

In the example above, a UDS event_id_seq is created with the type snowflake_id. Then, the UDS is passed
to the UDF snowflake_id, which happens to have the same name as the type name of the UDS. The UDF looks
up the UDS event_id_seq and returns a value computed based on the state.

Source Plugins

A source type developed by a user can be added to the SensorBee server as a plugin so that it can be used in CREATE
SOURCE statements. A source type can have any number of required and optional parameters. Each parameter can
have any of built-in types.

Sink Plugins

A sink type developed by a user can be added to the SensorBee server as a plugin so that it can be used in CREATE
SINK statement. A sink type can have any number of required and optional parameters. Each parameter can have any
of built-in types.

98 Chapter 12. Extending the SensorBee Server and BQL

CHAPTER 13

Extensions in Go

This chapter describes how to extend the SensorBee server in the Go programming language.

Development Flow of Components in Go

The typical development flow of components like a UDF, a UDS type, a source type, or a sink type should be discussed
before looking into details of each component.

The basic flow is as follows:

1. Create a git repository for components

2. Implement components

3. Create a plugin subpackage in the repository

Create a Git Repository for Components

Components are written in Go, so they need to be in a valid git repository (or a repository of a different version control
system). One repository may provide multiple types of components. For example, a repository could have 10 UDFs,
and 5 UDS types, 2 source types, and 1 sink type. However, since Go is very well designed to provide packages in a
fine-grained manner, each repository should only provide a minimum set of components that are logically related and
make sense to be in the same repository.

Implement Components

The next step is to implement components. There is no restriction on which standard or 3rd party packages to depend
on.

Functions or structs that are to be registered to the SensorBee server need to be referred to by the plugin subpackage,
which is described in the next subsection. Thus, names of those symbols need to start with a capital letter.

In this step, components should not be registered to the SensorBee server yet.

99

SensorBee Documentation, Release 0.4

Create a Plugin Subpackage in the Repository

It is highly recommended that the repository has a separate package (i.e. a subdirectory) which only registers compo-
nents to the SensorBee server. There is usually one file named “plugin.go” in the plugin package and it only contains
a series of registration function calls in init function. For instance, if the repository only provides one UDF, the
contents of plugin.go would look like:

// in github.com/user/myudf/plugin/plugin.go
package plugin

import (
"gopkg.in/sensorbee/sensorbee.v0/bql/udf"
"github.com/user/myudf"

)

func init() {
udf.MustRegisterGlobalUDF("my_udf", &myudf.MyUDF{})

}

There are two reasons to have a plugin subpackage separated from the implementation of components. First, by
separating them, other Go packages can import the components to use the package as a library without registering
them to SensorBee. Second, having a separated plugin package allows a user to register a component with a different
name. This is especially useful when names of components conflict each other.

To use the example plugin above, the github.com/user/myudf/plugin package needs to be added to the
plugin path list of SensorBee.

Repository Organization

The typical organization of the repository is

• github.com/user/repo

– README: description and the usage of components in the repository

– .go files: implementation of components

– plugin/: a subpackage for the plugin registration

* plugin.go

– othersubpackages/: there can be optional subpackages

User-Defined Functions

This section describes how to write a UDF in Go. It first shows the basic interface of defining UDFs, and then describes
utilities around it, how to develop a UDF in a Go-ish manner, and a complete example.

Implementing a UDF

Note: This is a very low-level way to implement a UDF in Go. To learn about an easier way, see Generic UDFs.

Any struct implementing the following interface can be used as a UDF:

100 Chapter 13. Extensions in Go

SensorBee Documentation, Release 0.4

type UDF interface {
// Call calls the UDF.
Call(*core.Context, ...data.Value) (data.Value, error)

// Accept checks if the function accepts the given number of arguments
// excluding core.Context.
Accept(arity int) bool

// IsAggregationParameter returns true if the k-th parameter expects
// aggregated values. A UDF with Accept(n) == true is an aggregate
// function if and only if this function returns true for one or more
// values of k in the range 0, ..., n-1.
IsAggregationParameter(k int) bool

}

This interface is defined in the gopkg.in/sensorbee/sensorbee.v0/bql/udf package.

A UDF can be registered via the RegisterGlobalUDF or MustRegisterGlobalUDF functions from the same
package. MustRegisterGlobalUDF is the same as RegisterGlobalUDF but panics on failure instead of
returning an error. These functions are usually called from the init function in the UDF package’s plugin sub-
package. A typical implementation of a UDF looks as follows:

type MyUDF struct {
...

}

func (m *MyUDF) Call(ctx *core.Context, args ...data.Value) (data.Value, error) {
...

}

func (m *MyUDF) Accept(arity int) bool {
...

}

func (m *MyUDF) IsAggregationParameter(k int) bool {
...

}

func init() {
// MyUDF can be used as my_udf in BQL statements.
udf.MustRegisterGlobalUDF("my_udf", &MyUDF{})

}

As it can be inferred from this example, a UDF itself should be stateless since it only registers one instance of a struct
as a UDF and it will be shared globally. Stateful data processing can be achieved by the combination of UDFs and
UDSs, which is described in User-Defined States.

A UDF needs to implement three methods to satisfy udf.UDF interface: Call, Accept, and
IsAggregationParameter.

The Call method receives a *core.Context and multiple data.Value as its arguments. *core.Context
contains the information of the current processing context. Call‘s ...data.Value argument holds the values
passed to the UDF. data.Value represents a value used in BQL and can be any of built-in types.

SELECT RSTREAM my_udf(arg1, arg2) FROM stream [RANGE 1 TUPLES];

In this example, arg1 and arg2 are passed to the Call method:

13.2. User-Defined Functions 101

SensorBee Documentation, Release 0.4

func (m *MyUDF) Call(ctx *core.Context, args ...data.Value) (data.Value, error) {
// When my_udf(arg1, arg2) is called, len(args) is 2.
// args[0] is arg1 and args[1] is arg2.
// It is guaranteed that m.Accept(len(args)) is always true.

}

Because data.Value is a semi-variant type, the Call method needs to check the type of each data.Value and
convert it to a desired type.

The Accept method verifies if the UDF accepts the specific number of arguments. It can return true for multiple
arities as long as it can receive the given number of arguments. If a UDF only accepts two arguments, the method is
implemented as follows:

func (m *MyUDF) Accept(arity int) bool {
return arity == 2

}

When a UDF aims to support variadic parameters (a.k.a. variable-length arguments) with two required arguments (e.g.
my_udf(arg1, arg2, optional1, optional2, ...)), the implementation would be:

func (m *MyUDF) Accept(arity int) bool {
return arity >= 2

}

Finally, IsAggregationParameter returns whether the k-th argument (starting from 0) is an aggregation param-
eter. Aggregation parameters are passed as a data.Array containing all values of a field in each group.

All of these methods can be called concurrently from multiple goroutines and they must be thread-safe.

The registered UDF is looked up based on its name and the number of argument passed to it.

SELECT RSTREAM my_udf(arg1, arg2) FROM stream [RANGE 1 TUPLES];

In this SELECT, a UDF having the name my_udf is looked up first. After that, its Acceptmethod is called with 2 and
my_udf is actually selected if Accept(2) returned true. IsAggregationParameter method is additionally
called on each argument to see if the argument needs to be an aggregation parameter. Then, if there is no mismatch,
my_udf is finally called.

Note: A UDF does not have a schema at the moment, so any error regarding types of arguments will not be reported
until the statement calling the UDF actually processes a tuple.

Generic UDFs

SensorBee provides a helper function to register a regular Go function as a UDF without implementing the UDF
interface explicitly.

func Inc(v int) int {
return v + 1

}

This function Inc can be transformed into a UDF by ConvertGeneric or MustConvertGeneric func-
tion defined in the gopkg.in/sensorbee/sensorbee.v0/bql/udf package. By combining it with
RegisterGlobalUDF, the Inc function can easily be registered as a UDF:

102 Chapter 13. Extensions in Go

SensorBee Documentation, Release 0.4

func init() {
udf.MustRegisterGlobalUDF("inc", udf.MustConvertGeneric(Inc))

}

So, a complete example of the UDF implementation and registration is as follows:

package inc

import (
"gopkg.in/sensorbee/sensorbee.v0/bql/udf"

)

func Inc(v int) int {
return v + 1

}

func init() {
udf.MustRegisterGlobalUDF("inc", udf.MustConvertGeneric(Inc))

}

Note: A UDF implementation and registration should actually be separated to different packages. See Development
Flow of Components in Go for details.

Although this approach is handy, there is some small overhead compared to a UDF implemented in the regular way.
Most of such overhead comes from type checking and conversions.

Functions passed to ConvertGeneric need to satisfy some restrictions on the form of their argument and return
value types. Each restriction is described in the following subsections.

Form of Arguments

In terms of valid argument forms, there are some rules to follow:

1. A Go function can receive *core.Context as the first argument, or can omit it.

2. A function can have any number of arguments including 0 arguments as long as Go accepts them.

3. A function can be variadic with or without non-variadic parameters.

There are basically eight (four times two, whether a function has *core.Context or not) forms of arguments
(return values are intentionally omitted for clarity):

• Functions receiving no argument in BQL (e.g. my_udf())

1. func(*core.Context): A function only receiving *core.Context

2. func(): A function having no argument and not receiving *core.Context, either

• Functions having non-variadic arguments but no variadic arguments

3. func(*core.Context, T1, T2, ..., Tn)

4. func(T1, T2, ..., Tn)

• Functions having variadic arguments but no non-variadic arguments

5. func(*core.Context, ...T)

6. func(...T)

13.2. User-Defined Functions 103

SensorBee Documentation, Release 0.4

• Functions having both variadic and non-variadic arguments

7. func(*core.Context, T1, T2, ..., Tn, ...Tn+1)

8. func(T1, T2, ..., Tn, ...Tn+1)

Here are some examples of invalid function signatures:

• func(T, *core.Context): *core.Context must be the first argument.

• func(NonSupportedType): Only supported types, which will be explained later, can be used.

Although return values are omitted from all the examples above, they are actually required. The next subsection
explains how to define valid return values.

Form of Return Values

All functions need to have return values. There are two forms of return values:

• func(...) R

• func(...) (R, error)

All other forms are invalid:

• func(...)

• func(...) error

• func(...) NonSupportedType

Valid types of return values are same as the valid types of arguments, and they are listed in the following subsection.

Valid Value Types

The list of Go types that can be used for arguments and the return value is as follows:

• bool

• signed integers: int, int8, int16, int32, int64

• unsigned integers: uint, uint8, uint16, uint32, uint64

• float32, float64

• string

• time.Time

• data: data.Bool, data.Int, data.Float, data.String, data.Blob, data.Timestamp,
data.Array, data.Map, data.Value

• A slice of any type above, including data.Value

data.Value can be used as a semi-variant type, which will receive all types above.

When the argument type and the actual value type are different, weak type conversion are applied to values.
Conversions are basically done by data.ToXXX functions (see godoc comments of each function in data/
type_conversions.go). For example, func inc(i int) int can be called by inc("3") in a BQL
statement and it will return 4. If a strict type checking or custom type conversion is required, receive values as
data.Value and manually check or convert types, or define the UDF in the regular way.

104 Chapter 13. Extensions in Go

SensorBee Documentation, Release 0.4

Examples of Valid Go Functions

The following functions can be converted to UDFs by ConvertGeneric or MustConvertGeneric function:

• func rand() int

• func pow(*core.Context, float32, float32) (float32, error)

• func join(*core.Context, ...string) string

• func format(string, ...data.Value) (string, error)

• func keys(data.Map) []string

Complete Examples

This subsection shows three example UDFs:

• my_inc

• my_join

• my_join2

Assume that these are in the repository github.com/sensorbee/examples/udfs (which actually does not
exist). The repository has three files:

• inc.go

• join.go

• plugin/plugin.go

inc.go

In inc.go, the Inc function is defined as a pure Go function with a standard value type:

package udfs

func Inc(v int) int {
return v + 1

}

join.go

In join.go, the Join UDF is defined in a strict way. It also performs strict type checking. It is designed to
be called in one of two forms: my_join("a", "b", "c", "separator") or my_join(["a", "b",
"c"], "separator"). Each argument and value in the array must be a string. The UDF receives an arbitrary
number of arguments.

package udfs

import (
"errors"
"strings"

"pfi/sensorbee/sensorbee/core"
"pfi/sensorbee/sensorbee/data"

13.2. User-Defined Functions 105

SensorBee Documentation, Release 0.4

)

type Join struct {
}

func (j *Join) Call(ctx *core.Context, args ...data.Value) (data.Value, error) {
empty := data.String("")
if len(args) == 1 {

return empty, nil
}

switch args[0].Type() {
case data.TypeString: // my_join("a", "b", "c", "sep") form

var ss []string
for _, v := range args {

s, err := data.AsString(v)
if err != nil {

return empty, err
}
ss = append(ss, s)

}
return data.String(strings.Join(ss[:len(ss)-1], ss[len(ss)-1])), nil

case data.TypeArray: // my_join(["a", "b", "c"], "sep") form
if len(args) != 2 {

return empty, errors.New("wrong number of arguments for my_join(array,
→˓sep)")

}
sep, err := data.AsString(args[1])
if err != nil {

return empty, err
}

a, _ := data.AsArray(args[0])
var ss []string
for _, v := range a {

s, err := data.AsString(v)
if err != nil {

return empty, err
}
ss = append(ss, s)

}
return data.String(strings.Join(ss, sep)), nil

default:
return empty, errors.New("the first argument must be a string or an array")

}
}

func (j *Join) Accept(arity int) bool {
return arity >= 1

}

func (j *Join) IsAggregationParameter(k int) bool {
return false

}

106 Chapter 13. Extensions in Go

SensorBee Documentation, Release 0.4

plugin/plugin.go

In addition to Inc and Join, this file registers the standard Go function strings.Join as my_join2. Because
it’s converted to a UDF by udf.MustConvertGeneric, arguments are weakly converted to given types. For
example, my_join2([1, 2.3, "4"], "-") is valid although strings.Join itself is func([]string,
string) string.

package plugin

import (
"strings"

"pfi/sensorbee/sensorbee/bql/udf"

"pfi/nobu/docexamples/udfs"
)

func init() {
udf.MustRegisterGlobalUDF("my_inc", udf.MustConvertGeneric(udfs.Inc))
udf.MustRegisterGlobalUDF("my_join", &udfs.Join{})
udf.MustRegisterGlobalUDF("my_join2", udf.MustConvertGeneric(strings.Join))

}

Evaluating Examples

Once the sensorbee command is built with those UDFs and a topology is created on the server, the EVAL statement
can be used to test them:

EVAL my_inc(1); -- => 2
EVAL my_inc(1.5); -- => 2
EVAL my_inc("10"); -- => 11

EVAL my_join("a", "b", "c", "-"); -- => "a-b-c"
EVAL my_join(["a", "b", "c"], ",") -- => "a,b,c"
EVAL my_join(1, "b", "c", "-") -- => error
EVAL my_join([1, "b", "c"], ",") -- => error

EVAL my_join2(["a", "b", "c"], ",") -- => "a,b,c"
EVAL my_join2([1, "b", "c"], ",") -- => "1,b,c"

Dynamic Loading

Dynamic loading of UDFs written in Go is not supported at the moment because Go does not support loading packages
dynamically.

User-Defined Stream-Generating Functions

This section describes how to write a UDSF in Go.

Implementing a UDSF

To provide a UDSF, two interfaces need to be implemented: UDSF and UDSFCreator.

13.3. User-Defined Stream-Generating Functions 107

SensorBee Documentation, Release 0.4

The interface UDSF is defined as follows in the gopkg.in/sensorbee/sensorbee.v0/bql/udf package.

type UDSF interface {
Process(ctx *core.Context, t *core.Tuple, w core.Writer) error
Terminate(ctx *core.Context) error

}

The Process method processes an input tuple and emits computed tuples for subsequent streams. ctx contains the
processing context information. t is the tuple to be processed in the UDSF. w is the destination to where computed
tuples are emitted. The Terminate method is called when the UDFS becomes unnecessary. The method has to
release all the resources the UDSF has.

How the Process method is called depends on the type of a UDSF. When a UDFS is a stream-like UDSF (i.e. it has
input from other streams), the Process method is called every time a new tuple arrives. The argument t contains the
tuple emitted from another stream. Stream-like UDSFs have to return from Process immediately after processing
the input tuple. They must not block in the method.

A stream-like UDSF is used mostly when multiple tuples need to be computed and emitted based on one input tuple:

type WordSplitter struct {
field string

}

func (w *WordSplitter) Process(ctx *core.Context, t *core.Tuple, writer core.Writer)
→˓error {

var kwd []string
if v, ok := t.Data[w.field]; !ok {

return fmt.Errorf("the tuple doesn't have the required field: %v", w.field)
} else if s, err := data.AsString(v); err != nil {

return fmt.Errorf("'%v' field must be string: %v", w.field, err)
} else {

kwd = strings.Split(s, " ")
}

for _, k := range kwd {
out := t.Copy()
out.Data[w.field] = data.String(k)
if err := writer.Write(ctx, out); err != nil {

return err
}

}
return nil

}

func (w *WordSplitter) Terminate(ctx *core.Context) error {
return nil

}

WordSplitter splits text in a specific field by space. For example, when an input tuple is {"word": "a
b c"} and WordSplitter.Field is word, following three tuples will be emitted: {"word": "a"},
{"word": "b"}, and {"word": "c"}.

When a UDSF is a source-like UDSF, the Process method is only called once with a tuple that does not mean
anything. Unlike a stream-like UDSF, the Process method of a source-like UDSF does not have to return until it
has emitted all tuples, the Terminate method is called, or a fatal error occurs.

type Ticker struct {
interval time.Duration
stopped int32

108 Chapter 13. Extensions in Go

SensorBee Documentation, Release 0.4

}

func (t *Ticker) Process(ctx *core.Context, tuple *core.Tuple, w core.Writer) error {
var i int64
for ; atomic.LoadInt32(&t.stopped) == 0; i++ {

newTuple := core.NewTuple(data.Map{"tick": data.Int(i)})
if err := w.Write(ctx, newTuple); err != nil {

return err
}
time.Sleep(t.interval)

}
return nil

}

func (t *Ticker) Terminate(ctx *core.Context) error {
atomic.StoreInt32(&t.stopped, 1)
return nil

}

In this example, Ticker emits tuples having tick field containing a counter until the Terminatemethod is called.

Whether a UDSF is stream-like or source-like can be configured when it is created by UDSFCreator. The interface
UDSFCreator is defined as follows in gopkg.in/sensorbee/sensorbee.v0/bql/udf package:

type UDSFCreator interface {
CreateUDSF(ctx *core.Context, decl UDSFDeclarer, args ...data.Value) (UDSF, error)
Accept(arity int) bool

}

The CreateUDSF method creates a new instance of a UDSF. The method is called when evaluating a UDSF in the
FROM clause of a SELECT statement. ctx contains the processing context information. decl is used to customize the
behavior of the UDSF, which is explained later. args has arguments passed in the SELECT statement. The Accept
method verifies if the UDSF accept the specific number of arguments. This is the same as UDF.Arity method (see
User-Defined Functions).

UDSFDeclarer is used in the CreateUDSF method to customize the behavior of a UDSF:

type UDSFDeclarer interface {
Input(name string, config *UDSFInputConfig) error
ListInputs() map[string]*UDSFInputConfig

}

By calling its Inputmethod, a UDSF will be able to receive tuples from another stream with the name name. Because
the name is given outside the UDSF, it’s uncontrollable from the UDSF. However, there are cases that a UDSF wants to
know from which stream a tuple has come. For example, when providing a UDSF performing a JOIN or two streams, a
UDSF needs to distinguish which stream emitted the tuple. If the UDSF was defined as my_join(left_stream,
right_stream), decl can be used as follows in UDSFCreator.CreateUDSF:

decl.Input(args[0], &UDSFInputConfig{InputName: "left"})
decl.Input(args[1], &UDSFInputConfig{InputName: "right"})

By configuring the input stream in this way, a tuple passed to UDSF.Process has the given name in its Tuple.
InputName field:

func (m *MyJoin) Process(ctx *core.Context, t *core.Tuple, w core.Writer) error {
switch t.InputName {
case "left":

... process tuples from left_stream ...

13.3. User-Defined Stream-Generating Functions 109

SensorBee Documentation, Release 0.4

case "right":
... process tuples from right_stream ...

}
...

}

If a UDSF is configured to have one or more input streams by decl.Input in the UDSFCreator.CreateUDSF
method, the UDSF is processed as a stream-like UDSF. Otherwise, if a UDSF doesn’t have any input (i.e. decl.
Input is not called), the UDSF becomes a source-like UDSF.

As an example, the UDSFCreator of WordSplitter is shown below:

type WordSplitterCreator struct {
}

func (w *WordSplitterCreator) CreateUDSF(ctx *core.Context,
decl udf.UDSFDeclarer, args ...data.Value) (udf.UDSF, error) {
input, err := data.AsString(args[0])
if err != nil {

return nil, fmt.Errorf("input stream name must be a string: %v", args[0])
}
field, err := data.AsString(args[1])
if err != nil {

return nil, fmt.Errorf("target field name must be a string: %v", args[1])
}
// This Input call makes the UDSF a stream-like UDSF.
if err := decl.Input(input, nil); err != nil {

return nil, err
}
return &WordSplitter{

field: field,
}, nil

}

func (w *WordSplitterCreator) Accept(arity int) bool {
return arity == 2

}

Although the UDSF has not been registered to the SensorBee server yet, it could appear like
word_splitter(input_stream_name, target_field_name) if it was registered with the name
word_splitter.

For another example, the UDSFCreator of Ticker is shown below:

type TickerCreator struct {
}

func (t *TickerCreator) CreateUDSF(ctx *core.Context,
decl udf.UDSFDeclarer, args ...data.Value) (udf.UDSF, error) {
interval, err := data.ToDuration(args[0])
if err != nil {

return nil, err
}
// Since this is a source-like UDSF, there's no input.
return &Ticker{

interval: interval,
}, nil

}

110 Chapter 13. Extensions in Go

SensorBee Documentation, Release 0.4

func (t *TickerCreator) Accept(arity int) bool {
return arity == 1

}

Like word_splitter, its signature could be ticker(interval) if the UDSF is registered as ticker.

The implementation of this UDSF is completed and the next step is to register it to the SensorBee server.

Registering a UDSF

A UDSF can be used in BQL by registering its UDSFCreator interface to the SensorBee server using the
RegisterGlobalUDSFCreator or MustRegisterGlobalUDSFCreator functions, which are defined in
gopkg.in/sensorbee/sensorbee.v0/bql/udf.

The following example registers WordSplitter and Ticker:

func init() {
udf.RegisterGlobalUDSFCreator("word_splitter", &WordSplitterCreator{})
udf.RegisterGlobalUDSFCreator("ticker", &TickerCreator{})

}

Generic UDSFs

Just like UDFs have a ConvertGeneric function, UDSFs also have ConvertToUDSFCreator and
MustConvertToUDSFCreator function. They convert a regular function satisfying some restrictions to the
UDSFCreator interface.

The restrictions are the same as for generic UDFs except that a function converted to the UDSFCreator interface
has an additional argument UDSFDeclarer. UDSFDeclarer is located after *core.Context and before other
arguments. Examples of valid function signatures are show below:

• func(*core.Context, UDSFDeclarer, int)

• func(UDSFDeclarer, string)

• func(UDSFDeclarer)

• func(*core.Context, UDSFDeclarer, ...data.Value)

• func(UDSFDeclarer, ...float64)

• func(*core.Context, UDSFDeclarer, int, ...string)

• func(UDSFDeclarer, int, float64, ...time.Time)

Unlike *core.Context, UDSFDeclarer cannot be omitted. The same set of types can be used for arguments as
types that ConvertGeneric function accepts.

WordSplitterCreator can be rewritten with the ConvertToUDSFCreator function as follows:

func CreateWordSplitter(decl udf.UDSFDeclarer,
inputStream, field string) (udf.UDSF, error) {
if err := decl.Input(inputStream, nil); err != nil {

return nil, err
}
return &WordSplitter{

field: field,
}, nil

13.3. User-Defined Stream-Generating Functions 111

SensorBee Documentation, Release 0.4

}

func init() {
udf.RegisterGlobalUDSFCreator("word_splitter",

udf.MustConvertToUDSFCreator(WordSplitterCreator))
}

TickerCreator can be replaced with ConvertToUDSFCreator, too:

func CreateTicker(decl udf.UDSFDeclarer, i data.Value) (udf.UDSF, error) {
interval, err := data.ToDuration(i)
if err != nil {

return nil, err
}
return &Ticker{

interval: interval,
}, nil

}

func init() {
udf.MustRegisterGlobalUDSFCreator("ticker",

udf.MustConvertToUDSFCreator(udsfs.CreateTicker))
}

A Complete Example

This subsection provides a complete example of UDSFs described in this section. In addition to word_splitter
and ticker, the example also includes the lorem source, which periodically emits random texts as {"text":
"lorem ipsum dolor sit amet"}.

Assume that the import path of the example repository is github.com/sensorbee/examples/udsfs, which
doesn’t actually exist. The repository has four files:

• lorem.go

• splitter.go

• ticker.go

• plugin/plugin.go

lorem.go

To learn how to implement a source plugin, see Source Plugins.

package udsfs

import (
"math/rand"
"strings"
"time"

"gopkg.in/sensorbee/sensorbee.v0/bql"
"gopkg.in/sensorbee/sensorbee.v0/core"
"gopkg.in/sensorbee/sensorbee.v0/data"

)

112 Chapter 13. Extensions in Go

SensorBee Documentation, Release 0.4

var (
Lorem = strings.Split(strings.Replace(`lorem ipsum dolor sit amet

consectetur adipiscing elit sed do eiusmod tempor incididunt ut labore et dolore
magna aliqua Ut enim ad minim veniam quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat Duis aute irure dolor in reprehenderit
in voluptate velit esse cillum dolore eu fugiat nulla pariatur Excepteur sint
occaecat cupidatat non proident sunt in culpa qui officia deserunt mollit anim
id est laborum`, "\n", " ", -1), " ")
)

type LoremSource struct {
interval time.Duration

}

func (l *LoremSource) GenerateStream(ctx *core.Context, w core.Writer) error {
for {

var text []string
for l := rand.Intn(5) + 5; l > 0; l-- {

text = append(text, Lorem[rand.Intn(len(Lorem))])
}

t := core.NewTuple(data.Map{
"text": data.String(strings.Join(text, " ")),

})
if err := w.Write(ctx, t); err != nil {

return err
}

time.Sleep(l.interval)
}

}

func (l *LoremSource) Stop(ctx *core.Context) error {
return nil

}

func CreateLoremSource(ctx *core.Context,
ioParams *bql.IOParams, params data.Map) (core.Source, error) {
interval := 1 * time.Second
if v, ok := params["interval"]; ok {

i, err := data.ToDuration(v)
if err != nil {

return nil, err
}
interval = i

}
return core.ImplementSourceStop(&LoremSource{

interval: interval,
}), nil

}

splitter.go

package udsfs

import (

13.3. User-Defined Stream-Generating Functions 113

SensorBee Documentation, Release 0.4

"fmt"
"strings"

"gopkg.in/sensorbee/sensorbee.v0/bql/udf"
"gopkg.in/sensorbee/sensorbee.v0/core"
"gopkg.in/sensorbee/sensorbee.v0/data"

)

type WordSplitter struct {
field string

}

func (w *WordSplitter) Process(ctx *core.Context,
t *core.Tuple, writer core.Writer) error {
var kwd []string
if v, ok := t.Data[w.field]; !ok {

return fmt.Errorf("the tuple doesn't have the required field: %v", w.field)
} else if s, err := data.AsString(v); err != nil {

return fmt.Errorf("'%v' field must be string: %v", w.field, err)
} else {

kwd = strings.Split(s, " ")
}

for _, k := range kwd {
out := t.Copy()
out.Data[w.field] = data.String(k)
if err := writer.Write(ctx, out); err != nil {

return err
}

}
return nil

}

func (w *WordSplitter) Terminate(ctx *core.Context) error {
return nil

}

func CreateWordSplitter(decl udf.UDSFDeclarer,
inputStream, field string) (udf.UDSF, error) {
if err := decl.Input(inputStream, nil); err != nil {

return nil, err
}
return &WordSplitter{

field: field,
}, nil

}

ticker.go

package udsfs

import (
"sync/atomic"
"time"

"gopkg.in/sensorbee/sensorbee.v0/bql/udf"

114 Chapter 13. Extensions in Go

SensorBee Documentation, Release 0.4

"gopkg.in/sensorbee/sensorbee.v0/core"
"gopkg.in/sensorbee/sensorbee.v0/data"

)

type Ticker struct {
interval time.Duration
stopped int32

}

func (t *Ticker) Process(ctx *core.Context, tuple *core.Tuple, w core.Writer) error {
var i int64
for ; atomic.LoadInt32(&t.stopped) == 0; i++ {

newTuple := core.NewTuple(data.Map{"tick": data.Int(i)})
if err := w.Write(ctx, newTuple); err != nil {

return err
}
time.Sleep(t.interval)

}
return nil

}

func (t *Ticker) Terminate(ctx *core.Context) error {
atomic.StoreInt32(&t.stopped, 1)
return nil

}

func CreateTicker(decl udf.UDSFDeclarer, i data.Value) (udf.UDSF, error) {
interval, err := data.ToDuration(i)
if err != nil {

return nil, err
}
return &Ticker{

interval: interval,
}, nil

}

plugin/plugin.go

package plugin

import (
"gopkg.in/sensorbee/sensorbee.v0/bql"
"gopkg.in/sensorbee/sensorbee.v0/bql/udf"

"github.com/sensorbee/examples/udsfs"
)

func init() {
bql.MustRegisterGlobalSourceCreator("lorem",

bql.SourceCreatorFunc(udsfs.CreateLoremSource))
udf.MustRegisterGlobalUDSFCreator("word_splitter",

udf.MustConvertToUDSFCreator(udsfs.CreateWordSplitter))
udf.MustRegisterGlobalUDSFCreator("ticker",

udf.MustConvertToUDSFCreator(udsfs.CreateTicker))
}

13.3. User-Defined Stream-Generating Functions 115

SensorBee Documentation, Release 0.4

Example BQL Statements

CREATE SOURCE lorem TYPE lorem;
CREATE STREAM lorem_words AS

SELECT RSTREAM * FROM word_splitter("lorem", "text") [RANGE 1 TUPLES];

Results of word_splitter can be received by the following SELECT:

SELECT RSTREAM * FROM lorem_words [RANGE 1 TUPLES];

User-Defined States

This section describes how to write a UDS in Go.

Implementing a UDS

A struct implementing the following interface can be used as a UDS:

type SharedState interface {
Terminate(ctx *Context) error

}

This interface is defined in gopkg.in/sensorbee/sensorbee.v0/core package.

Terminate method is called when the UDS becomes no longer in use. It should release any resource that the UDS
has allocated so far.

As an example, a UDS having a monotonically increasing counter can be implemented as follows:

type Counter struct {
c int64

}

func (c *Counter) Terminate(ctx *core.Context) error {
return nil

}

func (c *Counter) Next() int64 {
return atomic.AddInt64(&c.c, 1)

}

At the moment, there’s no way to manipulate the UDS from BQL statements. UDSs are usually provided with a set of
UDFs that read or update the UDS. It’ll be described later in Manipulating a UDS via a UDF. Before looking into the
UDS manipulation, registering and creating a UDS needs to be explained.

Registering a UDS

To register a UDS to the SensorBee server , the UDS needs to provide its UDSCreator. UDSCreator is an interface
defined in gopkg.in/sensorbee/sensorbee.v0/bql/udf package as follows:

type UDSCreator interface {
CreateState(ctx *core.Context, params data.Map) (core.SharedState, error)

}

116 Chapter 13. Extensions in Go

SensorBee Documentation, Release 0.4

UDSCreator.CreateState method is called when executing a CREATE STATE statement. The method creates
a new instance of the UDS and initializes it with the given parameters. The argument ctx has the processing context
information and params has parameters specified in the WITH clause of the CREATE STATE.

The creator can be registered by RegisterGlobalUDSCreator or MustRegisterGlobalUDSCreator
function defined in gopkg.in/sensorbee/sensorbee.v0/bql/udf package.

The following is the implementation and the registration of the creator for Counter UDS above:

type CounterCreator struct {
}

func (c *CounterCreator) CreateState(ctx *core.Context,
params data.Map) (core.SharedState, error) {
cnt := &Counter{}
if v, ok := params["start"]; ok {

i, err := data.ToInt(v)
if err != nil {

return nil, err
}
cnt.c = i - 1

}
return cnt, nil

}

func init() {
udf.MustRegisterGlobalUDSCreator("my_counter", &CounterCreator{})

}

The creator in this example is registered with the UDS type name my_counter. The creator supports start
parameter which is used as the first value that Counter.Next returns. The parameter can be specified in the
CREATE STATE as follows:

CREATE STATE my_counter_instance TYPE my_counter WITH start = 100;

Because the creator creates a new instance every time the CREATE STATE is executed, there can be multiple instances
of a specific UDS type:

CREATE STATE my_counter_instance1 TYPE my_counter;
CREATE STATE my_counter_instance2 TYPE my_counter;
CREATE STATE my_counter_instance3 TYPE my_counter;
...

Once an instance of the UDS is created by the CREATE STATE, UDFs can refer them and manipulate their state.

udf.UDSCreatorFunc

A function having the same signature as UDSCreator.CreateState can be converted into UDSCreator by by
udf.UDSCreatorFunc utility function:

func UDSCreatorFunc(f func(*core.Context, data.Map) (core.SharedState, error))
→˓UDSCreator

For example, CounterCreator can be defined as a function and registered as follows with this utility:

func CreateCounter(ctx *core.Context,
params data.Map) (core.SharedState, error) {

13.4. User-Defined States 117

SensorBee Documentation, Release 0.4

cnt := &Counter{}
if v, ok := params["start"]; ok {

i, err := data.ToInt(v)
if err != nil {

return nil, err
}
cnt.c = i - 1

}
return cnt, nil

}

func init() {
udf.MustRegisterGlobalUDSCreator("my_counter",

&udf.UDSCreatorFunc(CreateCounter))
}

To support SAVE STATE and LOAD STATE statements, however, this utility function cannot be used because the
creator needs to have the LoadState method. How to support saving and loading is described later.

Manipulating a UDS via a UDF

To manipulate a UDS from BQL statements, a set of UDFs that read or update the UDS has to be provided with it:

func Next(ctx *core.Context, uds string) (int64, error) {
s, err := ctx.SharedStates.Get(uds)
if err != nil {

return 0, err
}

c, ok := s.(*Counter)
if !ok {

return 0, fmt.Errorf("the state isn't a counter: %v", uds)
}
return c.Next(), nil

}

func init() {
udf.MustRegisterGlobalUDF("my_next_count", udf.MustConvertGeneric(Next))

}

In this example, a UDF my_next_count is registered to the SensorBee server. The UDF calls Counter.Next
method to obtain the next count and returns it. The UDF receives one argument uds that is the name of the UDS to
be updated.

CREATE STATE my_counter_instance TYPE my_counter;
CREATE STREAM events_with_id AS

SELECT RSTREAM my_next_count("my_counter_instance") AS id, *
FROM events [RANGE 1 TUPLES];

The BQL statements above add IDs to tuples emitted from a stream events. The state my_counter_instance
is created with the type my_counter. Then, my_next_count UDF is called with the name. Every time the UDF
is called, the state of my_counter_instance is updated by its Next method.

my_next_count (i.e. Next function in Go) can look up the instance of the UDS by its name through core.
Context.SharedStates. SharedStates manages all the UDSs created in a topology. SharedState.Get
returns the instance of the UDS having the given name. It returns an error if it couldn’t find the instance. In the

118 Chapter 13. Extensions in Go

SensorBee Documentation, Release 0.4

example above, my_next_count("my_counter_instance") will look up an instance of the UDS having the
name my_counter_instance, which was previously created by the CREATE STATE. The UDS returned from
Get method has the type core.SharedState and cannot directly be used as Counter. Therefore, it has to be
cast to *Counter.

Since the state can be any type satisfying core.SharedState, a UDS can potentially have any information such
as machine learning models, dictionaries for natural language processing, or even an in-memory database.

Note: As UDFs are concurrently called from multiple goroutines, UDSs also needs to be thread-safe.

Saving and Loading a UDS

Counter implemented so far doesn’t support saving and loading its state. Thus, its count will be reset every time
the server restarts. To save the state and load it later on, the UDS and its creator need to provide some methods.
After providing those method, the state can be saved by the SAVE STATE statement and loaded by LOAD STATE
statement.

Supporting SAVE STATE

By adding Save method having the following signature to a UDS, the UDS can be saved by the SAVE STATE
statement:

Save(ctx *core.Context, w io.Writer, params data.Map) error

Save method writes all the data that the state has to w io.Writer. The data can be written in any format as long
as corresponding loading methods can reconstruct the state from it. It can be in JSON, msgpack, Protocol Buffer, and
so on.

Warning: Providing forward/backward compatibility or version controlling of the saved data is the responsibility
of the author of the UDS.

*core.Context has the processing context information. params argument is not used at the moment and reserved
for the future use.

Once Save method is provided, the UDS can be saved by SAVE STATE statement:

SAVE STATE my_counter_instance;

The SAVE STATE doesn’t take any parameters now. The location and the physical format of the saved UDS data
depend on the configuration of the SensorBee server or program running BQL statements. However, it is guaranteed
that the saved data can be loaded by the same program via the LOAD STATE statement, which is described later.

Save method of previously implemented Counter can be as follows:

func (c *Counter) Save(ctx *core.Context, w io.Writer, params data.Map) error {
return binary.Write(w, binary.LittleEndian, atomic.LoadInt64(&c.c))

}

Note: Because this counter is very simple, there’s no version controlling logic in the method. As the minimum
solution, having a version number at the beginning of the data is sufficient for most cases.

13.4. User-Defined States 119

SensorBee Documentation, Release 0.4

Supporting LOAD STATE

To support the LOAD STATE statement, a UDSCreator needs to have LoadState method having the following
signature:

LoadState(ctx *core.Context, r io.Reader, params data.Map) (core.SharedState, error)

Note: LoadState method needs to be defined in a UDSCreator, not in the UDS itself.

LoadState method reads data from r io.Reader. The data has exactly the same format as the one previously
written by Save method of a UDS. params has parameters specified in the SET clause in the LOAD STATE state-
ment.

Note: Parameters specified in the SET clause doesn’t have to be same as ones given in the WITH clause of the
CREATE STATE statement. See LOAD STATE for details.

When LoadState method returns an error, the LOAD STATE statement with CREATE IF NOT STATE doesn’t
fallback to CREATE STATE, but it just fails.

Once LoadState method is added to the UDSCreator, the saved state can be loaded by LOAD STATE statement.

LoadState method of previously implemented CounterCreator can be as follows:

func (c *CounterCreator) LoadState(ctx *core.Context, r io.Reader,
params data.Map) (core.SharedState, error) {
cnt := &Counter{}
if err := binary.Read(r, binary.LittleEndian, &cnt.c); err != nil {

return nil, err
}
return cnt, nil

}

Providing Load method in a UDS

In addition to implementing LoadState method in a UDS’s creator, a UDS itself can provide Load method. While
LoadState method creates a new state instance and replace it with the previous instance, Load method dynamically
modifies the existing instance. Therefore, Load method can potentially be more efficient than LoadState method
although it has to provide appropriate failure handling and concurrency control so that (1) the UDS doesn’t become
invalid on failure (i.e. Load methods is “exception safe”) or by concurrent calls, and (2) other operations on the UDS
don’t block for a long time.

The signature of Load method is almost the same as LoadState method except that Load method doesn’t return a
new core.SharedState but updates the UDS itself instead:

Load(ctx *Context, r io.Reader, params data.Map) error

Load method of previously implemented Counter can be as follows:

func (c *Counter) Load(ctx *core.Context, r io.Reader, params data.Map) error {
var cnt int64
if err := binary.Read(r, binary.LittleEndian, &cnt); err != nil {

return err
}
atomic.StoreInt64(&c.c, cnt)

120 Chapter 13. Extensions in Go

SensorBee Documentation, Release 0.4

return nil
}

How Loading is Processed

SensorBee tries to use these two loading methods LoadState and Load in the following rule:

1. When a UDS’s creator doesn’t provide LoadState method, the LOAD STATE statement fails.

• The LOAD STATE statement fails even if the UDS implements its Load method. To support the state-
ment, LoadState method is always required in its creator. This is because Load method only works
when an instance of the UDS is already created or loaded, and it cannot be used for a nonexistent instance.

• The LOAD STATE CREATE IF NOT SAVED statement also fails if LoadState method isn’t pro-
vided. The statement calls CreateState method when the state hasn’t previously been saved. Other-
wise, it’ll try to load the saved data. Therefore, if the data is previously saved and an instance of the UDS
hasn’t been created yet, the statement cannot create a new instance without LoadState method in the
creator. To be consistent on various conditions, the LOAD STATE CREATE IF NOT SAVED statement
fails if LoadState method isn’t provided regardless of whether the state has been saved before or not.

2. When a UDS’s creator provides LoadState method and the UDS doesn’t provide Load method, the LOAD
STATE statement tries to load a model through LoadState method.

• It will create a new instance so that it consumes twice as much memory.

3. When a UDS’s creator provides LoadState method and the UDS also provides Load method,

• Load method will be used when the instance has already been created or loaded.

– LoadState method wouldn’t be used even if Load method failed.

• LoadState method will be used otherwise.

Note: This is already mentioned in the list above, but LoadState method always needs to be provided even if a
UDS implements Load method.

A Complete Example

A complete example of the state is shown in this subsection. Assume that the import path of the example repository is
github.com/sensorbee/examples/counter, which doesn’t actually exist. The repository has two files:

• counter.go

• plugin/plugin.go

counter.go

package counter

import (
"encoding/binary"
"fmt"
"io"
"sync/atomic"

13.4. User-Defined States 121

SensorBee Documentation, Release 0.4

"gopkg.in/sensorbee/sensorbee.v0/core"
"gopkg.in/sensorbee/sensorbee.v0/data"

)

type Counter struct {
c int64

}

func (c *Counter) Terminate(ctx *core.Context) error {
return nil

}

func (c *Counter) Next() int64 {
return atomic.AddInt64(&c.c, 1)

}

func (c *Counter) Save(ctx *core.Context, w io.Writer, params data.Map) error {
return binary.Write(w, binary.LittleEndian, atomic.LoadInt64(&c.c))

}

func (c *Counter) Load(ctx *core.Context, r io.Reader, params data.Map) error {
var cnt int64
if err := binary.Read(r, binary.LittleEndian, &cnt); err != nil {

return err
}
atomic.StoreInt64(&c.c, cnt)
return nil

}

type CounterCreator struct {
}

func (c *CounterCreator) CreateState(ctx *core.Context,
params data.Map) (core.SharedState, error) {
cnt := &Counter{}
if v, ok := params["start"]; ok {

i, err := data.ToInt(v)
if err != nil {

return nil, err
}
cnt.c = i - 1

}
return cnt, nil

}

func (c *CounterCreator) LoadState(ctx *core.Context, r io.Reader,
params data.Map) (core.SharedState, error) {
cnt := &Counter{}
if err := binary.Read(r, binary.LittleEndian, &cnt.c); err != nil {

return nil, err
}
return cnt, nil

}

func Next(ctx *core.Context, uds string) (int64, error) {
s, err := ctx.SharedStates.Get(uds)
if err != nil {

return 0, err

122 Chapter 13. Extensions in Go

SensorBee Documentation, Release 0.4

}

c, ok := s.(*Counter)
if !ok {

return 0, fmt.Errorf("the state isn't a counter: %v", uds)
}
return c.Next(), nil

}

plugin/plugin.go

package plugin

import (
"gopkg.in/sensorbee/sensorbee.v0/bql/udf"

"github.com/sensorbee/examples/counter"
)

func init() {
udf.MustRegisterGlobalUDSCreator("my_counter",

&counter.CounterCreator{})
udf.MustRegisterGlobalUDF("my_next_count",

udf.MustConvertGeneric(counter.Next))
}

Writing Tuples to a UDS

When a UDS implements core.Writer, the INSERT INTO statement can insert tuples into the UDS via the uds
sink:

type Writer interface {
Write(*Context, *Tuple) error

}

The following is the example of using the uds sink:

CREATE STATE my_state TYPE my_state_type;
CREATE SINK my_state_sink TYPE uds WITH name = "my_state";
INSERT INTO my_state_sink FROM some_stream;

If my_state_type doesn’t implement core.Writer, the CREATE SINK statement fails. Every time
some_stream emits a tuple, the Write method of my_state is called.

Example

Models provided by Jubatus machine learning plugin for SensorBee implement the Write method. When tuples are
inserted into a UDS, it trains the model it has.

13.4. User-Defined States 123

SensorBee Documentation, Release 0.4

Source Plugins

This section describes how to implement a source as a plugin of SensorBee.

Implementing a Source

A struct implementing the following interface can be a source:

type Source interface {
GenerateStream(ctx *Context, w Writer) error
Stop(ctx *Context) error

}

This interface is defined in gopkg.in/sensorbee/sensorbee.v0/core package.

The GenerateStream methods actually generate tuples for subsequent streams. The argument ctx contains the
information of the current processing context. w is the destination to where generated tuples are emitted. The Stop
method stops GenerateStream. It should wait until the GenerateStream method call returns, but it isn’t
mandatory.

Once the GenerateStream method is called, a source can emit as many tuples as many tuples as it requires. A
source basically needs to return from its GenerateStream method when:

1. it emitted all the tuples it has

2. the Stop method was called

3. a fatal error occurred

The Stop method can be called concurrently while the GenerateStream method is working and it must be thread-
safe. As long as a source is used by components defined in SensorBee, it’s guaranteed that its Stop method is called
only once and it doesn’t have to be idempotent. However, it is recommended that a source provide a termination check
in its Stop method to avoid a double free problem.

A typical implementation of a source is shown below:

func (s *MySource) GenerateStream(ctx *core.Context, w core.Writer) error {
<initialization>
defer func() {

<clean up>
}()

for <check stop> {
t := <create a new tuple>
if err := w.Write(ctx, t); err != nil {

return err
}

}
return nil

}

func (s *MySource) Stop(ctx *core.Context) error {
<turn on a stop flag>
<wait until GenerateStream stops>
return nil

}

The following example source emits tuple periodically:

124 Chapter 13. Extensions in Go

SensorBee Documentation, Release 0.4

type Ticker struct {
interval time.Duration
stopped int32

}

func (t *Ticker) GenerateStream(ctx *core.Context, w core.Writer) error {
var cnt int64
for ; ; cnt++ {

if atomic.LoadInt32(&t.stopped) != 0 {
break

}

tuple := core.NewTuple(data.Map{"tick": data.Int(cnt)})
if err := w.Write(ctx, tuple); err != nil {

return err
}
time.Sleep(t.interval)

}
return nil

}

func (t *Ticker) Stop(ctx *core.Context) error {
atomic.StoreInt32(&t.stopped, 1)
return nil

}

The interval field is initialized in SourceCreator, which is described later. This is the source version of the
example in UDSF’s section. This implementation is a little wrong since the Stop method doesn’t wait until the
GenerateStream method actually returns. Because implementing a thread-safe source which stops correctly is
a difficult task, core package provides a utility function that implements a source’s Stop method on behalf of the
source itself. See Utilities for details.

Registering a Source

To register a source to the SensorBee server, the source needs to provide its SourceCreator. The
SourceCreator interface is defined in gopkg.in/sensorbee/sensorbee.v0/bql pacakge as follows:

type SourceCreator interface {
CreateSource(ctx *core.Context, ioParams *IOParams, params data.Map) (core.Source,

→˓ error)
}

It only has one method: CreateSource. The CreateSource method is called when the CREATE SOURCE
statement is executed. The ctx argument contains the information of the current processing context. ioParams
has the name and the type name of the source, which are given in the CREATE SOURCE statement. params has
parameters specified in the WITH clause of the CREATE SOURCE statement.

The creator can be registered by RegisterGlobalSourceCreator or
MustRegisterGlobalSourceCreator function. As an example, the creator of Ticker above can be
implemented and registered as follows:

type TickerCreator struct {
}

func (t *TickerCreator) CreateSource(ctx *core.Context,
ioParams *bql.IOParams, params data.Map) (core.Source, error) {

13.5. Source Plugins 125

SensorBee Documentation, Release 0.4

interval := 1 * time.Second
if v, ok := params["interval"]; ok {

i, err := data.ToDuration(v)
if err != nil {

return nil, err
}
interval = i

}
return &Ticker{

interval: interval,
}, nil

}

func init() {
bql.MustRegisterGlobalSourceCreator("ticker", &TickerCreator{})

}

In this example, the source has a parameter interval which can be specified in the WITH clause of the CREATE
SOURCE statement:

CREATE SOURCE my_ticker TYPE ticker WITH interval = 0.1;

my_ticker emits tuples that look like {"tick": 123} in every 100ms. Without the interval parameter,
my_ticker will emit tuples in every one second by default.

Types of a Source

In addition to a regular source, there’re two more types of sources: a resumable source and a rewindable source. This
subsection describes those sources in detail.

Resumable Sources

A source that supports PAUSE SOURCE and the RESUME SOURCE statements are called a resumable source.

Although all sources support them by default, which is done by the core package, a source can explicitly implement
core.Resumable interface so that it can provide more efficient pause and resume capability:

type Resumable interface {
Pause(ctx *Context) error
Resume(ctx *Context) error

}

The Pause method is called when PAUSE SOURCE statement is executed and the Resume method is called by
RESUME SOURCE. The Pause method may be called even when the source is already paused, so is the Resume
method.

A source can be non-resumable by implementing these method to return an error:

type MyNonResumableSource struct {
...

}

...

func (m *MyNonResumableSource) Pause(ctx *core.Context) error {
return errors.New("my_non_resumable_source doesn't support pause")

126 Chapter 13. Extensions in Go

SensorBee Documentation, Release 0.4

}

func (m *MyNonResumableSource) Resume(ctx *core.Context) error {
return errors.New("my_non_resumable_source doesn't support resume")

}

Rewindable Sources

A rewindable source can re-generate the same tuples again from the beginning after it emits all tuples or while it’s
emitting tuples. A rewindable source supports the REWIND SOURCE statement.

A source can become rewindable by implementing the core.RewindableSource interface:

type RewindableSource interface {
Source
Resumable

Rewind(ctx *Context) error
}

A rewindable source also needs to implement core.Resumable to be rewindable.

Note: The reason that a rewindable source also needs to be resumable is due to the internal implementation
of the default pause/resume support. While a source is paused, it blocks core.Writer.Write called in the
GenerateStream method. The Rewind method could also be blocked while the Write call is being blocked
until the Resume method is called. It, of course, depends on the implementation of a source, but it’s very error-prone.
Therefore, implementing the Resumable interface is required to be rewindable at the moment.

Unlike a regular source, the GenerateStream method of a rewindable source must not return after it emits all
tuples. Instead, it needs to wait until the Rewind method or the Stop method is called. Once it returns, the source is
considered stopped and no further operation including the REWIND SOURCE statement wouldn’t work on the source.

Due to its nature, a stream isn’t often resumable. A resumable source is mostly used for relatively static data sources
such as relations or files. Also, because implementing the RewindableSource interface is even harder than imple-
menting the Resumable interface, utilities are usually used.

Utilities

There’re some utilities to support implementing sources and its creators. This subsection describes each utility.

core.ImplementSourceStop

core.ImplementSourceStop is a function that implements the Stop method of a source in a thread-safe man-
ner:

func ImplementSourceStop(s Source) Source

A source returned from this function is resumable, but not rewindable even if the original source implements the
core.RewindableSource interface. In addition, although a source passed to core.ImplementSourceStop
can explicitly implement the core.Resumable interface, its Pause and Resume method will never be called
because the source returned from core.ImplementSourceStop also implements those methods and controls
pause and resume.

13.5. Source Plugins 127

SensorBee Documentation, Release 0.4

To apply this function, a source must satisfy following restrictions:

1. The GenerateStreammethod must be implemented in a way that it can safely be called again after it returns.

2. The GenerateStream method must return when the core.Writer.Write returned core.
ErrSourceStopped. The method must return exactly the same error variable that the writer returned.

3. The Stop method just returns nil.

• This means all resource allocation and deallocation must be done within the GenerateStream method.

A typical implementation of a source passed to core.ImplementSourceStop is shown below:

func (s *MySource) GenerateStream(ctx *core.Context, w core.Writer) error {
<initialization>
defer func() {

<clean up>
}()

for {
t := <create a new tuple>
if err := w.Write(ctx, t); err != nil {

return err
}

}
return nil

}

func (s *MySource) Stop(ctx *core.Context) error {
return nil

}

If a source wants to ignore errors returned from core.Writer.Write other than core.ErrSourceStopped,
the GenerateStream method can be modified as:

if err := w.Write(ctx, t); err != nil {
if err == core.ErrSourceStopped {

return err
}

}

By applying core.ImplementSourceStop, the Ticker above can be implemented as follows:

type Ticker struct {
interval time.Duration

}

func (t *Ticker) GenerateStream(ctx *core.Context, w core.Writer) error {
var cnt int64
for ; ; cnt++ {

tuple := core.NewTuple(data.Map{"tick": data.Int(cnt)})
if err := w.Write(ctx, tuple); err != nil {

return err
}
time.Sleep(t.interval)

}
return nil

}

func (t *Ticker) Stop(ctx *core.Context) error {

128 Chapter 13. Extensions in Go

SensorBee Documentation, Release 0.4

return nil
}

type TickerCreator struct {
}

func (t *TickerCreator) CreateSource(ctx *core.Context,
ioParams *bql.IOParams, params data.Map) (core.Source, error) {
interval := 1 * time.Second
if v, ok := params["interval"]; ok {

i, err := data.ToDuration(v)
if err != nil {

return nil, err
}
interval = i

}
return core.ImplementSourceStop(&Ticker{

interval: interval,
}), nil

}

There’s no stopped flag now. In this version, the Stop method of the source returned by core.
ImplementSourceStop waits until the GenerateStream method returns.

core.NewRewindableSource

core.NewRewindableSource is a function that converts a regular source into a rewindable source:

func NewRewindableSource(s Source) RewindableSource

A source returned from this function is resumable and rewindable. A source passed to the function needs to satisfy the
same restrictions as core.ImplementSourceStop. In addition to that, there’s one more restriction for core.
NewRewindableSource:

4. The GenerateStream method must return when the core.Writer.Write returned core.
ErrSourceRewound. The method must return exactly the same error variable that the writer returned.

Although the GenerateStream method of a rewindable source must not return after it emits all tuples, a source
passed to the core.NewRewindableSource function needs to return in that situation. For example, let’s assume
there’s a source that generate tuples from each line in a file. To implement the source without a help of the utility
function, its GenerateStream must wait for the Rewind method to be called after it processes all lines in the
file. However, with the utility, its GenerateStream can just return once it emits all tuples. Therefore, a typical
implementation of a source passed to the utility can be same as a source for core.ImplementSourceStop.

As it will be shown later, a source that infinitely emits tuples can also be rewindable in some sense.

The following is an example of TickerCreator modified from the example for core.
ImplementSourceStop:

func (t *TickerCreator) CreateSource(ctx *core.Context,
ioParams *bql.IOParams, params data.Map) (core.Source, error) {
interval := 1 * time.Second
if v, ok := params["interval"]; ok {

i, err := data.ToDuration(v)
if err != nil {

return nil, err
}

13.5. Source Plugins 129

SensorBee Documentation, Release 0.4

interval = i
}

rewindable := false
if v, ok := params["rewindable"]; ok {

b, err := data.AsBool(v)
if err != nil {

return nil, err
}
rewindable = b

}

src := &Ticker{
interval: interval,

}
if rewindable {

return core.NewRewindableSource(src), nil
}
return core.ImplementSourceStop(src), nil

}

In this example, Ticker has the rewindable parameter. If it is true, the source becomes rewindable:

CREATE SOURCE my_rewindable_ticker TYPE ticker WITH rewindable = true;

By issuing the REWIND SOURCE statement, my_rewindable_ticker resets the value of tick field:

REWIND SOURCE my_rewindable_ticker;

-- output examples of SELECT RSTREAM * FROM my_rewindable_ticker [RANGE 1 TUPLES];
{"tick":0}
{"tick":1}
{"tick":2}
...
{"tick":123}
-- REWIND SOURCE is executed here
{"tick":0}
{"tick":1}
...

bql.SourceCreatorFunc

bql.SourceCreatorFunc is a function that converts a function having the same signature as
SourceCreator.CreateSource to a SourceCreator:

func SourceCreatorFunc(f func(*core.Context,

*IOParams, data.Map) (core.Source, error)) SourceCreator

For example, TickerCreator above and its registration can be modified to as follows with this utility:

func CreateTicker(ctx *core.Context,
ioParams *bql.IOParams, params data.Map) (core.Source, error) {
interval := 1 * time.Second
if v, ok := params["interval"]; ok {

i, err := data.ToDuration(v)
if err != nil {

130 Chapter 13. Extensions in Go

SensorBee Documentation, Release 0.4

return nil, err
}
interval = i

}
return core.ImplementSourceStop(&Ticker{

interval: interval,
}), nil

}

func init() {
bql.MustRegisterGlobalSourceCreator("ticker",

bql.SourceCreatorFunc(CreateTicker))
}

A Complete Example

A complete example of Ticker is shown in this subsection. Assume that the import path of the example is github.
com/sensorbee/examples/ticker, which doesn’t actually exist. There’re two files in the repository:

• ticker.go

• plugin/plugin.go

The example uses core.NewRewindableSource utility function.

ticker.go

package ticker

import (
"time"

"gopkg.in/sensorbee/sensorbee.v0/bql"
"gopkg.in/sensorbee/sensorbee.v0/core"
"gopkg.in/sensorbee/sensorbee.v0/data"

)

type Ticker struct {
interval time.Duration

}

func (t *Ticker) GenerateStream(ctx *core.Context, w core.Writer) error {
var cnt int64
for ; ; cnt++ {

tuple := core.NewTuple(data.Map{"tick": data.Int(cnt)})
if err := w.Write(ctx, tuple); err != nil {

return err
}
time.Sleep(t.interval)

}
return nil

}

func (t *Ticker) Stop(ctx *core.Context) error {
// This method will be implemented by utility functions.
return nil

13.5. Source Plugins 131

SensorBee Documentation, Release 0.4

}

type TickerCreator struct {
}

func (t *TickerCreator) CreateSource(ctx *core.Context,
ioParams *bql.IOParams, params data.Map) (core.Source, error) {
interval := 1 * time.Second
if v, ok := params["interval"]; ok {

i, err := data.ToDuration(v)
if err != nil {

return nil, err
}
interval = i

}

rewindable := false
if v, ok := params["rewindable"]; ok {

b, err := data.AsBool(v)
if err != nil {

return nil, err
}
rewindable = b

}

src := &Ticker{
interval: interval,

}
if rewindable {

return core.NewRewindableSource(src), nil
}
return core.ImplementSourceStop(src), nil

}

plugin/plugin.go

package plugin

import (
"gopkg.in/sensorbee/sensorbee.v0/bql"

"github.com/sensorbee/examples/ticker"
)

func init() {
bql.MustRegisterGlobalSourceCreator("ticker", &ticker.TickerCreator{})

}

Sink Plugins

This section describes how to implement a sink as a plugin of SensorBee.

132 Chapter 13. Extensions in Go

SensorBee Documentation, Release 0.4

Implementing a Sink

A struct implementing the following interface can be a sink:

type Sink interface {
Write(ctx *Context, t *Tuple) error
Close(ctx *Context) error

}

This interface is defined in gopkg.in/sensorbee/sensorbee.v0/core package.

The Writemethod write a tuple to a destination of the sink. The argument ctx contains the information of the current
processing context. t is the tuple to be written. The Close method is called when the sink becomes unnecessary. It
must release all resources allocated for the sink.

The following example sink write a tuple as a JSON to stdout:

type StdoutSink struct {
}

func (s *StdoutSink) Write(ctx *core.Context, t *core.Tuple) error {
_, err := fmt.Fprintln(os.Stdout, t.Data)
return err

}

func (s *StdoutSink) Close(ctx *core.Context) error {
// nothing to release
return nil

}

A sink is initialized by its SinkCreator, which is described later.

Note: SensorBee doesn’t provide buffering or retry capability for sinks.

Registering a Sink

To register a sink to the SensorBee server, the sink needs to provide its SinkCreator. The SinkCreator interface
is defined in gopkg.in/sensorbee/sensorbee.v0/bql pacakge as follows:

// SinkCreator is an interface which creates instances of a Sink.
type SinkCreator interface {

// CreateSink creates a new Sink instance using given parameters.
CreateSink(ctx *core.Context, ioParams *IOParams, params data.Map) (core.Sink,

→˓error)
}

It only has one method: CreateSink. The CreateSink method is called when the CREATE SINK statement is
executed. The ctx argument contains the information of the current processing context. ioParams has the name
and the type name of the sink, which are given in the CREATE SINK statement. params has parameters specified in
the WITH clause of the CREATE SINK statement.

The creator can be registered by RegisterGlobalSinkCreator or MustRegisterGlobalSinkCreator
function. As an example, the creator of StdoutSink above can be implemented and registered as follows:

13.6. Sink Plugins 133

SensorBee Documentation, Release 0.4

type StdoutSinkCreator struct {
}

func (s *StdoutSinkCreator) CreateSink(ctx *core.Context,
ioParams *bql.IOParams, params data.Map) (core.Sink, error) {
return &StdoutSink{}, nil

}

func init() {
bql.MustRegisterGlobalSinkCreator("my_stdout", &StdoutSinkCreator{})

}

This sink doesn’t have parameters specified in the WITH clause of the CREATE SINK statement. How to handle
parameters for sink is same as how source does. See Source Plugins for more details.

Utilities

There’s one utility function for sink plugins: SinkCreatorFunc:

func SinkCreatorFunc(f func(*core.Context,

*IOParams, data.Map) (core.Sink, error)) SinkCreator

This utility function is defined in gopkg.in/sensorbee/sensorbee.v0/bql pacakge. It converts a function
having the same signature as SinkCreator.CreateSink to a SinkCreator. With this utility, for example,
StdoutSinkCreator can be modified to:

func CreateStdoutSink(ctx *core.Context,
ioParams *bql.IOParams, params data.Map) (core.Sink, error) {
return &StdoutSink{}, nil

}

fucn init() {
bql.MustRegisterGlobalSinkCreator("stdout",

bql.SinkCreatorFunc(CreateStdoutSink))
}

A Complete Example

A complete example of the sink is shown in this subsection. The package name for the sink is stdout and
StdoutSink is renamed to Sink. Also, this example uses SinkCreatorFunc utility for SinkCreator.

Assume that the import path of the example is github.com/sensorbee/examples/stdout, which doesn’t
actually exist. The repository has to files:

• stdout.go

• plugin/plugin.go

stdout.go

package stdout

import (
"fmt"

134 Chapter 13. Extensions in Go

SensorBee Documentation, Release 0.4

"os"

"gopkg.in/sensorbee/sensorbee.v0/bql"
"gopkg.in/sensorbee/sensorbee.v0/core"
"gopkg.in/sensorbee/sensorbee.v0/data"

)

type Sink struct {
}

func (s *Sink) Write(ctx *core.Context, t *core.Tuple) error {
_, err := fmt.Fprintln(os.Stdout, t.Data)
return err

}

func (s *Sink) Close(ctx *core.Context) error {
return nil

}

func Create(ctx *core.Context, ioParams *bql.IOParams, params data.Map) (core.Sink,
→˓error) {

return &Sink{}, nil
}

plugin/plugin.go

package plugin

import (
"gopkg.in/sensorbee/sensorbee.v0/bql"

"github.com/sensorbee/examples/stdout"
)

func init() {
bql.MustRegisterGlobalSinkCreator("my_stdout",

bql.SinkCreatorFunc(stdout.Create))
}

13.6. Sink Plugins 135

SensorBee Documentation, Release 0.4

136 Chapter 13. Extensions in Go

Part V

Reference

137

CHAPTER 14

BQL Statements

CREATE SINK

Synopsis

CREATE SINK name TYPE type_name [WITH parameter_name = parameter_value [, ...]]

Description

CREATE SINK creates a new sink in a topology.

Parameters

name The name of the sink to be created.

type_name The type name of the sink.

parameter_name The name of a sink-specific parameter.

parameter_value The value for a sink-specific parameter.

Sink Parameters

The optional WITH clause specifies parameters specific to the sink. See each sink’s documentation to find out param-
eters it provides.

Examples

To create a sink having the name “snk” with no sink-specific parameter:

139

SensorBee Documentation, Release 0.4

CREATE SINK snk TYPE fluentd;

To create a sink with sink-specific parameters:

CREATE SINK fluentd TYPE fluentd WITH tag_field = "fluentd_tag";

As you can see, the name of a sink can be same as the type name of a sink.

CREATE SOURCE

Synopsis

CREATE [PAUSED] SOURCE name TYPE type_name [WITH parameter_name = parameter_value [, .
→˓..]]

Description

CREATE SOURCE creates a new source in a topology.

Parameters

PAUSED The source is paused when it’s created if this option is used.

name The name of the source to be created.

type_name The type name of the source.

parameter_name The name of a source-specific parameter.

parameter_value The value for a source-specific parameter.

Source Parameters

The optional WITH clause specifies parameters specific to the source. See each source’s documentation to find out
parameters it provides.

Notes

Some sources stop after emitting all tuples. They can stop even before any subsequent statement is executed. For such
sources, specify PAUSED parameter and run RESUME SOURCE after completely setting up a topology so that no
tuple emitted from the source will be lost.

Examples

To create a source having the name “src” with no source-specific parameter:

CREATE SOURCE src TYPE dropped_tuples;

To create a source with source-specific parameters:

140 Chapter 14. BQL Statements

SensorBee Documentation, Release 0.4

CREATE SOURCE fluentd TYPE fluentd WITH bind = "0.0.0.0:12345",
tag_field = "my_tag";

As you can see, the name of a source can be same as the type name of a source.

CREATE STATE

Synopsis

CREATE STATE name TYPE type_name [WITH parameter_name = parameter_value [, ...]]

Description

CREATE STATE creates a new UDS (User Defined State) in a topology.

Parameters

name The name of the UDS to be created.

type_name The type name of the UDS.

parameter_name The name of a UDS-specific parameter.

parameter_value The value for a UDS-specific parameter.

UDS Parameters

The optional WITH clause specifies parameters specific to the UDS. See each UDS’s documentation to find out pa-
rameters it provides.

Examples

To create a UDS named “my_uds” with no UDS-specific parameter:

CREATE STATE my_uds TYPE my_uds_type;

To create a UDS with UDS-specific parameters:

CREATE STATE my_ids TYPE snowflake_id WITH machine_id = 1;

CREATE STREAM

Synopsis

CREATE STREAM name AS select

14.3. CREATE STATE 141

SensorBee Documentation, Release 0.4

Description

CREATE STREAM creates a new stream (a.k.a a continuous view) in a topology.

Parameters

name The name of the stream to be created.

select The SELECT statement to generate a stream. select can be any SELECT statement including a statement using
UNION ALL.

Examples

To create a stream named “strm”:

CREATE STREAM strm AS SELECT RSTREAM * FROM src [RANGE 1 TUPLES];

To create a stream which merges all tuples from multiple streams:

CREATE STREAM strm AS
SELECT RSTREAM * FROM src1 [RANGE 1 TUPLES]
UNION ALL
SELECT RSTREAM * FROM src2 [RANGE 1 TUPLES];

DROP SINK

Synopsis

DROP SINK name

Description

DROP SINK drops a sink that is already created in a topology. The sink can no longer be used after executing the
statement.

Parameters

name The name of the sink to be dropped.

Examples

To drop a sink having the name “snk”:

DROP SINK snk;

142 Chapter 14. BQL Statements

SensorBee Documentation, Release 0.4

DROP SOURCE

Synopsis

DROP SOURCE name

Description

DROP SOURCE drops a source that is already created in a topology. The source is stopped and removed from a
topology. After executing the statement, the source cannot be used.

Parameters

name The name of the source to be dropped.

Examples

To drop a source having the name “src”:

DROP SOURCE src;

DROP STATE

Synopsis

DROP STATE name

Description

DROP STATE drops a UDS that is already created in a topology. The UDS can no longer be used after executing the
statement.

Note: Even if a uds sink exist for the UDS, the sink will not be dropped when dropping the UDS. The uds sink
must be dropped manually.

Parameters

name The name of the UDS to be dropped.

14.6. DROP SOURCE 143

SensorBee Documentation, Release 0.4

Examples

To drop a UDS named “my_uds”:

DROP STATE my_ds;

DROP STREAM

Synopsis

DROP STREAM name

Description

DROP STREAM drops a stream that is already created in a topology. The stream can no longer be used after executing
the statement.

Parameters

name The name of the stream to be dropped.

Examples

To drop a stream having the name “strm”:

DROP STREAM strm;

INSERT INTO

Synopsis

INSERT INTO sink FROM stream

Description

INSERT INTO inserts tuples from a stream or a source to a sink.

Parameters

sink The name of the sink to which tuples are inserted.

stream The name of a stream or a source.

144 Chapter 14. BQL Statements

SensorBee Documentation, Release 0.4

Examples

To insert tuples into a sink from a source having the name “src”:

INSERT INTO snk FROM src;

LOAD STATE

Synopsis

LOAD STATE name TYPE type_name [TAG tag]
[SET set_parameter_name = set_parameter_key]
[create_if_not_saved]

where create_if_not_saved is:

OR CREATE IF NOT SAVED
[WITH create_parameter_name = create_parameter_value]

Description

LOAD STATE loads a UDS that is previously saved by SAVE STATE.

LOAD STATE fails if the UDS hasn’t been saved yet. When OR CREATE IF NOT SAVED is specified, LOAD
STATE creates a new UDS with the given optional parameters if the UDS hasn’t been saved yet.

LOAD STATE, even with OR CREATE IF NOT SAVED, fails if the UDS doesn’t support the statement.

Parameters

name The name of the UDS to be loaded.

type_name The type name of the UDS.

tag The name of the user defined tag for versioning of the saved UDS data. When tag is omitted, “default” is used as
the default tag name.

set_parameter_name The name of a UDS-specific parameter defied for LOAD STATE.

set_parameter_value The value for a UDS-specific parameter defined for LOAD STATE.

create_parameter_name The name of a UDS-specific parameter defined for CREATE STATE.

create_parameter_value The value for a UDS-specific parameter defined for CREATE STATE.

LOAD STATE can have two sets of parameters: set_parameters and create_parameters. set_parameters are used
when there’s a saved UDS data having the given tag. On the other hand, create_parameters are used when the UDS
hasn’t been saved yet. create_parameters are exactly same as parameters that the UDS defines for CREATE STATE.
However, set_parameters are often completely different from create_parameters. Because create_parameters are
often saved as a part of the UDS’s information by SAVE STATE, set_parameters doesn’t have to have the same set
of parameters defined in create_parameters.

There’re some use-cases that a UDS uses set_parameters:

• Customize loading behavior

14.10. LOAD STATE 145

SensorBee Documentation, Release 0.4

– When a UDS doesn’t provide a proper versioning of saved data, LOAD STATE may fail to load it due
to the format incompatibility. In such a case, it’s difficult to modify saved binary data to have a format
version number. Thus, providing a set_parameter specifying the format version number could be the only
solution.

• Overwrite some saved values of create_parameters

Like create_parameters, set_parameters are specific to each UDS. See the documentation of each UDS to find out
parameters it provides.

Examples

To load a UDS named “my_uds” and having the type “my_uds_type”:

LOAD STATE my_uds TYPE my_uds_type;

Note that “my_uds” needs to be saved before executing this statement. Otherwise, it fails.

To load a UDS named “my_uds” and having the type “my_uds_type” and assigned a tag “trained”:

LOAD STATE my_uds TYPE my_uds_type TAG trained;

To load a UDS with set_parameters:

LOAD STATE my_uds TYPE my_uds_type TAG trained
SET force_format_version = "v1";

To load a UDS that hasn’t been saved yet with OR CREATE IF NOT SAVED:

LOAD STATE my_uds TYPE my_uds_type OR CREATE IF NOT SAVED;

To load a UDS that hasn’t been saved yet with OR CREATE IF NOT SAVED with create_parameters:

LOAD STATE my_uds TYPE my_uds_type OR CREATE IF NOT SAVED
WITH id = 1;

When the UDS hasn’t been saved previously, the statement above falls back into CREATE STATE as follows:

CREATE STATE my_uds TYPE my_uds_type WITH id = 1;

OR CREATE IF NOT SAVED can be used with a tag and set_parameters:

LOAD STATE my_uds TYPE my_uds_type TAG trained SET force_format_version = "v1"
OR CREATE IF NOT SAVED WITH id = 1;

PAUSE SOURCE

Synopsis

PAUSE SOURCE name

146 Chapter 14. BQL Statements

SensorBee Documentation, Release 0.4

Description

PAUSE SOURCE pauses a running source so that the source stops emitting tuples until executing RESUME SOURCE
on it again. Executing PAUSE SOURCE on a paused source doesn’t affect anything.

PAUSE SOURCE fails if the source doesn’t support the statement.

Parameters

name The name of the source to be paused.

Examples

To pause a source named “src”:

PAUSE SOURCE src;

RESUME SOURCE

Synopsis

RESUME SOURCE name

Description

RESUME SOURCE resumes a paused source so that the source can start to emit tuples again. Executing RESUME
SOURCE on a running source doesn’t affect anything.

RESUME SOURCE fails if the source doesn’t support the statement.

Parameters

name The name of the source to be resumed.

Examples

A common use case of RESUME SOURCE to resume a source which is created by CREATE PAUSED SOURCE.

CREATE PAUSED SOURCE src TYPE some_source_type WITH ...parameters...;

-- ... construct a topology connected to src ...

RESUME SOURCE src;

By doing this, no tuple emitted from src will be lost.

14.12. RESUME SOURCE 147

SensorBee Documentation, Release 0.4

REWIND SOURCE

Synopsis

REWIND SOURCE name

Description

REWIND SOURCE rewinds a source so that the source emits tuples from the beginning again.

REWIND SOURCE fails if the source doesn’t support the statement.

Parameters

name The name of the source to be rewound.

Examples

To rewind a source named “src”:

REWIND SOURCE src;

SAVE STATE

Synopsis

SAVE STATE name [TAG tag]

Description

SAVE STATE saves a UDS to SensorBee’s storage. The location or the format of the saved UDS depends on a storage
that SensorBee uses and is not controllable from BQL.

SAVE STATE fails if the UDS doesn’t support the statement.

Parameters

name The name of the UDS to be saved.

tag The name of the user defined tag for versioning of the saved UDS data. When tag is omitted, “default” is used as
the default tag name.

148 Chapter 14. BQL Statements

SensorBee Documentation, Release 0.4

Examples

To save a UDS named “my_uds” without a tag:

SAVE STATE my_uds;

To save a UDS with a tag “trained”:

SAVE STATE my_uds TAG trained;

SELECT

Synopsis

SELECT emitter {* | expression [AS output_name]} [, ...]
FROM from_item stream_to_relation_operator

[AS stream_alias] [, ...]
[WHERE condition [, ...]]
[GROUP BY expression [, ...]]
[HAVING condition [, ...]]
[UNION ALL select]

where emitter is:

{RSTREAM | ISTREAM | DSTREAM}

where stream_to_relation_operator is:

'[' RANGE range_number {TUPLES | SECONDS | MILLISECONDS}
[, BUFFER SIZE buffer_size]
[, drop_mode IF FULL]

']'

Description

SELECT retrieves tuples from one or more streams. The general processing of SELECT is as follows:

1. Each from_item is converted into a relation (i.e. a window) from a stream. Then, each tuple emitted from a
from_item is computed within the window. If more than one element is specified in the FROM clause, they are
cross-joined.

2. When the WHERE clause is specified, condition is evaluated for each set of tuples cross-joined in the FROM
clause. Tuples which do not satisfy the condition are eliminated from the output.

3. If the GROUP BY clause is specified, tuples satisfied the condition in the WHERE clause are combined into
groups based on the result of expressions. Then, aggregate functions are performed on each group. When the
HAVING clause is given, it eliminates groups that do not satisfy the given condition.

4. The output tuples are computed using the SELECT output expressions for each tuple or group.

5. Computed output tuples are converted into a stream using Relation-to-Stream Operators and emitted from the
SELECT.

6. UNION ALL, if present, combines outputs from multiple SELECT. It simply emits all tuples from all SELECT
without considering duplicates.

14.15. SELECT 149

SensorBee Documentation, Release 0.4

Parameters

Emitter

emitter controls how a SELECT emits resulting tuples.

RSTREAM When RSTREAM is specified, all tuples in a relation as a result of processing a newly coming tuple are
output. See Relation-to-Stream Operators for more details.

ISTREAM When ISTREAM is specified, tuples contained in the current relation but not in the previously computed
relation are emitted. In other words, tuples that are newly inserted or updated since the previous computation
are output. See Relation-to-Stream Operators for more details.

DSTREAM When DSTREAM is specified, tuples contained in the previously computed relation but not in the current
relation are emitted. In other words, tuples in the previous relation that are deleted or updated in the current
relation are output. Note that output tuples are from the previous relation so that they have old values. See
Relation-to-Stream Operators for more details.

FROM Clause

The FROM clause specifies one or more source streams for the SELECT and converts those streams into relations using
stream to relation operators.

The FROM clause contains following parameters:

from_item from_item is a source stream which can be either a source, a stream, or a UDSF.

range_number range_number is a numeric value which specifies how many tuples are in the window.
range_number is followed by one of interval types: TUPLES, SECONDS, or MILLISECONDS.

When TUPLES is given, range_number must be a positive integer and the window can contain at most
range_number tuples. If a new tuple is inserted into the window having range_number tuples, the oldest
tuple is removed. “The oldest tuple” is the tuple that was inserted into the window before any other tuples, not
the tuple having the oldest timestamp. The maximum range_number is 1048575 with TUPLES keywords.

When SECONDS or MILLISECONDS is specified, range_number can be a positive number and the difference
of the minimum and maximum timestamps of tuples in the window can be at most range_number seconds or
milliseconds. If a new tuple is inserted into the window, tuples whose timestamp is range_number seconds or
milliseconds earlier than the new tuple’s timestamp are removed. The maximum range_number is 86400 with
SECONDS and 86400000 with MILLISECONDS.

buffer_size buffer_size specifies the size of buffer, or a queue, located between from_item and the SELECT.
buffer_size must be an integer and greater than 0. The meximum buffer_size is 131071.

drop_mode drop_mode controls how a new tuple is inserted into the buffer located between from_item and the
SELECT when the buffer is full. drop_mode can be one of the followings:

• WAIT

– A new tuple emitted from from_item is blocked until the SELECT consumes at least one tuple.

• DROP OLDEST

– The oldest tuple in the buffer is removed and a new tuple is inserted into the buffer. “The oldest tuple”
is the tuple that was inserted into the buffer before any other tuples, not the tuple having the oldest
timestamp.

• DROP NEWEST

150 Chapter 14. BQL Statements

SensorBee Documentation, Release 0.4

– The oldest tuple in the buffer is removed and a new tuple is inserted into the buffer. “The newest
tuple” is the tuple that was inserted into the buffer after any other tuples, not the tuple having the
newest timestamp.

Note: A buffer is different from a window. A buffer is placed in front of a window. A window gets a new
tuple from a buffer and computes a new relation. A buffer is used not to block emitting tuples so that multiple
SELECT statements can work concurrently without waiting for their receivers to consume tuples.

stream_alias stream_alias provides an alias of from_item and it can be referred by the alias in other parts of the
SELECT. If the alias is given, the original name is hidden and cannot be used to refer from_item.

Fields of tuples can be referred by <field_name> or <stream>:<field_name> in other clauses and
the SELECT list. For example, when the SELECT has FROM strm [RANGE 1 TUPLES] and strm emits
{"a":<some value>}, the field a can be referred by a or strm:a. These two forms cannot be mixed in a
SELECT statement.

The form <stream>:<field_name> is required when the FROM clause has multiple input streams.

WHERE Clause

The SELECT can optionally have a WHERE clause. The WHERE clause have a condition. The condition can be any
expression that evaluates to a result of type bool. Any tuple that does not satisfy the condition (i.e. the result of the
expression is false) will be eliminated from the output.

Operators describes operators that can be used in the condition.

GROUP BY Clause

The GROUP BY clause is an optional clause and condenses into a single tuple all selected tuples whose expressions
specified in GROUP BY clause result in the same value.

expression can be any expression using fields of an input tuple. When there’re multiple expressions in the clause,
tuples having the same set of values computed from those expressions are grouped into a single tuple.

When the GROUP BY clause is present, any ungrouped field cannot be used as an output field without aggregate
functions. For example, when tuples have 4 fields a, b, c, and d, and the GROUP BY clause has following expressions:

GROUP BY a, b + c

a can only be used as an output field:

SELECT a FROM stream [RANGE 1 TUPLES]
GROUP BY a, b + c;

Other fields need to be specified in aggregate functions:

SELECT a, max(b), min(b + c), avg(c * d) FROM stream [RANGE 1 TUPLES]
GROUP BY a, b + c;

Aggregate functions are evaluated for each group using all tuples in the group.

Note: The GROUP BY clause performs grouping within a window:

SELECT a FROM stream [RANGE 10 TUPLES]
GROUP BY a;

14.15. SELECT 151

SensorBee Documentation, Release 0.4

This SELECT computes at most 10 groups of tuples because there’re only 10 tuples in the window.

HAVING Clause

The HAVING clause is an optional clause and placed after the GROUP BY clause. The HAVING clause has a condition
and evaluate it for each group, instead of each tuple. When ungrouped fields are used in the condition, they need to be
in aggregate functions:

SELECT a, max(b), min(b + c), avg(c * d) FROM stream [RANGE 1 TUPLES]
GROUP BY a, b + c HAVING min(b + c) > 1 AND avg(c * d) < 10;

In this example, b, c, and d are ungrouped fields and cannot directly specified in the condition.

SELECT List

The SELECT list, placed between the emitter and the FROM clause, defines the form of the output tuples emitted from
the SELECT statement.

Each item in the list can be any expression. Each item (i.e. output field) will have a name. When an expression only
consists of a field name, the output name of the expression will be the field name. For example, the output name of
strm:price in SELECT RSTREAM strm:price FROM ... will be price, not strm:price. When the
expression is a UDF call, the name of the UDF will be used as the name of the output field. For example, the result
of count(*) is named as count. If an expression is other than a field name or a UDF call, the output name will
be col_n where n is replaced with the number corresponding to n-th expression (counting from 0). The output field
name can manually be specified by AS output_name.

When the expression is *, all fields which have not been specified in the SELECT list yet will be included. Output
names of those fields will be identical to the original field names.

If an expression results in a map, its output name can be AS *. In such case, all fields of the map is extended to the
top level fields. For example, in SELECT RSTREAM a, b AS *, c FROM strm ..., when strm emits tuples
having

{
"a": v1,
"b": {

"d": v3,
"e": v4

},
"c": v2,

}

to the SELECT, its output will be

{
"a": v1,
"c": v2,
"d": v3,
"e": v4

}

When some fields have the same name, only one of them will be included in the result. It is undefined which field will
be chosen as a result.

152 Chapter 14. BQL Statements

SensorBee Documentation, Release 0.4

Notes

An Emitter and Its Performance

There’re some use case specific optimizations of the evaluation of the SELECT and this subsection describes each
optimization and its limitation.

Simple Transformation and Filtering

Performing a simple per-tuple transformation or filtering over an input stream is a very common task. Therefore, BQL
optimizes statements having the following form:

SELECT RSTREAM projection FROM input [RANGE 1 TUPLES] WHERE condition;

Limitations of this optimization are:

• There can only be one input stream and its range is [RANGE 1 TUPLES].

• The emitter must be RSTREAM.

Evaluation in WHERE Clause

Each set of tuples cross-joined in the FROM clause is evaluated exactly once in the WHERE clause. Therefore, all
functions in the WHERE clause are only called once for each set:

SELECT RSTREAM * FROM stream1 [RANGE 100 TUPLES], stream2 [RANGE 100 TUPLES]
WHERE random() < 0.2;

In this example, 80% of sets of cross-joined tuples are filtered out and only 20% of sets (around 20 tuples for each
input from either stream) are emitted.

14.15. SELECT 153

SensorBee Documentation, Release 0.4

154 Chapter 14. BQL Statements

CHAPTER 15

Commands

build_sensorbee

Because SensorBee is written in Go, all its dependencies including plugins generally need to be statically linked, or at
least cannot be dynamically loaded at runtime. The build_sensorbee command is provided to support building a
custom sensorbee command.

Basic Usage

Prepare build.yaml configuration file and run build_sensorbee in the same directory as build.yaml is
located at:

$ ls
build.yaml
$ build_sensorbee
sensorbee_main.go
$ ls
build.yaml
sensorbee
sensorbee_main.go

sensorbee is the result executable file and sensorbee_main.go is a Go file generated by build_sensorbee
and passed for go build command to build sensorbee.

Configuration

build_sensorbee requires a configuration file named build.yaml. The file is written in YAML and has fol-
lowing optional sections:

• plugins

• commands

155

http://yaml.org/

SensorBee Documentation, Release 0.4

plugins

The plugins section is optional and may have a list of plugins as follows:

plugins:
- github.com/sensorbee/twitter/plugin
- github.com/sensorbee/fluentd/plugin
- github.com/sensorbee/nlp/plugin
- github.com/sensorbee/tutorial/ml/plugin
- github.com/sensorbee/jubatus/classifier/plugin

A plugin must be provided as a valid import path of Go. A path depends on each plugin.

commands

The commands section is optional and is used to customize subcommands that the sensorbee command will have.
By default, or when the section is empty, subcommands include all standard commands:

• run

• runfile

• shell

• topology

commands section is a map whose key is the name of subcommand. Standard subcommands like run can be added
by providing empty entries:

commands:
run:
shell:

With this configuration, the sensorbee command will only have run and shell commands.

To add a custom command, an entry must have path parameter that is a Go import path of the command:

commands:
run:
shell:
mytest:
path: "path/to/sb-mytest"

With this configuration, the sensorbee command will also have the mytest subcommand. The subcommand is
implemented at path/to/sb-mytest.

Names of commands must be unique and cannot be any of:

• cli

• os

• version

• time

Prohibited names might be added in the future version.

156 Chapter 15. Commands

SensorBee Documentation, Release 0.4

Custom Subcommand Development

A custom subcommand for the sensorbee command can be developed as a Go package. Only thing the package
has to do is to provide a function func SetUp() cli.Command. cli is gopkg.in/urfave/cli.v1. A
minimum example is provided in the SensorBee tutorial repository:

package hello

import (
"fmt"

cli "gopkg.in/urfave/cli.v1"
)

func SetUp() cli.Command {
return cli.Command{

Name: "hello",
Usage: "say hello",
Action: func(c *cli.Context) error {

fmt.Println("hello")
return nil

},
}

}

This command prints “hello” when sensorbee hello is executed. See https://github.com/urfave/cli to learn how to
create a command using the cli library.

A Complete Example

plugins:
- github.com/sensorbee/twitter/plugin
- github.com/sensorbee/fluentd/plugin
- github.com/sensorbee/nlp/plugin
- github.com/sensorbee/tutorial/ml/plugin
- github.com/sensorbee/jubatus/classifier/plugin

commands:
run:
runfile:
shell:
topology:
hello:
path: "github.com/sensorbee/tutorial/custom_command/hello"

Flags and Options

--config path or -c path

This option specifies the path to the configuration file to be used. Its default value is build.yaml. With
this option, a configuration file in another directory can be used as follows:

$ build_sensorbee -c /path/to/dir/special_build.yaml

--download-plugins={true|false}

15.1. build_sensorbee 157

https://github.com/sensorbee/tutorial/tree/master/custom_command
https://github.com/urfave/cli

SensorBee Documentation, Release 0.4

This option have to be true or false. When the value is true, build_sensorbee downloads
(i.e. go get) all plugins listed in build.yaml. When it’s false, build_sensorbee doesn’t
download plugins and tries to used plugins as installed in the environment. The default value is true.

Specifying false is useful when the custom sensorbee command needs to depend on a plugin that is
in a special git branch or locally modified.

--help or -h

When this flag is given, the command shows the usage of itself and exits without doing anything.

--only-generate-source

When this flag is given, build_sensorbee doesn’t build a sensorbee command but only generate
a source code that can be built by go build command. For example:

$ build_sensorbee --only-generate-source
sensorbee_main.go
$ go build -o sensorbee sensorbee_main.go

--out executable_name or -o executable_name

This option customizes the name of the output executable file. The default is sensorbee.exe in
Windows and sensorbee in all other environment. The following command generates an executable
named my_sensorbee instead of sensorbee:

$ build_sensorbee -o my_sensorbee

--source-filename filename

The filename of the Go source code file automatically generated by build_sensorbee can be specified
by this option. The default value is sensorbee_main.go.

$ build_sensorbee --source-filename custom_main.go

By executing this command, custom_main.go is generated instead of sensorbee_main.go.

--version or -v

When this flag is given, the command prints the version of the build_sensorbee command.

sensorbee

sensorbee is the main command to manipulate SensorBee. sensorbee consists of a set of following subcom-
mands:

• sensorbee run

• sensorbee runfile

• sensorbee shell or bql

• sensorbee topology

sensorbee command can needs to be created by build_sensorbee command and all the example commands are
written as ./sensorbee to emphasize that there’s no default sensorbee command.

See each command’s reference for details.

158 Chapter 15. Commands

SensorBee Documentation, Release 0.4

Flags and Options

--help or -h

When this flag is given, the command prints the usage of itself.

--version or -v

The command prints the version of SensorBee.

sensorbee run

sensorbee run runs the SensorBee server that manages multiple topologies that can dynamically modified at
runtime.

Basic Usage

$./sensorbee run -c sensorbee.yaml

Configuration

A configuration file can optionally be provided for sensorbee run command. The file is written in YAML and
has following optional sections:

• logging

• network

• storage

• topologies

logging

The logging section customizes behavior of the logger. It has following optional parameters:

target

The target parameter changes the destination of log messages. Its value can be of followings:

• stdout: write log messages to stdout

• stderr: write log messages to stderr

• file path: a path to the log file

When the value is neither stdout nor stderr, it’s considered to be a file path. The default value of
this parameter is stderr.

min_log_level

This option specifies the minimum level (severity) of log messages to be written. Valid values are one of
debug, info, warn, warning, error, or fatal. warn can also be warning. When debug is
given, all levels of messages will be written into the log. When the value is error, only log messages
with error or fatal level will be written. The default value of this parameter is info.

log_dropped_tuples

15.3. sensorbee run 159

http://yaml.org/

SensorBee Documentation, Release 0.4

The SensorBee server can prints a log message and contents of tuples when they’re dropped from a
topology. When this option is true, the server writes log messages reporting dropped tuples. When it’s
false, the server doesn’t. The default value of this option is false.

log_destinationless_tuples

A destinationless tuple is one kind of dropped tuples that is caused when a source or a stream doesn’t
have any destination and it drops a tuple. By setting true to this option, the server reports all desti-
nationless tuples. The default value of this option is false. Note that, to log replication tuples, the
log_dropped_tuples option also needs to be true.

summarize_dropped_tuples

This option turns on or off summarization of dropped tuple logging. Valid values for this option is true
or false. When its value is the true, dropped tuples are summarized in log messages.

Note: At the current version, only blob fields are summarized to "(blob)". Other configuration
parameters will be supported in the future version such as the maximum number of fields, the maximum
depths of maps, the maximum length of arrays, and so on.

When false is specified, each log message shows a complete JSON that are compatible to the original
tuple. Although this is useful for debugging, tuples containing large binary data like images may result in
disk.

The default value of this option is false.

Example:

logging:
target: /path/to/sensorbee.log
min_log_level: info
log_dropped_tuples: true
summarize_dropped_tuples: true

network

The network section has parameters related to server’s network configuration. It has following optional parameters:

listen_on

This parameter controls how the server expose its listening port. The syntax of the value is like
host:port. host can be IP addresses such as 0.0.0.0 or 127.0.0.1. When host is given,
the server only listens on the interface with the given host address. If the host is omitted, the server
listens on all available interfaces, that is, the server accepts connections from any host. The default value
of this parameter is :15601.

Example:

network:
listen_on: ":15601"

storage

The storage section contains the configuration of storages used for saving UDSs or other information. It has
following optional subsections:

• uds

160 Chapter 15. Commands

SensorBee Documentation, Release 0.4

uds

The uds subsection configures the storage for saving and loading UDSs. It provides following optional parameters:

type

The type name of the storage. in_memory is used as the default value.

params

params has subparameter specific to the given type.

Currently, following types are available:

• in_memory

• fs

Descriptions of types and parameters are provided below:

in_memory

in_memory saves UDSs in memory. It loses all saved data when the server restarts. This type doesn’t
have any parameter.

Example:

storage:
uds:

type: in_memory

fs

fs saves UDSs in the local file system. It has following required parameters:

dir

dir has the path to the directory that saved data will be stored.

fs also has following optional parameters:

temp_dir

temp_dir has the path to the temporary directory that is used when the UDS writes data.
After the UDS has written all the data, the file is move to the directory specified by dir
parameter. The same value as dir is used by default.

The file name of each saved UDS is formatted as <topology>-<name>-<tag>.state.

Example:

storage:
uds:

type: fs
params:

dir: /path/to/uds_dir
temp_dir: /tmp

topologies

The topologies section contains the configuration of topologies in the following format:

15.3. sensorbee run 161

SensorBee Documentation, Release 0.4

topologies:
name_of_topology1:
... configuration for name_of_topology1 ...

name_of_topology2:
... configuration for name_of_topology2 ...

name_of_topology3:
... configuration for name_of_topology3 ...

... other topologies ...

Topologies listed in this section will be created at the startup of the server based on the sub-configuration of each
topology. Following optional configuration parameters are provided for each topology:

bql_file

This parameter has the path to the file containing BQL statements for the topology. All statements are
executed before the server gets ready. If the execution fails, the server would exit with an error.

Example:

$ ls
my_topology.bql
sensorbee.yaml
$ cat my_topology.bql
CREATE SOURCE fluentd TYPE fluentd;
CREATE STREAM users AS

SELECT RSTREAM users FROM fluentd [RANGE 1 TUPLES];
CREATE SINK user_file TYPE file WITH path = "users.jsonl";
$ cat sensorbee.yaml
topologies:

my_topology:
bql_file: my_topology.bql

$./sensorbee run -c sensorbee.yaml

As a result of these commands above, the server started with sensorbee.yaml has a topology named
my_topology. The topology has three nodes: fluentd, users, and user_file.

Note: This is the only way to persist the configuration of topologies at the moment. Any updates applied at runtime
will not be reflected into the bql file. For example, if the server restarts after creating a new stream in my_topology,
the new stream will be lost unless it’s explicitly added to my_topology.bql manually.

The configuration of a topology can be empty:

topologies:
my_empty_topology:

In this case, an empty topology my_empty_topology will be created so that the sensorbee topology
create command doesn’t have to be executed every time the server restarts.

A Complete Example

logging:
target: /path/to/sensorbee.log
min_log_level: info
log_dropped_tuples: true
summarize_dropped_tuples: true

162 Chapter 15. Commands

SensorBee Documentation, Release 0.4

network:
listen_on: ":15601"

storage:
uds:
type: fs
params:

dir: /path/to/uds_dir
temp_dir: /tmp

topologies:
empty_topology:
my_topology:
bql_file: /path/to/my_topology.bql

Flags and Options

--config path or -c path

This option receives the path of the configuration file. By default, the value is empty and no configuration
file is used. This value can also be passed through SENSORBEE_CONFIG environment variable.

--help or -h

When this flag is given, the command prints the usage of itself.

sensorbee runfile

sensorbee runfile runs a single BQL file. This command is mainly designed for offline data processing but can
be used as a standalone SensorBee process that doesn’t expose any interface to manipulate the topology.

sensorbee runfile stops after all the nodes created by the given BQL file stops. The command doesn’t stop if it
contains a source that generates infinite tuples or is rewindable. Other non-rewindable sources such as file stopping
when it emits all tuples written in a file can work well with the command.

Sources generally need to be created with PAUSED keyword in the CREATE SOURCE statement. Without PAUSED,
a source can start emitting tuples before all nodes in a topology can correctly be set up. Therefore, a BQL file passed
to the command should look like:

CREATE PAUSED SOURCE source_1 TYPE ...;
CREATE PAUSED SOURCE source_2 TYPE ...;
...
CREATE PAUSED SOURCE source_n TYPE ...;

... CREATE STREAM, CREATE SINK, or other statements

RESUME SOURCE source_1;
RESUME SOURCE source_2;
...
RESUME SOURCE source_n;

With the --save-uds option described later, it saves UDSs at the end of its execution.

15.4. sensorbee runfile 163

SensorBee Documentation, Release 0.4

Basic Usage

$./sensorbee runfile my_topology.bql

With options:

$./sensorbee runfile -c sensorbee.yaml -s '' my_topology.bql

Configuration

sensorbee runfile accepts the configuration file for sensorbee run. It only uses logging and storage
sections. The configuration file may contain other sections as well and the same file for sensorbee run can also
be used for sensorbee runfile. See its configuration for details.

Flags and Options

--config path or -c path

This option receives the path of the configuration file. By default, the value is empty and no configuration
file is used. This value can also be passed through SENSORBEE_CONFIG environment variable.

--help or -h

When this flag is given, the command prints the usage of itself.

--save-uds udss or -s udss

This option receives a list of names of UDSs separated by commas. UDSs listed in it will be saved at
the end of execution. For example, when the option is -s "a,b,c", UDSs named a, b, and c will be
saved. To save all UDSs in a topology, pass an empty string: -s "".

By default, all UDSs will not be saved at the end of execution.

--topology name or -t name

This option changes the name of the topology to be run with the given BQL file. The default name is
taken from the file name of the BQL file. The name specified to this option will be used in log messages
or saved UDS data. Especially, names of files containing saved UDS data has contains the name of the
topology. Therefore, providing the same name as the topology that will be run by sensorbee run
later on allows users to prepare UDSs including pre-trained machine learning models in advance.

sensorbee shell or bql

sensorbee shell or bql starts a new shell to manipulate the SensorBee server. The shell can be terminated by
writing exit or typing C-d.

Both sensorbee shell and bql have the same interface, but bql is installed by default while the sensorbee
command needs to be built manually to run sensorbee shell.

Basic Usage

To run sensorbee shell,

164 Chapter 15. Commands

SensorBee Documentation, Release 0.4

$./sensorbee shell -t my_topology
my_topology>

To run bql,

$ bql -t my_topology
my_topology>

Flags and options

--api-version version

This option changes the API version of the SensorBee server. The default value of this option is v1.

--help or -h

When this flag is given, the command prints the usage of itself.

--topology name or -t name

The name of a topology to be manipulated can be specified through this option so that USE
topology_name doesn’t have to be used in the shell. The default value is an empty name, that is,
no topology is specified.

--uri

This option is used when the SensorBee server is running at non-localhost or using non-default port
number (15601). The value should have a format like http://host:port/. The default value of this
option is http://localhost:15601/.

sensorbee topology

sensorbee topology, or sensorbee t, is used to manipulate topologies on the SensorBee server.

Note: This command is provided because the syntax of BQL statements that controls topologies has not been dis-
cussed enough yet.

The command consists of following subcommands:

sensorbee topology create <name> or sensorbee t c <name>

This command creates a new topology on the SensorBee server. The <name> argument is the name of
the topology to be created. $? will be 0 if the command is successful. Otherwise, it’ll be non-zero. The
command fails if the topology already exists on the server.

sensorbee topology drop <name> or sensorbee t drop <name>

This command drops an existing topology on the SensorBee server. The <name> argument is the name
of the topology to be dropped. $? will be 0 if the command is successful. Otherwise, it’ll be non-zero.
The command doesn’t fail even if the topology doesn’t exist on the server.

sensorbee topology list or sensorbee t l

This commands prints names of all topologies that the SensorBee server has, one name per line.

All commands share the same flags and options. Flags and options need to be given after the subcommand name:

15.6. sensorbee topology 165

SensorBee Documentation, Release 0.4

$./sensorbee topology create --flag --option value my_topology

In this example, a flag --flag and an option --option value are provided. The argument of the command, i.e.
the name of topology, is my_topology.

Flags and Options

--api-version version

This option changes the API version of the SensorBee server. The default value of this option is v1.

--help or -h

When this flag is given, the command prints the usage of itself.

--uri

This option is used when the SensorBee server is running at non-localhost or using non-default port
number (15601). The value should have a format like http://host:port/. The default value of this
option is http://localhost:15601/.

166 Chapter 15. Commands

CHAPTER 16

Function Reference

Common Mathematical Functions

For the functions below, if a given parameter is outside the mathematically valid range for that function (e.g.,
sqrt(-2), log(0), div(2.0, 0.0)) and the return type is float, then NaN is returned. However, if the
return type is int (e.g., div(2, 0)), there is no NaN option and an error will occur instead.

abs

abs(x)

Description

abs computes the absolute value of a number.

Parameter Types

x int or float

Return Type

same as input

Examples

Function Call Result
abs(-17.4) 17.4

167

SensorBee Documentation, Release 0.4

cbrt

cbrt(x)

Description

cbrt computes the cube root of a number.

Parameter Types

x int or float

Return Type

float

Examples

Function Call Result
cbrt(27.0) 3.0
cbrt(-3) -1.4422495703074083

ceil

ceil(x)

Description

ceil computes the smallest integer not less than its argument.

Parameter Types

x int or float

Return Type

same as input

The return type is float for float input in order to avoid problems with input values that are too large for the int
data type.

Examples

Function Call Result
ceil(1.3) 2.0
ceil(-1.7) -1.0

168 Chapter 16. Function Reference

SensorBee Documentation, Release 0.4

degrees

degrees(x)

Description

degrees converts radians to degrees.

Parameter Types

x int or float

Return Type

float

Examples

Function Call Result
degrees(3.141592653589793) 180.0

div

div(y, x)

Description

div computes the integer quotient y/x of two numbers y and x. If x is 0.0 (float) then NaN will be returned; if it is
0 (integer) then a runtime error will occur.

Parameter Types

y int or float

x same as y

Return Type

same as input

Examples

Function Call Result
div(9, 4) 2
div(9.3, 4.5) 2.0

16.1. Common Mathematical Functions 169

SensorBee Documentation, Release 0.4

exp

exp(x)

Description

exp computes the exponential of a number.

Parameter Types

x int or float

Return Type

float

Examples

Function Call Result
exp(1.0) 2.718281828459045

floor

floor(x)

Description

floor computes the largest integer not greater than its argument.

Parameter Types

x int or float

Return Type

same as input

The return type is float for float input in order to avoid problems with input values that are too large for the int
data type.

Examples

Function Call Result
floor(1.3) 1.0
floor(-1.7) -2.0

170 Chapter 16. Function Reference

SensorBee Documentation, Release 0.4

ln

ln(x)

Description

ln computes the natural logarithm of a number. If the parameter is not strictly positive, NaN is returned.

Parameter Types

x int or float

Return Type

float

Examples

Function Call Result
ln(2) 0.6931471805599453

log

log(x)
log(b, x)

Description

log computes the logarithm of a number x to base b (default: 10).

Parameter Types

x int or float

b (optional) same as x

Return Type

float

Examples

Function Call Result
log(100) 2.0
log(2.5, 6.25) 2.0
log(2, 8) 3.0

16.1. Common Mathematical Functions 171

SensorBee Documentation, Release 0.4

mod

mod(y, x)

Description

mod computes the remainder of integer division y/x of two numbers y and x. If x is 0.0 (float) then NaN will be
returned; if it is 0 (integer) then a runtime error will occur.

Parameter Types

y int or float

x same as y

Return Type

same as input

Examples

Function Call Result
mod(9, 4) 1
mod(9.3, 4.5) 0.3

pi

pi()

Description

pi returns the 𝜋 constant (more or less 3.14).

Return Type

float

Examples

Function Call Result
pi() 3.141592653589793

power

172 Chapter 16. Function Reference

SensorBee Documentation, Release 0.4

power(a, b)

Description

power computes a raised to the power of b.

Parameter Types

a int or float

b same as a

Return Type

float

The return type is float even for integer input in order to have a uniform behavior for cases such as power(2,
-2).

Examples

Function Call Result
power(9.0, 3.0) 729.0
power(2, -1) 0.5

radians

radians(x)

Description

radians converts degrees to radians.

Parameter Types

x int or float

Return Type

float

Examples

Function Call Result
radians(180) 3.141592653589793

16.1. Common Mathematical Functions 173

SensorBee Documentation, Release 0.4

round

round(x)

Description

round computes the nearest integer of a number.

Parameter Types

x int or float

Return Type

same as input

The return type is float for float input in order to avoid problems with input values that are too large for the int
data type.

Examples

Function Call Result
round(1.3) 1.0
round(0.5) 1.0
round(-1.7) -2.0

sign

sign(x)

Description

sign returns the sign of a number: 1 for positive numbers, -1 for negative numbers and 0 for zero.

Parameter Types

x int or float

Return Type

int

Examples

Function Call Result
sign(2) 1

174 Chapter 16. Function Reference

SensorBee Documentation, Release 0.4

sqrt

sqrt(x)

Description

sqrt computes the square root of a number. If the parameter is negative, NaN is returned.

Parameter Types

x int or float

Return Type

float

Examples

Function Call Result
sqrt(2) 1.4142135623730951

trunc

trunc(x)

Description

trunc computes the truncated integer (towards zero) of a number.

Parameter Types

x int or float

Return Type

same as input

The return type is float for float input in order to avoid problems with input values that are too large for the int
data type.

Examples

Function Call Result
trunc(1.3) 1.0
trunc(-1.7) -1.0

16.1. Common Mathematical Functions 175

SensorBee Documentation, Release 0.4

width_bucket

width_bucket(x, left, right, count)

Description

width_bucket computes the bucket to which x would be assigned in an equidepth histogram with count buckets
in the range [left, right[. Points on a bucket border belong to the right bucket. Points outside of the [left, right[range
have bucket number 0 and count + 1, respectively.

Parameter Types

x int or float

left int or float

right int or float

count int

Return Type

int

Examples

Function Call Result
width_bucket(5, 0, 10, 5) 3

Pseudo-Random Functions

The characteristics of the functions below are equal to those from the Go rand module. They are not suitable for
cryptographic applications.

random

random()

Description

random returns a pseudo-random number in the range 0.0 <= 𝑥 < 1.0.

This function is not safe for use in cryptographic applications. See the Go math/rand package for details.

Return Type

float

176 Chapter 16. Function Reference

https://golang.org/pkg/math/rand/
https://golang.org/pkg/math/rand/

SensorBee Documentation, Release 0.4

Examples

Function Call Result
random() 0.6046602879796196

setseed

setseed(x)

Description

setseed initializes the seed for subsequent random() calls. The parameter must be in the range −1.0 <= 𝑥 <=
1.0.

This function is not safe for use in cryptographic applications. See the Go math/rand package for details.

Parameter Types

x float

Trigonometric Functions

All trigonometric functions take arguments and return values of type float. Trigonometric functions arguments are
expressed in radians. Inverse functions return values are expressed in radians.

acos

acos(x)

Description

acos computes the inverse cosine of a number.

asin

asin(x)

Description

asin computes the inverse sine of a number.

16.3. Trigonometric Functions 177

https://golang.org/pkg/math/rand/

SensorBee Documentation, Release 0.4

atan

atan(x)

Description

atan computes the inverse tangent of a number.

cos

cos(x)

Description

cos computes the cosine of a number.

cot

cot(x)

Description

cot computes the cotangent of a number.

sin

sin(x)

Description

sin computes the sine of a number.

tan

tan(x)

Description

tan computes the tangent of a number.

178 Chapter 16. Function Reference

SensorBee Documentation, Release 0.4

String Functions

bit_length

bit_length(s)

Description

bit_length computes the number of bits in a string s. Note that due to UTF-8 encoding, this is equal to
octet_length(s) * 8, not necessarily char_length(s) * 8.

Parameter Types

s string

Return Type

int

Examples

Function Call Result
bit_length("über") 40

btrim

btrim(s)
btrim(s, chars)

Description

btrim removes the longest string consisting only of characters in chars (default: whitespace) from the start and
end of s.

Parameter Types

s string

chars (optional) string

Return Type

string

16.4. String Functions 179

SensorBee Documentation, Release 0.4

Examples

Function Call Result
btrim(" trim ") "trim"
btrim("xyxtrimyyx", "xy") "trim"

char_length

char_length(s)

Description

char_length computes the number of characters in a string.

Parameter Types

s string

Return Type

int

Examples

Function Call Result
char_length("über") 4

concat

concat(s [, ...])

Description

concat concatenates all strings given as input arguments. NULL values are ignored, i.e., treated like an empty string.

Parameter Types

s and all subsequent parameters string

Return Type

string

180 Chapter 16. Function Reference

SensorBee Documentation, Release 0.4

Examples

Function Call Result
concat("abc", NULL, "22") "abc22"

concat_ws

concat_ws(sep, s [, ...])

Description

concat_ws concatenates all strings given as input arguments s using the separator sep. NULL values are ignored.

Parameter Types

sep string

s and all subsequent parameters string

Return Type

string

Examples

Function Call Result
concat_ws(":", "abc", NULL, "22") "abc:22"

format

format(s, [x, ...])

Description

format formats a variable number of arguments x according to a format string s.

See the Go package fmt for details of what formatting codes are allowed.

Parameter Types

s string

x and all subsequent parameters (optional) any

Return Type

string

16.4. String Functions 181

https://golang.org/pkg/fmt/

SensorBee Documentation, Release 0.4

Examples

Function Call Result
format("%s-%d", "abc", 22) "abc-22"

lower

lower(s)

Description

lower converts a string s to lower case. Non-ASCII Unicode characters are mapped to their lower case, too.

Parameter Types

s string

Return Type

string

Examples

Function Call Result
lower("ÜBer") "über"

ltrim

ltrim(s)
ltrim(s, chars)

Description

ltrim removes the longest string consisting only of characters in chars (default: whitespace) from the start of s.

Parameter Types

s string

chars (optional) string

Return Type

string

182 Chapter 16. Function Reference

SensorBee Documentation, Release 0.4

Examples

Function Call Result
ltrim(" trim ") "trim "
ltrim("xyxtrimyyx", "xy") "trimyyx"

md5

md5(s)

Description

md5 computes the MD5 checksum of a string s and returns it in hexadecimal format.

Parameter Types

s string

Return Type

string

Examples

Function Call Result
md5("abc") "900150983cd24fb0d6963f7d28e17f72"

octet_length

octet_length(s)

Description

octet_length computes the number of bytes in a string s. Note that due to UTF-8 encoding, this may differ from
the number returned by char_length.

Parameter Types

s string

Return Type

int

16.4. String Functions 183

SensorBee Documentation, Release 0.4

Examples

Function Call Result
octet_length("über") 5

overlay

overlay(s, repl, from)
overlay(s, repl, from, for)

Description

overlay replaces for characters in a string s with the string repl, starting at from. (Index counting starts at 0.)
If for is not given, the length of repl is used as a default.

Parameter Types

s string

repl string

from int

for (optional) int

Return Type

string

Examples

Function Call Result
overlay("Txxxxas", "hom", 1) "Thomxas"
overlay("Txxxxas", "hom", 1, 4) "Thomas"

rtrim

rtrim(s)
rtrim(s, chars)

Description

rtrim removes the longest string consisting only of characters in chars (default: whitespace) from the end of s.

Parameter Types

s string

chars (optional) string

184 Chapter 16. Function Reference

SensorBee Documentation, Release 0.4

Return Type

string

Examples

Function Call Result
rtrim(" trim ") " trim"
rtrim("xyxtrimyyx", "xy") "xyxtrim"

sha1

sha1(s)

Description

sha1 computes the SHA1 checksum of a string s and returns it in hexadecimal format.

Parameter Types

s string

Return Type

string

Examples

Function Call Result
sha1("abc") "a9993e364706816aba3e25717850c26c9cd0d89d"

sha256

sha256(s)

Description

sha256 computes the SHA256 checksum of a string s and returns it in hexadecimal format.

Parameter Types

s string

16.4. String Functions 185

SensorBee Documentation, Release 0.4

Return Type

string

Examples

Function Call Result
sha256("abc") "ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad"

strpos

strpos(s, t)

Description

strpos returns the index of the first occurrence of t in s (index counting starts at 0) or -1 if it is not found.

Parameter Types

s string

t string

Return Type

int

Examples

Function Call Result
strpos("high", "ig") 1

substring

substring(s, r)
substring(s, from)
substring(s, from, for)

Description

substring(s, r) extracts the substring matching regular expression r from s. See the Go regexp package for
details of matching.

substring(s, from, for) returns the for characters of str starting from the from index. (Index counting
starts at 0.) If for is not given, everything until the end of str is returned.

Which of those behaviors is used depends on the type of the second parameter (int or string).

186 Chapter 16. Function Reference

https://golang.org/pkg/regexp/

SensorBee Documentation, Release 0.4

Parameter Types

s string

r string

from int

for (optional) int

Return Type

string

Examples

Function Call Result
substring("Thomas", "...$") "mas"
substring("Thomas", 1) "homas"
substring("Thomas", 1, 3) "hom"

upper

upper(s)

Description

upper converts a string s to upper case. Non-ASCII Unicode characters are mapped to their upper case, too.

Parameter Types

s string

Return Type

string

Examples

Function Call Result
upper("ÜBer") "ÜBER"

16.4. String Functions 187

SensorBee Documentation, Release 0.4

Time Functions

distance_us

distance_us(u, v)

Description

distance_us computes the signed temporal distance from u to v in microseconds.

Parameter Types

u timestamp

v timestamp

Return Type

int

Examples

Function Call Result
distance_us("2016-02-09T05:40:25.123Z"::timestamp,
"2016-02-09T05:41:25.456Z"::timestamp)

60333000

distance_us(clock_timestamp(), clock_timestamp()) 2

clock_timestamp

clock_timestamp()

Description

clock_timestamp returns the current date and time in UTC.

Return Type

timestamp

now

now()

188 Chapter 16. Function Reference

SensorBee Documentation, Release 0.4

Description

now returns the date and time in UTC of the point in time when processing of the current tuple started. In particular
and as opposed to clock_timestamp, the timestamp returned by now() does not change during a processing run
triggered by the arrival of a tuple. For example, in

SELECT RSTREAM clock_timestamp() AS a, clock_timestamp() AS b,
now() AS c, now() AS d FROM ...

the values of a and b are most probably different by a very short timespan, but c and d are equal by definition of
now().

now cannot be used in an EVAL statement outside of a stream processing context.

Return Type

timestamp

Array Functions

array_length

array_length(a)

Description

array_length computes the number of elements in an array a. Elements with a NULL value are also counted.

Parameter Types

a array

Return Type

int

Examples

Function Call Result
array_length([3, NULL, "foo"]) 3

16.6. Array Functions 189

SensorBee Documentation, Release 0.4

Other Scalar Functions

coalesce

coalesce(x [, ...])

Description

coalesce returns the first non-null input parameter or NULL if there is no such parameter.

Parameter Types

x and all subsequent any

Return Type

same as input

Examples

Function Call Result
coalesce(NULL, 17, "foo") 17

Aggregate Functions

Aggregate functions compute a single result from a set of input values. It should be noted that except for count,
these functions return a NULL value when no rows are selected. In particular, sum of no rows returns NULL, not zero
as one might expect, and array_agg returns NULL rather than an empty array when there are no input rows. The
coalesce function can be used to substitute zero or an empty array for NULL when necessary.

Also note that most aggregate functions ignore singular NULL values in their input, i.e., processing is done as if this
row had not been in the input. (One notable exception is the array_agg function that includes input NULL values
in its output.)

array_agg

array_agg(x)

Description

array_agg returns an array containing all input values, including NULL values. There is no guarantee on the order
of items in the result. Use the ORDER BY clause to achieve a certain ordering.

190 Chapter 16. Function Reference

SensorBee Documentation, Release 0.4

Parameter Types

x any

Return Type

array

avg

avg(x)

Description

avg computes the average (arithmetic mean) of all input values.

Parameter Types

x int or float (mixed types are allowed)

Return Type

float

bool_and

bool_and(x)

Description

bool_and returns true if all input values are true, otherwise false.

Parameter Types

x bool

Return Type

bool

bool_or

bool_or(x)

16.8. Aggregate Functions 191

SensorBee Documentation, Release 0.4

Description

bool_or returns true if at least one input value is true, otherwise false.

Parameter Types

x bool

Return Type

bool

count

count(x)
count(*)

Description

count returns the number of input rows for which x is not NULL, or the number of total rows if * is passed.

Parameter Types

x any

Return Type

int

json_object_agg

json_object_agg(k, v)

Description

json_object_agg aggregates pairs of key k and value v as a map. If both key and value are NULL, the pair is
ignored. If only the value is NULL, it is still added with the corresponding key. It is an error if only the key is NULL.
It is an error if a key appears multiple times.

A map does not have an ordering, therefore there is no guarantee on the result map ordering, whether or not ORDER
BY is used.

Parameter Types

k string

v any

192 Chapter 16. Function Reference

SensorBee Documentation, Release 0.4

Return Type

map

max

max(x)

Description

max computes the maximum value of all input values.

Parameter Types

x int or float (mixed types are allowed)

Return Type

same as largest input value

median

median(x)

Description

median computes the median of all input values.

Parameter Types

x int or float (mixed types are allowed)

Return Type

float

min

min(x)

Description

min computes the minimum value of all input values.

16.8. Aggregate Functions 193

SensorBee Documentation, Release 0.4

Parameter Types

x int or float (mixed types are allowed)

Return Type

same as smallest input value

string_agg

string_agg(x, sep)

Description

string_agg returns a string with all values of x concatenated, separated by the (non-aggregate) sep parameter.

Parameter Types

x string

sep string (scalar)

Return Type

string

sum

sum(x)

Description

sum computes the sum of all input values.

Parameter Types

x int or float (mixed types are allowed)

Return Type

float if the input contains a float, int otherwise

194 Chapter 16. Function Reference

Part VI

Indices and Tables

195

SensorBee Documentation, Release 0.4

• genindex

• modindex

• search

197

SensorBee Documentation, Release 0.4

198

Bibliography

[Crammer09] Koby Crammer, Alex Kulesza and Mark Dredze, Adaptive Regularization Of Weight Vectors, Advances
in Neural Information Processing Systems, 2009

[cql] Arasu et al., “The CQL Continuous Query Language: Semantic Foundations and Query Execution”, http://
ilpubs.stanford.edu:8090/758/1/2003-67.pdf

[streamsql] Jain et al., “Towards a Streaming SQL Standard”, http://cs.brown.edu/~ugur/streamsql.pdf

199

http://ilpubs.stanford.edu:8090/758/1/2003-67.pdf
http://ilpubs.stanford.edu:8090/758/1/2003-67.pdf
http://cs.brown.edu/~ugur/streamsql.pdf

	I Preface
	II Tutorial
	III The BQL Language
	IV Server Programming
	V Reference
	VI Indices and Tables

