

Welcome to Segmentation Models’s documentation!

Contents:

	Installation

	Tutorial
	Quick start

	Simple training pipeline

	Models and Backbones

	Fine tuning

	Training with non-RGB data

	Segmentation Models Python API
	Unet

	Linknet

	FPN

	PSPNet

	metrics

	losses

	utils

	Support

Indices and tables

	Index

	Module Index

	Search Page

Installation

Requirements

	Python 3

	Keras >= 2.2.0 or TensorFlow >= 1.13

	keras-applications >= 1.0.7, <=1.0.8

	image-classifiers == 1.0.0

	efficientnet == 1.0.0

Note

This library does not have Tensorflow [https://www.tensorflow.org/] in a requirements.txt
for installation. Please, choose suitable version (‘cpu’/’gpu’)
and install it manually using official Guide [https://www.tensorflow.org/install/].

Pip package

$ pip install segmentation-models

Latest version

$ pip install git+https://github.com/qubvel/segmentation_models

Tutorial

Segmentation models is python library with Neural Networks for
Image
Segmentation [https://en.wikipedia.org/wiki/Image_segmentation] based
on Keras [https://keras.io]
(Tensorflow [https://www.tensorflow.org/]) framework.

The main features of this library are:

	High level API (just two lines to create NN)

	4 models architectures for binary and multi class segmentation
(including legendary Unet)

	25 available backbones for each architecture

	All backbones have pre-trained weights for faster and better
convergence

Quick start

Since the library is built on the Keras framework, created segmentaion model is just a Keras Model, which can be created as easy as:

from segmentation_models import Unet

model = Unet()

Depending on the task, you can change the network architecture by choosing backbones with fewer or more parameters and use pretrainded weights to initialize it:

model = Unet('resnet34', encoder_weights='imagenet')

Change number of output classes in the model:

model = Unet('resnet34', classes=3, activation='softmax')

Change input shape of the model:

model = Unet('resnet34', input_shape=(None, None, 6), encoder_weights=None)

Simple training pipeline

from segmentation_models import Unet
from segmentation_models import get_preprocessing
from segmentation_models.losses import bce_jaccard_loss
from segmentation_models.metrics import iou_score

BACKBONE = 'resnet34'
preprocess_input = get_preprocessing(BACKBONE)

load your data
x_train, y_train, x_val, y_val = load_data(...)

preprocess input
x_train = preprocess_input(x_train)
x_val = preprocess_input(x_val)

define model
model = Unet(BACKBONE, encoder_weights='imagenet')
model.compile('Adam', loss=bce_jaccard_loss, metrics=[iou_score])

fit model
model.fit(
 x=x_train,
 y=y_train,
 batch_size=16,
 epochs=100,
 validation_data=(x_val, y_val),
)

Same manimulations can be done with Linknet, PSPNet and FPN. For more detailed information about models API and use cases Read the Docs [https://segmentation-models.readthedocs.io/en/latest/].

Models and Backbones

Models

	Unet [https://arxiv.org/abs/1505.04597]

	FPN [http://presentations.cocodataset.org/COCO17-Stuff-FAIR.pdf]

	Linknet [https://arxiv.org/abs/1707.03718]

	PSPNet [https://arxiv.org/abs/1612.01105]

	Unet

	Linknet

	[image: unet_image]

	[image: linknet_image]

	PSPNet

	FPN

	[image: psp_image]

	[image: fpn_image]

Backbones

All backbones have weights trained on 2012 ILSVRC ImageNet dataset (encoder_weights='imagenet').

Fine tuning

Some times, it is useful to train only randomly initialized
decoder in order not to damage weights of properly trained
encoder with huge gradients during first steps of training.
In this case, all you need is just pass freeze_encoder = True argument
while initializing the model.

from segmentation_models import Unet
from segmentation_models.utils import set_trainable

model = Unet(backbone_name='resnet34', encoder_weights='imagenet', freeze_encoder=True)
model.compile('Adam', 'binary_crossentropy', ['binary_accuracy'])

pretrain model decoder
model.fit(x, y, epochs=2)

release all layers for training
set_trainable(model) # set all layers trainable and recompile model

continue training
model.fit(x, y, epochs=100)

Training with non-RGB data

In case you have non RGB images (e.g. grayscale or some medical/remote sensing data)
you have few different options:

	Train network from scratch with randomly initialized weights

from segmentation_models import Unet

read/scale/preprocess data
x, y = ...

define number of channels
N = x.shape[-1]

define model
model = Unet(backbone_name='resnet34', encoder_weights=None, input_shape=(None, None, N))

continue with usual steps: compile, fit, etc..

	Add extra convolution layer to map N -> 3 channels data and train with pretrained weights

from segmentation_models import Unet
from keras.layers import Input, Conv2D
from keras.models import Model

read/scale/preprocess data
x, y = ...

define number of channels
N = x.shape[-1]

base_model = Unet(backbone_name='resnet34', encoder_weights='imagenet')

inp = Input(shape=(None, None, N))
l1 = Conv2D(3, (1, 1))(inp) # map N channels data to 3 channels
out = base_model(l1)

model = Model(inp, out, name=base_model.name)

continue with usual steps: compile, fit, etc..

Segmentation Models Python API

Getting started with segmentation models is easy.

Unet

	
segmentation_models.Unet(backbone_name='vgg16', input_shape=(None, None, 3), classes=1, activation='sigmoid', weights=None, encoder_weights='imagenet', encoder_freeze=False, encoder_features='default', decoder_block_type='upsampling', decoder_filters=(256, 128, 64, 32, 16), decoder_use_batchnorm=True, **kwargs)

	Unet [https://arxiv.org/pdf/1505.04597] is a fully convolution neural network for image semantic segmentation

	Parameters

	
	backbone_name – name of classification model (without last dense layers) used as feature
extractor to build segmentation model.

	input_shape – shape of input data/image (H, W, C), in general
case you do not need to set H and W shapes, just pass (None, None, C) to make your model be
able to process images af any size, but H and W of input images should be divisible by factor 32.

	classes – a number of classes for output (output shape - (h, w, classes)).

	activation – name of one of keras.activations for last model layer
(e.g. sigmoid, softmax, linear).

	weights – optional, path to model weights.

	encoder_weights – one of None (random initialization), imagenet (pre-training on ImageNet).

	encoder_freeze – if True set all layers of encoder (backbone model) as non-trainable.

	encoder_features – a list of layer numbers or names starting from top of the model.
Each of these layers will be concatenated with corresponding decoder block. If default is used
layer names are taken from DEFAULT_SKIP_CONNECTIONS.

	decoder_block_type – one of blocks with following layers structure:

	upsampling: UpSampling2D -> Conv2D -> Conv2D

	transpose: Transpose2D -> Conv2D

	decoder_filters – list of numbers of Conv2D layer filters in decoder blocks

	decoder_use_batchnorm – if True, BatchNormalisation layer between Conv2D and Activation layers
is used.

	Returns

	Unet

	Return type

	keras.models.Model

Linknet

	
segmentation_models.Linknet(backbone_name='vgg16', input_shape=(None, None, 3), classes=1, activation='sigmoid', weights=None, encoder_weights='imagenet', encoder_freeze=False, encoder_features='default', decoder_block_type='upsampling', decoder_filters=(None, None, None, None, 16), decoder_use_batchnorm=True, **kwargs)

	Linknet [https://arxiv.org/pdf/1707.03718.pdf] is a fully convolution neural network for fast image semantic segmentation

Note

This implementation by default has 4 skip connections (original - 3).

	Parameters

	
	backbone_name – name of classification model (without last dense layers) used as feature
extractor to build segmentation model.

	input_shape – shape of input data/image (H, W, C), in general
case you do not need to set H and W shapes, just pass (None, None, C) to make your model be
able to process images af any size, but H and W of input images should be divisible by factor 32.

	classes – a number of classes for output (output shape - (h, w, classes)).

	activation – name of one of keras.activations for last model layer
(e.g. sigmoid, softmax, linear).

	weights – optional, path to model weights.

	encoder_weights – one of None (random initialization), imagenet (pre-training on ImageNet).

	encoder_freeze – if True set all layers of encoder (backbone model) as non-trainable.

	encoder_features – a list of layer numbers or names starting from top of the model.
Each of these layers will be concatenated with corresponding decoder block. If default is used
layer names are taken from DEFAULT_SKIP_CONNECTIONS.

	decoder_filters – list of numbers of Conv2D layer filters in decoder blocks,
for block with skip connection a number of filters is equal to number of filters in
corresponding encoder block (estimates automatically and can be passed as None value).

	decoder_use_batchnorm – if True, BatchNormalisation layer between Conv2D and Activation layers
is used.

	decoder_block_type – one of
- upsampling: use UpSampling2D keras layer
- transpose: use Transpose2D keras layer

	Returns

	Linknet

	Return type

	keras.models.Model

FPN

	
segmentation_models.FPN(backbone_name='vgg16', input_shape=(None, None, 3), classes=21, activation='softmax', weights=None, encoder_weights='imagenet', encoder_freeze=False, encoder_features='default', pyramid_block_filters=256, pyramid_use_batchnorm=True, pyramid_aggregation='concat', pyramid_dropout=None, **kwargs)

	FPN [http://presentations.cocodataset.org/COCO17-Stuff-FAIR.pdf] is a fully convolution neural network for image semantic segmentation

	Parameters

	
	backbone_name – name of classification model (without last dense layers) used as feature
extractor to build segmentation model.

	input_shape – shape of input data/image (H, W, C), in general
case you do not need to set H and W shapes, just pass (None, None, C) to make your model be
able to process images af any size, but H and W of input images should be divisible by factor 32.

	classes – a number of classes for output (output shape - (h, w, classes)).

	weights – optional, path to model weights.

	activation – name of one of keras.activations for last model layer (e.g. sigmoid, softmax, linear).

	encoder_weights – one of None (random initialization), imagenet (pre-training on ImageNet).

	encoder_freeze – if True set all layers of encoder (backbone model) as non-trainable.

	encoder_features – a list of layer numbers or names starting from top of the model.
Each of these layers will be used to build features pyramid. If default is used
layer names are taken from DEFAULT_FEATURE_PYRAMID_LAYERS.

	pyramid_block_filters – a number of filters in Feature Pyramid Block of FPN [http://presentations.cocodataset.org/COCO17-Stuff-FAIR.pdf].

	pyramid_use_batchnorm – if True, BatchNormalisation layer between Conv2D and Activation layers
is used.

	pyramid_aggregation – one of ‘sum’ or ‘concat’. The way to aggregate pyramid blocks.

	pyramid_dropout – spatial dropout rate for feature pyramid in range (0, 1).

	Returns

	FPN

	Return type

	keras.models.Model

PSPNet

	
segmentation_models.PSPNet(backbone_name='vgg16', input_shape=(384, 384, 3), classes=21, activation='softmax', weights=None, encoder_weights='imagenet', encoder_freeze=False, downsample_factor=8, psp_conv_filters=512, psp_pooling_type='avg', psp_use_batchnorm=True, psp_dropout=None, **kwargs)

	PSPNet [https://arxiv.org/pdf/1612.01105.pdf] is a fully convolution neural network for image semantic segmentation

	Parameters

	
	backbone_name – name of classification model used as feature
extractor to build segmentation model.

	input_shape – shape of input data/image (H, W, C).
H and W should be divisible by 6 * downsample_factor and NOT None!

	classes – a number of classes for output (output shape - (h, w, classes)).

	activation – name of one of keras.activations for last model layer
(e.g. sigmoid, softmax, linear).

	weights – optional, path to model weights.

	encoder_weights – one of None (random initialization), imagenet (pre-training on ImageNet).

	encoder_freeze – if True set all layers of encoder (backbone model) as non-trainable.

	downsample_factor – one of 4, 8 and 16. Downsampling rate or in other words backbone depth
to construct PSP module on it.

	psp_conv_filters – number of filters in Conv2D layer in each PSP block.

	psp_pooling_type – one of ‘avg’, ‘max’. PSP block pooling type (maximum or average).

	psp_use_batchnorm – if True, BatchNormalisation layer between Conv2D and Activation layers
is used.

	psp_dropout – dropout rate between 0 and 1.

	Returns

	PSPNet

	Return type

	keras.models.Model

metrics

	
segmentation_models.metrics.IOUScore(class_weights=None, threshold=None, per_image=True, smooth=1e-05)

	The Jaccard index [https://en.wikipedia.org/wiki/Jaccard_index], also known as Intersection over Union and the Jaccard similarity coefficient
(originally coined coefficient de communauté by Paul Jaccard), is a statistic used for comparing the
similarity and diversity of sample sets. The Jaccard coefficient measures similarity between finite sample sets,
and is defined as the size of the intersection divided by the size of the union of the sample sets:

\[J(A, B) = \frac{A \cap B}{A \cup B}\]

	Parameters

	
	class_weights –
	or list of class weights, len(weights) = C

	smooth – value to avoid division by zero

	per_image – if True, metric is calculated as mean over images in batch (B),
else over whole batch

	threshold – value to round predictions (use > comparison), if None prediction will not be round

	Returns

	A callable iou_score instance. Can be used in model.compile(...) function.

Example:

metric = IOUScore()
model.compile('SGD', loss=loss, metrics=[metric])

	
segmentation_models.metrics.FScore(beta=1, class_weights=None, threshold=None, per_image=True, smooth=1e-05)

	The F-score (Dice coefficient) can be interpreted as a weighted average of the precision and recall,
where an F-score reaches its best value at 1 and worst score at 0.
The relative contribution of precision and recall to the F1-score are equal.
The formula for the F score is:

\[F_\beta(precision, recall) = (1 + \beta^2) \frac{precision \cdot recall}
{\beta^2 \cdot precision + recall}\]

The formula in terms of Type I and Type II errors:

\[L(tp, fp, fn) = \frac{(1 + \beta^2) \cdot tp} {(1 + \beta^2) \cdot fp + \beta^2 \cdot fn + fp}\]

	where:

	
	tp - true positives;

	fp - false positives;

	fn - false negatives;

	Parameters

	
	beta – f-score coefficient

	class_weights –
	or np.array of class weights (len(weights) = num_classes)

	smooth – value to avoid division by zero

	per_image – if True, metric is calculated as mean over images in batch (B),
else over whole batch

	threshold – value to round predictions (use > comparison), if None prediction will not be round

	Returns

	A callable f_score instance. Can be used in model.compile(...) function.

Example:

metric = FScore()
model.compile('SGD', loss=loss, metrics=[metric])

losses

	
segmentation_models.losses.JaccardLoss(class_weights=None, per_image=True, smooth=1e-05)

	Creates a criterion to measure Jaccard loss:

\[L(A, B) = 1 - \frac{A \cap B}{A \cup B}\]

	Parameters

	
	class_weights – Array (np.array) of class weights (len(weights) = num_classes).

	per_image – If True loss is calculated for each image in batch and then averaged,
else loss is calculated for the whole batch.

	smooth – Value to avoid division by zero.

	Returns

	A callable jaccard_loss instance. Can be used in model.compile(...) function
or combined with other losses.

Example:

loss = JaccardLoss()
model.compile('SGD', loss=loss)

	
segmentation_models.losses.DiceLoss(beta=1, class_weights=None, per_image=True, smooth=1e-05)

	Creates a criterion to measure Dice loss:

\[L(precision, recall) = 1 - (1 + \beta^2) \frac{precision \cdot recall}
{\beta^2 \cdot precision + recall}\]

The formula in terms of Type I and Type II errors:

\[L(tp, fp, fn) = \frac{(1 + \beta^2) \cdot tp} {(1 + \beta^2) \cdot fp + \beta^2 \cdot fn + fp}\]

	where:

	
	tp - true positives;

	fp - false positives;

	fn - false negatives;

	Parameters

	
	beta – Float or integer coefficient for precision and recall balance.

	class_weights – Array (np.array) of class weights (len(weights) = num_classes).

	per_image – If True loss is calculated for each image in batch and then averaged,

	loss is calculated for the whole batch. (else) –

	smooth – Value to avoid division by zero.

	Returns

	A callable dice_loss instance. Can be used in model.compile(...) function`
or combined with other losses.

Example:

loss = DiceLoss()
model.compile('SGD', loss=loss)

	
segmentation_models.losses.BinaryCELoss()

	Creates a criterion that measures the Binary Cross Entropy between the
ground truth (gt) and the prediction (pr).

\[L(gt, pr) = - gt \cdot \log(pr) - (1 - gt) \cdot \log(1 - pr)\]

	Returns

	A callable binary_crossentropy instance. Can be used in model.compile(...) function
or combined with other losses.

Example:

loss = BinaryCELoss()
model.compile('SGD', loss=loss)

	
segmentation_models.losses.CategoricalCELoss(class_weights=None)

	Creates a criterion that measures the Categorical Cross Entropy between the
ground truth (gt) and the prediction (pr).

\[L(gt, pr) = - gt \cdot \log(pr)\]

	Returns

	A callable categorical_crossentropy instance. Can be used in model.compile(...) function
or combined with other losses.

Example:

loss = CategoricalCELoss()
model.compile('SGD', loss=loss)

	
segmentation_models.losses.BinaryFocalLoss(alpha=0.25, gamma=2.0)

	Creates a criterion that measures the Binary Focal Loss between the
ground truth (gt) and the prediction (pr).

\[L(gt, pr) = - gt \alpha (1 - pr)^\gamma \log(pr) - (1 - gt) \alpha pr^\gamma \log(1 - pr)\]

	Parameters

	
	alpha – Float or integer, the same as weighting factor in balanced cross entropy, default 0.25.

	gamma – Float or integer, focusing parameter for modulating factor (1 - p), default 2.0.

	Returns

	A callable binary_focal_loss instance. Can be used in model.compile(...) function
or combined with other losses.

Example:

loss = BinaryFocalLoss()
model.compile('SGD', loss=loss)

	
segmentation_models.losses.CategoricalFocalLoss(alpha=0.25, gamma=2.0)

	Creates a criterion that measures the Categorical Focal Loss between the
ground truth (gt) and the prediction (pr).

\[L(gt, pr) = - gt \cdot \alpha \cdot (1 - pr)^\gamma \cdot \log(pr)\]

	Parameters

	
	alpha – Float or integer, the same as weighting factor in balanced cross entropy, default 0.25.

	gamma – Float or integer, focusing parameter for modulating factor (1 - p), default 2.0.

	Returns

	A callable categorical_focal_loss instance. Can be used in model.compile(...) function
or combined with other losses.

Example

loss = CategoricalFocalLoss()
model.compile('SGD', loss=loss)

utils

	
segmentation_models.utils.set_trainable(model, recompile=True, **kwargs)

	Set all layers of model trainable and recompile it

Note

Model is recompiled using same optimizer, loss and metrics:

model.compile(
 model.optimizer,
 loss=model.loss,
 metrics=model.metrics,
 loss_weights=model.loss_weights,
 sample_weight_mode=model.sample_weight_mode,
 weighted_metrics=model.weighted_metrics,
)

	Parameters

	model (keras.models.Model) – instance of keras model

Support

The easiest way to get help with the project is to create issue or PR on github.

Github: http://github.com/qubvel/segmentation_models/issues

Index

 B
 | C
 | D
 | F
 | I
 | J
 | L
 | P
 | S
 | U

B

 	
 	BinaryCELoss() (in module segmentation_models.losses)

 	
 	BinaryFocalLoss() (in module segmentation_models.losses)

C

 	
 	CategoricalCELoss() (in module segmentation_models.losses)

 	
 	CategoricalFocalLoss() (in module segmentation_models.losses)

D

 	
 	DiceLoss() (in module segmentation_models.losses)

F

 	
 	FPN() (in module segmentation_models)

 	
 	FScore() (in module segmentation_models.metrics)

I

 	
 	IOUScore() (in module segmentation_models.metrics)

J

 	
 	JaccardLoss() (in module segmentation_models.losses)

L

 	
 	Linknet() (in module segmentation_models)

P

 	
 	PSPNet() (in module segmentation_models)

S

 	
 	set_trainable() (in module segmentation_models.utils)

U

 	
 	Unet() (in module segmentation_models)

 nav.xhtml

 Table of Contents

 		
 Welcome to Segmentation Models’s documentation!

 		
 Installation

 		
 Tutorial

 		
 Quick start

 		
 Simple training pipeline

 		
 Models and Backbones

 		
 Fine tuning

 		
 Training with non-RGB data

 		
 Segmentation Models Python API

 		
 Unet

 		
 Linknet

 		
 FPN

 		
 PSPNet

 		
 metrics

 		
 losses

 		
 utils

 		
 Support

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

