

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Changelog

v0.1.3-beta-hotfix2

December 4th, 2018

Fix an emergency bug.

v0.1.3-beta-hotfix1

November 19th, 2018

Fix a bug concerning the slashing mechanism.

v0.1.3-beta

November 13th, 2018

FEATURES

	Fix a bug on voting power computation which allowed some validators to take disproportionately large amounts of block awards.

	Allow Validators to change its default compensation rate.

	Make backup validators participate in normal operations to ensure that the backup is always ready.

IMPROVEMENTS

	Allow validators to temporally deactivate itself for emergencies.

	Support hot swap for validators to decrease slashing risk.

FIXES

	Many stability improvements.

v0.1.2-beta

October 15th, 2018

The Mainnet version is released. This version fixed all the bugs found in Travis v0.1.0 and Travis v0.1.1-beta.

v0.1.0-rc.7

September 14th, 2018

FEATURES

	Improve block award system and its effectiveness: Block reward will be released when a block is committed.

IMPROVEMENTS

	Complete the staking system:

	Check time stamp when a block is proposed. The time stamp won’t be earlier than the previous block.

	The reward information of each block will be stored in leveldb.

	Add an interface to check the reward information of each block.

	Improve system flexibility: Configuration parameters are stored in a genesis.json file.

	Add test cases and modify the test scripts.

FIXES

	Fixed some small bugs

v0.1.0-rc.6

August 31st, 2018

FEATURES

	Continue with the development of DPOS 1.4. Ranking and block rewards of Validator is directly correlated to their participation, contribution, loyalty and governance. For detailed algorithm, please refer to the DPOS document on https://www.cybermiles.io/validator/.

	Improve governance mechanism to incentivise worthy delegators. With an interface of setCompRate, Validator can reward an individual delegator by setting a higher compensation rate for him/her.

IMPROVEMENTS

	Make transaction more efficient: Use local client to replace rpc client to communicate with Tendermint Core.

	Make transaction more convenient: Support array style json in system parameters.

	Improve System testability:

	Add concurrent test and input check test cases

	Benchmark test supports KeepAlive mode

FIXES

	Fixed some small bugs

v0.1.0-rc.5

August 17th, 2018

FEATURES

	Improve system security: Verify Delegator’s transaction signature in CMT Cube. Make sure that the transaction is initiated by CMT Cube.

	Revise the fault tolerance mechanism in deployment of libENI.

	If any Node fails to download the library, it won’t go through the panic program. To ensure the Node can run normally, the network records the failure status, and allows downloading manually.

	To secure connectivity of global Nodes, more libENI downloading addresses are added. If the Nodes fail to download the library with the first URL, they with try with the rest in order.

IMPROVEMENTS

	Improve system security:

	sendTransaction & sendRawTransaction no longer run through txpool API. This avoids bugs from using web3 or geth.

	In regard to staking or governance transaction, noncelock will be released when a transaction is signed, instead of when the commit is completed.

	Enhance usability:

	Support configuring the number of Backup Validators.

	Add more Lity related test cases.

FIXES

	Fix an error in punishing a Validator committed Byzantine failures.

	Fix an error caused by travis tx in synchronising the new Validators.

v0.1.0-rc.4

August 3rd, 2018

FEATURES

	Upgrade on Lity and CVM: Support registration or upgrade of libENI in Governance.

	Enhancement in DPoS Protocol: Replace Ranking Power with Voting Power. On top of stakes, ranking and compensation of Validator will be determined by participation, diversity, loyalty and growth of community.
For detailed algorithm, please refer to our DPoS Protocol: https://www.cybermiles.io/validator/

IMPROVEMENTS

	Modify Governance mechanism: Support setting an expiration date on a Governance proposal, either with timestamp or block height.

	Improve system stability: Trigger db transaction with every block created. Skating and governance in SQLite database is operated in the same db transaction.

v0.1.0-rc.3

July 20th, 2018

FEATURES

We hit a big milestone this week.

Lity is a new programming language for developing smart contract on Cybermiles blockchain. It consists of a dynamically extensible language, a compiler, and a virtual machine runtime.

Lity is a superset of Solidity with ourstanding flexibility, performance and security - The dApp developers would love these upgrades.

	The libENI dynamic VM extension allows native functions to be added to the virtual machine on the fly, without stopping, forking or upgrading the blockchain.

	The ERC checker not only checks but also automagically fixes common security bugs in smart contracts.

	The upcoming Lity Rules Engine allows formal business rules to be embedded in smart contracts.

For more information, visit https://www.litylang.org/

IMPROVEMENTS

	Compatible with Ethereum: Upgrade go-ethereum to version 1.8.12

	Improve security: Staking in CMT cube requires signing by address.

	Complete the Governance and Staking mechanism Documentation: http://travis.readthedocs.io/

FIXES

Fix some small bugs.

v0.1.0-rc.2

July 13th, 2018

IMPROVEMENTS

	Modify the governance mechanism: A validator can vote multiple times before the proposal is executed. Only the last vote counts.

	Update tendermit to v0.22.0.

	Improve network security by adding：

	Backup Validator test-cases

	System parameters test-cases

	Block Award calculation test-cases

	Fix compatibility issues of 0x0 address.

FIXES

	Correct Validator and Backup Validator block award calculation errors.

v0.1.0-rc.1

July 5th, 2018

FEATURES

	Gas fee: Charge Validator for declaring candidacy, updating candidate information and proposing transactions.

	Governance Transactions: Change system parameters through governance transactions.

IMPROVEMENTS

	Update tendermit to v0.20.0.

	Add Candidate information fields: name, email, profile.

	Change parameters of ChainId: 18: mainnet, 19: testnet, 20: staging.

	Add cmt.syncing to get node syncing status.

FIXES

	If the maximum staking amount decreases, Validator self-staked CMTs won’t be charged.

	Correct non-running Validators won’t get block awards.

	Fix Block Award calculation error.

	Correct delegator address when a Validator withdraws candidacy.

Second State DevChain

[image: _images/devchain.svg]Build Status develop branch [https://travis-ci.org/second-state/devchain]

Please see the documentation for building and deploying Second State DevChain nodes here: https://docs.secondstate.io/devchain/getting-started

Generate genesis

we can use genesis related tools to generate genesis.josn or genesis allocates for dev and mainnet.

1. generate genesis.json

use gen_genesis/main.go to generate genesis output, then we can redirect the output to somewhere you want.

	development genesis output

$ cd gen_genesis
$ go run ./main.go dev > ../genesis/dev_genesis.json

	mainnet genesis output

$ cd gen_genesis
$ go run ./main.go mainnet > ../genesis/mainnet_genesis.json

the genesis.josn can be used to --vm-genesis string VM genesis file when init the node.
if we omit the --vm-genesis, the app will use default config.
the default config come from the genesis.go and *_alloc.go.

2. how to make allocates

use genesis/mkalloc.go to make allocates, example as follow

	development genesis alloc

$ cd genesis
$ go run ./mkalloc.go devAllocData ./dev_genesis.json > dev_alloc.go

	mainnet genesis alloc

$ cd genesis
$ go run ./mkalloc.go mainnetAllocData ./mainnet_genesis.json > mainnet_alloc.go

Changelog

0.7.3 (Mar 2, 2018)

FEATURES:

	new Marshal API in preparation for major upgrade: MarshalBinary, UnmarshalBinary, MarshalJSON, UnmarshalJSON

0.7.2 (Dec 5, 2017)

IMPROVEMENTS:

	data: expose Marshal and Unmarshal methods on Bytes to support protobuf

	nowriter: start adding new interfaces for improved technical language and organization

BUG FIXES:

	fix incorrect byte write count for integers

0.7.1 (Oct 27, 2017)

BUG FIXES:

	dont use nil for empty byte array (undoes fix from 0.7.0 pending further analysis)

0.7.0 (Oct 26, 2017)

BREAKING CHANGE:

	time: panic on encode, error on decode for times before 1970

	rm codec.go

IMPROVEMENTS:

	various additional comments, guards, and checks

BUG FIXES:

	fix default encoding of time and bytes

	don’t panic on ReadTime

	limit the amount of memory that can be allocated

0.6.2 (May 18, 2017)

FEATURES:

	github.com/tendermint/go-data -> github.com/CyberMiles/travis/sdk/go-wire/data

IMPROVEMENTS:

	Update imports for new tmlibs repository

0.6.1 (April 18, 2017)

FEATURES:

	Size functions: ByteSliceSize, UvarintSize

	CLI tool

	Expression DSL

	New functions for bools: ReadBool, WriteBool, GetBool, PutBool

	ReadJSONBytes function

IMPROVEMENTS:

	Makefile

	Use arrays instead of slices

	More testing

	Allow omitempty to work on non-comparable types

BUG FIXES:

	Allow time parsing for seconds, milliseconds, and microseconds

	Stop overflows in ReadBinaryBytes

0.6.0 (January 18, 2016)

BREAKING CHANGES:

FEATURES:

IMPROVEMENTS:

BUG FIXES:

Prehistory

Wire encoding for Golang

This software implements Go bindings for the Wire encoding protocol.
The goal of the Wire encoding protocol is to be a simple language-agnostic encoding protocol for rapid prototyping of blockchain applications.

This package also includes a compatible (and slower) JSON codec.

Supported types

Primary types: uvarint, varint, byte, uint[8,16,32,64], int[8,16,32,64], string, and time types are supported

Arrays: Arrays can hold items of any arbitrary type. For example, byte-arrays and byte-array-arrays are supported.

Structs: Struct fields are encoded by value (without the key name) in the order that they are declared in the struct. In this way it is similar to Apache Avro.

Interfaces: Interfaces are like union types where the value can be any non-interface type. The actual value is preceded by a single “type byte” that shows which concrete is encoded.

Pointers: Pointers are like optional fields. The first byte is 0x00 to denote a null pointer (e.g. no value), otherwise it is 0x01.

Unsupported types

Maps: Maps are not supported because for most languages, key orders are nondeterministic.
If you need to encode/decode maps of arbitrary key-value pairs, encode an array of {key,value} structs instead.

Floating points: Floating point number types are discouraged because of reasons [http://gafferongames.com/networking-for-game-programmers/floating-point-determinism/]. If you need to use them, use the field tag wire:"unsafe".

Enums: Enum types are not supported in all languages, and they’re simple enough to model as integers anyways.

A struct example

Struct types can be automatically encoded with reflection. Unlike json-encoding, no field
name or type information is encoded. Field values are simply encoded in order.

package main

import (
 "bytes"
 "fmt"
 "math"
 "github.com/CyberMiles/travis/sdk/go-wire"
)

type Foo struct {
 MyString string
 MyUint32 uint32
 myPrivateBytes []byte
}

func main() {

 foo := Foo{"my string", math.MaxUint32, []byte("my private bytes")}

 buf, n, err := new(bytes.Buffer), int(0), error(nil)
 wire.WriteBinary(foo, buf, &n, &err)

 fmt.Printf("%X\n", buf.Bytes())
}

The above example prints:

01096D7920737472696E67FFFFFFFF, where

0109 is the varint encoding of the length of string "my string"
 6D7920737472696E67 is the bytes of string "my string"
 FFFFFFFF is the bytes for math.MaxUint32, a uint32

Note that the unexported “myPrivateBytes” isn’t encoded.

An interface example

Here’s an example with interfaces.

package main

import (
 "bytes"
 "fmt"
 "github.com/CyberMiles/travis/sdk/go-wire"
)

type Animal interface{}
type Dog struct{ Name string }
type Cat struct{ Name string }
type Cow struct{ Name string }

var _ = wire.RegisterInterface(
 struct{ Animal }{},
 wire.ConcreteType{Dog{}, 0x01}, // type-byte of 0x01 for Dogs
 wire.ConcreteType{Cat{}, 0x02}, // type-byte of 0x02 for Cats
 wire.ConcreteType{Cow{}, 0x03}, // type-byte of 0x03 for Cows
)

func main() {

 animals := []Animal{
 Dog{"Snoopy"},
 Cow{"Daisy"},
 }

 buf, n, err := new(bytes.Buffer), int(0), error(nil)
 wire.WriteBinary(animals, buf, &n, &err)

 fmt.Printf("%X\n", buf.Bytes())
}

The above example prints:

0102010106536E6F6F70790301054461697379, where

0102 is the varint encoding of the length of the array
 01 is the type-byte for a Dog
 0106 is the varint encoding of the length of the Dog's name
 536E6F6F7079 is the Dog's name "Snoopy"
 03 is the type-byte for a Cow
 0105 is the varint encoding of the length of the Cow's name
 4461697379 is the Cow's name "Daisy"

A pointer example

Here’s an example with pointers (and interfaces too).

package main

import (
	"bytes"
	"fmt"
	"github.com/CyberMiles/travis/sdk/go-wire"
)

type Animal interface{}
type Dog struct{ Name string }
type Cat struct{ Name string }
type Cow struct{ Name string }

var _ = wire.RegisterInterface(
	struct{ Animal }{},
	wire.ConcreteType{Dog{}, 0x01}, // type-byte of 0x01 for Dogs
	wire.ConcreteType{&Dog{}, 0x02}, // type-byte of 0x02 for Dog pointers
)

type MyStruct struct {
	Field1 Animal
	Field2 *Dog
	Field3 *Dog
}

func main() {

	myStruct := MyStruct{
		Field1: &Dog{"Snoopy"},
		Field2: &Dog{"Smappy"},
		Field3: (*Dog)(nil),
	}

	buf, n, err := new(bytes.Buffer), int(0), error(nil)
	wire.WriteBinary(myStruct, buf, &n, &err)

	fmt.Printf("%X\n", buf.Bytes())
}

The above example prints:

020106536E6F6F7079010106536D6170707900, where

02 is the type-byte for a Dog pointer for Field1
 0106 is the varint encoding of the length of the Dog's name
 536E6F6F7079 is the Dog's name "Snoopy"
 01 is a byte indicating a non-null pointer for Field2
 0106 is the varint encoding of the length of the Dog's name
 536D61707079 is the Dog's name "Smappy"
 00 is a byte indicating a null pointer for Field3

Notice that in Field1, that the value is non-null is implied in the type-byte of 0x02.
While Golang lets you have nil-pointers as interface values, this is a Golang-specific feature that is absent in other OOP languages
such as Java. So, Go-Wire does not support nil-pointers for interface values. The following example would return an error:

myStruct := MyStruct{
 Field1: (*Dog)(nil), // Error!
 Field2: &Dog{"Smappy"}, // Ok!
 Field3: (*Dog)(nil), // Ok!
}

buf, n, err := new(bytes.Buffer), int(0), error(nil)
wire.WriteBinary(myStruct, buf, &n, &err)
fmt.Println(err)

// Unexpected nil-pointer of type main.Dog for registered interface Animal.
// For compatibility with other languages, nil-pointer interface values are forbidden.

data

import "github.com/CyberMiles/travis/sdk/go-wire/data"

	Overview

	Index

[bookmark: pkg-overview]Overview

Data is designed to provide a standard interface and helper functions to
easily allow serialization and deserialization of your data structures
in both binary and json representations.

This is commonly needed for interpreting transactions or stored data in the
abci app, as well as accepting json input in the light-client proxy. If we
can standardize how we pass data around the app, we can also allow more
extensions, like data storage that can interpret the meaning of the []byte
passed in, and use that to index multiple fields for example.

Serialization of data is pretty automatic using standard json and go-wire
encoders. The main issue is deserialization, especially when using interfaces
where there are many possible concrete types.

go-wire handles this by registering the types and providing a custom
deserializer:

var _ = wire.RegisterInterface(
 struct{ PubKey }{},
 wire.ConcreteType{PubKeyEd25519{}, PubKeyTypeEd25519},
 wire.ConcreteType{PubKeySecp256k1{}, PubKeyTypeSecp256k1},
)

func PubKeyFromBytes(pubKeyBytes []byte) (pubKey PubKey, err error) {
 err = wire.ReadBinaryBytes(pubKeyBytes, &pubKey)
 return
}

func (pubKey PubKeyEd25519) Bytes() []byte {
 return wire.BinaryBytes(struct{ PubKey }{pubKey})
}

This prepends a type-byte to the binary representation upon serialization and
using that byte to switch between various representations on deserialization.
go-wire also supports something similar in json, but it leads to kind of ugly
mixed-types arrays, and requires using the go-wire json parser, which is
limited relative to the standard library encoding/json library.

In json, the typical idiom is to use a type string and message data:

{
 "type": "this part tells you how to interpret the message",
 "data": ...the actual message is here, in some kind of json...
}

I took inspiration from two blog posts, that demonstrate how to use this
to build (de)serialization in a go-wire like way.

	http://eagain.net/articles/go-dynamic-json/

	http://eagain.net/articles/go-json-kind/

This package unifies these two in a single Mapper.

You app needs to do three things to take full advantage of this:

	For every interface you wish to serialize, define a holder struct with some helper methods, like FooerS wraps Fooer in common_test.go

	In all structs that include this interface, include the wrapping struct instead. Functionally, this also fulfills the interface, so except for setting it or casting it to a sub-type it works the same.

	Register the interface implementations as in the last init of common_test.go. If you are currently using go-wire, you should be doing this already

The benefits here is you can now run any of the following methods, both for
efficient storage in our go app, and a common format for rpc / humans.

orig := FooerS{foo}

// read/write binary a la tendermint/go-wire
bparsed := FooerS{}
err := wire.ReadBinaryBytes(
 wire.BinaryBytes(orig), &bparsed)

// read/write json a la encoding/json
jparsed := FooerS{}
j, err := json.MarshalIndent(orig, "", "\t")
err = json.Unmarshal(j, &jparsed)

See https://github.com/CyberMiles/travis/sdk/go-wire/data/blob/master/common_test.go to see
how to set up your code to use this.

[bookmark: pkg-index]Index

	Variables

	type ByteEncoder

	type Bytes

	func (b Bytes) MarshalJSON() ([]byte, error)

	func (b *Bytes) UnmarshalJSON(data []byte) error

	type JSONMapper

	func (m *JSONMapper) FromJSON(data []byte) (interface{}, error)

	func (m *JSONMapper) ToJSON(data interface{}) ([]byte, error)

	type Mapper

	func NewMapper(base interface{}) Mapper

	func (m Mapper) RegisterInterface(kind string, b byte, data interface{}) Mapper

[bookmark: pkg-files]Package files

binary.go bytes.go docs.go json.go wrapper.go

[bookmark: pkg-variables]Variables

var (
 Encoder ByteEncoder = hexEncoder{}
 HexEncoder = hexEncoder{}
 B64Encoder = base64Encoder{base64.URLEncoding}
 RawB64Encoder = base64Encoder{base64.RawURLEncoding}
)

Encoder is a global setting for all byte encoding
This is the default. Please override in the main()/init()
of your program to change how byte slices are presented

[bookmark: ByteEncoder]type ByteEncoder

type ByteEncoder interface {
 Marshal(bytes []byte) ([]byte, error)
 Unmarshal(dst *[]byte, src []byte) error
}

ByteEncoder handles both the marshalling and unmarshalling of
an arbitrary byte slice.

All Bytes use the global Encoder set in this package.
If you want to use this encoding for byte arrays, you can just
implement a simple custom marshaller for your byte array

type Dings [64]byte

func (d Dings) MarshalJSON() ([]byte, error) {
 return data.Encoder.Marshal(d[:])
}

func (d *Dings) UnmarshalJSON(data []byte) error {
 ref := (*d)[:]
 return data.Encoder.Unmarshal(&ref, data)
}

[bookmark: Bytes]type Bytes

type Bytes []byte

Bytes is a special byte slice that allows us to control the
serialization format per app.

Thus, basecoin could use hex, another app base64, and a third
app base58…

[bookmark: Bytes.MarshalJSON]func (Bytes) MarshalJSON

func (b Bytes) MarshalJSON() ([]byte, error)

[bookmark: Bytes.UnmarshalJSON]func (*Bytes) UnmarshalJSON

func (b *Bytes) UnmarshalJSON(data []byte) error

[bookmark: JSONMapper]type JSONMapper

type JSONMapper struct {
 // contains filtered or unexported fields
}

[bookmark: JSONMapper.FromJSON]func (*JSONMapper) FromJSON

func (m *JSONMapper) FromJSON(data []byte) (interface{}, error)

FromJSON will deserialize the output of ToJSON for every registered
implementation of the interface

[bookmark: JSONMapper.ToJSON]func (*JSONMapper) ToJSON

func (m *JSONMapper) ToJSON(data interface{}) ([]byte, error)

ToJson will serialize a registered implementation into a format like:

{
 "type": "foo",
 "data": {
 "name": "dings"
 }
}

this allows us to properly deserialize with FromJSON

[bookmark: Mapper]type Mapper

type Mapper struct {
 *JSONMapper
 // contains filtered or unexported fields
}

Mapper is the main entry point in the package.

On init, you should call NewMapper() for each interface type you want
to support flexible de-serialization, and then
RegisterInterface() in the init() function for each implementation of these
interfaces.

Note that unlike go-wire, you can call RegisterInterface separately from
different locations with each implementation, not all in one place.
Just be careful not to use the same key or byte, of init will panic

[bookmark: NewMapper]func NewMapper

func NewMapper(base interface{}) Mapper

NewMapper creates a Mapper.

If you have:

type Foo interface {....}
type FooS struct { Foo }

then you should pass in FooS{} in NewMapper, and implementations of Foo
in RegisterInterface

[bookmark: Mapper.RegisterInterface]func (Mapper) RegisterInterface

func (m Mapper) RegisterInterface(kind string, b byte, data interface{}) Mapper

RegisterInterface should be called once for each implementation of the
interface that we wish to support.

kind is the type string used in the json representation, while b is the
type byte used in the go-wire representation. data is one instance of this
concrete type, like Bar{}

Generated by godoc2md [http://godoc.org/github.com/davecheney/godoc2md]

go-base58

I copied this package from https://github.com/jbenet/go-base58
which in turn came from https://github.com/conformal/btcutil
to provide a simple base58 package that

	defaults to base58-check (btc)

	and allows using different alphabets.

	and returns an error on decoding problems to be
compatible with the encoding/* packages in stdlib

Usage

package main

import (
 "fmt"
 b58 "github.com/CyberMiles/travis/sdk/go-wire/data/base58"
)

func main() {
 buf := []byte{255, 254, 253, 252}
 fmt.Printf("buffer: %v\n", buf)

 str := b58.Encode(buf)
 fmt.Printf("encoded: %s\n", str)

 buf2, err := b58.Decode(str)
 if err != nil {
 panic(err)
 }
 fmt.Printf("decoded: %v\n", buf2)
}

Another alphabet

package main

import (
 "fmt"
 b58 "github.com/CyberMiles/travis/sdk/go-wire/data/base58"
)

const BogusAlphabet = "ZYXWVUTSRQPNMLKJHGFEDCBAzyxwvutsrqponmkjihgfedcba987654321"

func encdec(alphabet string) {
 fmt.Printf("using: %s\n", alphabet)

 buf := []byte{255, 254, 253, 252}
 fmt.Printf("buffer: %v\n", buf)

 str := b58.EncodeAlphabet(buf, alphabet)
 fmt.Printf("encoded: %s\n", str)

 buf2, err := b58.DecodeAlphabet(str, alphabet)
 if err != nil {
 panic(err)
 }
 fmt.Printf("decoded: %v\n\n", buf2)
}

func main() {
 encdec(b58.BTCAlphabet)
 encdec(b58.FlickrAlphabet)
 encdec(BogusAlphabet)
}

License

Package base58 (and the original btcutil) are licensed under the ISC License.

Travis Benchmarking

Requirement

	node ^8.0.0

	yarn ^1.0.0 or npm ^5.0.0

Installation

yarn install # Install project dependencies (or `npm install`)

Usage

	send raw transactions

node sendRawTx

	send transactions

node sendTx

Configuration

Configuration file: config/default.json.

	provider The provider to connect.

	wallet The wallet of the sending account.

	password The password of the from account, to sign the transaction with.

	to The address that all transactions are directed to.

	contractAddress The contract address for testing token transfer.

	value The value transferred for the transaction in Wei, or token number if it’s a token transfer testing.

	concurrency The maximum number of parallel requests at a time. For sendRawTx, it stands for the count of from accounts, each account will be in a separate thread, and send requests in series.

	txs Total number of transactions to send.

	blockTimeout Max blocks to wait before stop testing.

	waitInterval The intervals (in milliseconds) to check if all transactions are finished processing.

Travis Integration Test

Requirement

	node ^8.0.0

	yarn ^1.0.0 or npm ^5.0.0

Installation

get latest version of web3-cmt
git clone https://github.com/CyberMiles/web3-cmt.js /path_to/web3-cmt.js
cd /path_to/web3-cmt.js
git checkout master
yarn install # (or `npm install`)
prepare for web3-cmt package linking
yarn link # (or `npm link`)

goes back to the test/integration directory
cd -
link to local version of web3-cmt package(or `npm link "web3-cmt"`)
yarn link "web3-cmt"
Install project dependencies(or `npm install`)
yarn install

Usage

run all test cases
yarn test

run test cases in a specified test file(e.g. 1.validator.test.js).
node_modules/mocha/bin/mocha -t 300000 1.validator.test.js

generate a standalone HTML/CSS report to helps visualize your test runs
node_modules/mocha/bin/mocha -t 300000 1.validator.test.js --reporter mochawesome

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

