SecML
Release 0.10

PRALab

Oct 29, 2019

1 SecML is currently in development.
1.1 Installation Guide

2 Operating System requirements

3 Installation process

3.1 ExtraComponents

4 Available extra components

4.1 UsageGuide
42 Contributors L
43 Authors
44 Credits o
4.5 Acknowledgements
4.6 Copyright. o

Bibliography
Python Module Index
Index

USER GUIDE

........................ 10

SecML, Release 0.10

SecML is an open-source Python library for the security evaluation of Machine Learning (ML) algorithms.

It comes with a set of powerful features:

Dense/Sparse data support. We provide full, transparent support for both dense (through numpy library) and
sparse data (through scipy library) in a single data structure.

Wide range of supported ML algorithms. All supervised learning algorithms supported by scikit-learn
are available, as well as Neural Networks (NNs) through PyTorch deep learning platform.

Built-in attack algorithms. Evasion and poisoning attacks based on a custom-developed fast solver. In addition,
we provide connectors to other third-party Adversarial Machine Learning libraries.

Visualize your results. We provide visualization and plotting framework based on the widely-known library
matplotlib.

Explain your results. Explainable ML methods to interpret model decisions via influential features and proto-
types.

Extensible. Easily create new wrappers for ML models or attack algorithms extending our abstract interfaces.

Multi-processing. Do you want to save time further? We provide full compatibility with all the multi-processing
features of scikit-learn and pytorch, along with built-in support of the joblib library.

USER GUIDE 1

https://pytorch.org/
https://matplotlib.org/
https://joblib.readthedocs.io/

SecML, Release 0.10

2 USER GUIDE

CHAPTER
ONE

SECML IS CURRENTLY IN DEVELOPMENT.

If you encounter any bug, please report them using the GitLab issue tracker. Please see our ROADMAP for an
overview of the future development directions.

1.1 Installation Guide

We recommend instaling SecML in a specific environment along with its dependencies.

Common frameworks to create and manage envs are virtualenv and conda. Both alternatives provide convenient user
guides on how to properly setup the envs, so this guide will not cover the configuration procedure.

https://gitlab.com/secml/secml/issues
https://secml.gitlab.io/roadmap.html
.
.
.
https://www.apache.org/licenses/LICENSE-2.0
https://virtualenv.pypa.io
https://conda.io

SecML, Release 0.10

4 Chapter 1. SecML is currently in development.

CHAPTER
TWO

OPERATING SYSTEM REQUIREMENTS

SecML can run under Python 2.7 and Python >= 3.5 with no configuration steps required, as all its dependencies are
available as wheel packages for the main macOS versions and Linux distributions.

However, to support additional advanced features more packages can be necessary depending on the Operating System
used:

e Linux (Ubuntu >= 16.04 or equivalent dist)
— python-tk (Python 2.7), python3—-tk (Python >= 3.5), for running MatplotLib Tk-based backends;
— NVIDIA CUDA Toolkit for running t £ —gpu extra component. See the TensorFlow Guide.

* macOS (macOS >= 10.12 Sierra)

— Nothing to note.

https://www.tensorflow.org/install/gpu

SecML, Release 0.10

6 Chapter 2. Operating System requirements

CHAPTER
THREE

INSTALLATION PROCESS

Before starting the installation process try to obtain the latest version of the pip manager by calling: pip install
-U pip

The setup process is managed by the Python package setuptools. Be sure to obtain the latest version by calling:
pip install -U setuptools

Once the environment is set up, SecML can installed and run by multiple means:
1. Install from official PyPI repository:
* pip install secml
2. Install from wheel/zip package (https://pypi.python.org/pypi/secmli#files):
* pip install <package-file>

In all cases, the setup process will try to install the correct dependencies. In case something goes wrong during the
install process, try to install the dependencies first by calling: pip install -r requirements.txt

SecML should now be importable in python via: import secml.

To update a current installation using any of the previous methods, add the —U parameter after the pip install
directive. Please see our Update Guides for specific upgrade intructions depending on the source and target version.

3.1 Extra Components

SecML comes with a set of extras components that can be installed if desired.

To specify the extra components to install, add the section [extras] while calling pip install. extras will
be a comma-separated list of components you want to install. Example:

* pip install secml[extral,extral]

All the installation procedures via pip described above allow definition of the [extras] section.

https://pypi.python.org/pypi/secml#files
https://secml.gitlab.io/update.html

SecML, Release 0.10

8 Chapter 3. Installation process

CHAPTER
FOUR

AVAILABLE EXTRA COMPONENTS

* pytorch : Neural Networks (NNs) through PyTorch deep learning platform. Will install: torch >= 1.1,
torchvision >= 0.2.2

e cleverhans : Wrapper of CleverHans, a Python library to benchmark vulnerability of machine learning
systems to adversarial examples. Will install: tensorflow >= 1.14.%, < 2,cleverhans

* tf-gpu : Shortcut for installing TensorFlow package with GPU support. Will install: tensorflow-gpu
>= 1.14.%, < 2

4.1 Usage Guide

SecML is based on numpy, scipy, scikit-learn and pytorch, widely-used packages for scientific computing and machine
learning with Python.

As a result, most of the interfaces of the library should be pretty familiar to frequent users of those packages.

The primary data class is the secml .array.CArray, multi-dimensional (currently limited to 2 dimensions) array
structure which embeds both dense and sparse data accepting as input numpy .ndarray and scipy.sparse.
csr_matrix (more sparse formats will be supported soon). This structure is the standard input and output of all
other classes in the library.

The secml .ml package contains all the Machine Learning algorithms and support classes, including classifiers, loss
and regularizer functions, kernels and performance evaluation functions.

The secml.adv package contains evasion and poisoning attacks based on a custom-developed solver, along with
classes to easily perform security evaluation of Machine Learning algorithms.

The secml .explanation package contains different explainable Machine Learning methods that allow interpret-
ing classifiers decisions by analyzing the relevant components such as features or training prototypes.

The secml . figure package contains a visualization and plotting framework based on matplotlib.

4.2 Contributors

Your contribution is foundamental!
If you want to help the development of SecML, just set up the project locally by the following means:
1. (devs only) Install from local GitLab repository:
* Clone the project repository in a directory of your choice

* Run installation as: pip install

https://pytorch.org/
https://github.com/tensorflow/cleverhans
http://www.numpy.org/
https://www.scipy.org/
https://scikit-learn.org/
https://pytorch.org/
https://matplotlib.org/

SecML, Release 0.10

2. (devs only) Install from remote GitLab repository. In this case, given { repourl} in the format, es., gitlab.
com/secml/secml:

e pip install git+ssh://git@{repourl}.git[@branch]#egg=secml A specific branch
to install can be specified using [@branch] parameter. If omitted, the default branch will be installed.

Contributions can be sent in the form of a merge request via our GitLab issue tracker.

SecML can also be added as a dependency for other libraries/project. Just add secml or the full repository path
command git+ssh://git@{repourl}.git [@branch]#egg=secmnl tothe requirements.txt file.

4.2.1 Editable Installation (development mode)
For SecML developers or users want to use the latest dev version of the library, pip provides a convenient option
which is called: editable mode.

By calling pip install with the —e option or python setup.py develop, only a reference to the project
files is “installed” in the active environment. In this way, project files can be edited/updated and the new versions will
be automatically executed by the Python interpreter.

Two common scenarios are listed below:

1. Editable install from a previously cloned local repository
» Navigate to the repository directory
* Run python setup.py develop

2. Editable install from remote repository
* Runpip install -e git+ssh://git@{repourl}.git[@branch]#egg=secml
* Project will be cloned automatically in <venv path>/src/secml
* The new repository can then be updated using standard git commands

Editable installs are also available while using SecML as a dependency of other libraries/projects (see Installation
Guide for more information).

4.3 Authors

This library is maintained by PRALab - Pattern Recognition and Applications Lab.
List of contributors:

¢ Marco Melis (maintainer) [1]

¢ Ambra Demontis [1]

e Maura Pintor [1], [2]

* Battista Biggio [1], [2]

[1] Department of Electrical and Electronic Engineering, University of Cagliari, Italy [2] Pluribus One, Italy

4.4 Credits

e numpy Travis E, Oliphant. “A guide to NumPy”’, USA: Trelgol Publishing, 2006.

10 Chapter 4. Available extra components

https://gitlab.com/secml/secml/issues
https://pralab.diee.unica.it

SecML, Release 0.10

* scipy Travis E. Oliphant. “Python for Scientific Computing”, Computing in Science & Engineering, 9, 10-20,
2007.

* scikit-learn Pedregosa et al., “Scikit-learn: Machine Learning in Python”, JMLR 12, pp. 2825-2830,
2011.

* matplotlibJ. D. Hunter, “Matplotlib: A 2D Graphics Environment”, Computing in Science & Engineering,
vol. 9, no. 3, pp. 90-95, 2007.

* pytorch Paszke, Adam, et al. “Automatic differentiation in pytorch.”, NIPS-W, 2017.

* cleverhans Papernot, Nicolas, et al. “Technical Report on the CleverHans v2.1.0 Adversarial Examples
Library.” arXiv preprint arXiv:1610.00768 (2018).

4.5 Acknowledgements

SecML has been partially developed with the support of European Union’s ALOHA project Horizon 2020 Research
and Innovation programme, grant agreement No. 780788.

4.6 Copyright

SecML has been developed by PRALab - Pattern Recognition and Applications lab and Pluribus One s.r.l. under
Apache License 2.0. Copyright 2019.

4.6.1 Training of Classifiers and Visualization of Results

In this first tutorial we aim to show some basic functionality of SecML.

Creation and visualization of a simple 2D dataset
The first step is loading the dataset. We are going to use a simple toy dataset consisting of 3 clusters of points, normally
distributed.

Each dataset of SecML is a CDataset object, consisting of dataset .X and dataset .Y, where the samples and
the corresponding labels are stored, respectively.

: random_state = 999

n_features = 2 # Number of features

n_samples = 1250 # Number of samples

centers = [[-2, 0], [2, —-2]1, [2, 2]] # Centers of the clusters
cluster_std = 0.8 # Standard deviation of the clusters

from secml.data.loader import CDLRandomBlobs

dataset = CDLRandomBlobs (n_features=n_features,
centers=centers,
cluster_std=cluster_std,
n_samples=n_samples,
random_state=random_state) .load ()

The dataset will be split in training and test, and normalized in the standard interval [0, 1] with a min-max normal-
izer.

4.5. Acknowledgements 11

http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://arxiv.org/abs/1610.00768
https://arxiv.org/abs/1610.00768
https://www.aloha-h2020.eu/
https://pralab.diee.unica.it
https://www.pluribus-one.it/
https://www.apache.org/licenses/LICENSE-2.0

SecML, Release 0.10

n_tr = 1000 # Number of training set samples
n_ts 250 # Number of test set samples

Split in training and test
from secml.data.splitter import CTrainTestSplit
splitter = CTrainTestSplit (
train_size=n_tr, test_size=n_ts, random_state=random_state)
tr, ts = splitter.split (dataset)

Normalize the data

from secml.ml.features import CNormalizerMinMax
nmz = CNormalizerMinMax ()

tr.X = nmz.fit_transform(tr.X)

ts.X = nmz.transform(ts.X)

Let’s visualize the dataset in a 2D plane.

The three clusters are clearly separable and normalized as we required.

from secml.figure import CFigure
fig = CFigure (width=5, height=5)

Convenience function for plotting a dataset
fig.sp.plot_ds(tr)

fig.show ()

1.0 1

0.8 -

0.6 1

0.4 -

0.2 1

0.0 1

Training of classifiers
Now we can train a non-linear one-vs-all Support Vector Machine (SVM), using a Radial Basis Function (RBF)
kernel for embedding.

To this end, we use the CClassifierMulticlassOVA classifier, which extends to a multiclass case any binary
classifier like the CClassifierSVM.

We will evaluate the best training parameters through a 3-Fold Cross-Validation procedure, using the accuracy as the

12 Chapter 4. Available extra components

SecML, Release 0.10

performance metric. Each classifier has an integrated routine, .estimate_parameters () which estimates the
best parameters on the given training set.

Creation of the multiclass classifier

from secml.ml.classifiers import CClassifierSVM

from secml.ml.classifiers.multiclass import CClassifierMulticlassOVA

from secml.ml.kernel import CKernelRBF

multiclass = CClassifierMulticlassOVA (CClassifierSVM, kernel=CKernelRBF ())

Parameters for the Cross-Validation procedure
xval_params = {'C': [0.1, 1, 10], 'kernel.gamma': [1, 10, 100]}

Let's create a 3-Fold data splitter
from secml.data.splitter import CDataSplitterKFold
xval_splitter = CDataSplitterKFold (num_folds=3, random_state=random_state)

Metric to use for training and performance evaluation
from secml.ml.peval.metrics import CMetricAccuracy
metric = CMetricAccuracy ()

Select and set the best training parameters for the classifier
print ("Estimating the best training parameters...")
best_params = multiclass.estimate_parameters (

dataset=tr,

parameters=xval_params,

splitter=xval_splitter,

metric=metric,

perf_evaluator="'xval'

print ("The best training parameters are: ", best_params)

We can now fit the classifier
multiclass.fit (tr)

Compute predictions on a test set
y_pred = multiclass.predict (ts.X)

Evaluate the accuracy of the classifier
acc = metric.performance_score (y_true=ts.Y, y_pred=y_pred)

print ("Accuracy on test set: {:.2%}".format (acc))

Estimating the best training parameters...
The best training parameters are: {"kernel.gamma’: 10, 'C’: 1}
Accuracy on test set: 98.80%

Visualization of the decision regions of the classifiers
Once the classifier is trained, we can visualize the decision regions over the entire feature space.
fig = CFigure (width=5, height=5)

Convenience function for plotting the decision function of a classifier
fig.sp.plot_decision_regions (multiclass, n_grid_points=200)

fig.sp.plot_ds(ts)

(continues on next page)

4.6. Copyright 13

[7]:

SecML, Release 0.10

(continued from previous page)
fig.sp.grid(grid_on=False)

fig.sp.title("Classification regions")

fig.sp.text (0.01, 0.01, "Accuracy on test set: {:.2%}".format (acc),
bbox=dict (facecolor="white'))

fig.show ()

Classification regions

Accuracy on test set: 98.80%

Training other classifiers

Now we can repeat the above process for other classifiers available in SecML. We are going to use a namedtuple
for easy storage of objects and parameters.

Please note that parameters estimation may take a while (up to a few minutes) depending on the machine the script is
run on.

from collections import namedtuple
CLF = namedtuple('CLF', 'clf name clf xval_parameters')

Binary classifiers

from secml.ml.classifiers import CClassifierSVM, CClassifierSGD

Natively-multiclass classifiers

from secml.ml.classifiers import CClassifierKNN, CClassifierDecisionTree,
—CClassifierRandomForest

clf _list = [

CLF (
clf_name='SVM Linear',
clf=CClassifierMulticlassOVA (CClassifierSVM, kernel='linear'),
xval_parameters={'C': [0.1, 1, 101}),

CLF (clf_name='SVM RBF',
clf=CClassifierMulticlassOVA (CClassifierSVM, kernel='rbf'),
xval_parameters={'C': [0.1, 1, 10], 'kernel.gamma': [1, 10, 1001}),

CLF (clf_name='Logistic (SGD)',

(continues on next page)

14 Chapter 4. Available extra components

SecML, Release 0.10

(continued from previous page)

clf=CClassifierMulticlassOVA (
CClassifierSGD, regularizer='12', loss='log',
kernel="linear', random_state=random_state),
xval_parameters={'alpha': [le-7, le-6, le-5]1}),
CLF (clf_name='kNN',
clf=CClassifierKNN (),
xval_parameters={'n_neighbors': [5, 10, 201}),
CLF (clf_name='Decision Tree',
clf=CClassifierDecisionTree (),
xval_parameters={'max_depth': [1, 3, 51}),
CLF (clf_name='Random Forest',
clf=CClassifierRandomForest (random_state=random_state),
xval_parameters={'n_estimators': [10, 20, 30]1}),

from secml.data.splitter import CDataSplitterKFold
xval_splitter = CDataSplitterKFold(num_folds=3, random_state=random_state)

fig = CFigure (width=5 % len(clf_list) / 2, height=5 x 2)
for i, test_case in enumerate(clf_list):

clf = test_case.clf
xval_params = test_case.xval_parameters

print ("\nEstimating the best training parameters of {:} ..."
"" format (test_case.clf_name))

best_params = clf.estimate_parameters (
dataset=tr, parameters=xval_params, splitter=xval_splitter,
metric='accuracy', perf_evaluator='xval')

print ("The best parameters for '{:}' are: "
"" format (test_case.clf_name), best_params)

print ("Training of {:} ...".format (test_case.clf_name))
clf.fit (tr)

Predictions on test set and performance evaluation
y_pred = clf.predict (ts.X)
acc = metric.performance_score(y_true=ts.Y, y_pred=y_pred)

print ("Classifier: {:}\tAccuracy: {:.2%}".format (test_case.clf_name, acc))

Plot the decision function

from math import ceil

Use 'CFigure.subplot' to divide the figure in multiple subplots
fig.subplot (2, int(ceil(len(clf_list) / 2)), 1 + 1)

fig.sp.plot_decision_regions(clf, n_grid _points=200)

fig.sp.plot_ds (ts)
fig.sp.grid(grid_on=False)

fig.sp.title(test_case.clf_name)
fig.sp.text (0.01, 0.01, "Accuracy on test set: {:.2%}".format (acc),
bbox=dict (facecolor="white'))
(continues on next page)

4.6. Copyright 15

SecML, Release 0.10

fig.show ()

Estimating the best training parameters of SVM Linear
The best parameters for ’SVM Linear’ are: {rc’: 1}
Training of SVM Linear

Classifier: SVM Linear Accuracy: 99.20%

Estimating the best training parameters of SVM RBF

The best parameters for ’SVM RBF’ are: {’kernel.gamma’: 10, 'C’:
Training of SVM RBF ...

Classifier: SVM RBF Accuracy: 98.80%

Estimating the best training parameters of Logistic (SGD)

The best parameters for ’'Logistic (SGD)’ are: {"alpha’: 1le-06}
Training of Logistic (SGD)

Classifier: Logistic (SGD) Accuracy: 98.80%

Estimating the best training parameters of kNN

The best parameters for ’'kNN’ are: {’n_neighbors’: 10}

Training of kNN

Classifier: kNN Accuracy: 98.80%

Estimating the best training parameters of Decision Tree

The best parameters for ’'Decision Tree’ are: {’'max_depth’: 3}
Training of Decision Tree

Classifier: Decision Tree Accuracy: 99.20%

Estimating the best training parameters of Random Forest .

The best parameters for ’'Random Forest’ are: {'n_estimators’: 20}

Training of Random Forest
Classifier: Random Forest Accuracy: 98.80%

(continued from previous page)

1}

16 Chapter 4. Available extra components

[1]:

SecML, Release 0.10

SWM Linear SVM RBF Logistic (SGD)

Accuracy on test set: 99.20% Accuracy on test set: 98.80% Accuracy on test set: 98.80%

0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10

Decision Tree Random Forest

Accuracy on test set: 98.80% Accuracy on test set: 99.20% Accuracy on test set: 98.80%

4.6.2 Evasion Attacks against Machine Learning models

In this tutorial we will experiment with adversarial evasion attacks against a Support Vector Machine (SVM) with
Radial Basis Function (RBF) kernel.

Evasion attacks are performed at fest time by perturbing a point with a carefully crafted noise so that the classifiers
predicts an unexpected label for it.

We will first create and train the classifier, evaluating its performance in the standard scenario, i.e. not under attack.

The following part replicates the procedure from the first tutorial.

random_state = 999

n_features = 2 # Number of features

n_samples = 1100 # Number of samples

centers = [[-2, 0], [2, -2]1, [2, 2]] # Centers of the clusters
cluster_std = 0.8 # Standard deviation of the clusters

from secml.data.loader import CDLRandomBlobs

dataset = CDLRandomBlobs (n_features=n_features,
centers=centers,
cluster_std=cluster_std,
n_samples=n_samples,
random_state=random_state) .load()

n_tr = 1000 # Number of training set samples

(continues on next page)

4.6. Copyright 17

SecML, Release 0.10

(continued from previous page)

n_ts = 100 # Number of test set samples

Split in training and test
from secml.data.splitter import CTrainTestSplit
splitter = CTrainTestSplit (
train_size=n_tr, test_size=n_ts, random_state=random_state)
tr, ts = splitter.split (dataset)

Normalize the data

from secml.ml.features import CNormalizerMinMax
nmz = CNormalizerMinMax ()

tr.X = nmz.fit_transform(tr.X)

ts.X = nmz.transform(ts.X)

Metric to use for training and performance evaluation
from secml.ml.peval.metrics import CMetricAccuracy
metric = CMetricAccuracy ()

Creation of the multiclass classifier

from secml.ml.classifiers import CClassifierSVM

from secml.ml.classifiers.multiclass import CClassifierMulticlassOVA
from secml.ml.kernel import CKernelRBF

clf = CClassifierMulticlassOVA (CClassifierSVM, kernel=CKernelRBF ())

Parameters for the Cross—-Validation procedure
xval_params = {'C': [le-2, 0.1, 1], 'kernel.gamma': [10, 100, 1le3]}

Let's create a 3-Fold data splitter
from secml.data.splitter import CDataSplitterKFold
xval_splitter = CDataSplitterKFold (num_folds=3, random_state=random_state)

Select and set the best training parameters for the classifier
print ("Estimating the best training parameters...")
best_params = clf.estimate_parameters (

dataset=tr,

parameters=xval_params,

splitter=xval_splitter,

metric='accuracy',

perf_evaluator="xval'

print ("The best training parameters are: ", best_params)

We can now fit the classifier
clf.fit (tr)

Compute predictions on a test set
y_pred = clf.predict (ts.X)

Evaluate the accuracy of the classifier
acc = metric.performance_score (y_true=ts.Y, y_pred=y_pred)

print ("Accuracy on test set: {:.2%}".format (acc))

Estimating the best training parameters...
The best training parameters are: {¢’: 0.1, ’"kernel.gamma’: 100}
Accuracy on test set: 99.00%

18 Chapter 4. Available extra components

SecML, Release 0.10

Generation of an Adversarial Example

We are going to generate an adversarial example against the SVM classifier using the gradient-based maximum-
confidence algorithm for generating evasion attacks proposed in:

[biggiol3-ecml] Biggio, B., Corona, 1., Maiorca, D., Nelson, B., Srndié, N., Laskov, P., Giacinto, G.,
Roli, F,, 2013. Evasion Attacks against Machine Learning at Test Time. In ECML-PKDD 2013.

[melis17-vipar] Melis, M., Demontis, A., Biggio, B., Brown, G., Fumera, G. and Roli, F., 2017. Is deep
learning safe for robot vision? adversarial examples against the icub humanoid. In Proceedings of IEEE
ICCV 2017.

[demontis19-usenix] Demontis, A., Melis, M., Pintor, M., Jagielski, M., Biggio, B., Oprea, A., Nita-
Rotaru, C. and Roli, F,, 2019. Why Do Adversarial Attacks Transfer? Explaining Transferability of
Evasion and Poisoning Attacks. In 28th Usenix Security Symposium, Santa Clara, California, USA.

which is implemented in SecML by the CAttackEvasionPGDLS class (e-pgd-1s).

Let’s define the attack parameters. Firstly, we chose to generate an /2 perturbation within a maximum ball of radius
eps = 0.4 from the initial point. The maximum perturbation value is denoted as dmax in our implementation.
Secondly, we also add a low/upper bound as our feature space is limited in [0, 1]. Lastly, as we are not interested
in generating an adversarial example for a specific class, we perform an error-generic attack by setting y_target =
None.

The attack internally uses a solver based on Projected Gradient Descent with Bisect Line Search, implemented by the
COptimizerPGDLS class. The parameters of the solver can be specified while instancing the attack and must be
optimized depending on the specific otimization problem.

x0, yv0 = ts[5, :1.X, ts[5, :1.Y # Initial sample

noise_type = 'l1l2' # Type of perturbation 'l11l' or 'l2'

dmax = 0.4 # Maximum perturbation

1lb, ub = 0, 1 # Bounds of the attack space. Can be set to 'None ' for unbounded
y_target = None # None if ‘error-generic’ or a class label for ‘error-specific’

Should be chosen depending on the optimization problem

solver_params = {
'eta': 0.3,
'eta_min': 0.1,
'eta_max': None,
'max_iter': 100,
'eps': le—-4

from secml.adv.attacks.evasion import CAttackEvasionPGDLS
pod_ls_attack = CAttackEvasionPGDLS (

classifier=clf,

surrogate_classifier=clf,

surrogate_data=tr,

distance=noise_type,

dmax=dmax,

1b=1b, ub=ub,

solver_params=solver_params,

y_target=y_target)

Run the evasion attack on x0
y_pred_pgdls, _, adv_ds_pgdls, _ = pgd_ls_attack.run(x0, yO0)

print ("Original x0 label: ", yO.item())
(continues on next page)

4.6. Copyright 19

https://arxiv.org/abs/1708.06131
https://arxiv.org/abs/1708.06939
https://www.usenix.org/conference/usenixsecurity19/presentation/demontis

SecML, Release 0.10

(continued from previous page)

print ("Adversarial example label (PGD-LS): ", y_pred_pgdls.item())

print ("Number of classifier gradient evaluations: "
"". format (pgd_ls_attack.grad_eval))

Original x0 label: 1
Adversarial example label (PGD-LS): 2
Number of classifier gradient evaluations: 6

Let’s now test another attack algorithm, implemented by CAttackEvasionPGD, which leverage the standard Pro-
Jjected Gradient Descent solver (e—pgd). We keep the same attack parameters as before.

Should be chosen depending on the optimization problem
solver_params = {

'eta': 0.3,

'max_iter': 100,

eps': le-4

from secml.adv.attacks.evasion import CAttackEvasionPGD
pogd_attack = CAttackEvasionPGD (

classifier=clf,

surrogate_classifier=clf,

surrogate_data=tr,

distance=noise_type,

dmax=dmax,

1b=1b, ub=ub,

solver_params=solver_params,

y_target=y_target)

Run the evasion attack on x0
y_pred_pgd, _, adv_ds_pgd, _ = pgd_attack.run(x0, y0)

print ("Original x0 label: ", yO.item())
print ("Adversarial example label (PGD): ", y_pred_pgd.item())

print ("Number of classifier gradient evaluations: "
"" . format (pgd_attack.grad_eval))

Original x0 label: 1
Adversarial example label (PGD): 2
Number of classifier gradient evaluations: 39

We can see that the classifier has been successfully evaded in both cases. However, the pgd—1s solver with bisect
line search queries the classifier gradient function many times less, making the process of generating the adversarial
examples much faster.

Let’s now visualize both the attacks on a 2D plane. On the background, the value of the objective function of the
attacks is shown.

from secml.figure import CFigure
fig = CFigure (width=16, height=6, markersize=12)

Let's replicate the '12° constraint used by the attack for visualization
from secml.optim.constraints import CConstraintL2
constraint = CConstraintL2 (center=x0, radius=dmax)
(continues on next page)

20 Chapter 4. Available extra components

SecML, Release 0.10

(continued from previous page)

for i, (attack, adv_ds) in enumerate (
[(pgd_attack, adv_ds_pgd), (pgd_ls_attack, adv_ds_pgdls)]):

fig.subplot (1, 2, 1 + 1)

Convenience function for plotting the attack objective function

fig.sp.plot_fun(attack.objective_function, plot_levels=False,
multipoint=True, n_grid_points=200)

Let's also plot the decision boundaries of the classifier

fig.sp.plot_decision_regions(clf, plot_background=False, n_grid_points=200)

Construct an array with the original point and the adversarial example
adv_path = x0.append(adv_ds.X, axis=0)

Convenience function for plotting the optimization sequence
fig.sp.plot_path (attack.x_seq)

Convenience function for plotting a constraint
fig.sp.plot_constraint (constraint)

fig.sp.title (attack.class_type)
fig.sp.grid(grid_on=False)

fig.title(r"Error—-generic evasion attack ($\varepsilon= S)".format (dmax))

fig.show ()

Error-generic evasion attack (£= 0.4)

e-pgd e-pgd-Is
2.060 2.060
10 \ 1838 10 1838
1.616 1616
1.394 1.394
0.8 1172 0.8 1172
0.950 0.950
0.728 0.728
0.506 0.506
0.6 0.284 0.6 0.284
0.062 0.062
—0.160 —0.160
0.4 —0.382 0.4 —0.382
—0.604 —0.604
—0.826 —0.826
-1.048 —1.048
0.2 —-1.270 0.2 —-1.270
—1.492 —1.492
1714 -1.714
0.0 -1.936 0.0 -1.936
_ _ . . . i —2.158 —2.158
0.0 0.2 0.4 0.6 0.8 1.0

We can see that the initial point x0 (red hexagon) has been perturbed in the feature space so that is actually classified by
the SVM as a point from another class. The final adversarial example is the green star. We also show the [2 constraint
as a black circle which has limited the maximum perturbation applicable to x0.

Security evaluation of a classifier

We could be interested in evaluating the robustness of a classifier against increasing values of the maximum pertur-
bation eps.

4.6. Copyright 21

SecML, Release 0.10

SecML provides a way to easily produce a Security Evaluation Curve, by means of the CSecEval class.
The CSecEval instance will take a CAt tack as input and will test the classifier using the desired perturbation levels.

Please note that the security evaluation process may take a while (up to a few minutes) depending on the machine the
Script is run on.

Perturbation levels to test
from secml.array import CArray
e_vals = CArray.arange (start=0, step=0.1, stop=1.1)

from secml.adv.seceval import CSecEval
sec_eval = CSecEval (
attack=pgd_ls_attack, param name='dmax', param values=e_vals)

Run the security evaluation using the test set
print ("Running security evaluation...")
sec_eval.run_sec_eval (ts)

from secml.figure import CFigure
fig = CFigure (height=5, width=5)

Convenience function for plotting the Security Evaluation Curve
fig.sp.plot_sec_eval (
sec_eval.sec_eval_data, marker='o', label='SVM RBF', show_average=True)

Running security evaluation...

Security Evaluation Curve

1.0

—a— 5VM RBF, err: 0.53

0.9 1

0.8 1

0.7 1

Accuracy

0.6 1

0.5 1

0.4 1

0.0 01 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0
dmax

We can see how the SVM classifier is highly vulnerable to adversarial attacks and we are able to evade it with a
perturbation as small as eps = 0. 1.

For further reference about the security evaluation of machine-learning models under attack see:

[biggiol3-tkde] Biggio, B., Fumera, G. and Roli, F., 2013. Security evaluation of pattern classifiers under
attack. In IEEE transactions on knowledge and data engineering.

[biggiol8-pr] Biggio, B. and Roli, F., 2018. Wild patterns: Ten years after the rise of adversarial machine

22 Chapter 4. Available extra components

https://arxiv.org/abs/1709.00609
https://arxiv.org/abs/1712.03141

SecML, Release 0.10

learning. In Pattern Recognition.

4.6.3 Transferability of Evasion Attacks

Transferability captures the ability of an attack against a machine-learning model to be effective against a different,
potentially unknown, model.

In this tutorial we are going to test if an evasion attack generated against a Support Vector Machine (SVM), the
surrogate classifier, will transfer to other classifiers, the rargets, or not.

For more details about the transferability property of adversarial attacks please refer to:

[demontis19-usenix] Demontis, A., Melis, M., Pintor, M., Jagielski, M., Biggio, B., Oprea, A., Nita-
Rotaru, C. and Roli, F.,, 2019. Why Do Adversarial Attacks Transfer? Explaining Transferability of
Evasion and Poisoning Attacks. In 28th Usenix Security Symposium, Santa Clara, California, USA.

We will first create and train the surrogate and different target classifiers, evaluating their performance in the standard
scenario, i.e. not under attack. The surrogate and the target classifiers will be trained on different training sets.

The following part partially replicates the procedure from the first tutorial.

random_state = 999

n_features = 2 # Number of featu