

seccs — the SECure Content Store

seccs is a Python library that realizes a secure and efficient hash-table-like
data structure for contents on top of any existing key-value store as provided
by, e.g., cloud storage providers.

It has been developed as part of the work [LS17] at CISPA, Saarland University.

Contents:

	Installation

	Usage and Overview
	Typical Use Case

	Storage Efficiency

	seccs package
	Module contents

	Submodules
	seccs.crypto_wrapper module

	seccs.rc module

	Testing

Indices and tables

	Index

	Module Index

	Search Page

Installation

Run:

$ pip install seccs

If you want to use AES-SIV encryption (you probably want!), you also need to install PyCrypto 2.7a1 which is not yet available in PyPI:

$ pip install https://ftp.dlitz.net/pub/dlitz/crypto/pycrypto/pycrypto-2.7a1.tar.gz

Usage and Overview

seccs is a Python implementation of sec-cs, a secure and efficient
hash-table-like data structure for contents. It stores its data on top of any
existing database providing a key-value store interface. Thus, it is likewise
usable with in-memory dict objects, persistent databases like
ZODB, and many cloud storage providers.

Its details are described in [LS17]. In short, it is suitable for usage on
untrusted cloud storage and has the following desirable properties:

	
	Confidentiality:

	Stored contents are securely encrypted using a symmetric key.

	
	Authenticity:

	sec-cs guarantees authenticity of all stored contents,
irrespective of gurantees of the underlying database.

	
	Storage Efficiency:

	Data deduplication strategies are applied to all stored contents. When
storing new contents, overlapping parts of existing contents are
automatically reused as to avoid redundancy.
sec-cs is optimized for efficiency in presence of many similar
contents: Storage costs of an n-bytes content that differs only slightly
from an existing content are in O(log n).

Typical Use Case

In the most-typical configuration, sec-cs chunks its contents hierarchically
using ML-CDC (see [LS17]), usually relying on Rabin Karp hashes, and stores the
resulting nodes in a database after applying AES-SIV-256 for encryption and
authentication. From a user perspective, we have to initialize a suitable
database object and a 32-bytes key first.

	Database and key setup:

	>>> database = dict()
>>> import os
>>> key = os.urandom(32)

Note that we might want to store the database and the key at some persistent
location in practice.

Next, we need to create a crypto wrapper which is in charge of all the
cryptographic operations. Depending on our security goals (e.g., whether
encryption is required), we could choose any suitable wrapper from
seccs.crypto_wrapper. Afterwards, we can instantiate the data structure.

	Choice of crypto wrapper and instantiation of data structure:

	>>> import seccs
>>> crypto_wrapper = seccs.crypto_wrapper.AES_SIV_256(key) # install PyCrypto>=2.7a1 to use AES-SIV
>>> seccs = seccs.SecCSLite(256, database, crypto_wrapper) # 256 is the chunk size

Note

Internally, sec-cs splits contents into chunks, creates a tree of chunks
for each of them and inserts each node separately into the database. The
first parameter specifies the desired average size of nodes inserted into
the database. As deduplication is performed at the chunk level, large chunk
sizes decrease deduplication performance, but they also create less storage
overhead when storing non-deduplicable contents as fewer nodes have to be
stored.

Performance is discussed in detail in [LS17]. If high redundancy is
expected, 256 bytes is typically a good compromise; otherwise, larger chunk
sizes might be more suitable.

	We can now insert contents...

	>>> content = "This is a test content."
>>> digest = seccs.put_content(content)
>>> repr(digest)
'\x08,f+\xa74\xdc\x0f\xe5Oo\xcb;\x83\xb9T\x00\x00\x00\x00\x00\x00\x00\x17'

	...retrieve them...

	>>> seccs.get_content(digest)
This is a test content.

	...and delete them as soon as they are not needed anymore:

	>>> seccs.delete_content(digest)

Storage Efficiency

seccs avoids redundancy in the database wherever possible, as gets clear
in the following example.

	Consider this function for measuring the database‘s current storage costs in bytes:

	>>> import sys
>>> def dbsize(db):
>>> return sum([sys.getsizeof(k) + sys.getsizeof(v) for (k, v) in db.items()])

	Initially, the database is empty:

	>>> dbsize(database)
0

	Insertion of a 1 MiB content clearly causes some storage costs:

	>>> content1 = os.urandom(1024*1024)
>>> digest1 = seccs.put_content(content1)
>>> dbsize(database)
1583030

	But inserting the same content for a second time does not incur additional costs:

	>>> content2 = content1
>>> digest2 = seccs.put_content(content2)
>>> digest1 == digest2 # identical contents yield identical digests
True
>>> dbsize(database)
1583030

Clearly, the database grows if different contents are inserted. However, these
costs are low if inserted contents are similar to existing ones.

	Only about 2.3 KiB are required to store another 1 MiB content with one byte changed:

	>>> content3 = ''.join([content1[:512*1024], 'x', content1[512*1024+1:]])
>>> digest3 = seccs.put_content(content3)
>>> dbsize(database)
1585395

	Costs are similar even if the identical parts are shifted...

	>>> content4 = ''.join([content1[:512*1024], 'xyz', content1[512*1024+1:]])
>>> digest4 = seccs.put_content(content4)
>>> dbsize(database)
1588010

	...and deduplication is also performed if a content consists of parts of different existing contents:

	>>> content5 = ''.join([content1, content3, content4])
>>> digest5 = seccs.put_content(content5)
>>> dbsize(database)
1591009

In the last example, the growth was about 3 KiB.

	Furthermore, storage space is reclaimed completely when contents are removed:

	>>> seccs.delete_content(digest5)
>>> seccs.delete_content(digest4)
>>> seccs.delete_content(digest3)
>>> seccs.delete_content(digest2)
>>> dbsize(database)
1583030
>>> seccs.delete_content(digest1)
>>> dbsize(database)
0

Note

Every seccs.delete_content() call undos eactly one
seccs.put_content() call. Thus, even if the same content has been
inserted twice, yielding only a single digest, it has to be deleted twice as
well to get actually removed.

	References:

	

	[LS17]	(1, 2, 3) Dominik Leibenger and Christoph Sorge (2017). sec-cs: Getting the
Most out of Untrusted Cloud Storage. In Proceedings of the 42nd IEEE
Conference on Local Computer Networks (LCN 2017), 2017.
(Preprint: arXiv:1606.03368 [http://arxiv.org/abs/1606.03368])

seccs package

Module contents

sec-cs — the SECure Content Store.

This module provides an implementation of the secure content store data
structure introduced in [LS16].

sec-cs allows secure and efficient storage of contents in an existing
key-value database, providing the following features:

	
	Confidentiality:

	Stored contents are securely encrypted using a symmetric key.

	
	Authenticity:

	sec-cs guarantees authenticity of all stored contents,
irrespective of gurantees of the underlying database.

	
	Storage Efficiency:

	Data deduplication strategies are applied to all
stored contents. When storing new contents, overlapping parts of
existing contents are automatically reused as to avoid redundancy.
Storage costs of an n-bytes content that differs only slightly from an
existing content are in O(log n).

Note

The only sec-cs implementation currently included in this module is called
SecCSLite. While it is likely suitable for many projects and can be
used as is, it is actually intended as a base class for a much more powerful
variant, SecCS, which makes some slight changes to the internal
storage structure and will be published in the near future.

References

	[LS16]	(1, 2) Dominik Leibenger and Christoph Sorge (2016). sec-cs: Getting the
Most out of Untrusted Cloud Storage.
arXiv:1606.03368 [http://arxiv.org/abs/1606.03368]

	
class seccs.SecCSLite(chunk_size, database, crypto_wrapper, chunking_strategy=None, reference_counter=None, **kwargs)

	Bases: object

Secure Content Store lite.

Basic implementation of the Secure Content Store data structure, supports
only insertion (put), retrieval (get) and deletion (delete) of contents.

	Parameters:	
	chunk_size (int) – Target chunk size, i.e., expected size of all chunks
stored in the database.

	database – Persistent database used as backend. Can be any object with
a dict-like interface, i.e., any object implementing the operations
__getitem__, __setitem__, __delitem__ and __contains__.

	crypto_wrapper (crypto_wrapper.BaseCryptoWrapper) – Crypto
wrapper object that specifies cryptographic operations to be applied
to data stored in the database.

	chunking_strategy (Optional[fastchunking.BaseChunkingStrategy]) – Chunking strategy that shall be applied to contents. Defaults to
Rabin-Karp-based content defined chunking with 48-bytes window size.

	reference_counter (Optional[seccs.rc.BaseReferenceCounter]) – Reference counting strategy. By default, reference counters are
stored in database under keys key || “r”, where key is the key
whose references are counted.

	**kwargs – Extra keyword arguments that you should NOT use unless you
really, really know what you are doing, e.g.:

	length_to_height_fn: Function that resolves content lengths to
appropriate chunk tree heights. May be used to modify the
multi-level chunking approach performed by default, e.g., to
degrade it to single-level chunking or similar.

	height_to_chunk_size_fn: Function that computes the target chunk
size for a specific level (height) of a chunk tree. May be used
to create imbalanced chunk trees.

	Raises:	seccs.UnsupportedChunkSizeError – If the chosen chunk size would create
superchunk nodes with less than two expected children as efficiency
guarantees would fail in this case (see [LS16]).

	
delete_content(k, ignore_rc=False)

	Delete a content from the data structure.

Decreases the content’s reference counter and deletes its root chunk
(possibly including children) if no references are left.

	Parameters:	
	k (str) – The digest under which the content is stored.

	ignore_rc (Optional[bool]) – If True, decrease of reference counter
of the root node is skipped and root node (possibly including
children) is deleted straight away.

	
get_content(k)

	Retrieve a content from the data structure.

	Parameters:	k (str) – The digest under which the content is stored.

	Returns:	The content bytestring.

	Return type:	str

	
put_content(m, ignore_rc=False)

	Insert a content into the data structure.

	Parameters:	
	m (str) – The message or content that shall be processed and inserted
into the data structure.

	ignore_rc (Optional[bool]) – If True, increase of reference counter
for the root node of the generated chunk tree is skipped.
Defaults to False.

	Returns:	Digest of the content that allows its retrieval using
get_content().

	Return type:	str

	
put_content_and_check_if_new(m, ignore_rc=False)

	Insert a content into the data structure.

Like put_content(), but return value includes information whether
the content had been in the data structure before.

	Parameters:	
	m (str) – The message or content that shall be processed and inserted
into the data structure.

	ignore_rc (Optional[bool]) – If True, increase of reference counter
for the root node of the generated chunk tree is skipped.
Defaults to False.

	Returns:	(digest, is_new), where digest is the content’s digest that
allows its retrieval using get_content(), and is_new
is True if the content has been inserted for the first time and
False if it had existed before.

	Return type:	tuple

	
exception seccs.UnsupportedChunkSizeError

	Bases: exceptions.Exception

Raised when trying to instantiate SecCS with an unsupported chunk size.

Submodules

seccs.crypto_wrapper module

Crypto wrapper implementations.

A crypto wrapper encapsulates all cryptographic operations that have to be
applied to node representations before they can be safely inserted into the
(untrusted) database, e.g., encryption and authentication. It defines the keys
(digests) under which (wrapped) node representations are stored and specifies
how node representations can be extracted from (digest, value) pairs stored in
the database.

This module includes several crypto wrapper implementations with different
security properties.

	
class seccs.crypto_wrapper.AES_SIV_256(key)

	Bases: seccs.crypto_wrapper.BaseCryptoWrapper

AES-SIV-256 crypto wrapper.

Provides confidentiality and authenticity for chunk tree nodes based on a
symmetric 32-bytes key specified during instantiation.

Root nodes are handled identically to inner nodes at the same level.

	Nodes are represented as follows:

	
	value: AES-SIV-256(<key>, <value>, additional_data=<height>)

	digest: <digest produced by AES-SIV-256>

	Parameters:	key (str) – Cryptographic key used for symmetric encryption and
authentication.

Note

Requires PyCrypto >= 2.7a1.

	
unwrap_value(value, digest, height, is_root, length=-1)

	Decrypts and verifies node representation and returns the result on
success.

	Raises:	AuthenticityError – If digest does not match.

See BaseCryptoWrapper.unwrap_value().

	
wrap_value(value, height, is_root)

	Encrypts node representation using deterministic authenticated
encryption, i.e., with AES in SIV mode, including node height as
additional data that is authenticated, resulting in a digest (MAC)
that is used as digest and a ciphertext that is used as value.

Note

As AES-SIV cannot encrypt empty contents, a distinguished zero
digest is artifically assigned to empty node representations
instead.

See BaseCryptoWrapper.wrap_value().

	
class seccs.crypto_wrapper.AES_SIV_256_DISTINGUISHED_ROOT(key)

	Bases: seccs.crypto_wrapper.AES_SIV_256

AES-SIV-256 crypto wrapper with distinguished root representation.

Provides confidentiality and authenticity for chunk tree nodes based on a
symmetric 32-bytes key specified during instantiation.

Root nodes are handled differently from inner nodes at the same level.

	Nodes are represented as follows:

	
	value: AES-SIV-256(<key>, <value>, additional_data=<height>||<is_root>)

	digest: <digest produced by AES-SIV-256>

	Parameters:	key (str) – Cryptographic key used for symmetric encryption and
authentication.

Note

Requires PyCrypto >= 2.7a1.

	
unwrap_value(value, digest, height, is_root, length=-1)

	Decrypts and verifies node representation and returns the result on
success.

	Raises:	AuthenticityError – If digest does not match.

See BaseCryptoWrapper.unwrap_value().

	
wrap_value(value, height, is_root)

	Encrypts node representation using deterministic authenticated
encryption, i.e., with AES in SIV mode, including node height and
is_root flag as additional data that is authenticated, resulting in a
digest (MAC) that is used as digest and a ciphertext that is used as
value.

See AES_SIV_256.wrap_value().

	
exception seccs.crypto_wrapper.AuthenticityError

	Bases: seccs.crypto_wrapper.IntegrityError

Raised if an authenticity verification fails.

	
class seccs.crypto_wrapper.BaseCryptoWrapper

	Bases: object

Abstract class specifying the crypto wrapper interface.

	
unwrap_value(value, digest, height, is_root, length=-1)

	Converts the representation of a node as stored in the database
(e.g., an encrypted representation) into its normal, e.g., decrypted,
representation.

	Parameters:	
	value (str) – Wrapped node representation.

	digest (str) – Key under which the node is stored in the database.

	height (int) – Height of the node in its chunk tree.

	is_root (bool) – Whether or not the node is the chunk tree’s root.

	[Optional (length) – Length of the content represented by this
node. Defaults to -1.

	Returns:	Node representation.

	Return type:	str

	
wrap_value(value, height, is_root)

	Converts a node representation into a (digest, value) pair that can
be safely inserted into the database.

	Parameters:	
	value (str) – The node representation.

	height (int) – The height of the node in its chunk tree.

	is_root (bool) – Whether or not the node is the chunk tree’s root.

	Returns:	(wrapped_value, digest).

	Return type:	tuple

	
class seccs.crypto_wrapper.HMAC_SHA_256(key)

	Bases: seccs.crypto_wrapper.BaseCryptoWrapper

HMAC-SHA-256 crypto wrapper.

Provides authenticity for chunk tree nodes based on a symmetric 32-bytes key
specified during instantiation.

Root nodes are handled identically to inner nodes at the same level.

	Nodes are represented as follows:

	
	value: <value>

	digest: HMAC-SHA-256(<key>, <height> || <value>)

	Parameters:	key (str) – Cryptographic key used for symmetric authentication.

	
unwrap_value(value, digest, height, is_root, length=-1)

	Verifies SHA-256-based HMAC and returns node representation on
success.

	Raises:	AuthenticityError – If digest does not match.

See BaseCryptoWrapper.unwrap_value().

	
wrap_value(value, height, is_root)

	Uses SHA-256-based HMAC of node representation and height as digest
and value as is.

See BaseCryptoWrapper.wrap_value().

	
class seccs.crypto_wrapper.HMAC_SHA_256_DISTINGUISHED_ROOT(key)

	Bases: seccs.crypto_wrapper.HMAC_SHA_256

HMAC-SHA-256 crypto wrapper with distinguished root representation.

Provides authenticity for chunk tree nodes based on a symmetric 32-bytes key
specified during instantiation.

Root nodes are handled differently from inner nodes at the same level.

	Nodes are represented as follows:

	
	value: <value>

	digest: HMAC-SHA-256(<key>, <height> || <is_root> || <value>)

	Parameters:	key (str) – Cryptographic key used for symmetric authentication.

	
unwrap_value(value, digest, height, is_root, length=-1)

	Verifies SHA-256-based HMAC and returns node representation on
success.

	Raises:	AuthenticityError – If digest does not match.

See BaseCryptoWrapper.unwrap_value().

	
wrap_value(value, height, is_root)

	Uses SHA-256-based HMAC of node representation, height and is_root
flag as digest and value as is.

See BaseCryptoWrapper.wrap_value().

	
exception seccs.crypto_wrapper.IntegrityError

	Bases: exceptions.ValueError

Raised if an integrity verification fails.

	
class seccs.crypto_wrapper.SHA_256

	Bases: seccs.crypto_wrapper.BaseCryptoWrapper

SHA-256 crypto wrapper.

Provides integrity for chunk tree nodes.

	Nodes are represented as follows:

	
	value: <value>

	digest: SHA-256(<value>)

	
unwrap_value(value, digest, height, is_root, length=-1)

	Verifies SHA-256 hash and returns node representation on success.

	Raises:	IntegrityError – If digest does not match.

See BaseCryptoWrapper.unwrap_value().

	
wrap_value(value, height, is_root)

	Uses SHA-256 hash of node representation as digest and value as is.

See BaseCryptoWrapper.wrap_value().

seccs.rc module

Simple reference counter implementations.

	
class seccs.rc.BaseReferenceCounter

	Bases: object

Abstract base class for reference counters.

	
dec(key)

	Abstract decrement interface.

	Parameters:	key – Key whose reference counter shall be decremented.

	Returns:	Number of references of key after decrement.

	
get(key)

	Abstract get interface.

	Parameters:	key – Key whose reference counter shall be retrieved.

	Returns:	Number of references of key.

	
inc(key)

	Abstract increment interface.

	Parameters:	key – Key whose reference counter shall be incremented.

	Returns:	Number of references of key after increment.

	
class seccs.rc.DatabaseReferenceCounter(database)

	Bases: seccs.rc.BaseReferenceCounter

Database-backed reference counter.

Uses a given database to store reference counters. The reference counter of
an element key is stored as follows:

	If its value is 0, key is not stored in the database.

	If its value is > 0, its int value is stored in the database under
key.

	Parameters:	database – Database object with a dict-like interface, i.e., implementing
the operations __getitem__, __setitem__ and __delitem__.

	
dec(key)

	Decrementes reference counter of key.

See BaseReferenceCounter.dec().

	
get(key)

	Gets reference counter of key.

See BaseReferenceCounter.get().

	
inc(key)

	Incrementes reference counter of key.

See BaseReferenceCounter.inc().

	
class seccs.rc.KeySuffixDatabaseReferenceCounter(database, suffix)

	Bases: seccs.rc.DatabaseReferenceCounter

Database-backed reference counter.

Similar to DatabaseReferenceCounter, but the reference counter of
a key is not stored directly under key, but under key || suffix.

	Parameters:	
	database – Database object with a dict-like interface, i.e., implementing
the operations __getitem__, __setitem__ and __delitem__.

	suffix – Suffix for keys.

	
dec(key)

	Decrementes reference counter of key.

See DatabaseReferenceCounter.dec().

	
get(key)

	Gets reference counter of key.

See DatabaseReferenceCounter.get().

	
inc(key)

	Incrementes reference counter of key.

See DatabaseReferenceCounter.inc().

	
class seccs.rc.NoReferenceCounter

	Bases: seccs.rc.BaseReferenceCounter

Non-counting reference counter, always returns 1 for any key.

Can be used to disable reference counting where a reference counter is
required.

	
dec(key)

	Decrement interface.

	Returns:	1

	
get(key)

	Get interface.

	Returns:	1

	
inc(key)

	Increment interface.

	Returns:	1

Testing

seccs uses tox for testing, so simply run:

$ tox

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 seccs	

 	
 	
 seccs.crypto_wrapper	

 	
 	
 seccs.rc	

Index

 A
 | B
 | D
 | G
 | H
 | I
 | K
 | N
 | P
 | S
 | U
 | W

A

 	
 	AES_SIV_256 (class in seccs.crypto_wrapper)

 	
 	AES_SIV_256_DISTINGUISHED_ROOT (class in seccs.crypto_wrapper)

 	AuthenticityError

B

 	
 	BaseCryptoWrapper (class in seccs.crypto_wrapper)

 	
 	BaseReferenceCounter (class in seccs.rc)

D

 	
 	DatabaseReferenceCounter (class in seccs.rc)

 	dec() (seccs.rc.BaseReferenceCounter method)

 	(seccs.rc.DatabaseReferenceCounter method)

 	(seccs.rc.KeySuffixDatabaseReferenceCounter method)

 	(seccs.rc.NoReferenceCounter method)

 	
 	delete_content() (seccs.SecCSLite method)

G

 	
 	get() (seccs.rc.BaseReferenceCounter method)

 	(seccs.rc.DatabaseReferenceCounter method)

 	(seccs.rc.KeySuffixDatabaseReferenceCounter method)

 	(seccs.rc.NoReferenceCounter method)

 	
 	get_content() (seccs.SecCSLite method)

H

 	
 	HMAC_SHA_256 (class in seccs.crypto_wrapper)

 	
 	HMAC_SHA_256_DISTINGUISHED_ROOT (class in seccs.crypto_wrapper)

I

 	
 	inc() (seccs.rc.BaseReferenceCounter method)

 	(seccs.rc.DatabaseReferenceCounter method)

 	(seccs.rc.KeySuffixDatabaseReferenceCounter method)

 	(seccs.rc.NoReferenceCounter method)

 	
 	IntegrityError

K

 	
 	KeySuffixDatabaseReferenceCounter (class in seccs.rc)

N

 	
 	NoReferenceCounter (class in seccs.rc)

P

 	
 	put_content() (seccs.SecCSLite method)

 	
 	put_content_and_check_if_new() (seccs.SecCSLite method)

S

 	
 	seccs (module)

 	seccs.crypto_wrapper (module)

 	
 	seccs.rc (module)

 	SecCSLite (class in seccs)

 	SHA_256 (class in seccs.crypto_wrapper)

U

 	
 	UnsupportedChunkSizeError

 	unwrap_value() (seccs.crypto_wrapper.AES_SIV_256 method)

 	(seccs.crypto_wrapper.AES_SIV_256_DISTINGUISHED_ROOT method)

 	(seccs.crypto_wrapper.BaseCryptoWrapper method)

 	(seccs.crypto_wrapper.HMAC_SHA_256 method)

 	(seccs.crypto_wrapper.HMAC_SHA_256_DISTINGUISHED_ROOT method)

 	(seccs.crypto_wrapper.SHA_256 method)

W

 	
 	wrap_value() (seccs.crypto_wrapper.AES_SIV_256 method)

 	(seccs.crypto_wrapper.AES_SIV_256_DISTINGUISHED_ROOT method)

 	(seccs.crypto_wrapper.BaseCryptoWrapper method)

 	(seccs.crypto_wrapper.HMAC_SHA_256 method)

 	(seccs.crypto_wrapper.HMAC_SHA_256_DISTINGUISHED_ROOT method)

 	(seccs.crypto_wrapper.SHA_256 method)

 _static/down.png

nav.xhtml

 Table of Contents

 		seccs — the SECure Content Store

 		Installation

 		Usage and Overview

 		Typical Use Case

 		Storage Efficiency

 		seccs package

 		Module contents

 		Submodules

 		seccs.crypto_wrapper module

 		seccs.rc module

 		Testing

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/comment-bright.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/comment.png

_static/comment-close.png

_static/up.png

