
Seaworthy Documentation
Release 0.4.3.dev0

Jamie Hewland & Jeremy Thurgood

Apr 17, 2019

Contents:

1 Quick demo 3

2 Project status 5
2.1 Getting started . 5
2.2 Resource definitions & helpers . 6
2.3 Test framework integration . 9
2.4 Frequently asked questions . 12
2.5 API Reference . 13

3 Indices and tables 35

Python Module Index 37

i

ii

Seaworthy Documentation, Release 0.4.3.dev0

Seaworthy is a test harness for Docker container images. It allows you to use Docker containers and other Docker
resources as fixtures for tests written in Python.

Seaworthy supports Python 3.4 and newer. You can find more information in the documentation.

A demo repository is available with a set of Seaworthy tests for a simple Django application. Seaworthy is also
introduced in our blog post on continuous integration with Docker on Travis CI.

For more background on the design and purpose of Seaworthy, see our PyConZA 2018 talk (slides).

Contents: 1

http://seaworthy.readthedocs.io/en/latest/
https://github.com/JayH5/seaworthy-demo
https://medium.com/mobileforgood/patterns-for-continuous-integration-with-docker-on-travis-ci-ba7e3a5ca2aa
https://www.youtube.com/watch?v=NY---NXXHjQ
https://speakerdeck.com/jayh5/test-your-docker-images-with-python

Seaworthy Documentation, Release 0.4.3.dev0

2 Contents:

CHAPTER 1

Quick demo

First install Seaworthy along with pytest using pip:

pip install seaworthy[pytest]

Write some tests in a file, for example, test_echo_container.py:

from seaworthy.definitions import ContainerDefinition

container = ContainerDefinition(
'echo', 'jmalloc/echo-server',
wait_patterns=[r'Echo server listening on port 8080'],
create_kwargs={'ports': {'8080': None}})

fixture = container.pytest_fixture('echo_container')

def test_echo(echo_container):
r = echo_container.http_client().get('/foo')
assert r.status_code == 200
assert 'HTTP/1.1 GET /foo' in r.text

Run pytest:

pytest -v test_echo_container.py

3

Seaworthy Documentation, Release 0.4.3.dev0

4 Chapter 1. Quick demo

CHAPTER 2

Project status

Seaworthy should be considered alpha-level software. It is well-tested and works well for the first few things we have
used it for, but we would like to use it for more of our Docker projects, which may require some parts of Seaworthy to
evolve further. See the project issues for known issues/shortcomings.

The project was originally split out of the tests we wrote for our docker-django-bootstrap project. There are examples
of Seaworthy in use there.

2.1 Getting started

2.1.1 Installation

Seaworthy can be installed using pip:

pip install seaworthy

The pytest and testtools integrations can be used if those libraries are installed, which can be done using extra require-
ments:

pip install seaworthy[pytest,testtools]

2.1.2 Defining containers for tests

Containers should be defined using subclasses of ContainerDefinition. For example:

from seaworthy.definitions import ContainerDefinition
from seaworthy.utils import output_lines

class CakeContainer(ContainerDefinition):
IMAGE = 'acme-corp/cake-service:chocolate'

(continues on next page)

5

https://github.com/praekeltfoundation/seaworthy/issues
https://github.com/praekeltfoundation/docker-django-bootstrap

Seaworthy Documentation, Release 0.4.3.dev0

(continued from previous page)

WAIT_PATTERNS = (
r'cake \w+ is baked',
r'cake \w+ is served',

)

def __init__(self, name):
super().__init__(name, self.IMAGE, self.WAIT_PATTERNS)

Utility methods can be added to the class to extend functionality
def exec_cake(self, *params):

return output_lines(self.inner().exec_run(('cake',) + params))

WAIT_PATTERNS is a list of regex patterns. Once these patterns have been seen in the container logs, the container
is considered to have started and be ready for use. For more advanced readiness checks, the wait_for_start()
method should be overridden.

This container can then be used as fixtures for tests in a number of ways, the easiest of which is with pytest:

import pytest

container = CakeContainer('test')
fixture = container.pytest_fixture('cake_container')

def test_type(cake_container):
output = cake_container.exec_cake('type')
assert output == ['chocolate']

A few things to note here:

• The pytest_fixture() method returns a pytest fixture that ensures that the container is created and started
before the test begins and that the container is stopped and removed after the test ends.

• The scope of the fixture is important. By default, pytest fixtures have function scope, which means that for each
test function the fixture is completely reinitialized. Creating and starting up a container can be a little slow, so
you need to think carefully about what scope to use for your fixtures. See ContainerDefinition.clean
for a way to avoid container setup/teardown overhead.

For simple cases, ContainerDefinition can be used directly, without subclassing:

container = ContainerDefinition(
'test', 'acme-corp/soda-service:cola', [r'soda \w+ is fizzing'])

fixture = container.pytest_fixture('soda_container')

def test_refreshment(soda_container):
assert 'Papor-Colla Corp' in soda_container.get_logs()

Note that pytest is not required to use Seaworthy and there are several other ways to use the container as a fixture. For
more information see Test framework integration and Resource definitions & helpers.

2.2 Resource definitions & helpers

Two important abstractions in Seaworthy are resource definitions and helpers. These provide test-oriented interfaces
to all of the basic (non-Swarm) Docker resource types.

6 Chapter 2. Project status

Seaworthy Documentation, Release 0.4.3.dev0

2.2.1 Definitions

Resource definitions provide three main functions:

• Make it possible to define resources before those resources are actually created in Docker. This is important for
creating test fixtures—if we can define everything about a resource before it is created, then we can create the
resource when it is needed as a fixture for a test.

• Simplify the setup and teardown of resources before and after tests. For example, ContainerDefinition
can be used to check that a container has produced certain log lines before it is used in a test.

• Provide useful functionality to interact with and introspect resources. For example, the http_client()
method can be used to get a simple HTTP client to make requests against a container.

Resource defintions can either be instantiated directly or subclassed to provide more specialised functionality.

For a simple volume, one could create an instance of VolumeDefinition:

from seaworthy.definitions import VolumeDefinition
from seaworthy.helpers import DockerHelper

docker_helper = DockerHelper()
volume = VolumeDefinition('persist', helper=docker_helper)

Using definitions in tests

Definitions can be used as fixtures for tests in a number of different ways.

As a context manager:

with VolumeDefinition('files', helper=docker_helper) as volume:
assert volume.created

assert not volume.created

With the as_fixture decorator:

network = NetworkDefinition('lan_network', helper=docker_helper)

@network.as_fixture()
def test_network(lan_network):

assert lan_network.created

When using pytest, it’s easy to create a fixture:

container = ContainerDefinition('nginx', 'nginx:alpine')
fixture = container.pytest_fixture('nginx_container')

def test_nginx(nginx_container):
assert nginx_container.created

You can also use classic xunit-style setup/teardown:

import unittest

class EchoContainerTest(unittest.TestCase):
(continues on next page)

2.2. Resource definitions & helpers 7

Seaworthy Documentation, Release 0.4.3.dev0

(continued from previous page)

def setUp(self):
self.helper = DockerHelper()
self.container = ContainerDefinition('echo', 'jmalloc/echo-server')
self.container.setup(helper=self.helper)
self.addCleanup(self.container.teardown)

def test_container(self):
self.assertTrue(self.container.created)

Relationship to helpers

Every resource definition instance needs to have a “helper” set before it is possible to actually create the Docker
resource that the instance defines. Resource helpers are described in more detail later in this section, but for now,
know that a helper needs to be provided to the definition in one of three ways:

1. Using the helper keyword argument in the constuctor:

helper = DockerHelper()
network = NetworkDefinition('net01', helper=helper)
network.setup()

2. Using the helper keyword argument in the setup() method:

helper = DockerHelper()
volume = VolumeDefinition('vol02')
volume.setup(helper=helper)

3. Directly, using the set_helper() method:

helper = DockerHelper()
container = ContainerDefinition('con03', 'nginx:alpine')
container.set_helper(helper)
container.setup()

This only needs to be done once for the lifetime of the definition.

For the most part, interaction with Docker should almost entirely occur via the definitions, but the definition objects
need the helpers to actually interact with Docker.

Mapping to Docker SDK types

Each resource definition wraps a model from the Docker SDK for Python. The underlying model can be accessed via
the inner() method, after the resource has been created. The mapping is as follows:

Seaworthy resource definition Docker SDK model
ContainerDefinition docker.models.containers.Container
NetworkDefinition docker.models.networks.Network
VolumeDefinition docker.models.volumes.Volume

2.2.2 Helpers

Resource helpers provide two main functions:

8 Chapter 2. Project status

https://docker-py.readthedocs.io/
https://docker-py.readthedocs.io/en/stable/containers.html#docker.models.containers.Container
https://docker-py.readthedocs.io/en/stable/networks.html#docker.models.networks.Network
https://docker-py.readthedocs.io/en/stable/volumes.html#docker.models.volumes.Volume

Seaworthy Documentation, Release 0.4.3.dev0

• Namespacing of resources: by prefixing resource names, the resources are isolated from other Docker resources
already present on the system.

• Teardown (cleanup) of resources: when the tests end, the networks, volumes, and containers used in those tests
are removed.

In addition, some of the behaviour around resource creation and removal is changed from the Docker defaults to be a
better fit for a testing environment.

Accessing the various helpers is most easily done via the DockerHelper:

from seaworthy.helpers import DockerHelper

Create a DockerHelper with the default namespace, 'test'
docker_helper = DockerHelper()

Create a network using the NetworkHelper
network = docker_helper.networks.create('private')

Create a volume using the VolumeHelper
volume = docker_helper.volumes.create('shared')

Fetch (pull) an image using the ImageHelper
image = docker_helper.images.fetch('busybox')

Create a container using the ContainerHelper
container = docker_helper.containers.create(

'conny', image, network=network, volumes={volume: '/vol'})

The DockerHelper can be configured with a custom Docker API client. The default client can be configured using
environment variables. See docker.client.from_env().

Mapping to Docker SDK types

Each resource helper wraps a “model collection” from the Docker SDK. The underlying collection can be accessed
via the collection attribute. The mapping is as follows:

Seaworthy resource helper Docker SDK model collection
ContainerHelper docker.models.containers.ContainerCollection
ImageHelper docker.models.images.ImageCollection
NetworkHelper docker.models.networks.NetworkCollection
VolumeHelper docker.models.volumes.VolumeCollection

2.3 Test framework integration

We have strong opinions about the testing tools we use, and we understand that other people may have equally strong
opinions that differ from ours. For this reason, we have decided that none of Seaworthy’s core functionality will
depend on pytest, testtools, or anything else that might get in the way of how people might wants to write their tests.
On the other hand, we don’t want to reinvent a bunch of integration and helper code for all the third-party testing tools
we like, so we also provide optional integration modules where it makes sense to do so.

2.3. Test framework integration 9

https://docker-py.readthedocs.io/en/stable/client.html#docker.client.from_env
https://docker-py.readthedocs.io/en/stable/containers.html#docker.models.containers.ContainerCollection
https://docker-py.readthedocs.io/en/stable/images.html#docker.models.images.ImageCollection
https://docker-py.readthedocs.io/en/stable/networks.html#docker.models.networks.NetworkCollection
https://docker-py.readthedocs.io/en/stable/volumes.html#docker.models.volumes.VolumeCollection
https://pytest.org/
https://testtools.readthedocs.io/en/latest/

Seaworthy Documentation, Release 0.4.3.dev0

2.3.1 pytest

Seaworthy is a pytest plugin and all the functions and fixtures in the seaworthy.pytest module will be available
when Seaworthy is used with pytest.

docker_helper fixture

A fixture for a DockerHelper instance is defined by default.

This fixture creates DockerHelper instances with default parameters and has module-level scope. Since all other
Docker resource fixtures typically depend on the docker_helper fixture, resources must have a scope smaller than
or equal to the docker_helper’s scope.

The defaults for this fixture can be overridden by defining a new docker_helper fixture using the
docker_helper_fixture() fixture factory. For example:

from seaworthy.pytest.fixtures import docker_helper_fixture

docker_helper = docker_helper_fixture(scope='session', namespace='seaworthy')

. . . would change the scope of the docker_helper fixture to the session-level and change the namespace of created
Docker resources to seaworthy.

dockertest decorator

The dockertest() decorator can be used to mark tests that require Docker to run. These tests will be skipped if
Docker is not available. It’s possible that some tests in your test suite may not require Docker and you may want to
still be able to run your tests in an environment that does not have Docker available. The decorator can be used as
follows:

@dockertest()
def test_docker_thing(cake_container):

assert cake_container.exec_cake('variant') == ['gateau']

Fixture factories

A few functions are provided in the seaworthy.pytest.fixtures module that are factories for fixtures. The
most important two are:

resource_fixture(definition, name, scope=’function’, dependencies=())
Create a fixture for a resource.

Note: This function returns a fixture function. It is important to keep a reference to the returned function within
the scope of the tests that use the fixture.

fixture = resource_fixture(PostgreSQLContainer(), 'postgresql')

def test_container(postgresql):
"""Test something about the PostgreSQL container..."""

Parameters

10 Chapter 2. Project status

https://docs.pytest.org/en/latest/plugins.html

Seaworthy Documentation, Release 0.4.3.dev0

• definition – A resource definition, one of those defined in the seaworthy.
definitions module.

• name – The fixture name.

• scope – The scope of the fixture.

• dependencies – A sequence of names of other pytest fixtures that this fixture depends
on. These fixtures will be requested from pytest and so will be setup, but nothing is done
with the actual fixture values.

Returns The fixture function.

clean_container_fixtures(container, name, scope=’class’, dependencies=())
Creates a fixture for a container that can be “cleaned”. When a code block is marked with @pytest.mark.
clean_<fixture name> then the clean method will be called on the container object before it is passed
as an argument to the test function.

Note: This function returns two fixture functions. It is important to keep references to the returned functions
within the scope of the tests that use the fixtures.

f1, f2 = clean_container_fixtures(PostgreSQLContainer(), 'postgresql')

class TestPostgresqlContainer
@pytest.mark.clean_postgresql
def test_clean_container(self, web_container, postgresql):

"""
Test something about the container that requires it to have a
clean state (e.g. database table creation).
"""

def test_dirty_container(self, web_container, postgresql):
"""
Test something about the container that doesn't require it to
have a clean state (e.g. testing something about a dependent
container).
"""

Parameters

• container – A “container” object that is a subclass of ContainerDefinition.

• name – The fixture name.

• scope – The scope of the fixture.

• dependencies – A sequence of names of other pytest fixtures that this fixture depends
on. These fixtures will be requested from pytest and so will be setup, but nothing is done
with the actual fixture values.

Returns A tuple of two fixture functions.

2.3.2 testtools

We primarily use testtools when matching against complex data structures and don’t use any of its test runner func-
tionality. Currently, testtools matchers are only used for matching PsTree objects. See the API documentation for
the seaworthy.ps module.

2.3. Test framework integration 11

Seaworthy Documentation, Release 0.4.3.dev0

2.3.3 Testing our integrations

To make sure that none of the optional dependencies accidentally creep into the core modules (or other optional
modules), we have several sets of tests that run in different environments:

• tests-core: This is a set of core tests that cover basic functionality. tox -e py36-core will run just
these tests in an environment without any optional or extra dependencies installed.

• tests-pytest, etc.: These are tests for the optional pytest integration modules. tox -e
py36-testtools will run just the seaworthy.pytest modules’ tests in an environment with only the
necessary dependencies installed.

• tests-testtools, etc.: These are tests for the optional testtools integration module. tox -e
py36-testtools will run just the seaworthy.testtools module’s tests.

• tests: These are general tests that are hard or annoying to write with only the minimal dependencies, so we
don’t have any tooling restrictions here. tox -e py36-full will run these, as well as all the other test sets
mentioned above, in an environment with all optional dependencies (and potentially some additional test-only
dependencies) installed.

2.4 Frequently asked questions

2.4.1 What about TestContainers?

Seaworthy’s goals have some overlap with TestContainers, but our current primary use case is testing the behaviour
of Docker images, rather than providing a way to use Docker containers to test other software. Also, Seaworthy is
written in Python rather than Java.

2.4.2 What are the similarities between Seaworthy and docker-compose?

Seaworthy does try to reuse some of the default behaviour that docker-compose implements in order to make it easier
and faster to start running containers.

• All Docker resources (networks, volumes, containers) are namespaced by prefixing the resource name, e.g. a
container called cake-service could be namespaced to have the name test_cake-service.

• A new bridge network is created by default for containers where no network is specified.

• Containers are given network aliases with their names, making it easier to connect one container to another.

Both Seaworthy and docker-compose are built using the official Docker SDK for Python.

2.4.3 . . . what are the differences?

Seaworthy is fundamentally designed for a different purpose. docker-compose uses YAML files to define Docker
resources—it does not have an API for this. With Seaworthy, all Docker resources are created programmatically,
typically as fixtures for tests.

Seaworthy includes functionality specific to its purpose:

• Predictable setup/teardown processes for all resources.

• Various utilities for inspecting running containers, e.g. for matching log output, for listing running processes, or
for making HTTP requests against containers.

• Integrations with popular Python testing libraries (pytest and testtools).

12 Chapter 2. Project status

https://www.testcontainers.org/
https://docker-py.readthedocs.io/
https://pytest.org/
https://testtools.readthedocs.io/

Seaworthy Documentation, Release 0.4.3.dev0

Seaworthy currently lacks some of the functionality of docker-compose:

• The ability to build images for containers

• Any sort of Docker Swarm functionality

• Any concept of multiple instances of containers

• Probably other things. . .

2.4.4 What about building images?

Seaworthy doesn’t currently implement an interface for building images. In most cases, we expect users to build their
images in a previous step of their continuous integration process and then use Seaworthy to test that image. However,
there may be cases where having Seaworthy build Docker images would make sense, such as if an image is built purely
to be used in tests.

2.5 API Reference

seaworthy seaworthy
seaworthy.checks Checks and test decorators for skipping tests that require

Docker to be present.
seaworthy.client A requests-based HTTP client for interacting with con-

tainers that have forwarded ports.
seaworthy.containers.nginx
seaworthy.containers.postgresql PostgreSQL container definition.
seaworthy.containers.rabbitmq RabbitMQ container definition.
seaworthy.containers.redis Redis container definition.
seaworthy.definitions Wrappers over Docker resource types to aid in

setup/teardown of and interaction with Docker re-
sources.

seaworthy.helpers Classes that track resource creation and removal to en-
sure that all resources are namespaced and cleaned up
after use.

seaworthy.ps Tools for asserting on processes running in containers
using ps.

seaworthy.pytest Some (optional) utilities for use with pytest.
seaworthy.pytest.checks pytest mark to skip tests that require Docker.
seaworthy.pytest.fixtures A number of pytest fixtures or factories for fixtures.
seaworthy.stream
seaworthy.stream.logs
seaworthy.stream.matchers
seaworthy.testtools Some (optional) utilities for use with testtools.
seaworthy.utils

2.5.1 seaworthy

seaworthy

Todo: Write some API reference docs for seaworthy .

2.5. API Reference 13

Seaworthy Documentation, Release 0.4.3.dev0

class DockerHelper(namespace=’test’, client=None)

Todo: Document this properly.

teardown()
Clean up all resources when we’re done with them.

output_lines(output, encoding=’utf-8’)
Convert bytestring container output or the result of a container exec command into a sequence of unicode lines.

Parameters

• output – Container output bytes or an docker.models.containers.
ExecResult instance.

• encoding – The encoding to use when converting bytes to unicode (default utf-8).

Returns list[str]

wait_for_logs_matching(container, matcher, timeout=10, encoding=’utf-8’, **logs_kwargs)
Wait for matching log line(s) from the given container by streaming the container’s stdout and/or stderr outputs.

Each log line is decoded and any trailing whitespace is stripped before the line is matched.

Parameters

• container (Container) – Container who’s log lines to wait for.

• matcher – Callable that returns True once it has matched a decoded log line(s).

• timeout – Timeout value in seconds.

• encoding – Encoding to use when decoding container output to strings.

• logs_kwargs – Additional keyword arguments to pass to container.logs(). For
example, the stdout and stderr boolean arguments can be used to determine whether
to stream stdout or stderr or both (the default).

Returns The final matching log line.

Raises

• TimeoutError – When the timeout value is reached before matching log lines have been
found.

• RuntimeError – When all log lines have been consumed but matching log lines have not
been found (the container must have stopped for its stream to have ended without error).

2.5.2 seaworthy.checks

Checks and test decorators for skipping tests that require Docker to be present.

docker_available()
Check if Docker is available and responsive.

docker_client()
A context manager that creates and cleans up a Docker API client.

In most cases, it’s better to use DockerHelper instead.

14 Chapter 2. Project status

https://docker-py.readthedocs.io/en/stable/containers.html#docker.models.containers.Container
https://docs.python.org/3/library/exceptions.html#TimeoutError
https://docs.python.org/3/library/exceptions.html#RuntimeError

Seaworthy Documentation, Release 0.4.3.dev0

dockertest()
Skip tests that require Docker to be available.

This is a function that returns a decorator so that we don’t run arbitrary Docker client code on import. This
implementation only works with tests based on unittest.TestCase. If you’re using pytest, you probably
want seaworthy.pytest.dockertest() instead.

2.5.3 seaworthy.client

A requests-based HTTP client for interacting with containers that have forwarded ports.

class ContainerHttpClient(host, port, url_defaults=None, session=None)
HTTP client for a specific container.

In most cases, these should be obtained from ContainerDefinition.http_client() instead of being
instantiated directly.

close()
Closes the underlying Session object.

delete(path=None, url_kwargs=None, **kwargs)
Sends a PUT request.

Parameters

• path – The HTTP path (either absolute or relative).

• url_kwargs – Parameters to override in the generated URL. See ~hyperlink.URL.

• **kwargs – Optional arguments that request takes.

Returns response object

classmethod for_container(container, container_port=None)

Parameters

• container – The container to make requests against.

• container_port – The container port to make requests against. If None, the first
container port is used.

Returns A ContainerClient object configured to make requests to the container.

get(path=None, url_kwargs=None, **kwargs)
Sends a GET request.

Parameters

• path – The HTTP path (either absolute or relative).

• url_kwargs – Parameters to override in the generated URL. See ~hyperlink.URL.

• **kwargs – Optional arguments that request takes.

Returns response object

head(path=None, url_kwargs=None, **kwargs)
Sends a HEAD request.

Parameters

• path – The HTTP path (either absolute or relative).

• url_kwargs – Parameters to override in the generated URL. See ~hyperlink.URL.

2.5. API Reference 15

https://docs.python.org/3/library/unittest.html#unittest.TestCase

Seaworthy Documentation, Release 0.4.3.dev0

• **kwargs – Optional arguments that request takes.

Returns response object

options(path=None, url_kwargs=None, **kwargs)
Sends an OPTIONS request.

Parameters

• path – The HTTP path (either absolute or relative).

• url_kwargs – Parameters to override in the generated URL. See ~hyperlink.URL.

• **kwargs – Optional arguments that request takes.

Returns response object

patch(path=None, url_kwargs=None, **kwargs)
Sends a PUT request.

Parameters

• path – The HTTP path (either absolute or relative).

• url_kwargs – Parameters to override in the generated URL. See ~hyperlink.URL.

• **kwargs – Optional arguments that request takes.

Returns response object

post(path=None, url_kwargs=None, **kwargs)
Sends a POST request.

Parameters

• path – The HTTP path (either absolute or relative).

• url_kwargs – Parameters to override in the generated URL. See ~hyperlink.URL.

• **kwargs – Optional arguments that request takes.

Returns response object

put(path=None, url_kwargs=None, **kwargs)
Sends a PUT request.

Parameters

• path – The HTTP path (either absolute or relative).

• url_kwargs – Parameters to override in the generated URL. See ~hyperlink.URL.

• **kwargs – Optional arguments that request takes.

Returns response object

request(method, path=None, url_kwargs=None, **kwargs)
Make a request against a container.

Parameters

• method – The HTTP method to use.

• path (list) – The HTTP path (either absolute or relative).

• url_kwargs (dict) – Parameters to override in the generated URL. See ~hyper-
link.URL.

• kwargs – Any other parameters to pass to Requests.

16 Chapter 2. Project status

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict

Seaworthy Documentation, Release 0.4.3.dev0

wait_for_response(client, timeout, path=’/’, expected_status_code=None)
Try make a GET request with an HTTP client against a certain path and return once any response has been
received, ignoring any errors.

Parameters

• client (ContainerHttpClient) – The HTTP client to use to connect to the con-
tainer.

• timeout – Timeout value in seconds.

• path – HTTP path to request.

• expected_status_code (int) – If set, wait until a response with this status code is
received. If not set, the status code will not be checked.

Raises TimeoutError – If a request fails to be made within the timeout period.

2.5.4 seaworthy.containers.nginx

class NginxContainer(name=’nginx’, image=’nginx:alpine’, **kwargs)
Nginx container definition.

base_kwargs()
Publish all exposed ports to the host.

exec_nginx(args)
Execute a nginx command inside a running container.

Params args a list of args for the command

exec_signal(signal=’reload’)
Send a signal to the Nginx master process (nginx -s).

Parameters signal – one of: stop, quit, reopen, or reload

wait_for_start()
Wait for Nginx to return any valid HTTP response.

2.5.5 seaworthy.containers.postgresql

PostgreSQL container definition.

class PostgreSQLContainer(name=’postgresql’, image=’postgres:alpine’,
wait_patterns=(’database system is ready to accept connections’,
’database system is ready to accept connections’), database=’database’,
user=’user’, password=’password’, **kwargs)

PostgreSQL container definition.

Todo: Write more docs.

base_kwargs()
Add a tmpfs entry for /var/lib/postgresql/data to avoid unnecessary disk I/O and
environment entries for the configured db and user creds.

clean()
Remove all data by dropping and recreating the configured database.

2.5. API Reference 17

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#TimeoutError

Seaworthy Documentation, Release 0.4.3.dev0

Note: Only the configured database is removed. Any other databases remain untouched.

database_url()
Returns a “database URL” for use with DJ-Database-URL and similar libraries.

exec_pg_success(cmd)
Execute a command inside a running container as the postgres user, asserting success.

exec_psql(command, psql_opts=[’-qtA’])
Execute a psql command inside a running container. By default the container’s database is connected to.

Parameters

• command – the command to run (passed to -c)

• psql_opts – a list of extra options to pass to psql

Returns a tuple of the command exit code and output

list_databases()
Runs the \list command and returns a list of column values with information about all databases.

list_tables()
Runs the \dt command and returns a list of column values with information about all tables in the
database.

list_users()
Runs the \du command and returns a list of column values with information about all user roles.

2.5.6 seaworthy.containers.rabbitmq

RabbitMQ container definition.

class RabbitMQContainer(name=’rabbitmq’, image=’rabbitmq:alpine’, wait_patterns=(’Server
startup complete’,), vhost=’/vhost’, user=’user’, password=’password’,
**kwargs)

RabbitMQ container definition.

Todo: Write more docs.

base_kwargs()
Add a tmpfs entry for /var/lib/rabbitmq to avoid unnecessary disk I/O and environment
entries for the configured vhost and user creds.

broker_url()
Returns a “broker URL” for use with Celery.

clean()
Remove all data by using rabbitmqctl to eval rabbit_mnesia:reset().

exec_rabbitmqctl(command, args=[], rabbitmqctl_opts=[’-q’])
Execute a rabbitmqctl command inside a running container.

Parameters

• command – the command to run

• args – a list of args for the command

18 Chapter 2. Project status

Seaworthy Documentation, Release 0.4.3.dev0

• rabbitmqctl_opts – a list of extra options to pass to rabbitmqctl

Returns a tuple of the command exit code and output

exec_rabbitmqctl_list(resources, args=[], rabbitmq_opts=[’-q’, ’–no-table-headers’])
Execute a rabbitmqctl command to list the given resources.

Parameters

• resources – the resources to list, e.g. 'vhosts'

• args – a list of args for the command

• rabbitmqctl_opts – a list of extra options to pass to rabbitmqctl

Returns a tuple of the command exit code and output

list_queues()
Run the list_queues command (for the default vhost) and return a list of tuples describing the queues.

Returns A list of 2-element tuples. The first element is the queue name, the second is the current
queue size.

list_users()
Run the list_users command and return a list of tuples describing the users.

Returns A list of 2-element tuples. The first element is the username, the second a list of tags
for the user.

list_vhosts()
Run the list_vhosts command and return a list of vhost names.

wait_for_start()
Wait for the RabbitMQ process to be come up.

2.5.7 seaworthy.containers.redis

Redis container definition.

class RedisContainer(name=’redis’, image=’redis:alpine’, wait_patterns=(’* Ready to accept con-
nections’,), **kwargs)

Redis container definition.

Todo: Write more docs.

base_kwargs()
Add a tmpfs entry for /data to avoid unnecessary disk I/O.

clean()
Remove all data by sending the FLUSHALL command.

exec_redis_cli(command, args=[], db=0, redis_cli_opts=[])
Execute a redis-cli command inside a running container.

Parameters

• command – the command to run

• args – a list of args for the command

• db – the db number to query (default 0)

• redis_cli_opts – a list of extra options to pass to redis-cli

2.5. API Reference 19

Seaworthy Documentation, Release 0.4.3.dev0

Returns a tuple of the command exit code and output

list_keys(pattern=’*’, db=0)
Run the KEYS command and return the list of matching keys.

Parameters

• pattern – the pattern to filter keys by (default *)

• db – the db number to query (default 0)

2.5.8 seaworthy.definitions

Wrappers over Docker resource types to aid in setup/teardown of and interaction with Docker resources.

class ContainerDefinition(name, image, wait_patterns=None, wait_timeout=None, cre-
ate_kwargs=None, helper=None)

This is the base class for container definitions. Instances (and instances of subclasses) are intended to be used
both as test fixtures and as convenient objects for operating on containers being tested.

Todo: Document this properly.

A container object may be used as a context manager to ensure proper setup and teardown of the container
around the code that uses it:

with ContainerDefinition('my_container', IMAGE, helper=ch) as c:
assert c.status() == 'running'

(Note that this only works if the container has a helper set and does not have a container created.)

as_fixture(name=None)
A decorator to inject this container into a function as a test fixture.

base_kwargs()
Override this method to provide dynamically generated base kwargs for the resource.

clean()
This method should “clean” the container so that it is in the same state as it was when it was started.
It is up to the implementer of this method to decide how the container should be cleaned. See
clean_container_fixtures() for how this can be used with pytest fixtures.

create(**kwargs)
Create an instance of this resource definition.

Only one instance may exist at any given time.

get_first_host_port()
Get the first mapping of the first (lowest) container port that has a mapping. Useful when a container
publishes only one port.

Note that unlike the Docker API, which sorts ports lexicographically (e.g. 90/tcp > 8000/tcp), we
sort ports numerically so that the lowest port is always chosen.

get_host_port(container_port, proto=’tcp’, index=0)

Parameters

• container_port – The container port.

• proto – The protocol (‘tcp’ or ‘udp’).

20 Chapter 2. Project status

Seaworthy Documentation, Release 0.4.3.dev0

• index – The index of the mapping entry to return.

Returns A tuple of the interface IP and port on the host.

get_logs(stdout=True, stderr=True, timestamps=False, tail=’all’, since=None)
Get container logs.

This method does not support streaming, use stream_logs() for that.

halt(stop_timeout=5)
Stop the container and remove it. The opposite of run().

http_client(port=None)
Construct an HTTP client for this container.

inner()

Returns the underlying Docker model object

merge_kwargs(default_kwargs, kwargs)
Override this method to merge kwargs differently.

ports
The ports (exposed and published) of the container.

pytest_clean_fixtures(name, scope=’function’, dependencies=())
Creates a pytest fixture for a container that can be “cleaned”. See clean_container_fixtures().

Note: This method returns two fixture functions. It is important to keep references to the returned
functions within the scope of the tests that use the fixtures.

Note: This method is only available if pytest is used.

Parameters

• name – The fixture name.

• scope – The scope of the fixture.

• dependencies – A sequence of names of other pytest fixtures that this fixture depends
on. These fixtures will be requested from pytest and so will be setup, but nothing is done
with the actual fixture values.

pytest_fixture(name, scope=’function’, dependencies=())
Create a pytest fixture for the resource. See resource_fixture().

Note: This method returns a fixture function. It is important to keep a reference to the returned function
within the scope of the tests that use the fixture.

Note: This method is only available if pytest is used.

Parameters

• name – The fixture name.

2.5. API Reference 21

Seaworthy Documentation, Release 0.4.3.dev0

• scope – The scope of the fixture.

• dependencies – A sequence of names of other pytest fixtures that this fixture depends
on. These fixtures will be requested from pytest and so will be setup, but nothing is done
with the actual fixture values.

remove(**kwargs)
Remove an instance of this resource definition.

run(fetch_image=True, **kwargs)
Create the container and start it. Similar to docker run.

Parameters

• fetch_image – Whether to try pull the image if it’s not found. The behaviour here is
similar to docker run and this parameter defaults to True.

• **kwargs – Keyword arguments passed to create().

set_helper(helper)

Todo: Document this.

setup(helper=None, **run_kwargs)
Creates the container, starts it, and waits for it to completely start.

Parameters

• helper – The resource helper to use, if one was not provided when this container defini-
tion was created.

• **run_kwargs – Keyword arguments passed to run().

Returns

This container definition instance. Useful for creating and setting up a container in a single
step:

con = ContainerDefinition('conny', 'nginx').setup(helper=dh)

start()
Start the container. The container must have been created.

status()
Get the container’s current status from Docker.

If the container does not exist (before creation and after removal), the status is None.

stop(timeout=5)
Stop the container. The container must have been created.

Parameters timeout – Timeout in seconds to wait for the container to stop before sending a
SIGKILL. Default: 5 (half the Docker default)

stream_logs(stdout=True, stderr=True, tail=’all’, timeout=10.0)
Stream container output.

teardown()
Stop and remove the container if it exists.

22 Chapter 2. Project status

Seaworthy Documentation, Release 0.4.3.dev0

wait_for_logs_matching(matcher, timeout=10, encoding=’utf-8’, **logs_kwargs)
Wait for logs matching the given matcher.

wait_for_start()
Wait for the container to start.

By default this will wait for the log lines matching the patterns passed in the wait_patterns parameter
of the constructor using an UnorderedMatcher. For more advanced checks for container startup, this
method should be overridden.

class NetworkDefinition(name, create_kwargs=None, helper=None)
This is the base class for network definitions.

Todo: Document this properly.

as_fixture(name=None)
A decorator to inject this container into a function as a test fixture.

base_kwargs()
Override this method to provide dynamically generated base kwargs for the resource.

create(**kwargs)
Create an instance of this resource definition.

Only one instance may exist at any given time.

inner()

Returns the underlying Docker model object

merge_kwargs(default_kwargs, kwargs)
Override this method to merge kwargs differently.

pytest_fixture(name, scope=’function’, dependencies=())
Create a pytest fixture for the resource. See resource_fixture().

Note: This method returns a fixture function. It is important to keep a reference to the returned function
within the scope of the tests that use the fixture.

Note: This method is only available if pytest is used.

Parameters

• name – The fixture name.

• scope – The scope of the fixture.

• dependencies – A sequence of names of other pytest fixtures that this fixture depends
on. These fixtures will be requested from pytest and so will be setup, but nothing is done
with the actual fixture values.

remove(**kwargs)
Remove an instance of this resource definition.

set_helper(helper)

2.5. API Reference 23

Seaworthy Documentation, Release 0.4.3.dev0

Todo: Document this.

setup(helper=None, **create_kwargs)
Setup this resource so that is ready to be used in a test. If the resource has already been created, this call
does nothing.

For most resources, this just involves creating the resource in Docker.

Parameters

• helper – The resource helper to use, if one was not provided when this resource defini-
tion was created.

• **create_kwargs – Keyword arguments passed to create().

Returns

This definition instance. Useful for creating and setting up a resource in a single step:

volume = VolumeDefinition('volly').setup(helper=docker_helper)

teardown()
Teardown this resource so that it no longer exists in Docker. If the resource has already been removed, this
call does nothing.

For most resources, this just involves removing the resource in Docker.

class VolumeDefinition(name, create_kwargs=None, helper=None)
This is the base class for volume definitions.

The following is an example of how VolumeDefinition can be used to attach volumes to a container:

from seaworthy.definitions import ContainerDefinition

class DjangoContainer(ContainerDefinition):
IMAGE = "seaworthy-demo:django"
WAIT_PATTERNS = (r"Booting worker",)

def __init__(self, name, socket_volume, static_volume, db_url):
super().__init__(name, self.IMAGE, self.WAIT_PATTERNS)
self.socket_volume = socket_volume
self.static_volume = static_volume
self.db_url = db_url

def base_kwargs(self):
return {

"volumes": {
self.socket_volume.inner(): "/var/run/gunicorn",
self.static_volume.inner(): "/app/static:ro",

},
"environment": {"DATABASE_URL": self.db_url}

}

Create definition instances
socket_volume = VolumeDefinition("socket")
static_volume = VolumeDefinition("static")
django_container = DjangoContainer(

"django", socket_volume, static_volume,
postgresql_container.database_url())

(continues on next page)

24 Chapter 2. Project status

Seaworthy Documentation, Release 0.4.3.dev0

(continued from previous page)

Create pytest fixtures
socket_volume_fixture = socket_volume.pytest_fixture("socket_volume")
static_volume_fixture = static_volume.pytest_fixture("static_volume")
django_fixture = django_container.pytest_fixture(

"django_container",
dependencies=[

"socket_volume", "static_volume", "postgresql_container"])

This example is explained in the introductory blog post and demo repository.

Todo: Document this properly.

as_fixture(name=None)
A decorator to inject this container into a function as a test fixture.

base_kwargs()
Override this method to provide dynamically generated base kwargs for the resource.

create(**kwargs)
Create an instance of this resource definition.

Only one instance may exist at any given time.

inner()

Returns the underlying Docker model object

merge_kwargs(default_kwargs, kwargs)
Override this method to merge kwargs differently.

pytest_fixture(name, scope=’function’, dependencies=())
Create a pytest fixture for the resource. See resource_fixture().

Note: This method returns a fixture function. It is important to keep a reference to the returned function
within the scope of the tests that use the fixture.

Note: This method is only available if pytest is used.

Parameters

• name – The fixture name.

• scope – The scope of the fixture.

• dependencies – A sequence of names of other pytest fixtures that this fixture depends
on. These fixtures will be requested from pytest and so will be setup, but nothing is done
with the actual fixture values.

remove(**kwargs)
Remove an instance of this resource definition.

set_helper(helper)

2.5. API Reference 25

https://medium.com/mobileforgood/patterns-for-continuous-integration-with-docker-on-travis-ci-ba7e3a5ca2aa
https://github.com/JayH5/seaworthy-demo

Seaworthy Documentation, Release 0.4.3.dev0

Todo: Document this.

setup(helper=None, **create_kwargs)
Setup this resource so that is ready to be used in a test. If the resource has already been created, this call
does nothing.

For most resources, this just involves creating the resource in Docker.

Parameters

• helper – The resource helper to use, if one was not provided when this resource defini-
tion was created.

• **create_kwargs – Keyword arguments passed to create().

Returns

This definition instance. Useful for creating and setting up a resource in a single step:

volume = VolumeDefinition('volly').setup(helper=docker_helper)

teardown()
Teardown this resource so that it no longer exists in Docker. If the resource has already been removed, this
call does nothing.

For most resources, this just involves removing the resource in Docker.

deep_merge(*dicts)
Recursively merge all input dicts into a single dict.

2.5.9 seaworthy.helpers

Classes that track resource creation and removal to ensure that all resources are namespaced and cleaned up after use.

class ContainerHelper(client, namespace, image_helper, network_helper, volume_helper)

Todo: Document this properly.

create(name, image, fetch_image=False, network=None, volumes={}, **kwargs)
Create a new container.

Parameters

• name – The name for the container. This will be prefixed with the namespace.

• image – The image tag or image object to create the container from.

• network – The network to connect the container to. The container will be given an alias
with the name parameter. Note that, unlike the Docker Python client, this parameter can
be a Network model object, and not just a network ID or name.

• volumes – A mapping of volumes to bind parameters. The keys to this mapping can be
any of three types of objects:

– A Volume model object

– The name of a volume (str)

26 Chapter 2. Project status

Seaworthy Documentation, Release 0.4.3.dev0

– A path on the host to bind mount into the container (str)

The bind parameters, i.e. the values in the mapping, can be of two types:

– A full bind specifier (dict), for example {'bind': '/mnt', 'mode': 'rw'}

– A “short-form” bind specifier (str), for example /mnt:rw

• fetch_image – Whether to attempt to pull the image if it is not found locally.

• kwargs – Other parameters to create the container with.

remove(container, force=True, volumes=True)
Remove a container.

Parameters

• container – The container to remove.

• force – Whether to force the removal of the container, even if it is running. Note that
this defaults to True, unlike the Docker default.

• volumes – Whether to remove any volumes that were created implicitly with this con-
tainer, i.e. any volumes that were created due to VOLUME directives in the Dockerfile.
External volumes that were manually created will not be removed. Note that this defaults
to True, unlike the Docker default (where the equivalent parameter, v, defaults to False).

class DockerHelper(namespace=’test’, client=None)

Todo: Document this properly.

teardown()
Clean up all resources when we’re done with them.

class ImageHelper(client)

Todo: Document this properly.

fetch(tag)
Fetch this image if it isn’t already present.

class NetworkHelper(client, namespace)

Todo: Document this properly.

create(name, check_duplicate=True, **kwargs)
Create a new network.

Parameters

• name – The name for the network. This will be prefixed with the namespace.

• check_duplicate – Whether or not to check for networks with the same name.
Docker allows the creation of multiple networks with the same name (unlike containers).
This seems to cause problems sometimes for some reason (?). The Docker Python client

2.5. API Reference 27

Seaworthy Documentation, Release 0.4.3.dev0

claims (as of 2.5.1) that check_duplicate defaults to True but it actually doesn’t.
We default it to True ourselves here.

• kwargs – Other parameters to create the network with.

get_default(create=True)
Get the default bridge network that containers are connected to if no other network options are specified.

Parameters create – Whether or not to create the network if it doesn’t already exist.

remove(resource, **kwargs)
Remove an instance of this resource type.

class VolumeHelper(client, namespace)

Todo: Document this properly.

create(name, **kwargs)
Create a new volume.

Parameters

• name – The name for the volume. This will be prefixed with the namespace.

• kwargs – Other parameters to create the volume with.

remove(resource, **kwargs)
Remove an instance of this resource type.

fetch_image(client, name)
Fetch an image if it isn’t already present.

This works like docker pull and will pull the tag latest if no tag is specified in the image name.

fetch_images(client, images)
Fetch images if they aren’t already present.

2.5.10 seaworthy.ps

Tools for asserting on processes running in containers using ps.

build_process_tree(ps_rows)
Build a tree structure from a list of PsRow objects. :param ps_rows: a list of PsRow objects :return: a PsTree
object

list_container_processes(container)
List the processes running inside a container. We use an exec rather than container.top() because we want to run
‘ps’ inside the container. This is because we want to get PIDs and usernames in the container’s namespaces.
container.top() uses ‘ps’ from outside the container in the host’s namespaces. Note that this requires the con-
tainer to have a ‘ps’ that responds to the arguments we give it– we use BusyBox’s (Alpine’s) ‘ps’ as a baseline
for available functionality. :param container: the container to query :return: a list of PsRow objects

exception PsException
Exception indicating problems operating on process lists and trees.

class PsRow(pid, ppid, ruser, args)
Representation of a process list entry, containing the details of a single process.

classmethod columns()
List the columns required to construct a suitable ps command.

28 Chapter 2. Project status

Seaworthy Documentation, Release 0.4.3.dev0

class PsTree(row, children=NOTHING)
Node in a process tree, linking a PsRow to its child processes.

count()
Return the number of processes in this subtree.

2.5.11 seaworthy.pytest

Some (optional) utilities for use with pytest.

While Seaworthy doesn’t require pytest, we find it useful in downstream container tests we write with Seaworthy. This
module contains various bits and pieces to make Seaworthy work better with pytest.

dockertest()
Skip tests that require Docker to be available.

This is a function that returns a decorator so that we don’t run arbitrary Docker client code on import. Unlike
seaworthy.checks.dockertest(), this implementation doesn’t require unittest.TestCase. It
does, however, require pytest.

2.5.12 seaworthy.pytest.checks

pytest mark to skip tests that require Docker.

dockertest()
Skip tests that require Docker to be available.

This is a function that returns a decorator so that we don’t run arbitrary Docker client code on import. Unlike
seaworthy.checks.dockertest(), this implementation doesn’t require unittest.TestCase. It
does, however, require pytest.

2.5.13 seaworthy.pytest.fixtures

A number of pytest fixtures or factories for fixtures.

clean_container_fixtures(container, name, scope=’class’, dependencies=())
Creates a fixture for a container that can be “cleaned”. When a code block is marked with @pytest.mark.
clean_<fixture name> then the clean method will be called on the container object before it is passed
as an argument to the test function.

Note: This function returns two fixture functions. It is important to keep references to the returned functions
within the scope of the tests that use the fixtures.

f1, f2 = clean_container_fixtures(PostgreSQLContainer(), 'postgresql')

class TestPostgresqlContainer
@pytest.mark.clean_postgresql
def test_clean_container(self, web_container, postgresql):

"""
Test something about the container that requires it to have a
clean state (e.g. database table creation).
"""

def test_dirty_container(self, web_container, postgresql):

(continues on next page)

2.5. API Reference 29

https://docs.python.org/3/library/unittest.html#unittest.TestCase
https://docs.python.org/3/library/unittest.html#unittest.TestCase

Seaworthy Documentation, Release 0.4.3.dev0

(continued from previous page)

"""
Test something about the container that doesn't require it to
have a clean state (e.g. testing something about a dependent
container).
"""

Parameters

• container – A “container” object that is a subclass of ContainerDefinition.

• name – The fixture name.

• scope – The scope of the fixture.

• dependencies – A sequence of names of other pytest fixtures that this fixture depends
on. These fixtures will be requested from pytest and so will be setup, but nothing is done
with the actual fixture values.

Returns A tuple of two fixture functions.

docker_helper()
Default fixture for DockerHelper. Has module scope.

docker_helper_fixture(name=’docker_helper’, scope=’module’, **kwargs)
Create a fixture for DockerHelper.

This can be used to create a fixture with a different name to the default. It can also be used to override the scope
of the default fixture:

docker_helper = docker_helper_fixture(scope='class')

Parameters

• name – The name of the fixture.

• scope – The scope of the fixture.

• kwargs – Keyword arguments to pass to the DockerHelper constructor.

image_fetch_fixture(image, name, scope=’module’)
Create a fixture to fetch an image.

resource_fixture(definition, name, scope=’function’, dependencies=())
Create a fixture for a resource.

Note: This function returns a fixture function. It is important to keep a reference to the returned function within
the scope of the tests that use the fixture.

fixture = resource_fixture(PostgreSQLContainer(), 'postgresql')

def test_container(postgresql):
"""Test something about the PostgreSQL container..."""

Parameters

• definition – A resource definition, one of those defined in the seaworthy.
definitions module.

30 Chapter 2. Project status

Seaworthy Documentation, Release 0.4.3.dev0

• name – The fixture name.

• scope – The scope of the fixture.

• dependencies – A sequence of names of other pytest fixtures that this fixture depends
on. These fixtures will be requested from pytest and so will be setup, but nothing is done
with the actual fixture values.

Returns The fixture function.

2.5.14 seaworthy.stream

stream_timeout(stream, timeout, timeout_msg=None)
Iterate over items in a streaming response from the Docker client within a timeout.

Parameters

• stream (CancellableStream) – Stream from the Docker client to consume items
from.

• timeout – Timeout value in seconds.

• timeout_msg – Message to raise in the exception when a timeout occurs.

2.5.15 seaworthy.stream.logs

stream_logs(container, timeout=10.0, **logs_kwargs)
Stream logs from a Docker container within a timeout.

Parameters

• container (Container) – Container who’s log lines to stream.

• timeout – Timeout value in seconds.

• logs_kwargs – Additional keyword arguments to pass to container.logs(). For
example, the stdout and stderr boolean arguments can be used to determine whether
to stream stdout or stderr or both (the default).

Raises TimeoutError – When the timeout value is reached before the logs have completed.

wait_for_logs_matching(container, matcher, timeout=10, encoding=’utf-8’, **logs_kwargs)
Wait for matching log line(s) from the given container by streaming the container’s stdout and/or stderr outputs.

Each log line is decoded and any trailing whitespace is stripped before the line is matched.

Parameters

• container (Container) – Container who’s log lines to wait for.

• matcher – Callable that returns True once it has matched a decoded log line(s).

• timeout – Timeout value in seconds.

• encoding – Encoding to use when decoding container output to strings.

• logs_kwargs – Additional keyword arguments to pass to container.logs(). For
example, the stdout and stderr boolean arguments can be used to determine whether
to stream stdout or stderr or both (the default).

Returns The final matching log line.

Raises

2.5. API Reference 31

https://docker-py.readthedocs.io/en/stable/containers.html#docker.models.containers.Container
https://docs.python.org/3/library/exceptions.html#TimeoutError
https://docker-py.readthedocs.io/en/stable/containers.html#docker.models.containers.Container

Seaworthy Documentation, Release 0.4.3.dev0

• TimeoutError – When the timeout value is reached before matching log lines have been
found.

• RuntimeError – When all log lines have been consumed but matching log lines have not
been found (the container must have stopped for its stream to have ended without error).

2.5.16 seaworthy.stream.matchers

class CombinationMatcher(*matchers)
Matcher that combines multiple input matchers.

classmethod by_equality(*expected_items)
Construct an instance of this combination matcher from a list of expected items and/or StreamMatcher
instances.

classmethod by_regex(*patterns)
Construct an instance of this combination matcher from a list of regex patterns and/or StreamMatcher
instances.

class EqualsMatcher(expected_item)
Matcher that matches items by equality.

args_str()
Return an args string for the repr.

match(item)
Return True if the item matches the expected value exactly, otherwise False.

class OrderedMatcher(*matchers)
Matcher that takes a list of matchers, and uses one after the next after each has a successful match. Returns True
(“matches”) on the final match.

Note: This is a stateful matcher. Once it has done its matching, you’ll need to create a new instance.

args_str()
Return an args string for the repr.

match(item)
Return True if the expected matchers are matched in the expected order, otherwise False.

class RegexMatcher(pattern)
Matcher that matches items by regex pattern.

args_str()
Return an args string for the repr.

match(item)
Return True if the item matches the expected regex, otherwise False.

class StreamMatcher
Abstract base class for stream matchers.

args_str()
Return an args string for the repr.

match(item)
Return True if the matcher matches an item, otherwise False.

class UnorderedMatcher(*matchers)
Matcher that takes a list of matchers, and matches each one to an item. Each item is tested against each un-
matched matcher until a match is found or all unmatched matchers are checked. Returns True (“matches”) on
the final match.

32 Chapter 2. Project status

https://docs.python.org/3/library/exceptions.html#TimeoutError
https://docs.python.org/3/library/exceptions.html#RuntimeError

Seaworthy Documentation, Release 0.4.3.dev0

Note: This is a stateful matcher. Once it has done its matching, you’ll need to create a new instance.

args_str()
Return an args string for the repr.

match(item)
Return True if the expected matchers are matched in any order, otherwise False.

to_matcher(matcher_factory, obj)
Turn an object into a StreamMatcher unless it already is one.

Parameters

• matcher_factory – A callable capable of turning obj into a StreamMatcher.

• obj – A StreamMatcher or an object to turn into one.

Returns StreamMatcher

2.5.17 seaworthy.testtools

Some (optional) utilities for use with testtools.

While Seaworthy doesn’t require testtools, we find it useful in downstream container tests we write with Seaworthy.
This module contains various bits and pieces to make Seaworthy work better with testtools.

class MatchesPsTree(ruser, args, pid=None, ppid=None, children=())
Matches a nested PsTree object in a sensible way.

The ruser and args fields are always checked. The pid and ppid fields are only checked if non-None values are
explicitly provided, because real pids are essentially arbitrary integers. The children field is always checked, but
order is ignored.

match(value)
Return None if this matcher matches something, a PsTreeMismatch otherwise.

class PsTreeMismatch(row_fields, child_count, fields_mm, children_mm)
Custom mismatch container for MatchesPsTree so we get somewhat more comprehensible failure messages.

describe()
Describe the mismatch.

2.5.18 seaworthy.utils

output_lines(output, encoding=’utf-8’, error_exc=None)
Convert bytestring container output or the result of a container exec command into a sequence of unicode lines.

Parameters

• output – Container output bytes or an docker.models.containers.
ExecResult instance.

• encoding – The encoding to use when converting bytes to unicode (default utf-8).

• error_exc – Optional exception to raise if output is an ExecResult with a nonzero
exit code.

Returns list[str]

2.5. API Reference 33

Seaworthy Documentation, Release 0.4.3.dev0

34 Chapter 2. Project status

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

35

Seaworthy Documentation, Release 0.4.3.dev0

36 Chapter 3. Indices and tables

Python Module Index

s
seaworthy, 13
seaworthy.checks, 14
seaworthy.client, 15
seaworthy.containers.nginx, 17
seaworthy.containers.postgresql, 17
seaworthy.containers.rabbitmq, 18
seaworthy.containers.redis, 19
seaworthy.definitions, 20
seaworthy.helpers, 26
seaworthy.ps, 28
seaworthy.pytest, 29
seaworthy.pytest.checks, 29
seaworthy.pytest.fixtures, 29
seaworthy.stream, 31
seaworthy.stream.logs, 31
seaworthy.stream.matchers, 32
seaworthy.testtools, 33
seaworthy.utils, 33

37

Seaworthy Documentation, Release 0.4.3.dev0

38 Python Module Index

Index

A
args_str() (EqualsMatcher method), 32
args_str() (OrderedMatcher method), 32
args_str() (RegexMatcher method), 32
args_str() (StreamMatcher method), 32
args_str() (UnorderedMatcher method), 33
as_fixture() (ContainerDefinition method), 20
as_fixture() (NetworkDefinition method), 23
as_fixture() (VolumeDefinition method), 25

B
base_kwargs() (ContainerDefinition method), 20
base_kwargs() (NetworkDefinition method), 23
base_kwargs() (NginxContainer method), 17
base_kwargs() (PostgreSQLContainer method), 17
base_kwargs() (RabbitMQContainer method), 18
base_kwargs() (RedisContainer method), 19
base_kwargs() (VolumeDefinition method), 25
broker_url() (RabbitMQContainer method), 18
build_process_tree() (in module seaworthy.ps), 28
by_equality() (seaworthy.stream.matchers.CombinationMatcher

class method), 32
by_regex() (seaworthy.stream.matchers.CombinationMatcher

class method), 32

C
clean() (ContainerDefinition method), 20
clean() (PostgreSQLContainer method), 17
clean() (RabbitMQContainer method), 18
clean() (RedisContainer method), 19
clean_container_fixtures() (in module seawor-

thy.pytest.fixtures), 29
close() (ContainerHttpClient method), 15
columns() (seaworthy.ps.PsRow class method), 28
CombinationMatcher (class in seawor-

thy.stream.matchers), 32
ContainerDefinition (class in seaworthy.definitions), 20
ContainerHelper (class in seaworthy.helpers), 26
ContainerHttpClient (class in seaworthy.client), 15

count() (PsTree method), 29
create() (ContainerDefinition method), 20
create() (ContainerHelper method), 26
create() (NetworkDefinition method), 23
create() (NetworkHelper method), 27
create() (VolumeDefinition method), 25
create() (VolumeHelper method), 28

D
database_url() (PostgreSQLContainer method), 18
deep_merge() (in module seaworthy.definitions), 26
delete() (ContainerHttpClient method), 15
describe() (PsTreeMismatch method), 33
docker_available() (in module seaworthy.checks), 14
docker_client() (in module seaworthy.checks), 14
docker_helper() (in module seaworthy.pytest.fixtures), 30
docker_helper_fixture() (in module seawor-

thy.pytest.fixtures), 30
DockerHelper (class in seaworthy), 13
DockerHelper (class in seaworthy.helpers), 27
dockertest() (in module seaworthy.checks), 14
dockertest() (in module seaworthy.pytest), 29
dockertest() (in module seaworthy.pytest.checks), 29

E
EqualsMatcher (class in seaworthy.stream.matchers), 32
exec_nginx() (NginxContainer method), 17
exec_pg_success() (PostgreSQLContainer method), 18
exec_psql() (PostgreSQLContainer method), 18
exec_rabbitmqctl() (RabbitMQContainer method), 18
exec_rabbitmqctl_list() (RabbitMQContainer method),

19
exec_redis_cli() (RedisContainer method), 19
exec_signal() (NginxContainer method), 17

F
fetch() (ImageHelper method), 27
fetch_image() (in module seaworthy.helpers), 28
fetch_images() (in module seaworthy.helpers), 28

39

Seaworthy Documentation, Release 0.4.3.dev0

for_container() (seaworthy.client.ContainerHttpClient
class method), 15

G
get() (ContainerHttpClient method), 15
get_default() (NetworkHelper method), 28
get_first_host_port() (ContainerDefinition method), 20
get_host_port() (ContainerDefinition method), 20
get_logs() (ContainerDefinition method), 21

H
halt() (ContainerDefinition method), 21
head() (ContainerHttpClient method), 15
http_client() (ContainerDefinition method), 21

I
image_fetch_fixture() (in module seawor-

thy.pytest.fixtures), 30
ImageHelper (class in seaworthy.helpers), 27
inner() (ContainerDefinition method), 21
inner() (NetworkDefinition method), 23
inner() (VolumeDefinition method), 25

L
list_container_processes() (in module seaworthy.ps), 28
list_databases() (PostgreSQLContainer method), 18
list_keys() (RedisContainer method), 20
list_queues() (RabbitMQContainer method), 19
list_tables() (PostgreSQLContainer method), 18
list_users() (PostgreSQLContainer method), 18
list_users() (RabbitMQContainer method), 19
list_vhosts() (RabbitMQContainer method), 19

M
match() (EqualsMatcher method), 32
match() (MatchesPsTree method), 33
match() (OrderedMatcher method), 32
match() (RegexMatcher method), 32
match() (StreamMatcher method), 32
match() (UnorderedMatcher method), 33
MatchesPsTree (class in seaworthy.testtools), 33
merge_kwargs() (ContainerDefinition method), 21
merge_kwargs() (NetworkDefinition method), 23
merge_kwargs() (VolumeDefinition method), 25

N
NetworkDefinition (class in seaworthy.definitions), 23
NetworkHelper (class in seaworthy.helpers), 27
NginxContainer (class in seaworthy.containers.nginx), 17

O
options() (ContainerHttpClient method), 16
OrderedMatcher (class in seaworthy.stream.matchers), 32

output_lines() (in module seaworthy), 14
output_lines() (in module seaworthy.utils), 33

P
patch() (ContainerHttpClient method), 16
ports (ContainerDefinition attribute), 21
post() (ContainerHttpClient method), 16
PostgreSQLContainer (class in seawor-

thy.containers.postgresql), 17
PsException, 28
PsRow (class in seaworthy.ps), 28
PsTree (class in seaworthy.ps), 29
PsTreeMismatch (class in seaworthy.testtools), 33
put() (ContainerHttpClient method), 16
pytest_clean_fixtures() (ContainerDefinition method), 21
pytest_fixture() (ContainerDefinition method), 21
pytest_fixture() (NetworkDefinition method), 23
pytest_fixture() (VolumeDefinition method), 25

R
RabbitMQContainer (class in seawor-

thy.containers.rabbitmq), 18
RedisContainer (class in seaworthy.containers.redis), 19
RegexMatcher (class in seaworthy.stream.matchers), 32
remove() (ContainerDefinition method), 22
remove() (ContainerHelper method), 27
remove() (NetworkDefinition method), 23
remove() (NetworkHelper method), 28
remove() (VolumeDefinition method), 25
remove() (VolumeHelper method), 28
request() (ContainerHttpClient method), 16
resource_fixture() (in module seaworthy.pytest.fixtures),

30
run() (ContainerDefinition method), 22

S
seaworthy (module), 13
seaworthy.checks (module), 14
seaworthy.client (module), 15
seaworthy.containers.nginx (module), 17
seaworthy.containers.postgresql (module), 17
seaworthy.containers.rabbitmq (module), 18
seaworthy.containers.redis (module), 19
seaworthy.definitions (module), 20
seaworthy.helpers (module), 26
seaworthy.ps (module), 28
seaworthy.pytest (module), 29
seaworthy.pytest.checks (module), 29
seaworthy.pytest.fixtures (module), 29
seaworthy.stream (module), 31
seaworthy.stream.logs (module), 31
seaworthy.stream.matchers (module), 32
seaworthy.testtools (module), 33
seaworthy.utils (module), 33

40 Index

Seaworthy Documentation, Release 0.4.3.dev0

set_helper() (ContainerDefinition method), 22
set_helper() (NetworkDefinition method), 23
set_helper() (VolumeDefinition method), 25
setup() (ContainerDefinition method), 22
setup() (NetworkDefinition method), 24
setup() (VolumeDefinition method), 26
start() (ContainerDefinition method), 22
status() (ContainerDefinition method), 22
stop() (ContainerDefinition method), 22
stream_logs() (ContainerDefinition method), 22
stream_logs() (in module seaworthy.stream.logs), 31
stream_timeout() (in module seaworthy.stream), 31
StreamMatcher (class in seaworthy.stream.matchers), 32

T
teardown() (ContainerDefinition method), 22
teardown() (DockerHelper method), 14, 27
teardown() (NetworkDefinition method), 24
teardown() (VolumeDefinition method), 26
to_matcher() (in module seaworthy.stream.matchers), 33

U
UnorderedMatcher (class in seaworthy.stream.matchers),

32

V
VolumeDefinition (class in seaworthy.definitions), 24
VolumeHelper (class in seaworthy.helpers), 28

W
wait_for_logs_matching() (ContainerDefinition method),

22
wait_for_logs_matching() (in module seaworthy), 14
wait_for_logs_matching() (in module seawor-

thy.stream.logs), 31
wait_for_response() (in module seaworthy.client), 16
wait_for_start() (ContainerDefinition method), 23
wait_for_start() (NginxContainer method), 17
wait_for_start() (RabbitMQContainer method), 19

Index 41

	Quick demo
	Project status
	Getting started
	Resource definitions & helpers
	Test framework integration
	Frequently asked questions
	API Reference

	Indices and tables
	Python Module Index

