

SeatbeltJS documentation

Seatbelt is a web framework designed to help simplify the creation and management of routes while adding typescript support. The included decorators make the framework extremely modular allowing you to use any nodejs server including express, restify, hapi, and koa along with potentially any orm such as waterline or bookshelf.

Warning

Seatbelt is currently in alpha. This text will be erased once a full version is released.

Basic Installation and usage

You are currently viewing the advanced documentation for seatbelt. To view basic installation and usage visit https://seatbelt.js.org.

Table Of Contents

	Install

	Usage
	Models
	Waterline
	Initialized waterline ORM plugin

	Create Model In Waterline

	Access Models From Waterline from a route or service

	Policies
	Creating a Policy

	Using a Policy

	Routes
	Creating a Route

	Servers
	Restify
	Install

	Usage

	Express
	Install

	Usage

	Hapi
	Install

	Usage

	Koa
	Install

	Usage

	Services
	Creating a Service

	Using Services
	From a Route

	From another Service

	License

Install

	Install the cli utilities

npm install @seatbelt/cli -g

	Create a new project

seatbelt --new [dirname]

	Pick a server and orm on creation of a new project

	Enter the directory and run the index.js

cd [dirname]
node index.js

Usage

	Models
	Waterline
	Initialized waterline ORM plugin

	Create Model In Waterline

	Access Models From Waterline from a route or service
	From a Route

	Policies
	Creating a Policy

	Using a Policy

	Routes
	Creating a Route

	Servers
	Restify
	Install

	Usage

	Express
	Install

	Usage

	Hapi
	Install

	Usage

	Koa
	Install

	Usage

	Services
	Creating a Service

	Using Services
	From a Route

	From another Service

Models

You can creates models from any folder within your project. Currently waterline is supported but other orms should be supported in the future.

Waterline

Initialized waterline ORM plugin

In order to initialize waterline you will first have to add it to the plugins class of the server you are using the following format where your server file is located.

@DRestify()
export class Server implements IServer {
 public plugins = [
 waterlinePlugin({
 adapters: {
 memory: require('sails-memory')
 },
 connections: {
 default: {
 adapter: 'memory',
 schema: true
 }
 }
 })
];
}

Create Model In Waterline

import { DModel } from '@seatbelt/orm-waterline';

@DModel({
 connection: 'default',
 identity: 'test',
 attributes: {
 firstName: 'string',
 lastName: 'string'
 }
})
export class Test {}

Access Models From Waterline from a route or service

From a Route

import { DService, DRoute, DPolicy, DValidateRequest, IRoute, IController} from '@seatbelt/core';

@DRoute({
 path: '/',
 type: ['GET', 'POST']
})
export class HomeRoute implements IRoute {
 public models: any;
 public controller (controller: IController) {
 return this.models.test.create(controller.params)
 .then(results => {
 return controller.send({ status: 200, json: controller });
 })
 .catch(err => {
 return controller.send({ status: 500, json: err });
 });
 }
}

Policies

Creating a Policy

Policies can be created in any folder of your project by using the format below. Params sent by the route call can be accessed from controller.params in the same way they can be accessed from routes.

import { DPolicy, IPolicy, IPolicyController } from '@seatbelt/core';

@DPolicy()
export class NewPolicy implements IPolicy {
 public controller (controller: IPolicyController) {
 console.log('policy working');
 return controller.next();
 }
}

Using a Policy

After creation the policy can be used simply by calling the Policy Decorator directly before declaring your controller.

import { DService, DRoute, DPolicy, DValidateRequest, IRoute, IController} from '@seatbelt/core';

@DRoute({
 path: '/',
 type: 'GET'
})
export class HomeRoute implements IRoute {
 @DPolicy('NewPolicy')
 public controller (controller: IController) {
 this.services.Poke.poke();
 return controller.send({ status: 200, json: controller });
 }
}

Routes

Creating a Route

Routes can be created in any directory, using any file format. They will automatically be added to your server when the app runs. Params that are sent in either query parameters or in a post body are automatically added to the controls on the property params. The following example will display the params when the home route is queryed by get or post request.

import { DRoute, IRoute, IController} from '@seatbelt/core';

@DRoute({
 path: '/',
 type: ['GET', 'POST']
})
export class HomeRoute implements IRoute {
 public controller (controller: IController) {
 return controller.send({ status: 200, json: controller.params });
 }
}

Servers

Seatbelt is capable of using any server through decorator wrappers. Currently all major node servers are supported: Express, Restify, Koa, and Hapi.

Restify

Install

npm install @seatbelt/restify --save

Usage

import { DRestify } from '@seatbelt/server-restify';
import { IServer } from '@seatbelt/core';

@DRestify()
export class Server implements IServer {}

Express

Install

npm install @seatbelt/express --save

Usage

import { DExpress } from '@seatbelt/server-express';
import { IServer } from '@seatbelt/core';

@DExpress()
export class Server implements IServer {}

Hapi

Install

npm install @seatbelt/hapi --save

Usage

import { DHapi } from '@seatbelt/server-hapi';
import { IServer } from '@seatbelt/core';

@DHapi()
export class Server implements IServer {}

Koa

Install

npm install @seatbelt/koa --save

Usage

import { DKoa } from '@seatbelt/server-koa';
import { IServer } from '@seatbelt/core';

@DKoa()
export class Server implements IServer {}

Services

Creating a Service

Services can be created from any folder in your project.

import { DService } from '@seatbelt/core';

@DService()
export class Poke {
 public poke() {
 console.log('poke');
 }
}

Using Services

From a Route

import { DService } from '@seatbelt/core';

@DService() public services: any;
public controller (controller: any) {
 this.services.Poke.poke();
 return controller.send({ status: 200, json: controller });
}

From another Service

import { DService } from '@seatbelt/core';

@DService()
export class NewService {
 @DService() public services: any;
 public hi() {
 this.services.Poke.poke();
 console.log('hi');
 }
}

License

MIT License

Copyright (c) 2017 Thomas Meadows

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Index

 _static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		SeatbeltJS documentation

 		Install

 		Usage

 		Models

 		Waterline

 		Policies

 		Creating a Policy

 		Using a Policy

 		Routes

 		Creating a Route

 		Servers

 		Restify

 		Express

 		Hapi

 		Koa

 		Services

 		Creating a Service

 		Using Services

 		License

