
SDOPT Documentation
Release 0.0 pre-alpha

Ali Baharev

March 07, 2015

Contents

1 Input 3

2 Reverse mode automatic differentiation 5

3 Natural block structure 7

4 Minimum degree ordering 9

5 Graph coloring 11
5.1 Documentation generated with sphinx.ext.autodoc . 11

i

ii

SDOPT Documentation, Release 0.0 pre-alpha

• The term structure-driven refers to the following idea. First, we partition the large, sparse nonlinear model
of a technical system into smaller subproblems. Then, a suitable ordering of these smaller problems is deter-
mined so that the solution to the original problem can be reconstructed from the solutions of the smaller ones.
The decomposition just sketched resembles the tree decomposition, which is very popular in discrete optimiza-
tion and constraint satisfaction; this project deals with continuous problems. Evidence shows that appropriate
decomposition can speed up the computations by several orders of magnitude.

• Nonlinear programming is meant by optimization.

• The image below shows an example of a modular technical system (a heating system, the image has been
taken from the Modelica website). Component-based modeling is well suited for modular technical systems;
Simulink and Dymola are examples of component-based modeling tools. The modules (components) of the
technical systems help in decomposing the large model into smaller problems.

The source code is available on GitHub under the 3-clause BSD license.

Contents 1

http://en.wikipedia.org/wiki/Tree_decomposition#Dynamic_programming
http://en.wikipedia.org/wiki/Nonlinear_programming
https://www.modelica.org/news_items/release_of_modelica_fluid_1_0
http://en.wikipedia.org/wiki/Simulink
http://en.wikipedia.org/wiki/Dymola
https://github.com/baharev/SDOPT

SDOPT Documentation, Release 0.0 pre-alpha

2 Contents

CHAPTER 1

Input

Currently, the models are written in AMPL, and after some black magic, the expressions are built-up in memory as a
direct acyclic graph (DAG), using NetworkX DiGraph. It is somewhat similar to the expression trees in SymPy. Only
nonlinear systems of equations are considered at the moment (steady-state modeling).

For example, the following AMPL code

var x; var y; var z;
equation: exp(3*x+2*y)+4*z = 1;

yields the directed acyclic graph below.

In the future, I would like to use either Python or JuMP for building the models. In any case, I will keep the AMPL
interface too. Modelica is definitely on the agenda, accessed through the functional mock-up interface. This project
is not aiming at creating yet another modeling environment: The goal is to plug the tools of this project into well-
established modeling systems.

3

http://en.wikipedia.org/wiki/AMPL
http://networkx.github.io/documentation/latest/reference/classes.digraph.html
http://docs.sympy.org/latest/tutorial/manipulation.html
https://github.com/JuliaOpt/JuMP.jl
http://en.wikipedia.org/wiki/Modelica
http://en.wikipedia.org/wiki/Functional_Mock-up_Interface

SDOPT Documentation, Release 0.0 pre-alpha

4 Chapter 1. Input

CHAPTER 2

Reverse mode automatic differentiation

Source code is generated from the DAG representation of the expressions in order to compute the Jacobian with reverse
mode automatic differentiation. Currently only Python code is emitted, in the near future, templated C++ code will
also be generated. For example, for the above example exp(3*x+2*y)+4*z the following Python code is generated
(hand-edited to improve readability):

f = exp(3*x+2*y)+z
Forward sweep
t1 = 3.0*x + 2.0*y
t2 = exp(t1)
f = 4.0*z + t2 - 1.0
Backward sweep
u0 = 1.0
u1 = 4.0 * u0 # df/dz = 4
u2 = u0
u3 = t2 * u2
u4 = 3.0 * u3 # df/dx = 3*exp(3*x+2*y)
u5 = 2.0 * u3 # df/dy = 2*exp(3*x+2*y)

The templated C++ version of this code will greatly benefit from code optimization performed by the C++ compiler;
I expect the generated code to be as good as hand-written.

5

http://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant
http://en.wikipedia.org/wiki/Automatic_differentiation

SDOPT Documentation, Release 0.0 pre-alpha

6 Chapter 2. Reverse mode automatic differentiation

CHAPTER 3

Natural block structure

The modules of the technical systems partition the Jacobian into blocks in a fairly natural way. This natural block
structure plays an important role in structure-driven algorithms: Computing the optimal partitioning and ordering of
the smaller subproblems is NP-hard in the general case; one must resort to heuristics in practice. Independent results
show that the heuristic which exploits the natural block structure often yields good quality partitioning and ordering.

The current way to pass the natural blocks is rather hackish: Suffixes are used, see Defining and using suffixes on page
302 in the AMPL book. In the future, component-based modeling tools will hopefully allow programmatic access to
the natural block structure.

7

http://ampl.github.io/ampl-book.pdf

SDOPT Documentation, Release 0.0 pre-alpha

8 Chapter 3. Natural block structure

CHAPTER 4

Minimum degree ordering

A basic minimum degree ordering has been implemented. The blue lines show the natural block structure.

My primary interest is chemical process modeling. The Jacobian of these models are very sparse but highly unsym-
metric, numerically indefinite, not diagonally dominant and possibly ill-conditioned. There are many packages for
the symmetric and slightly unsymmetric case. (In the slightly unsymmetric case, it is acceptable to introduce arti-
ficial fill-in to make the sparsity pattern symmetric and then use a sparse matrix ordering algorithm, developed for
the symmetric case.) I have only found MC33 from the Harwell Subroutine Library that is applicable in the highly
unsymmetric case. Since MC33 is based on a heuristic, it unfortunately fails on those chemical process models that
are of interest to me.

9

http://www.hsl.rl.ac.uk/catalogue/mc33.html

SDOPT Documentation, Release 0.0 pre-alpha

10 Chapter 4. Minimum degree ordering

CHAPTER 5

Graph coloring

Depending on the implementation, efficient forward-mode automatic differentiation may require well-chosen seed
vectors; these seeds can be computed with graph coloring. Even though graph coloring is NP-complete in general, the
minimum degree ordering enables an efficient greedy coloring heuristic.

5.1 Documentation generated with sphinx.ext.autodoc

• genindex

• modindex

• search

11

http://en.wikipedia.org/wiki/Automatic_differentiation
http://en.wikipedia.org/wiki/Graph_coloring
http://en.wikipedia.org/wiki/Greedy_coloring

	Input
	Reverse mode automatic differentiation
	Natural block structure
	Minimum degree ordering
	Graph coloring
	Documentation generated with sphinx.ext.autodoc

