

 Navigation

 	
 index

 	
 next |

 	SDNTrace 0.1 documentation

Welcome to Documentation for SDNTrace Protocol Design and Testing!

Demonstration setup for SDNTrace is composed of a topology of SDN
devices, a controller, two end points that participate in the
tracing of the path for individual flow definitions.
Protocol Design section outlines problem statement, our motivation, design
goals, and constraints.
The Implementation of SDNTrace Protocol includes the algorithm and how the protocol has been
implemented as a northbound application.
Finally, GENI DEMO is where we explain the demonstration and the
workflow of the experiment.

[image: _images/sdntrace-topology.png]

LEXICON

	To-be-traced packet: A data plane packet that represents a flow defined with L2-L7
header field(s) with possible path(s) to a destination host

	SDNTrace protocol: Message exchange mechanism and the associated message format designed
to determine the path of a to-be-traced packet in a software-defined network

	NB App: The application that uses the RYU controller to run the SDNTrace protocol

	Originator (node): An end host that issues the trace request for a to-be-traced packet
to a destination host

	Probe: An SDNTrace protocol packet, TraceRequest, that is sent by the originator node

	Hop Object ID: A preferred identification object for the nodes on the path of the
to-be-traced packet from originator to destination node.

SDNTrace implementation in this repo is a northbound application (NB app) running on RYU
controller. The originator node (probe is sent from this node) is running a packet
generator that sends probe packets to the network while the NB app
facilitates the creation of the reply packets with a hop object ID for each node on
the path of the to-be-traced packet.

In the topology above, there are two paths carrying two different protocols. One
is for UDP packets and another for TCP packet flow. This demonstration involves the
identification of hop IDs as DPIDs of the OpenFlow switches on the path of each flow
for tcp and udp protocols.

This document is divided into three parts:

	The protocol and its design decisions

	Implementation as a NB app on RYU controller

	The demonstration of its basic functionality on GENI testbed

Note

Acknowledgment: This work was partially funded by National Science Foundation
ACI grant award no. 1341019.

Disclaimer: Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation.

Contents:

	REFRESH OFTEN!

	Protocol Design
	Motivation

	Existing traceroute Tool

	SDNTrace Protocol Requirements

	SDNTrace Protocol Design

	Implementation of SDNTrace Protocol
	Algorithm of SDNTrace Protocol Demonstration

	GENI DEMO
	Multi-path Topology

	Controller Setup

	Originator Setup

	Experiment Workflow

	Acknowledgment

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Amir Ali Kouhi Kamali, Nicholas Bastin, Long Tran, Deniz Gurkan..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SDNTrace 0.1 documentation

REFRESH OFTEN!

This page is updated very frequently.

Please refresh your browser to load revisions and new material.

 Copyright 2015, Amir Ali Kouhi Kamali, Nicholas Bastin, Long Tran, Deniz Gurkan..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SDNTrace 0.1 documentation

Protocol Design

This is a work in progress with a demo implementation to illustrate ideas
and expectations on a tracing tool for SDN deployments.

Motivation

The project has been inspired by a requirements discussion [https://spaces.internet2.edu/display/sdn/2014-10-28+-+BoF+notes+-+SDNTrace] during the TechExchange [http://meetings.internet2.edu/2014-technology-exchange/]
meeting of the Internet2 in October 2014.

A project charter has been created and shared with the Internet2 SDN workgroup to
initiate participation from the community on the expectations from such a troubleshooting
tool around the university campuses, particularly, for those deploying any SDN network
devices: charter document [https://spaces.internet2.edu/display/sdn/Project+Charter+Draft]

Current network troubleshooting tools such as ping, traceroute, and
tcpdump help network engineers achieve some insight in conjunction with protocols
such as the SNMP in legacy networks. However, deeper visibility into data plane behaviour
in SDN may be possible. And, development of troubleshooting tools may address more
such visibility of the networks.

Existing traceroute Tool

The protocol design evolves around the requirements by keeping in mind of the current
functionality provided by the traceroute tool. Requirements from TechExchange
encompasses a path tracing capability for L2 and above, with multiple domains of networks,
and possibly some information on crossing the boundaries between SDN and non-SDN.

We examined the traceroute as a path tracing tool to baseline our goal with the SDNTrace
protocol. In this respect, an SDNTrace tool should yield at least as much information
as the traceroute tool. We identified many shortcomings of the traceroute tool. A useful
presentation on this topic is in the NANOG [https://www.nanog.org/sites/default/files/07-oct-2014-tutorial-troubleshooting-with-traceroute.mp4] on October 7, 2014.

SDNTrace Protocol Requirements

After identifying major shortcomings of current traceroute, we tried to address them with
any opportunities we see may be possible with SDN and other means while addressing the
requirements listed in the charter. Below is a high-level wish list on protocol design.
However, we were able to only implement part of this list.

We are including the list here for open discussion on future participation:

	A hop exists: What identifier do we want to know about the hop?
E.g.: IP address, name, MAC, AS number, organization, description, who to call,
DPID of the switch, etc., operator-specified stuff (up to the operators of the network)

	Processing of probe packets in the data path: Any tracing method will have
at least similar limitations to traceroute. In order to increase information about
the datapath, a design decision has been made that trace probes will be processed
as exception packets in the slow path.

	Timestamping - not addressed in this implementation.

	Reverse path determination: same routers may have different interface
names/identifiers, and the reverse path may actually be physically
different.

	Multiple domain case: ??

	Probes should look like data packets.

	Repetitive measurements, sequence numbering of the probe packets, accumulate responses
from the hops up to the point at the network. Building resiliency against packet
loss in the network.

	NTP - synchronize clocks at hops so data probe can be timestamped at hops. Removes
the confusion created by the protocol support at tunnel points at MPLS, and the RTT
being equal for many hops within the tunnel.

SDNTrace Protocol Design

Path is a list of hops on the way to the destination, each hop should be
identified at L2 level (identifier: switch id-DPID, network admin tel. no,
physical address, name of the device in SNMP, belonging to a domain/service provider)

Optimize/focus on the most common/important cases from our wish list above
for this first stab at the protocol design

	One domain with SDN devices to be traced for path

	L2 and up is to be discovered

	All packets to be processed in the CPU through an exception packet handling mechanism

	Timestamp, reverse traceroute, hidden box, info about domains on the path,
L2 devices - are key in making this better than traceroute: implementation of these
elements will be a work in progress.

In essence, the protocol is composed of a probe message that carries the to-be-traced
packet as payload.

Protocol messages are:

	TraceRequest message (the probe sent by the originator host to the network)

	TraceReply message (accumulates the hop object id’s of all nodes on the path of the
packet being traced)

The header fields of these packets follow exactly the format of an Ethernet packet with
a reserved destination MAC address to identify itself as a packet that needs special handling
by the controller.

probe packet format:

[image: _images/probe.png]
format of the common header:

[image: _images/commonHeader.png]
format of the object header:

[image: _images/objectHeader.png]
hop object ID:

[image: _images/hobObject.png]
Example object IDs for ipv4 Object and OpenFlow DPID:

[image: _images/ipv4Object.png]
[image: _images/OFDPIDObject.png]
The packet to be traced:

[image: _images/packet_to_be_traced.png]
A sample probe packet for SDNTrace protocol (i.e., the TraceRequest):

[image: _images/samplePacket.png]

 Copyright 2015, Amir Ali Kouhi Kamali, Nicholas Bastin, Long Tran, Deniz Gurkan..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SDNTrace 0.1 documentation

Implementation of SDNTrace Protocol

This is a work in progress with a demo implementation to illustrate ideas and
expectations on a tracing tool for SDN deployments.

We have implemented this current work-in-progress version as a northbound application on
RYU. We have tested and demonstrated our implementation during the GENI Engineering
Conference 23, GEC23 [http://groups.geni.net/geni/wiki/GEC23Agenda/EveningDemoSession#NetworkTroubleshootingwithSDNTracerouteProtocolSDNTrace].

Algorithm of SDNTrace Protocol Demonstration

	Connect to all switches in the network (assumes there is a forwarding table
constructed in all switches between orginator and the destination host).

	Write flows into the switches that will forward all SDNTrace messages to the
controller by recognizing the special ETH_TYPE used.

	Write corresponding forwarding flow rules into the switches for the paths to
be followed in the demonstration (i.e., the tcp and udp network packet paths).

	Before a trace message arrives, at a port status change, retrieve all flow tables
from all switches that are connected to the controller.

	Determine the destination MAC address for the to-be-traced packet from flowspec
object.

	Determine the type of the SDNTrace message: request or reply
	If directly attached and trace type is request start TraceReply message construction.

	If not directly attached and trace message type is reply: retrieve and append
the hop Object ID (i.e., DPID) to the trace objects, compose the trace request
packet and send back with the forwarding information to the switch.

	If the message is a reply, forward the reply message on through the ingress
port this message came from originally based on information retrieved
from the existing Hop Object in the reply message.

 Copyright 2015, Amir Ali Kouhi Kamali, Nicholas Bastin, Long Tran, Deniz Gurkan..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	SDNTrace 0.1 documentation

GENI DEMO

This is a work in progress with a demo implementation to illustrate
ideas and expectations on a tracing tool for SDN deployments.

Note

All experiment control of the GENI demonstration
is achieved using the geni-lib tool at its official documentation here [http://geni-lib.readthedocs.org]. Installation of
geni-lib is required to set up and control the experiments: please use
installation instructions at the geni-lib documentation site.

Multi-path Topology

The topology below has been created using the VTS (virtual topology services) on GENI:

[image: _images/topology-onGENI.png]
There are six datapath elements. The internal circuits connect:

dp0 to dp1
dp1 to dp2
dp1 to dp3
dp3 to dp2
dp2 to dp4

And, there are only two PG circuits to attach VM end points on the topology:

dp0 with originator
dp4 with destination

The paths for the two application flows are to be setup with flow rules on switches as:

TCP flow on: dp0, dp1, dp2, dp4, destination
UDP flow on: dp0, dp1, dp3, dp2, dp4, destination

The GENI reservations are accomplished using the geni-lib scripts posted in the repo’s
gec23demo directory. OFLoopTopology.py reserves the topology described here.

Controller Setup

At the controller node, install RYU controller and follow instructions from
the README file of this repo to set repo and NB app up with its dependencies.

Start SDNTrace application:

ryu-manager ryu-app/ryu-trace-app.py

Originator Setup

At the orginator node, install the packages listed in README and run to send a probe
packet:

cd sdntrace/
python trace-client/trace-client-with-GUI.py

Experiment Workflow

	Before starting the controller, modify topology using the portDown
feature of VTSAM:

VTSAM.UtahDDC.portDown(context, "sdntraceDemo", "dp3:0")

	Start the controller, and verify that the datapaths are all connected
at this time with this directed acyclic graph.

Note

You can verify connectivity of datapaths using the sliverstatus feature
of VTSAM by calling the VTSAM.UtahDDC.sliverstatus(context, "sdntraceDemo").

	The sliverstatus printed text will tell us whether our datapath elements are
connected to the controller and what their DPIDs are:

{'geni_resources': [{'geni_error': '',
 'geni_status': 'ready',
 'geni_urn': 'urn:publicid:IDN+ch.geni.net:VTS-experiments+slice+sdntraceDemo:631cb687-1101-41ca-9473-265638a76d9b'}],
 'geni_status': 'ready',
 'geni_urn': 'urn:publicid:IDN+ch.geni.net:VTS-experiments+slice+sdntraceDemo:631cb687-1101-41ca-9473-265638a76d9b',
 'vts_datapaths':
 [{'client-id': 'dp0',
 'connected': False,
 'dpid': 'a2:88:be:9d:0c:b5:fd:f1',
 'ports': [{'client-id': 'dp0:1', 'name': 'vlan3693'},
 {'client-id': 'dp0:0',
 'name': '7137318802624'}]},
 {'client-id': 'dp1',
 'connected': False,
 'dpid': 'a0:51:5f:83:f9:a7:6e:fc',
 'ports': [{'client-id': 'dp1:2',
 'name': '1471796398048'},
 {'client-id': 'dp1:0',
 'name': '4383286160025'},
 {'client-id': 'dp1:1',
 'name': '1661875448123'}]},
 {'client-id': 'dp2',
 'connected': False,
 'dpid': 'a6:b9:8e:4c:e6:a8:51:07',
 'ports': [{'client-id': 'dp2:1',
 'name': '3872144899212'},
 {'client-id': 'dp2:0',
 'name': '1288915914021'},
 {'client-id': 'dp2:2',
 'name': '893223727791'}]},
 {'client-id': 'dp3',
 'connected': False,
 'dpid': 'a6:fc:67:0c:43:d3:a4:a9',
 'ports': [{'client-id': 'dp3:0', 'name': '53343421289'},
 {'client-id': 'dp3:1',
 'name': '946368135596'}]},
 {'client-id': 'dp4',
 'connected': False,
 'dpid': 'ba:32:63:0e:e6:4c:3a:51',
 'ports': [{'client-id': 'dp4:1', 'name': 'vlan3692'},
 {'client-id': 'dp4:0',
 'name': '1261830267274'}]}]
 }

	Once all nodes are connected the controller will also display the DPIDs read
on the network, on controller terminal where the NB application is running:

ubuntu@ip-172-31-22-225:~/traceprotocol$ sudo ryu-manager --ofp-tcp-listen-port=7733 ryu-t
loading app ryu-trace-app.py
loading app ryu.topology.switches
loading app ryu.controller.ofp_handler
instantiating app ryu-trace-app.py of SimpleSwitch
instantiating app ryu.topology.switches of Switches
instantiating app ryu.controller.ofp_handler of OFPHandler
{}
[12032605606802334889L]
{}
[12032605606802334889L, 11552119539615887100L]
{}
[12032605606802334889L, 11711820412709371377L, 11552119539615887100L, 12013789941925957895
{}
[12032605606802334889L, 11711820412709371377L, 11552119539615887100L, 13416895155534576209
{}
[12032605606802334889L, 11711820412709371377L, 11552119539615887100L, 13416895155534576209

	From the originator node, issue a ping to the destination host to start
the learning process for the controller:

...
{}
[12032605606802334889L, 11711820412709371377L, 11552119539615887100L, 13416895155534576209
Learned MAC 02:36:de:dc:de:9e at DPID 11711820412709371377
Learned MAC 02:aa:c7:52:80:b8 at DPID 13416895155534576209

	Before we run the trace, the topology needs to know the paths for each flow
for this network. Create (or modify the existing flowRules.py) a flow
definition file inside the gec23demo directory.

	The flow.info is used to write these flows into the datapaths in VTS
topology using the addFlows feature:

d = json.loads(open("/Users/dgurkan/sdntrace/gec23demo/flow.info").read())
VTSAM.UtahDDC.addFlows(context, "sdntraceDemo", d)

	Bring the port that was down, back up again using:

VTSAM.UtahDDC.portUp(context, "sdntraceDemo", "dp3:0")

	Once the flows are written into the datapath elements in the topology, we
expect paths for particular flows (in this example, there is a separate path
for tcp flows and another path for udp). The flows can be checked on the
datapaths using the dumpFlows feature of VTS:

VTSAM.UtahDDC.dumpflows(context, "sdntraceDemo", ["dp0", "dp1", "dp2", "dp3", "dp4"])

	Now, the topology has two paths setup for two different flows (differentiated
by the network protocol type, 17 for udp, and 6 for tcp). Flows are written into
the devices on the paths between the originator node and the destination. The
controller has learned the forwarding of end hosts. We can run the client (or,
originator) SDNTrace to insert a probe into the network to trace the path of
either one of these flows. Using the GUI gives us only end destination MAC
address match option:

sudo python trace-client-with-GUI.py eth1

	The command line version of trace-client.py has the option to specify the
type of network protocol to be traced:

sudo python trace-client.py eth1 02:aa:c7:52:80:b8 tcp

	The client then should issue a probe for the packet to be traced. The controller
will display all trace requests and replies received during the course of the
trace:

ubuntu@ip-172-31-22-225:~/traceprotocol$ sudo ryu-manager --ofp-tcp-listen-port=7733 ryu-trace-app.py
loading app ryu-trace-app.py
loading app ryu.topology.switches
loading app ryu.controller.ofp_handler
instantiating app ryu-trace-app.py of SimpleSwitch
instantiating app ryu.topology.switches of Switches
instantiating app ryu.controller.ofp_handler of OFPHandler
{}
[12032605606802334889L]
{}
[12032605606802334889L, 11552119539615887100L]
{}
[12032605606802334889L, 11711820412709371377L, 11552119539615887100L, 12013789941925957895L]
{}
[12032605606802334889L, 11711820412709371377L, 11552119539615887100L, 13416895155534576209L, 12013789941925957895L]
{}
[12032605606802334889L, 11711820412709371377L, 11552119539615887100L, 13416895155534576209L, 12013789941925957895L]
Learned MAC 02:36:de:dc:de:9e at DPID 11711820412709371377
Learned MAC 02:aa:c7:52:80:b8 at DPID 13416895155534576209
port modified 1
port modified 3
Trace Request: 11711820412709371377
Trace Request: 11552119539615887100
Trace Request: 12013789941925957895
Trace Reply: 12013789941925957895
Trace Reply: 11552119539615887100
Trace Reply: 11711820412709371377

	The result from the trace client should display the hop IDs on the path:

dgurka01@host0:~/sdntraceprotocol$ sudo python trace-client.py eth1 02:aa:c7:52:80:b8 tcp
WARNING: No route found for IPv6 destination :: (no default route?)
.
Sent 1 packets.
0180c20000000236dedcde9e882000020014620000000502002502aac75280b80236dedcde9e0800450000280001000040067ccd7f0000017f00000101010da288be9d0cb5fdf1010201010da0515f83f9a76efc010201010da6b98e4ce6a85107010301010dba32630ee64c3a510201
ethernet(dst='01:80:c2:00:00:00',ethertype=34848,src='02:36:de:dc:de:9e'), TraceReply(checksum=0,length=98,objects=[FlowSpecObject(header=ObjectHeader(length=37,sub_type_=0,type_=2),packet=ethernet(dst='02:aa:c7:52:80:b8',ethertype=2048,src='02:36:de:dc:de:9e'), ipv4(csum=31949,dst='127.0.0.1',flags=0,header_length=5,identification=1,offset=0,option=None,proto=6,src='127.0.0.1',tos=0,total_length=40,ttl=64,version=4)), HopObjectDPID(dpid=11711820412709371377L,egress_interface=2,header=ObjectHeader(length=13,sub_type_=1,type_=1),ingress_interface=1), HopObjectDPID(dpid=11552119539615887100L,egress_interface=2,header=ObjectHeader(length=13,sub_type_=1,type_=1),ingress_interface=1), HopObjectDPID(dpid=12013789941925957895L,egress_interface=3,header=ObjectHeader(length=13,sub_type_=1,type_=1),ingress_interface=1), HopObjectDPID(dpid=13416895155534576209L,egress_interface=1,header=ObjectHeader(length=13,sub_type_=1,type_=1),ingress_interface=2)],ttl=20,type_=2,version=0)
HopObjectDPID(dpid=11711820412709371377L,egress_interface=2,header=ObjectHeader(length=13,sub_type_=1,type_=1),ingress_interface=1)
HopObjectDPID(dpid=11552119539615887100L,egress_interface=2,header=ObjectHeader(length=13,sub_type_=1,type_=1),ingress_interface=1)
HopObjectDPID(dpid=12013789941925957895L,egress_interface=3,header=ObjectHeader(length=13,sub_type_=1,type_=1),ingress_interface=1)
HopObjectDPID(dpid=13416895155534576209L,egress_interface=1,header=ObjectHeader(length=13,sub_type_=1,type_=1),ingress_interface=2)

 Copyright 2015, Amir Ali Kouhi Kamali, Nicholas Bastin, Long Tran, Deniz Gurkan..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	SDNTrace 0.1 documentation

Acknowledgment

Acknowledgment: This work was partially funded by National Science
Foundation ACI grant award no. 1341019 and EAGER award no. 1449151.

Disclaimer: Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

 Copyright 2015, Amir Ali Kouhi Kamali, Nicholas Bastin, Long Tran, Deniz Gurkan..
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	SDNTrace 0.1 documentation

Index

 Copyright 2015, Amir Ali Kouhi Kamali, Nicholas Bastin, Long Tran, Deniz Gurkan..
 Created using Sphinx 1.3.5.

 _static/plus.png

_images/samplePacket.png
Ethernet Header
Source: H2yuc Destination: special Mac address

Version 1 Type Request Checksum
255 Unused Length
Type Flowspec | subtypeo | Length Ethernet Header+IP Header

Ethernet source:H2,uc Ethernet destination: Hlyu source IP address: H2, Ethernet destination : H1,

type Hop Sub-type DPID | Length oPIDS1
DPID (cont'd) Ingress interface S1, Egress interface 51,
type Hop Sub-type DPID | Length oPIDS2

DPID (cont'd) Ingress interface 52, Egress interface 52,

_images/sdntrace-topology.png
TCP port X flow path:
s1-52-53-s5

UDP flow path:
s1-52-54-53-55

_images/probe.png
Standard Ethernet Header (includes special destination MAC, probe Ethertype

Common Header

DATA: Objects 1 ... n

_images/OFDPIDObject.png
Sub-Type(1) DPID
DPID (cont’d) Ingress interface

Egress interface

_images/hobObject.png
17

25

32

Type(1)

Sub-Type()

Length

Value

_images/commonHeader.png
17

25

32

Version

Type

Checksum

Length

#of objects

#of objects(cont’d)

_images/topology-onGENI.png

_images/packet_to_be_traced.png
17

25

32

Type(2)

Subtype(0)

Length

Header of the packet to

be traced

_static/minus.png

_static/up-pressed.png

_images/objectHeader.png
17

25

32

Type

Subtype

Length

Value

... Value

_images/ipv4Object.png
Sub-Type(1) IPv4 address

IPv4 address Ingress interface

_static/comment-bright.png

_static/up.png

search.html

 Navigation

 		
 index

 		SDNTrace 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Amir Ali Kouhi Kamali, Nicholas Bastin, Long Tran, Deniz Gurkan..
 Created using Sphinx 1.3.5.

_static/comment-close.png

_static/file.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment.png

