
scrapy-mosquitera Documentation
Release 0.1.0

Scrapinghub

May 19, 2016

Contents

1 How it works 3

2 Installation 5

3 Documentation contents 7
3.1 Matchers . 7
3.2 PaginationMixin . 8
3.3 Examples . 9

Python Module Index 13

i

ii

scrapy-mosquitera Documentation, Release 0.1.0

How can I scrape items off a site from the last five days?

—Scrapy User

That question started the development of scrapy-mosquitera, a tool to help you restrict crawling and scraping scope
using matchers.

Matchers are simple Python functions that return the validity of an element under certain restrictions.

The first goal in the project was date matching, but you can create your own matcher for your own crawling and
scraping needs.

Contents 1

scrapy-mosquitera Documentation, Release 0.1.0

2 Contents

CHAPTER 1

How it works

In the case where the dates are available in the URLs, you will just use the matcher function directly in your code:

from scrapy_mosquitera.matchers import date_matches

date = scrape_date_from_url(url)

if date_matches(data=date, after='5 days ago'):
yield Request(url=url, callback=self.parse_item)

To handle the case when the date is only available at the time when you scrape the items, scrapy-mosquitera provides
a PaginationMixin to control the crawl according to the dates scraped.

Head on to the remaining of the documentation for more details.

3

http://scrapy-mosquitera.readthedocs.io

scrapy-mosquitera Documentation, Release 0.1.0

4 Chapter 1. How it works

CHAPTER 2

Installation

The quick way:

pip install scrapy-mosquitera

5

scrapy-mosquitera Documentation, Release 0.1.0

6 Chapter 2. Installation

CHAPTER 3

Documentation contents

3.1 Matchers

3.1.1 Creating your own matcher

A matcher is a simple function taking the data to be evaluated as argument(s) and returning a boolean value according
to its validity.

Current matchers

3.1.2 Date Matchers

The date matchers use a lot of words to delimit their date range. They are separated to set the maximum and minimum
date. In order of precedence they are for minimum date:

• min_date

• on

• after

• since

And for maximum date:

• max_date

• on

• before

Their values could be dates parseables by dateparser, date or datetime objects. They also support None value, so
that limit isn’t verified.

scrapy_mosquitera.matchers.date_matches(data, **kwargs)
Return True if data is a date in the valid date range. Otherwise False.

Parameters

• data (string, date or datetime) – the date to validate

• kwargs (dict) – special delimitation parameters

Return type bool

7

https://github.com/scrapinghub/dateparser

scrapy-mosquitera Documentation, Release 0.1.0

scrapy_mosquitera.matchers.date_in_period_matches(data, period=’day’,
check_maximum=True, **kwargs)

Return True if data is a date in the valid date range defined by period. Otherwise False.

This matcher is ideal for cases like the following one.

A forum post is created at 04-10-2016. Then on 04-28-2016, I try to scrape the forum covering the last few
days. However, the forum doesn’t display the post date but some sentences like X weeks ago. So, in the forum
nomenclature, the posts fall in the next table:

Start date End date Name
04-15-2016 04-21-2016 One week ago
04-08-2016 04-14-2016 Two weeks ago
04-01-2016 04-07-2016 Three weeks ago

On 04-28-2016, if I calculate two weeks ago it will return 04-14-2016. Comparing it to the forum meaning,
we’re working with fixed dates and the forum with date ranges. Then, if I scrape until 04-10-2016, the crawl
will miss the posts from 04-10-2016 to 04-13-2016 since the last valid date would be two weeks ago (three
weeks ago is out of scope (04-07-2016 < 04-10-2016)).

This matcher comes to solve this, so you can provide the period (in this case week) and you won’t miss items
by coverage issues. However, it’s inclusive because to satisfy the date 04-10-2016 it will include the full week
[04-08-2016, 04-14-2016], so a post-filtering should be made to only allow valid items.

Parameters

• data (string, date or datetime) – the date to validate

• period (string) – the period to evaluate (‘day’, ‘month’, ‘year’)

• check_maximum (bool) – check maximum date

• kwargs (dict) – special delimitation parameters

Return type bool

3.2 PaginationMixin

PaginationMixin is a mixin with a group of decorators to control the logic of requesting the next page. It has an
interesting flow, which could be summarized as:

1. At the listing parsing method, every item page request is yielded. Each request is marked to be associated with
the current response and any pagination requests is enqueued.

2. At the item parsing method, the matching logic is applied and each valid item and its related request is registered.

3. After comparing the yielded requests at step 1 and the requests which yielded valid items at step 2, the mixin
decides to dequeue the next page request only if every request yielded a valid item.

To understand better its working, please review the examples.

class scrapy_mosquitera.mixin.PaginationMixin(*args, **kwargs)

static deregister_response(fn)
Deregister response from the registry.

It’s a decorator.

static enqueue_next_page_requests(fn)
Enqueue next page requests to be only requested if they meet the conditions.

8 Chapter 3. Documentation contents

scrapy-mosquitera Documentation, Release 0.1.0

It’s a decorator.

static register_requests(fn)
Register requests yielded from fn in the registry using as key its parent response id.

It’s a decorator.

3.3 Examples

scrapy-mosquitera aims scenarios where there are listings involved. However, scrapy-mosquitera takes a different
approach whether the data to match is present in the listing or not. As it started for date validation, let’s review what
to do when dates are present or absent.

3.3.1 Dates present

In example, we’ll consider a blog archive page.

<div>
<h3>Title for Post 1</h3>
Link
Posted on 2016-04-01

</div>
<div>
<h3>Title for Post 2</h3>
Link
Posted on 2016-04-02

</div>
<div>
<h3>Title for Post 3</h3>
Link
Posted on 2016-04-03

</div>

It’s the simpler case since we can do the matching at the method parsing the listing. We will use date_matches to
do the match and it let us control the pagination in an easy way.

from scrapy_mosquitera.matchers import date_matches

def parse(self, response):
continue_to_next_page = True

for news in response.xpath("//div"):
date = news.xpath("./span/text()").re_first('Posted on (.*)')
path_url = news.xpath("./a/@href").extract_first()
url = response.urljoin(path_url)

if date_matches(data=date, after='5 days ago'):
yield Request(url=url, callback=self.parse_item)

else:
continue_to_next_page = False

if continue_to_next_page:
yield self.call_next_page(response)

3.3. Examples 9

scrapy-mosquitera Documentation, Release 0.1.0

3.3.2 Dates absent

For this case, we’ll consider the following blog archive page layout.

<div>
<h3>Title for Post 1</h3>
Link

</div>
<div>
<h3>Title for Post 2</h3>
Link

</div>
<div>
<h3>Title for Post 3</h3>
Link

</div>

Dates aren’t present on the listing, but they are in each post page.

<h1>Title for Post</h1>
<div>Posted on 2016-04-02</div>
[...]

Here comes PaginationMixin which is a mixin specialize for these cases. To see it in action in a comparable way
with the first example, let’s start using their decorators. @PaginationMixin.register_requests has to be
applied to the listing parsing method.

from scrapy_mosquitera.matchers import PaginationMixin

@PaginationMixin.register_requests
def parse(self, response):
for news in response.xpath("//div"):
path_url = news.xpath("./a/@href").extract_first()
url = response.urljoin(path_url)

yield Request(url=url, callback=self.parse_item)

yield self.call_next_page(response)

Unfortunately, each time that the listing parsing method is called every item request will be made since we don’t
know yet if its content is valid or not. The method in charge of returning the next page request, in this case
call_next_page, has to be decorated with @PaginationMixin.enqueue_next_page_requests.

@PaginationMixin.enqueue_next_page_requests
def call_next_page(self, response):
return Request([...])

This decorator saves the request to be called only if it’s necessary. Then, the last decorator has to be ap-
plied on the method parsing the item since it has to register if a valid item was returned. This decorator is
@PaginationMixin.deregister_response.

@PaginationMixin.deregister_response
def parse_item(self, response):
date = response.xpath("//div/text").re_first('Posted on (.*)')
item = {'created_at': date}

if date_matches(data=item['created_at'], after='5 days ago'):
return item

10 Chapter 3. Documentation contents

scrapy-mosquitera Documentation, Release 0.1.0

After that, we’re ready to run our spider. First, it will make three requests, one for each post page and the pagination
request will be saved. Then, if the three post are valid, they will be scraped and the next page request will be made.
Otherwise, it only scrape the valid posts and the spider run will finish.

3.3. Examples 11

scrapy-mosquitera Documentation, Release 0.1.0

12 Chapter 3. Documentation contents

Python Module Index

s
scrapy_mosquitera.matchers, 7

13

scrapy-mosquitera Documentation, Release 0.1.0

14 Python Module Index

Index

D
date_in_period_matches() (in module

scrapy_mosquitera.matchers), 7
date_matches() (in module scrapy_mosquitera.matchers),

7
deregister_response() (scrapy_mosquitera.mixin.PaginationMixin

static method), 8

E
enqueue_next_page_requests()

(scrapy_mosquitera.mixin.PaginationMixin
static method), 8

P
PaginationMixin (class in scrapy_mosquitera.mixin), 8

R
register_requests() (scrapy_mosquitera.mixin.PaginationMixin

static method), 9

S
scrapy_mosquitera.matchers (module), 7

15

	How it works
	Installation
	Documentation contents
	Matchers
	PaginationMixin
	Examples

	Python Module Index

