
doc Documentation
Release 0.0.1

michaelyin

Jan 24, 2018

Basic concepts

1 Basic concepts 3
1.1 Intro . 3
1.2 Installation . 5
1.3 Read before you start . 6

2 Advanced topic 9
2.1 Enhance your browser . 9
2.2 Enhance your terminal . 11
2.3 Troubleshoot spider . 12
2.4 Mitmproxy . 13

3 Task List 15
3.1 Basic extract . 15
3.2 Json extract . 16
3.3 Ajax extract . 17
3.4 Ajax Header . 18
3.5 Meta StoreInfo . 19
3.6 Ajax Cookie . 20
3.7 Ajax Sign . 22
3.8 Regex extract . 23
3.9 List page and products extract . 24
3.10 List page and pagination extract . 25

i

ii

doc Documentation, Release 0.0.1

Warning: This project is deprecated and it has been merged into Scrapy Tutorial Series: Web Scraping Using
Python

Basic concepts 1

https://blog.michaelyin.info/scrapy-tutorial-series-web-scraping-using-python/?utm_source=github&utm_medium=website&utm_campaign=scrapy_guru
https://blog.michaelyin.info/scrapy-tutorial-series-web-scraping-using-python/?utm_source=github&utm_medium=website&utm_campaign=scrapy_guru

doc Documentation, Release 0.0.1

2 Basic concepts

CHAPTER 1

Basic concepts

Intro

What is contained in this project.

1. A list of tasks which covers many basic points in spider development, each task is a short exercise. You will
be able to solve real complex problem after you solve the simple tasks step by step. This idea derive from code
kata

2. Some advanced tips and notes which help you improve the development productivity, and it will introduce you
some great tools.

Supplement instead of alternative of scrapy doc

Scrapy doc is a good start for people who want to learn to write spider by using scrapy. Since scrapy doc mainly
focus on the components and concepts in scrapy, some points which make sense in spider development with scrapy
are missed in the doc. That is why I created this project.

I did not talk much in componetns of scrapy in this doc. It is strongly recommend user to read scrapy official doc
first to have a basic understanding such as how to create spider and how to run spider in scrapy. You might
can not get some points here if you have no idea how the spider work in scrapy. If you have question for scrapy,
please check it in official doc first.

Doc

http://scrapy-guru.readthedocs.io/en/latest/index.html

Support Platform

OSX, Linux, python 2.7+, python 3.4+

Get started

First, you should take a view of the workflow figure of this project to know how this project work and read basic
concepts in doc.

Secondly user will choose one task in online doc of project and get started, it is recommended to solve the task in
doc order considering the learning curve. User should create spider as doc asked and run the spider to get the data

3

https://en.wikipedia.org/wiki/Kata_(programming)
https://en.wikipedia.org/wiki/Kata_(programming)
https://doc.scrapy.org/en/latest/index.html
http://scrapy-guru.readthedocs.io/en/latest/index.html
http://scrapy-guru.readthedocs.io/en/latest/#basic-concepts
http://scrapy-guru.readthedocs.io/en/latest/#basic-concepts

doc Documentation, Release 0.0.1

as expected. There is a sample spider callled basic_extract in the project, just follow it to create new one and
troubleshoot If user can not make the spider to work, you can also check the working spider code in the solution repo
which I will push later.

Thirdly user can get some advaned advise or tips in advanced topic , you can learn how to enhance your browser to
make it more helpful in spider development or other stuff.

Workflow

Please click the image for better resolution.

Project structure

Here is the directory structure:

.
- docs
| - Makefile
| - build
| - source
- requirements.txt
- spider_project
| - release
| - scrapy.cfg
| - spider_project
- webapp

- content
- db.sqlite3
- manage.py
- staticfiles
- templates
- webapp

• docs contains the html documentation of this project

• webapp is a web application developed by Django, we can see this app as a website which show us product
info and product links, and we need to write spider to extract the data from it.

• spider_project is a project based on Scrapy which we should write spider in it to extract data from
webapp.

First glance

So here is an example product detail page, it is rendered by webapp mentioned above.

4 Chapter 1. Basic concepts

http://scrapy-guru.readthedocs.io/en/latest/#advanced-topic

doc Documentation, Release 0.0.1

Now according to task in the doc, we need to extract product title and desc from the product detail page

Here is part of spider code:

class Basic_extractSpider(scrapy.Spider):
taskid = "basic_extract"
name = taskid
entry = "content/detail_basic"

def parse_entry_page(self, response):
item = SpiderProjectItem()
item["taskid"] = self.taskid
data = {}
title = response.xpath("//div[@class='product-title']/text()").extract()
desc = response.xpath("//section[@class='container product-info']//li/text()

→˓").extract()
data["title"] = title
data["desc"] = desc

item["data"] = data
yield item

We can run the spider now, the spider will start to crawl from the self.entry and it will check the data scraped
automatically. if the data scraped have some mistake, it will give the detail of the error and help you get the spider
work as expect.

Installation

Clone the project

git clone https://github.com/michael-yin/scrapy_guru.git

1.2. Installation 5

http://scrapy-guru.readthedocs.io/en/latest/tasks/basic_extract.html

doc Documentation, Release 0.0.1

Virtual environment

If you have no idea what virtual environment is, please take look at https://virtualenv.pypa.io/en/stable/installation/

After you created virtual env and activated it, just pip install -r requirements.txt to install the packages
needed

Config

Assign port

You should assign a port of your localhost to make webapp to run. By default, we recommend you run web app at
8000 port

cd webapp
python manage.py runserver 8000

Config spider_project

cd spider_project/spider_project
edit settings.py , remember to change the port number if webapp is not 8000
WEB_APP_PREFIX = "http://127.0.0.1:8000/"

Done

Now you are done with installation, please read Read before you start

Read before you start

Entry

Every task have an entry point where spider start to crawl, this entry point may be overview page which contains many
product page, or it might be product detail page. or something else.

Taskid

The taskid is unique, each task have unique taskid, and we need to remember to set it in item yield from spider.

Note: entry and taskid only make sense in this project and they are not neede in normal scrapy spider

Item

The data scraped by spider should be filed in SpiderProjectItem located in
spider_project/spider_project/items.py:

6 Chapter 1. Basic concepts

https://virtualenv.pypa.io/en/stable/installation/

doc Documentation, Release 0.0.1

class SpiderProjectItem(scrapy.Item):
define the fields for your item here like:
taskid = scrapy.Field()
data = scrapy.Field()

The taskid field is the taskid you can get in each task, and the data is the data scraped, in most cases, the data field
is a dict python type.

How to know if the spider work fine in each task?

Since user should create spider on himself, so spider contract might not be suitable to check if the data scraped is right.

After spider yield the item, the item pipeline will check if the scraped data is right and the result can be found in log
file. This work is done by SpiderProjectPipeline automatically.

Done

Now you are ready to start developing spider, please start here Basic extract

Intro Introduction of this project

Installation How to install and config this project

Read before you start Something you should know before you start

1.3. Read before you start 7

https://doc.scrapy.org/en/latest/topics/contracts.html
https://doc.scrapy.org/en/latest/topics/item-pipeline.html

doc Documentation, Release 0.0.1

8 Chapter 1. Basic concepts

CHAPTER 2

Advanced topic

Enhance your browser

Incognito mode

Incognito mode is also called Private Browsing in some browser. In this mode the browser does not save cookie
and history. This property make it very easy for spider development.

In many cases, we need to find out specific value in cookie to make spider to work, in incognito mode we can easily
check the value and got to know how the website might work when spider crawling from a fresh start.

If you are using chrome, just follow the steps below

1. In the top-right corner of the browser window, select the Menu

2. Select New Incognito Window (computer)

3. A new window will open with the Incognito icon

Quickly test my xpath or css expression

There are several plugin in browser to support xpath extraction. You can try XPath Helper in google chrome,
which will make it easy to evaluate xpath expression on webpage.

Here is how to use it. Press ctrl+shift+x to open XPath Helper, and you can see the input and output panel. You
can type your xpath query string in the input panel, and the result of the xpath will show on the right side and in the
web page the selected content will have a yellow backgroud, which is very easy to check if the xpath expression is
right.

9

doc Documentation, Release 0.0.1

Note: What you should concern here is that in some cases the xpath espression which indeed work in browser can
not work on raw html becuase some DOM element might been modified by js, so please test it in scrapy shell before
write it in spider code.

If you do not want to install extention to make this done, google chrome has built-in support to query xpath and css
expression. Take a look at $() and $x() in console, and follow this tutorials.

Use web dev tools

Here is overview screnshot about the web dev tools of google chrome, you can learn more here: https://developers.
google.com/web/tools/chrome-devtools/

Debug minified js file in chrome

chrome-debug-minified-js.

10 Chapter 2. Advanced topic

https://doc.scrapy.org/en/latest/index.html
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/

doc Documentation, Release 0.0.1

Enhance your terminal

Note: If you are newbie developer and have not much experience in terminal, it is not recommended for you to try
content below, please focus on basic terminal concepts first. When you can master your terminal env, then you can use
the tools below to improve your efficiency.

Tool

You should use good terminal tool before enter terminal world, iterm2 in osx and terminator in linux are both
good tools which worth trying.

Shell

You really need try zsh combined with on-my-zsh, which is a great project in github which have over 40000+ stars.
Check it here

Terminal multiplexer

Terminal multiplexer can make you switch easily between several programs in one terminal. And this patten can make
you focus on the work and make you more effieicent.

You can try tmux or byobu.

Incremental history search

When you develop spider, you need to run many commands and you will find out that most of them have common
patten, and you might need to change some paras and rerun.

At first, you use history command and use grep to filter the command you want. The bad part of this approach is
that you always need to enter number to select history command.

Here I want to introduce a tool which can make us handle history command more easily. This tool is Zaw, its homepage
is https://github.com/zsh-users/zaw .

Its a tools help you select item from source. The source here can be something such as git log, hisotry, programs or
others.

The only piece of Zaw that I introduce here is its excellent history search.

We can enter multiple keywords in Zaw and then flip through results until we fount what we want.

2.2. Enhance your terminal 11

https://github.com/robbyrussell/oh-my-zsh
https://github.com/zsh-users/zaw

doc Documentation, Release 0.0.1

As you can see I enter crawl then the history will filtered and if I continue to enter hm then all the commands which
have both crawl and hm will be filtered out, which is very handy.

Here is a great post talking about the Zaw hisotry search and config.

http://blog.patshead.com/2013/04/more-powerful-zsh-history-search-using-zaw.html

Workspace

Here is the screenshot of my workspace.

You can see I have opened a lot of panels in single one tmux window, I can quickly switch between them and do not
need to jump out my favorate terminal env.

Troubleshoot spider

Scrapy shell

scrapy shell is a scrapy command which provides us a interactive shell where we can test our code and check the
output.

12 Chapter 2. Advanced topic

http://blog.patshead.com/2013/04/more-powerful-zsh-history-search-using-zaw.html

doc Documentation, Release 0.0.1

It is stronglly recommended to install ipython with scrapy. ipython offers introspection, rich media, shell syntax, tab
completion, and history.

For example, when you try to solve Basic extract , you can use scrapy shell quickly test your code.

• enter scrapy shell to open scrapy shell

• use fetch http://127.0.0.1:8000/content/detail_basic to get web page we want to analyze

• you can use response.xpath and response.css to test your expression in
this web page, this can quickly find out the error, in this task, we can test
response.xpath("//div[@class='product-title']/text()").extract()

• if the output is right, just copy the code in spider.

Scrapy parse

scrapy parse can help you test your method to make sure it work fine. Here is a example

scrapy parse --spider=basic_extract --loglevel=DEBUG -c parse_entry_page "http://127.
→˓0.0.1:8000/content/detail_basic"

Make sure to use this to test your methods and it will save your a lot of time later, trust me!

Print log

Log is the only way to figure out what really happend when scrawl working. So I will give you some suggestion about
the log.

The spider may raise exception when working due to the different html structure or something else, you might need to
log the entire html souce code to analyze later. Here is an example, we print the response.body in log to troubleshoot.

self.logger.debug('error occur at ' + response.url)
self.logger.debug(response.body)

PDB

I do not understand why scrapy not recommend pdb over scrapy shell, in my opinion pdb is the best debuging tool
when developing spider.

You can set breakpoint, conditional breakpoint in spider, inspect variable in pdb shell, and print traceback, which make
debug work easier. Somebody might not know ipdb. I must say ipdb add some more usefull feature to pdb and it is
worthile to give it a try.

Take a look at this great post

Mitmproxy

Intro

mitmproxy is an interactive, SSL-capable intercepting proxy with a console interface.

2.4. Mitmproxy 13

http://ipython.org/
https://pymotw.com/2/pdb/

doc Documentation, Release 0.0.1

Pros and cons

Here is list of the popluar network tools user use to inspect http traffic.

wireshark Fiddler Charlesproxy Mitmproxy
Win, OSX, Linux Win OSX Win, OSX, Linux
GUI(Qt, GTK) GUI(Native) GUI(Native) Console

As we can see, mitmproxy has no gui interface for newbie user to inspect http request, but in my eyes this is the great
advantage because we can launch mitmproxy in terminal and quickly detect http request

How to use mitmproxy to speed the development of spider

Terminal

Mitmproxy work fine in my terminal env and I can quickly switch between tools which used in spider deveopment.
You can read Enhance your terminal.

In mitmproxy I can quickly check content of http requests by entering some key.

Filter

Sometime you know the website might use some ajax request to get the data you want to scrape, so you go to the
network panel of your spider try to check the detail of the request. After you click 10+ links, your are tired and hope
some tool can save your life here.

mitmproxy can really help you here.

You can write filter expression to make mitmproxy filter the request based on the expression. For example, if you want
to filter http request which have content MAMA Jersey Top , you can use the expression ~b "MAMA Jersey
Top" , or you can filter the http reqeusrt based on url, response.body, response.header

You can give it a try and I promise you will be surprised.

If you want to analyze https

When you start to use mitmproxy, it is stronglly recommened to install the CA certificate before you start because if
you did not install the CA certificate you can not make mitmproxy inspect https request.

Take a look at this after install.

http://docs.mitmproxy.org/en/stable/certinstall.html

Enhance your browser How to enhance your browser to make it help you develope spider

Enhance your terminal How to enhance your terminal shell.

Troubleshoot spider How to troubleshoot your scrapy spider.

Mitmproxy How to inspect your http request.

14 Chapter 2. Advanced topic

http://docs.mitmproxy.org/en/stable/certinstall.html

CHAPTER 3

Task List

Basic extract

Goal

There are mainly two ways in web crawling package such as scrapy, beautifulsoup to extract info from html, one is
css and the other is xpath, you can learn css here and xpath here

I must say there is not much difference between them, you can pick the one you prefer in spider developing.

You might need quickly test your xpath or css expression in your browser, check it here Quickly test my xpath or css
expression

I have created basic_extract spider to show you how to use it in this project. You are free to delete it and create your
own or modify it.

Entry

If you have no idea what entry and taskid is, check Read before you start

Remember to config WEB_APP_PREFIX which located in spider_project/spider_project/settings.py

Entry:

content/detail_basic

If your webapp is working on 8000, click the link below

http://127.0.0.1:8000/content/detail_basic

Taskid

Taskid:

basic_extract

15

https://api.jquery.com/category/selectors/
https://msdn.microsoft.com/en-us/library/ms256471%28v=vs.110%29.aspx
http://127.0.0.1:8000/content/detail_basic

doc Documentation, Release 0.0.1

Detail of task

Once you finish the coding just run scrapy crawl basic_extract --loglevel=INFO to check the out-
put, this command is a scrapy command which run spider which have name basic_extract and set the logging level to
INFO. This command will run the spider, crawl the data and check the data. Results will show up in terminal

In this task we extract the title, description from the entry page (above), the final data should be:

[{
"data": {

"desc": ["55% cotton, 40% polyester, 5% spandex.", "Imported", "Art.No. 85-
→˓8023"],

"title": ["MAMA Jersey Top"]
},
"taskid": "basic_extract"

}]

Advanded

Note: What you should concern in this task is that in some cases the xpath espression which indeed work in your
browser can not work on raw html becuase some DOM element might been modified by js, so please test it in scrapy
shell before write it in spider code.

Json extract

Goal

Recently many websites start to use json format to save data. So we need to learn how to handle this situation.

Entry

If you have no idea what entry and taskid is, check Read before you start

Remember to config WEB_APP_PREFIX which located in spider_project/spider_project/settings.py

Entry:

content/detail_json

If your webapp is working on 8000, click the link below

http://127.0.0.1:8000/content/detail_json

Taskid

Taskid:

json_extract

16 Chapter 3. Task List

http://127.0.0.1:8000/content/detail_json

doc Documentation, Release 0.0.1

Detail of task

In this task we try to crawl product title and price info. You should find out that the value returned by xpath is not the
one you see in your brower. Because javascript have change that.

Once you finish the coding just run scrapy crawl json_extract --loglevel=INFO to check the output

The final data should be:

[{
"data": {

"price": "$ 13.99",
"title": "MAMA Jersey Top"

},
"taskid": "json_extract"

}]

Advanded

Note: Sometime there are some unicode char in the raw json string which might cause program raise UnicodeDe-
codeError. You should remember before runing json.loads, make the the json_data is decoded as unicode string type.
If there are some syntax error in json string, you can use json lint to help you figure out where the error is.

Ajax extract

Goal

Recently many websites get product info through ajax request so it make sense for us to quickly figure out how it
works and find a way to get the real data.

If you have no idea what ajax is, read it

Entry

If you have no idea what entry and taskid is, check Read before you start

Remember to config WEB_APP_PREFIX which located in spider_project/spider_project/settings.py

Entry:

content/detail_ajax

If your webapp is working on 8000, click the link below

http://127.0.0.1:8000/content/detail_ajax

Taskid

Taskid:

3.3. Ajax extract 17

http://jsonlint.com/
http://www.w3schools.com/xml/ajax_intro.asp
http://127.0.0.1:8000/content/detail_ajax

doc Documentation, Release 0.0.1

ajax_extract

Detail of task

In this task we try to crawl product title and price info. You should find out that the value in html is not the one you
see in your brower.

You can check the network panel of your brower to filter out ajax url the browser used and try to implement it in your
spider. You should yield a request in parse_entry_page method to minic ajax request.

Once you finish the coding just run scrapy crawl ajax_extract --loglevel=INFO to check the output

The final data should be:

[{
"data": {

"price": "$ 12.99",
"title": "MAMA Jersey Top"

},
"taskid": "ajax_extract"

}]

Advanded

Note: You must be able to use tools of browser to analyze http request. see Use web dev tools.

Ajax Header

Goal

Some backend systems would check http header to block some abnormal request. In this case we need to make sure
the request from our spider will hsave the same http header as we see in the browser.

You should check the http header in the browser first and then implement it in your spider.

18 Chapter 3. Task List

doc Documentation, Release 0.0.1

If you have no idea what http header is , check here

Entry

If you have no idea what entry and taskid is, check Read before you start

Remember to config WEB_APP_PREFIX which located in spider_project/spider_project/settings.py

Entry:

content/detail_header

If your webapp is working on 8000, click the link below

http://127.0.0.1:8000/content/detail_header

Taskid

Taskid:

ajax_header

Detail of task

In this task we try to crawl product title and price info. You should find out that the value in html is not the one you
see in your brower.

Once you finish the coding just run scrapy crawl ajax_header --loglevel=INFO to check the output

The final data should be:

[{
"data": {

"price": "$ 12.99",
"title": "MAMA Jersey Top"

},
"taskid": "ajax_header"

}]

Advanded

Note: Actually you can use some proxy tools to help you analyze http request easier, visit Mitmproxy.

Meta StoreInfo

Goal

Sometime if you want to pass value between more than one http pages, then you will need response.meta as a tmp
datatable.

3.5. Meta StoreInfo 19

https://en.wikipedia.org/wiki/List_of_HTTP_header_fields
http://127.0.0.1:8000/content/detail_header

doc Documentation, Release 0.0.1

You can learn more here

Entry

If you have no idea what entry and taskid is, check Read before you start

Remember to config WEB_APP_PREFIX which located in spider_project/spider_project/settings.py

Entry:

content/detail_header

If your webapp is working on 8000, click the link below

http://127.0.0.1:8000/content/detail_header

Taskid

Taskid:

meta_storeinfo

Detail of task

In this task we try to crawl product title, product description, price info.

You should be concern that the description is in the raw html, but the title and price info should be given by ajax. To
deal with this situation, you should save the description in response.meta and pass it in request.

The final data should be:

[{
"data": {

"price": "$ 12.99",
"description": ["55% cotton, 40% polyester, 5% spandex.", "Imported", "Art.No.

→˓ 85-8023"],
"title": "MAMA Jersey Top"

},
"taskid": "meta_storeinfo"

}]

Ajax Cookie

Goal

It is importtant to analyze cookies of http request in many cases

If you have no idea what cookie is , read it

If you are using chrome, try visiting chrome://settings/cookies , then you can inspect all cookies in your browser.

20 Chapter 3. Task List

https://doc.scrapy.org/en/latest/topics/request-response.html#passing-additional-data-to-callback-functions
http://127.0.0.1:8000/content/detail_header
http://www.w3schools.com/js/js_cookies.asp

doc Documentation, Release 0.0.1

Entry

If you have no idea what entry and taskid is, check Read before you start

Remember to config WEB_APP_PREFIX which located in spider_project/spider_project/settings.py

Entry:

content/detail_cookie

If your webapp is working on 8000, click the link below

http://127.0.0.1:8000/content/detail_cookie

Taskid

Taskid:

ajax_cookie

Detail of task

In this task we try to crawl product title, product description, price info.

After some tests, you might find out it is hard to make the spider get the data through ajax, so you need to dive into
the detail of the ajax request.

You need to make sure the url, http header, cookie values are all reasonable.

Once you finish the coding just run scrapy crawl ajax_cookie --loglevel=INFO to check the output

The final data should be:

[{
"data": {

"price": "$ 20.00",
"description": ["55% cotton, 40% polyester, 5% spandex.", "Imported", "Art.No.

→˓ 85-8023"],
"title": "Congratulations"

},
"taskid": "ajax_cookie"

}]

Advanded

Note: When dealing with cookies in browser, it seems a fresh start without any cookie is a good start. see Incognito
mode.

3.6. Ajax Cookie 21

http://127.0.0.1:8000/content/detail_cookie

doc Documentation, Release 0.0.1

Ajax Sign

Goal

Many websites now minified js file when deployment, so we should learn how to analyze the minmized code in browser
and try to debug it in some cases to figure out the workflow. This process is like disassemble in reverse engineering.

Entry

If you have no idea what entry and taskid is, check Read before you start

Remember to config WEB_APP_PREFIX which located in spider_project/spider_project/settings.py

Entry:

content/detail_sign

If your webapp is working on 8000, click the link below

http://127.0.0.1:8000/content/detail_sign

Taskid

Taskid:

ajax_sign

Detail of task

In this task we try to crawl product title, product description, price info.

You found out that the ajax url used sign in the url but you have no idea where it is from, and it seems the js file
detail_sign.js is minified.

Once you finish the coding just run scrapy crawl ajax_sign --loglevel=INFO to check the output

The final data should be:

[{
"data": {

"price": "$ 20.00",
"description": ["55% cotton, 40% polyester, 5% spandex.", "Imported", "Art.No.

→˓ 85-8023"],
"title": "Congratulations"

},
"taskid": "ajax_sign"

}]

Advanded

Note: Learn how to pretty print minified js and debug the minified js, chrome-debug-minified-js

22 Chapter 3. Task List

http://127.0.0.1:8000/content/detail_sign

doc Documentation, Release 0.0.1

Regex extract

Goal

Regex is a very powerful tool when dealing with text, you have no reason to ignore it. A regulare expression is a string
describing a certain amount of texts. If you have no knowledge of regex, you should learn it before you begin this task.

You can read this great tutorials here , once you have learned regex, you can try this online regex tool to quickly test
your regex written in python.

Entry

If you have no idea what entry and taskid is, check Read before you start

Remember to config WEB_APP_PREFIX which located in spider_project/spider_project/settings.py

Entry:

content/detail_regex

If your webapp is working on 8000, click the link below

http://127.0.0.1:8000/content/detail_regex

Taskid

Taskid:

regex_extract

Detail of task

In this task we try to crawl product title and price info. Since the data in js is not very easy to extract, regex is a good
tool to handle this situation.

Once you finish the coding just run scrapy crawl regex_extract --loglevel=INFO to check the output

The final data should be:

[{
"data": {

"title": "Regex is important",
"price": "$ 13.99"

},
"taskid": "regex_extract"

}]

3.8. Regex extract 23

https://regexone.com/
https://www.debuggex.com/
http://127.0.0.1:8000/content/detail_regex

doc Documentation, Release 0.0.1

List page and products extract

Goal

In most cases, your spider should start from a list index page and crawl all the product links in the page, so in this task
you will learn how to write spider to work in this case.

Entry

If you have no idea what entry and taskid is, check Read before you start

Remember to config WEB_APP_PREFIX which located in spider_project/spider_project/settings.py

Entry:

content/list_basic/1

If your webapp is working on 8000, click the link below

http://127.0.0.1:8000/content/list_basic/1

Taskid

Taskid:

list_extract

Detail of task

There are 10 products in list page 1, you should extract all product links first, and for each product, you should crawl
title, price, and sku. Sku can be extracted from product url

Once you finish the coding just run scrapy crawl list_extract --loglevel=INFO to check the output

The final data is too long, this is part of it:

[{
"data": {

"sku": "0184140017",
"price": ["$14.99"],
"title": ["Washed linen table runner-Anthracite grey"]

},
"taskid": "list_extract"

}, {
"data": {

"sku": "0184140016",
"price": ["$14.99"],
"title": ["Washed linen table runner-Grey"]

},
"taskid": "list_extract"

}, {
"data": {

"sku": "0184124001",
"price": ["$19.99"],

24 Chapter 3. Task List

http://127.0.0.1:8000/content/list_basic/1

doc Documentation, Release 0.0.1

"title": ["Lace table runner-White"]
},
"taskid": "list_extract"

}]

List page and pagination extract

Goal

The only difference between this task and List page and products extract is that thie task also needs deal with pagination

Entry

If you have no idea what entry and taskid is, check Read before you start

Remember to config WEB_APP_PREFIX which located in spider_project/spider_project/settings.py

Entry:

content/list_basic/1

If your webapp is working on 8000, click the link below

http://127.0.0.1:8000/content/list_basic/1

Taskid

Taskid:

list_extract_pagination

Detail of task

There are about 100+ products in all list pages, you should crawl them all, for each product, you should crawl title,
price, and sku. Sku can be extracted from product url

The final data is too long, this is part of it:

[{
"data": {

"sku": "0447183001",
"price": ["$14.99"],
"title": ["Textured trinket box-White"]

},
"taskid": "list_extract_pagination"

}, {
"data": {

"sku": "0463014001",
"price": ["$39.99"],
"title": ["Cotton terry dressing gown-Light grey"]

},

3.10. List page and pagination extract 25

http://127.0.0.1:8000/content/list_basic/1

doc Documentation, Release 0.0.1

"taskid": "list_extract_pagination"
}]

Basic extract Understand the spider workflow and basic xpath syntax.

Json extract Learn to use json module to extract json data.

Ajax extract Learn to inspect ajax request.

Ajax Header Learn to inspect http header of ajax request.

Meta StoreInfo Learn to pass additional data to callback functions

Ajax Cookie Learn to analyze cookie of http request.

Ajax Sign Learn to analyze minified js and debug code in browser.

Regex extract Learn to use regex expression to extract info.

List page and products extract Learn to extract products from list pages.

List page and pagination extract Learn to extract info from list page and handle pagination.

26 Chapter 3. Task List

	Basic concepts
	Intro
	Installation
	Read before you start

	Advanced topic
	Enhance your browser
	Enhance your terminal
	Troubleshoot spider
	Mitmproxy

	Task List
	Basic extract
	Json extract
	Ajax extract
	Ajax Header
	Meta StoreInfo
	Ajax Cookie
	Ajax Sign
	Regex extract
	List page and products extract
	List page and pagination extract

