

scipydirect - A python wrapper to the DIRECT algorithm.

DIRECT is a method to solve global bound constraint optimization problems and
was originally developed by D. R. Jones, C. D. Perttunen and B. E. Stuckmann.
It is designed to find global solutions of mathematical optimization problems of the from

[image: \min_ {x \in R^n} f(x)]

subject to

[image: x_L \leq x \leq x_U]

Where [image: x] are the optimization variables (with upper and lower
bounds), [image: f(x)] is the objective function.

The DIRECT package uses the Fortran implementation of DIRECT written by
Joerg.M.Gablonsky, DIRECT Version 2.0.4. More information on the DIRECT
algorithm can be found in Gablonsky’s thesis [http://repository.lib.ncsu.edu/ir/bitstream/1840.16/3920/1/etd.pdf].

Further reading

	Installation

	Tutorial - Solving the six-hump camelback function

	Reference

	Changelog
	Version 1.2

	Version 1.1

	Version 1.0

Installation

The quickest way to install is to type:

$ pip install scipydirect

More detailed instructions follow. To install scipydirect you will need the following prerequisites:

	python 2.6+

	numpy

	C++ compiler

	FORTRAN compiler

Python(x,y) [http://code.google.com/p/pythonxy/] is a great way to get all
of these if you are using windows and satisfied with 32bit.

Download the source files of scipydirect, unzip, and then execute:

$ python setup.py install

You can test the installation by running the examples under the folder test/.
Some of the examples require matplotlib [http://matplotlib.org/].

Tutorial - Solving the six-hump camelback function

Filename: test/C6.py

The following tutorial shows how to find the global minimum of a
Six-hump camelback function using the DIRECT algorithm.

[image: f(x_1, x_2) = (4 - 2.1 x_1^2 + x_1^4 + x_1^4/3) x_1^2 + x_1 x_2 + (-4 + 4 x_2^2) x_2^2, \Omega = [-3, 3] \times [-2, 2].]

First we need to import the solve function from the DIRECT package:

>>> from scipydirect import minimize

Then we need to define the objective of the function:

>>> def obj(x):
 ... """Six-hump camelback function"""
 ... x1 = x[0]
 ... x2 = x[1]
 ... f = (4 - 2.1*(x1*x1) + (x1*x1*x1*x1)/3.0)*(x1*x1) + x1*x2 + (-4 + 4*(x2*x2))*(x2*x2)
 ... return f

We need to define the domain of the problem using block constraints:

>>> bounds = [(-3, 3), (-2, 2)]

We use the DIRECT algorithm to solve the optimization problem.
The algoritm is called using the minimize function. The solve
functions accepts the problem objective obj and block constraints:

>>> res = minimize(obj, bounds)

In the above we use the default settings of the DIRECT algorithm.
It us possible to costumize the algorithm using the parameters of
the minimize function (see scipydirect.minimize()).

The minimize function returns a result object res making accessible the
optimal point, res.x, the value of the objective at the optimum, res.fun,
and a status message res.ierror.

We can visualize the problem using matplotlib:

>>> fig = plt.figure()
>>> ax = fig.add_subplot(111, projection='3d')

>>> x = res.x
>>> X, Y = np.mgrid[x[0]-1:x[0]+1:50j, x[1]-1:x[1]+1:50j]
>>> Z = np.zeros_like(X)

>>> for i in range(X.size):
 ... Z.ravel()[i] = obj([X.flatten()[i], Y.flatten()[i]])

>>> ax.plot_wireframe(X, Y, Z, rstride=1, cstride=1, cmap=cm.jet)
>>> ax.scatter(x[0], x[1], res.fun, c='r', marker='o')
>>> ax.set_title('Six-hump Camelback Function')
>>> ax.view_init(30, 45)
>>> plt.show()

This results in

(Source code)

More examples can be found in the source distribution under the
test/ folder.

Reference

This is the class and function reference of pydirect. Please refer to
the tutorial for further details, as the class and
function raw specifications may not be enough to give full guidelines on their
uses.

	
scipydirect.minimize(func, bounds=None, nvar=None, args=(), disp=False, eps=0.0001, maxf=20000, maxT=6000, algmethod=0, fglobal=-1e+100, fglper=0.01, volper=-1.0, sigmaper=-1.0, **kwargs)

	Solve an optimization problem using the DIRECT (Dividing Rectangles) algorithm.
It can be used to solve general nonlinear programming problems of the form:

[image: \min_ {x \in R^n} f(x)]

subject to

[image: x_L \leq x \leq x_U]

Where [image: x] are the optimization variables (with upper and lower
bounds), [image: f(x)] is the objective function.

	Parameters:	func : objective function

called as func(x, *args); does not need to be defined everywhere,
raise an Exception where function is not defined

bounds : array-like

(min, max) pairs for each element in x, defining
the bounds on that parameter.

nvar: integer :

Dimensionality of x (only needed if bounds is not defined)

eps : float

Ensures sufficient decrease in function value when a new potentially
optimal interval is chosen.

maxf : integer

Approximate upper bound on objective function evaluations.

Note

Maximal allowed value is 90000 see documentation of Fortran library.

maxT : integer

Maximum number of iterations.

Note

Maximal allowed value is 6000 see documentation of Fortran library.

algmethod : integer

Whether to use the original or modified DIRECT algorithm. Possible values:

	algmethod=0 - use the original DIRECT algorithm

	algmethod=1 - use the modified DIRECT-l algorithm

fglobal : float

Function value of the global optimum. If this value is not known set this
to a very large negative value.

fglper : float

Terminate the optimization when the percent error satisfies:

[image: 100*(f_{min} - f_{global})/\max(1, |f_{global}|) \leq f_{glper}]

volper : float

Terminate the optimization once the volume of a hyperrectangle is less
than volper percent of the original hyperrectangel.

sigmaper : float

Terminate the optimization once the measure of the hyperrectangle is less
than sigmaper.

	Returns:	res : OptimizeResult

The optimization result represented as a OptimizeResult object.
Important attributes are: x the solution array, success a
Boolean flag indicating if the optimizer exited successfully and
message which describes the cause of the termination. See
OptimizeResult for a description of other attributes.

	
class scipydirect.OptimizeResult

	Bases: dict

Represents the optimization result.

	Attributes:	x : ndarray

The solution of the optimization.

success : bool

Whether or not the optimizer exited successfully.

status : int

Termination status of the optimizer. Its value depends on the
underlying solver. Refer to message for details.

message : str

Description of the cause of the termination.

fun, jac, hess, hess_inv : ndarray

Values of objective function, Jacobian, Hessian or its inverse (if
available). The Hessians may be approximations, see the documentation
of the function in question.

nfev, njev, nhev : int

Number of evaluations of the objective functions and of its
Jacobian and Hessian.

nit : int

Number of iterations performed by the optimizer.

maxcv : float

The maximum constraint violation.

Notes

There may be additional attributes not listed above depending of the
specific solver. Since this class is essentially a subclass of dict
with attribute accessors, one can see which attributes are available
using the keys() method.

Changelog

Version 1.2

	add numpy to install_requires and fix problem with newer f2py versions

Version 1.1

	added Python 3 support

	allow objective function to raise exception where undefined

Version 1.0

Initial version

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 scipydirect	

 	
 	
 scipydirect.__init__	

Index

 M
 | O
 | S

M

 	
 	minimize() (in module scipydirect)

O

 	
 	OptimizeResult (class in scipydirect)

S

 	
 	scipydirect.__init__ (module)

 _images/math/9f9e0d35808a2e259a95d9934357a4d80aa7c3c4.png
min f(z

e R™

_images/math/fc2880965251ceb52e41c596f540f9384809efa5.png
100 * (frin — fotobat)/ max(1, | fotobat|) < faiper

_images/math/14546c27a7b929642f7840acca5f851c503ea109.png

_static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/comment.png

_images/math/503bf1f45814e98e6255ade20cec57f6b32d2417.png
flz1,22) = (4 = 2.121 + 71 + 77/3)ay + w122 + (—4 + 4373,
0=1[-3.3]x[-2,2]

_images/math/188c175aac0a8a9c22499336711b5d7256407254.png

_images/math/064f91ce4b94122f3140bb3ff958ffa39a09004e.png
Ty

<Tr<

Tyr

_static/file.png

nav.xhtml

 Table of Contents

 		scipydirect - A python wrapper to the DIRECT algorithm.

 		Installation

 		Tutorial - Solving the six-hump camelback function

 		Reference

 		Changelog

 		Version 1.2

 		Version 1.1

 		Version 1.0

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

