scikit-ci Documentation
Release 0.21.0.post0.dev0+gb348833

The scikit-build team

May 22, 2019

User guide

1 Installation

1.1 Install package with pip o o o o e e e e

1.2 Install from Source e e e

1.3 Dependencies o i it e e e e e e e e e e e e e e e e e
2 Usage

2.1 Executing scikit-Ci StEPS e e e

2.2 Calling scikit-ci through python —m ci

2.3 Getting help on version, Option NAMES« v v v v v v v et e e e e e e e e e

3 Configuration file

3.1 Conceptof Step e e e
3.2 Mapping with Appveyor, Azure Pipelines, CircleCI and TravisCI steps
3.3 Order of StePS .« v v v v e e e e e e e e e e e e e e e e e
3.4 Automatic execution of dependent Steps L. .o o e e e e e e
3.5 Keeping track of executed steps L. L e e
3.6 Environment variable persistence oL e e e e e e e e e e
3.7 Stepspecialization L e e e e e
3.8 Reserved Environment Variables L
3.9 Environment variable usage o e e e e e e e e e
3.10 Command Specification L e e
3.11 Python Command Specification e e e

4 Contributing

4.1 Typesof Contributions L
42 GetStarted L. e e e e e e e
4.3 Pull Request Guidelines e e
A4 TIPS « v o e e e e e e e e e e e e e e e e e e

5 Credits

6 History

7 Release Notes
7.1 Scikit-ci 0.21.0o
7.2 Scikit-ci 0.20.0 e e e
7.3 Scikit-ci 0.19.0 e

W W W W

SN N L

17
17
18
18
19

21

23

7.4 Scikit-ci 0.18.0
7.5 Scikit-ci 0.17.0

8 Making a release
8.1 Prerequisites L. e e e e e e e e e
8.2 Documentation conventions
8.3 Setting up environment
8.4 PyPI: Step-by-step

9 Indices and tables

10 Resources

27
27
27
27
28

31

33

scikit-ci Documentation, Release 0.21.0.post0.dev0+ghb348833

scikit-ci enables a centralized and simpler CI configuration for Python extensions.

By having appveyor.yml, azure-pipelines.yml, circle.yml and .travis.yml calling the scikit-ci
command-line executable, all the CI steps for all service can be fully described in one scikit—ci.yml configuration
file.

User guide 1

scikit-ci Documentation, Release 0.21.0.post0.dev0+gb348833

2 User guide

CHAPTER 1

Installation

1.1 Install package with pip

To install with pip:

’$ pip install scikit-ci

1.2 Install from source

To install scikit-ci from the latest source, first obtain the source code:

$ git clone https://github.com/scikit-build/scikit-ci
$ cd scikit-ci

then install with:

’$ pip install .

or:

’$ pip install -e .

for development.

1.3 Dependencies

1.3.1 Python Packages

The project has a few common Python package dependencies. The runtime dependencies are:

scikit-ci Documentation, Release 0.21.0.post0.dev0+gb348833

pyfiglet
ruamel.yaml>=0.15;python_version == "'2.7"
ruamel.yaml>=0.15,<=0.15.94;python_version == '3.4'

ruamel .yaml>=0.15;python_version > '3.4'

The development dependencies (for testing and coverage) are:

codecov==2.0.15
coverage==4.5.1
flake8==3.5.0
pytest==3.6.3
pytest-cov==2.5.1
pytest-runner==4.2
wheel>=0.29.0

4 Chapter 1. Installation

CHAPTER 2

Usage

The scikit-ci command line executable allows to execute commands associated with steps described in a scikit-ci
configuration file.

2.1 Executing scikit-ci steps

Invoking scikit-ci will execute all steps listed in a scikit-ci configuration file:

ci

This command executes in order the steps listed below:
¢ before_install
* install
¢ before_build
* build
e test
o after test

It also possible to execute a given step and its dependent steps:

ci build

In that case, the executed steps will be:
¢ before_install
* install
¢ before_build
* build

scikit-ci Documentation, Release 0.21.0.post0.dev0+gb348833

Note: Remember that:
* steps are executed following a specific ordering
* scikit-ci keeps track of previously executed steps.

¢ environment variables set in step (n) will be available in step (n+1). For more details, see Environment
variable persistence

2.2 Calling scikit-ci through python -m ci

You can invoke scikit-ci through the Python interpreter from the command line:

’python -m ci [...]

This is equivalent to invoking the command line script ci [. ..] directly.

2.3 Getting help on version, option names

ci —--version # shows where ci was imported from
ci -h | —--help # show help on command line

6 Chapter 2. Usage

CHAPTER 3

Configuration file

The configuration file is read by the scikit-ci executable to find out which commands to execute for a given step.
The configuration file should named scikit-ci.yml and is usually added to the root of a project.

Itis a YAML file that can be validated against scikit-ci-schema.yml.

3.1 Concept of Step

A step consist of a list of commands and optional key/value pairs describing the environment.

More specifically, a step can be described using the following structure:

before_install:
environment:
FOO: bar
commands :
- echo "Hello world"

where before_install can be replaced by any of these:
e before_install
e install
e before_build
* build
* test

e after_test

http://www.yaml.org/spec/1.2/spec.html
https://github.com/scikit-build/scikit-ci-schema

scikit-ci Documentation, Release 0.21.0.post0.dev0+gb348833

3.2 Mapping with Appveyor, Azure Pipelines, CircleCl and TravisCI

steps

scikit-ci do not impose any particular mapping.

Documentation specific to each services is available here:

* Appveyor build pipeline

Azure pipelines

CircleCI configuration 2.0

CircleClI configuration 1.0 (deprecated)

TravisCI build lifecycle

Reported below are some recommended associations that are know to work.

* appveyor.yml:

install:
- python -m ci install
build script:
- python -m ci build
test_script:
- python -m ci test
after_ test:
- python -m ci after_test
Note: Since on windows the ci executable is installed in the Scripts directory (e.g

C:A\Python27\Scripts\ci.exe) which is not in the PATH by default, the python -m ci syntax is used.

* azure-pipelines.yml:

- script: python -m ci install

displayName:

- script: python -m ci

displayName: Build

- script: python -m ci

displayName: Test

- powershell: |

Install

build

test

displayName: After Test

env:

CODECOV_TOKEN: $ (CODECOV_TOKEN)

e .circleci/config.yml (CircleCI 2.0):

Chapter 3

. Configuration file

https://www.appveyor.com/docs/build-configuration/#build-pipeline
https://docs.microsoft.com/en-us/azure/devops/pipelines/
https://circleci.com/docs/2.0/configuration-reference/
https://circleci.com/docs/configuration/
https://docs.travis-ci.com/user/customizing-the-build/#The-Build-Lifecycle

scikit-ci Documentation, Release 0.21.0.post0.dev0+ghb348833

steps:
— checkout
- run:
<<: *initialize-ven
- run:
name: Install scikit-ci
command: |
—
” —
—
—
- run:
name: Install dependencies
command: |
- run:
name: Flake8
command: |
- run:
name: Build
command: |
- run:
name: Test
command: |
- run:
name: Coverage
command: |

e circle.yml (CircleCI 1.0):

dependencies:
override:

(continues on next page)

3.2. Mapping with Appveyor, Azure Pipelines, CircleCl and TravisCl steps 9

scikit-ci Documentation, Release 0.21.0.post0.dev0+gb348833

(continued from previous page)

- ci install

test:
override:
- ci test

deployment:
master:
branch: master
commands :
— cil after_test

¢ .travis.yml

install:
- ci install

script:
- ci test

after_ success:
- cil after_test

3.3 Order of steps

scikit-ci execute steps considering the following order:
1. before_install
2. install
3. before_build
4. build
5. test

6. after_test

This means that the mapping specified in the continuous integration file has to be done accordingly.

3.4 Automatic execution of dependent steps

Considering the step ordering, executing any step (n) ensures that step (n—-1) has been executed before.

10 Chapter 3. Configuration file

scikit-ci Documentation, Release 0.21.0.post0.dev0+ghb348833

3.5 Keeping track of executed steps

scikit-ci keeps track of executed steps setting environment variables of the form SCIKIT_CI_<STEP_NAME> where
<STEP_NAME> is any of the step name in upper-case.

Note: Specifying the command line option ——force allows to force the execution of the steps ignoring the values
of the SCIKIT_CI_<STEP_NAME> environment variables.

3.6 Environment variable persistence

Environment variable defined in any given step are always guaranteed to be set in steps executed afterward.

This is made possible by serializing the environment on the filesystem.

Note: After executing steps, a file named env. json is created in the current directory along side scikit-ci.
yml. This is where the environment is cached for re-use in subsequent steps.

Specifying the command line option ——clear-cached—-env allows to execute steps after removing the env. json
file.

3.7 Step specialization

For any given step, it is possible to specify commands and environment variables specific to each continuous
integration service.

Recognized services are:
* appveyor
* azure
* circle

e travis

3.7.1 Commands

commands common to all services are executed first, then commands specific to each services are executed.

For example, considering this configuration used on CircleCI and TravisCI:

before_install:
commands :
— echo "Hello Everywhere"

circle:
commands :

— echo "Hello on CircleCI"

travis:

(continues on next page)

3.5. Keeping track of executed steps 11

scikit-ci Documentation, Release 0.21.0.post0.dev0+gb348833

(continued from previous page)

linux:
commands :
- echo "Hello on TravisCI"

The output on the different service will be the following:

e CircleCI:

Hello Everywhere
Hello on CircleCI

e TravisCI:

Hello Everywhere
Hello on TravisCI

Note: Sections Command Specification and Python Command Specification describe the different types of command.

3.7.2 Environment

Similarly, environment can be overridden for each service.

For example, considering this configuration used on CircleCI and TravisCI:

before install:

circle:
environment:
CATEGORY_2: 42

travis:
linux:
environment:
CATEGORY_1: 99

environment:
CATEGORY_1: 1
CATEGORY_2: 2

commands :
- echo "CATEGORY_1 is S${CATEGORY_1}"
— echo "CATEGORY_2 is S${CATEGORY_2}"

The output on the different service will be the following:

¢ on CircleCI:

CATEGORY_1 is 1
CATEGORY_2 is 42

¢ on TravisCI:

CATEGORY_1 is 99
CATEGORY_2 is 2

12 Chapter 3. Configuration file

scikit-ci Documentation, Release 0.21.0.post0.dev0+ghb348833

3.8 Reserved Environment Variables

e CI_NAME: This variable is automatically set by scikit-ci and will contain the name of the continuous integration
service currently executing the step.

3.9 Environment variable usage

To facilitate the use of environment variable across interpreters, scikit-ci uses a specific syntax.

Environment variable specified using $<NAME_OF_VARIABLE> in both commands and environment variable will
be expanded.

For example, considering this configuration used on Appveyor, CircleCI and TravisCI:

before_install:

appveyor:
environment:
TEXT: WindowsS$<TEXT>

travis:
linux:
environment:
TEXT: LinuxWorld

environment:
TEXT: World

commands :
- echo S$<TEXT>

The output on the different service will be the following:

* on Appveyor:

’WindowsWorld ‘

¢ on CircleCI:

fioria |

¢ on TravisCI:

’LinuxWorld ‘

Note: On system having a POSIX interpreter, the environment variable will NOT be expanded if included in string
start with a single quote.

class ci.driver.Driver

static expand_command (command, environments, posix_shell=True)
Return an updated command string where all occurrences of $<EnvironmentVarName> (with a cor-
responding env variable set) have been replaced.

3.8. Reserved Environment Variables 13

https://en.wikipedia.org/wiki/Environment_variable#Use_and_display

scikit-ci Documentation, Release 0.21.0.post0.dev0+gb348833

If posix_shell is True, only occurrences of $<EnvironmentVarName> in string starting with
double quotes will be replaced.

See https://www.gnu.org/software/bash/manual/html_node/Double-Quotes.html and https://www.gnu.org/
software/bash/manual/html_node/Single-Quotes.html

3.10 Command Specification

Specifying command composed of a program name and arguments is supported on all platforms.

For example:

test:
commands :
— echo "Hello"
- python -c "print ('world')"
- git clone git://github.com/scikit-build/scikit-ci

On unix based platforms (e.g CircleCI and TravisCI), commands are interpreted using bash.

On windows based platform (e.g Appveyor), commands are interpreted using the windows command terminal cmd .
exe.

Since both interpreters expand quotes differently, we recommend to avoid single quoting argument. The following
table list working recipes:

CircleCi, TravisCl | Appveyor
scikit-ci command bash output cmd output
echo Hellol Hellol Hellol
echo "Hello2" Hello2 “Hello2”
echo 'Hello3' Hello3 ‘Hello3’
python —-c "print ('Hellod4')" Hello4 Hello4
python -c 'print ("Hello5")' Hello5 no output
python —-c "print ('Hello6\'World')" | Hello6’World Hello6’World

And here are the values associated with sys . argv for different scikit-ci commands:

python program.py --things "foo" "bar" --more-things "doo" 'dar'

Output on CircleCi, TravisCI:

arg_l [-—things]
arg_2 [foo]

arg_3 [bar]

arg_4 [-—more-things]
arg_5 [doo]

arg_6 [dar]

Output on Appveyor:
arg_l [-—things]
arg_2 [foo]

arg_3 [bar]

arg_4 [-—more-things]

(continues on next page)

14 Chapter 3. Configuration file

https://www.gnu.org/software/bash/manual/html_node/Double-Quotes.html
https://www.gnu.org/software/bash/manual/html_node/Single-Quotes.html
https://www.gnu.org/software/bash/manual/html_node/Single-Quotes.html

scikit-ci Documentation, Release 0.21.0.post0.dev0+ghb348833

(continued from previous page)

arg_5 [doo]
arg_6 ['dar'] # <-— Note the presence of single quotes
python program.py —-things "foo" "bar" —--more-things "doo" 'dar'

Output on CircleCi, TravisCI:

arg_l [-—-the-foo=fo0]
arg_2 [-the-bar=bar]

Output on Appveyor:
arg_l [-—the-foo=fo0]
arg_2 [~-the-bar='bar'] # <-— Note the presence of single quotes

Note: Here are the source of program.py:

import sys
for index, arg in enumerate(sys.argv):
if index ==
continue
print ("arg_ []" % (index, sys.argv[index]))

3.11 Python Command Specification

New in version 0.10.0.
The python commands are supported on all platforms.

For example:

test:
commands :
- python: print ("single_line")
- python: "for letter in ['a', 'b', 'c']: print(letter)"
- python: |
Note: By using os.environ, they remove the need for specifying environment variable using the

$<NAME_OF_VARIABLE> syntax described in Environment variable usage.

3.11. Python Command Specification 15

scikit-ci Documentation, Release 0.21.0.post0.dev0+gb348833

16 Chapter 3. Configuration file

CHAPTER 4

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

4.1 Types of Contributions

You can contribute in many ways:

4.1.1 Report Bugs

Report bugs at https://github.com/scikit-build/scikit-ci/issues.
If you are reporting a bug, please include:
* Any details about your CI setup that might be helpful in troubleshooting.

¢ Detailed steps to reproduce the bug.

4.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

4.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “feature” is open to whoever wants to implement
it.

4.1.4 Write Documentation

The scikit-ci project could always use more documentation. We welcome help with the official scikit-ci docs, in
docstrings, or even on blog posts and articles for the web.

17

https://github.com/scikit-build/scikit-ci/issues

scikit-ci Documentation, Release 0.21.0.post0.dev0+gb348833

4.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/scikit-build/scikit-ci/issues.
If you are proposing a new feature:

 Explain in detail how it would work.

» Keep the scope as narrow as possible, to make it easier to implement.

* Remember that this is a volunteer-driven project, and that contributions are welcome :)

4.2 Get Started

Ready to contribute? Here’s how to set up scikiz-ci for local development.
1. Fork the scikit-ci repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/scikit-ci.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed (pip install virtualen-
vwrapper), this is how you set up your cloned fork for local development:

$ mkvirtualenv scikit-ci
$ cd scikit-ci/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8
$ python setup.py test
$ tox

If needed, you can get flake8 and tox by using pip install to install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

4.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

18 Chapter 4. Contributing

https://github.com/scikit-build/scikit-ci/issues

scikit-ci Documentation, Release 0.21.0.post0.dev0+ghb348833

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 2.7, and 3.3, 3.4, 3.5 and PyPy. Check https://travis-ci.org/scikit-build/
scikit-ci/pull_requests and make sure that the tests pass for all supported Python versions.

4.4 Tips

To run a subset of tests:

’$ pytest tests/test_scikit_ci.py::test_expand_environment

4.4. Tips 19

https://travis-ci.org/scikit-build/scikit-ci/pull_requests
https://travis-ci.org/scikit-build/scikit-ci/pull_requests

scikit-ci Documentation, Release 0.21.0.post0.dev0+gb348833

20 Chapter 4. Contributing

CHAPTER B

Credits

Please see the GitHub project page at https://github.com/scikit-build/scikit-ci/graphs/contributors

21

https://github.com/scikit-build/scikit-ci/graphs/contributors

scikit-ci Documentation, Release 0.21.0.post0.dev0+gb348833

22 Chapter 5. Credits

CHAPTER O

History

scikit-ci was initially developed in May 2016 by Omar Padron to facilitate the continuous integration of the scikit-build
project.

At that time, it already consisted of a driver script calling methods specific to each continuous integration service. By
having each CI service calling the same driver script, there was no need to deal with implementing install/test/build
steps over and over in different scripting languages (power shell, shell or windows batch). Instead all code was
implemented in python code leveraging the subprocess module.

Later in early September 2016, with the desire to setup cross-platform continuous integration for other project and
avoid duplication or maintenance hell, a dedicated repository was created by Jean-Christophe Fillion-Robin. By
simply cloning the repository, it was possible to more easily enable CI for other projects.

While this was an improvement, all the steps were still hardcoded in the driver scripts, the project was not easily
customizable. More could be done to improve the user experience.

Finally, in late September 2016, all hardcoded code was moved into standalone executable python scripts. Then,
Jean-Christophe came up with the concept of scikit-ci.yml configuration file. This configuration file allows to describe
the commands and environment for each step (install, test and build) specific to a project and associated continuous
integration services.

23

scikit-ci Documentation, Release 0.21.0.post0.dev0+gb348833

24 Chapter 6. History

CHAPTER /

Release Notes

This is the list of changes to scikit-build between each release. For full details, see the commit logs at http://github.
com/scikit-build/scikit-ci

7.1 Scikit-ci 0.21.0

* Fix installation of using Python 3.4

7.2 Scikit-ci 0.20.0

* Support environment file env.json update from within step.

7.3 Scikit-ci 0.19.0

* Streamline use of ci.driver.Driver.save_env ensuring provided dictionary is stringified.

7.4 Scikit-ci 0.18.0

* Add support for Azure Pipelines

7.5 Scikit-ci 0.17.0

* Add support for ruamel.yaml >= 0.15.52 and fix AttributeError: ‘CommentedMap’ object has no attribute
‘replace’ error.

25

http://github.com/scikit-build/scikit-ci
http://github.com/scikit-build/scikit-ci

scikit-ci Documentation, Release 0.21.0.post0.dev0+gb348833

26 Chapter 7. Release Notes

CHAPTER 8

Making a release

A core developer should use the following steps to create a release X.Y.Z of scikit-ci on PyPI.

8.1 Prerequisites

¢ All CI tests are passing on AppVeyor, CircleCI and Travis CI.
* You have a GPG signing key.

8.2 Documentation conventions

The commands reported below should be evaluated in the same terminal session.

Commands to evaluate starts with a dollar sign. For example:

$ echo "Hello"
Hello

means that echo "Hello" should be copied and evaluated in the terminal.

8.3 Setting up environment

1. First, register for an account on PyPL
2. If not already the case, ask to be added as a Package Index Maintainer.

3. Create a ~/ . pypirc file with your login credentials:

27

https://pypi.org/project/scikit-ci
https://ci.appveyor.com/project/scikit-build/scikit-ci/history
https://circleci.com/gh/scikit-build/scikit-ci
https://travis-ci.org/scikit-build/scikit-ci/builds
https://help.github.com/articles/generating-a-new-gpg-key/
https://pypi.org

scikit-ci Documentation, Release 0.21.0.post0.dev0+gb348833

[distutils]
index—-servers =

pypi
pypitest

[pypi]
username=<your-username>
password=<your-password>

[pypitest]
repository=https://test.pypi.org/legacy/
username=<your-username>
password=<your—-password>

where <your—username> and <your-password> correspond to your PyPI account.

8.4 PyPI: Step-by-step

1. Make sure that all CI tests are passing on AppVeyor, CircleCI and Travis CI.

2. Download the latest sources

$ cd /tmp && \
git clone git@github.com:scikit-build/scikit-ci && \
cd scikit-ci

3. List all tags sorted by version

$ git fetch —--tags && \
git tag -1 | sort -V

4. Choose the next release version number

$ release=X.Y.Z

Warning: To ensure the packages are uploaded on PyPI, tags must match this regular expression:
AL0-91+(\N.[0-9]1+)+ (\.post [0-9]+) 2S.

5. In README.rst, update PyPI download count after running this big table query and commit the changes.

$ git add README.rst && \
git commit -m "README: Update download stats [ci skip]l"

Note: To learn more about pypi-stats, see How to get PyPI download statistics.

6. In CHANGES.rstreplace Next Release section header with Scikit-ci X.Y.Z and commit the changes.

$ git add CHANGES.rst && \
git commit -m "Scikit-ci ${release}"

7. Tag the release

28 Chapter 8. Making a release

https://ci.appveyor.com/project/scikit-build/scikit-ci/history
https://circleci.com/gh/scikit-build/scikit-ci
https://travis-ci.org/scikit-build/scikit-ci/builds
https://pypi.org/project/scikit-ci
https://pypi.org/project/scikit-ci
https://bigquery.cloud.google.com/savedquery/280188050539:ef89d872d6784e379d7153872901b00d
https://kirankoduru.github.io/python/pypi-stats.html

scikit-ci Documentation, Release 0.21.0.post0.dev0+ghb348833

$ git tag -—-sign -m "Scikit-ci ${release}" ${release} master

Warning: We recommend using a GPG signing key to sign the tag.

8. Create the source distribution and wheel

$ python setup.py sdist bdist_wheel

9. Publish the both release tag and the master branch

$ git push origin ${release} && \
git push origin master

10. Upload the distributions on PyPI

’twine upload dist/=* ‘

Note: To first upload on TestPyPI, do the following:

’s twine upload -r pypitest dist/=*

11. Create a clean testing environment to test the installation

$ pushd $(mktemp —-d) && \
mkvirtualenv scikit-ci-${release}-install-test && \
pip install scikit-ci && \
ci —--help

Note: If the mkvirtualenv command is not available, this means you do not have virtualenvwrapper
installed, in that case, you could either install it or directly use virtualenv or venv.

To install from TestPyPI, do the following:

$ pip install -i https://test.pypi.org/simple scikit-ci

12. Cleanup

$ popd && \
deactivate && \
rm -rf dist/* && \
rmvirtualenv scikit-ci-${release}-install-test

13. Add aNext Release section back in CHANGES.rst, commit and push local changes.

$ git add CHANGES.rst && \
git commit -m "CHANGES.rst: Add \"Next Release\" section [ci skip]l" && \
git push origin master

8.4. PyPI: Step-by-step 29

https://help.github.com/articles/generating-a-new-gpg-key/
https://pypi.org/project/scikit-ci
https://test.pypi.org/project/scikit-ci
https://virtualenvwrapper.readthedocs.io/
http://virtualenv.readthedocs.io
https://docs.python.org/3/library/venv.html
https://test.pypi.org/project/scikit-ci

scikit-ci Documentation, Release 0.21.0.post0.dev0+gb348833

30 Chapter 8. Making a release

CHAPTER 9

Indices and tables

* genindex
* modindex

e search

31

scikit-ci Documentation, Release 0.21.0.post0.dev0+gb348833

32 Chapter 9. Indices and tables

cHAaPTER 10

Resources

Free software: Apache Software license
Documentation: http://scikit-ci.readthedocs.org
Source code: https://github.com/scikit-build/scikit-ci

Mailing list: https://groups.google.com/forum/#!forum/scikit-build

33

http://scikit-ci.readthedocs.org
https://github.com/scikit-build/scikit-ci
https://groups.google.com/forum/#!forum/scikit-build

scikit-ci Documentation, Release 0.21.0.post0.dev0+gb348833

34 Chapter 10. Resources

Index

D

Driver (class in ci.driver), 13

E

expand_command () (cidriver.Driver static method),
13

35

	Installation
	Install package with pip
	Install from source
	Dependencies

	Usage
	Executing scikit-ci steps
	Calling scikit-ci through python -m ci
	Getting help on version, option names

	Configuration file
	Concept of Step
	Mapping with Appveyor, Azure Pipelines, CircleCI and TravisCI steps
	Order of steps
	Automatic execution of dependent steps
	Keeping track of executed steps
	Environment variable persistence
	Step specialization
	Reserved Environment Variables
	Environment variable usage
	Command Specification
	Python Command Specification

	Contributing
	Types of Contributions
	Get Started
	Pull Request Guidelines
	Tips

	Credits
	History
	Release Notes
	Scikit-ci 0.21.0
	Scikit-ci 0.20.0
	Scikit-ci 0.19.0
	Scikit-ci 0.18.0
	Scikit-ci 0.17.0

	Making a release
	Prerequisites
	Documentation conventions
	Setting up environment
	PyPI: Step-by-step

	Indices and tables
	Resources

