
Schedy Documentation
Release 0.1.0a1

Incalia

May 07, 2018

Contents

1 Installation and setup 3
1.1 Getting started . 3
1.2 Tutorials . 4
1.3 API Reference . 14
1.4 Frequently Asked Questions . 22

2 Other 25

Python Module Index 27

i

ii

Schedy Documentation, Release 0.1.0a1

Schedy is your machine learning assistant. It will help you record your experiments, your results, visualize them, and
it will even suggest new parameters for your next experiments!

Schedy can do useful things for you:

• Record the hyperparameters and results of all your past models.

• Suggest new hyperparameters for your next models.

• Coordinate a pool of workers (e.g. in a cluster), by making sure they stay busy trying to find the best combination
of hyperparameters for your task.

And all of that in just a few lines of code! Coordinating a cluster of workers becomes as simple as this:

import schedy

db = schedy.SchedyDB()
experiment = db.get_experiment('My Task')
while True:

with experiment.next_job() as job:
my_train_function(job)

You can follow the evolution of your experiments thanks to our online dashboard.

We also provide a command line tool, that will help you with the most common tasks.

Contents 1

https://schedy.io

Schedy Documentation, Release 0.1.0a1

2 Contents

CHAPTER 1

Installation and setup

Sign up here, install Schedy & get your API token:

pip3 install schedy
schedy gen-token

You are now ready to get started!

1.1 Getting started

Before going through this section, make sure you have installed Schedy.

Schedy is the combination of three tools:

• A Python API.

• An online dashboard, that will help you visualize your experiments.

• A command line tool, schedy, that can help you with the basic setup and monitoring of your experiments.

Using the command line tool is totally optional. It simply wraps up the most common operations you would perform
with the Python API.

For example, running schedy add MyTask manual in the command line tool is the same as running the follow-
ing Python script:

import schedy

db = schedy.SchedyDB()
experiment = schedy.ManualSearch('MyTask')
db.add_experiment(experiment)

3

https://schedy.io
https://schedy.io

Schedy Documentation, Release 0.1.0a1

1.1.1 Database, experiments and jobs

When using Schedy, you store all your hyperparameters and results in the Schedy database, represented by the
SchedyDB object. You can access these experiments and jobs from any workstation with your credentials (the ones
you retrieved using schedy gen-token or on the website).

An experiment is a topic, a single task, for which you try to find the best configuration of hyperparameters. Examples
of experiments are:

• Trying to fit a linear regression on your dataset

• Trying to train a Random Forest to predict tomorrow’s temperature

• Trying to classify objects in a picture using an ResNet-50

• . . .

A job is a trial for an experiment. A job tries to fulfill the task using a set of hyperparameters. Once it has completed
its task, it reports how well it performed, by updating its results. (Actually, a job can also report results while it is
running, e.g. the training loss associated to each epoch while training a neural network.)

1.2 Tutorials

If you want to get started right away, you can read this series of tutorial. You can also jump to the reference straight
away, we’ve tried to make the API as clear as possible.

1.2.1 Using Schedy as a database

The scripts created in this tutorial can be found in our GitHub repository .

Schedy can be used as a simple database to store experiments. Schedy has two main concepts: experiments, and jobs.
An experiment is a set of jobs, each job being a trial for its experiment.

For this example, let’s say you are trying to find the values of x and y that minimize x^2 * y^2. First, you would
create an experiment in Schedy:

schedy add MinimizeSimple manual

. . . or, in Python:

import schedy

db = schedy.SchedyDB()
experiment = schedy.ManualSearch('MinimizeSimple')
db.add_experiment(experiment)

This creates a new experiment called MinimizeSimple. The keyword manual tells Schedy that you are going to manage
the jobs of this experiment yourself. More on that later.

Now, let’s try many values of x and y to find which one works the best. If you do it by hand, you can record all your
results in Schedy by creating new jobs. For each job, tell Schedy which parameters you tried, and what results you
obtained.

schedy push MinimizeSimple --status DONE --hyperparameters x 1 y 2 --results result 5
Or, for short:
schedy push MinimizeSimple -s DONE -p x 1 y 2 -r result 5

4 Chapter 1. Installation and setup

https://github.com/incalia/schedy-client/tree/master/examples/database

Schedy Documentation, Release 0.1.0a1

. . . or, in Python:

import schedy

db = schedy.SchedyDB()
experiment = db.get_experiment('MinimizeSimple')
job = experiment.add_job(

status=schedy.Job.DONE,
hyperparameters={

'x': 1,
'y': 2,

},
results={

'result': 5
},

)

You just added a new job to the experiment MinimizeSimple, which is DONE (finished). You tried x = 1 and y =
2, and the result was 5 (1^2 + 2^2). Of course you could try to compute this expression for a bunch of values, then
push the jobs to the database by hand, but a program would be much better at doing this.

Let’s do this:

import schedy
import random

db = schedy.SchedyDB()
experiment = db.get_experiment('MinimizeSimple')
for i in range(20):

Test the problem for random values of x and y, 20 times
x = random.uniform(-100, 100)
y = random.uniform(-100, 100)
result = x ** 2 + y ** 2
Tell Schedy about it!
experiment.add_job(status=schedy.Job.DONE, hyperparameters={'x': x, 'y': y},

→˓results={'result': result})

Not too difficult right? Now let’s see how we performed, by listing the results of each job. The easiest way is to use
your online dashboard.

However, if you want to do it using the command line, you can run:

The -t flag indicates that we want the description of the jobs, not only
their name, and that we want them in a table
schedy list -t MinimizeSimple
You could also use the -p flag to display the jobs as a paragraph (this
can be useful when you have lots of hyperparameters/results)
schedy list -p MinimizeSimple

+--------+----------+----------+------------+-----------+
| id | status | x | y | result |
|--------+----------+----------+------------+-----------|
-bPmlQ	DONE	15.0542	3.27561	237.36
06wn6w	DONE	27.7519	0.301546	770.257
0jjY2Q	DONE	95.2792	36.0534	10378
5Jz0hA	DONE	-60.2291	-19.56	4010.13
8_7e5Q	DONE	24.3572	19.2384	963.389
IOHsSw	DONE	-82.2053	-82.4315	13552.7

(continues on next page)

1.2. Tutorials 5

https://schedy.io/

Schedy Documentation, Release 0.1.0a1

(continued from previous page)

M4m6CA	DONE	-66.6737	41.7379	6187.44
MQmuTw	DONE	27.3775	-31.1913	1722.43
NavIrw	DONE	1	2	5
NiHt6A	DONE	79.5122	-74.5573	11881
OP7aGw	DONE	-12.5107	-0.683612	156.985
Wjz2Wg	DONE	81.5054	-66.08	11009.7
ZM3nww	DONE	66.9189	-52.3469	7218.33
b6T0TA	DONE	70.9641	-70.5859	10018.3
csui0g	DONE	71.7953	49.0019	7555.74
gRjRQA	DONE	-47.0694	-25.1969	2850.42
gqfFQg	DONE	-35.5846	-46.4451	3423.41
m0f9vA	DONE	-80.614	-72.4938	11754
mL2NXw	DONE	18.0392	-13.1687	498.828
n8tNMQ	DONE	77.8921	80.532	12552.6
yFvyFQ	DONE	-41.0681	96.7539	11047.9
+--------+----------+----------+------------+-----------+

We are pretty far from the optimal result, but that’s normal considering we tried only 20 combinations of hyperparam-
eters.

Note that you can also access all these values using the Python API:

import schedy

db = schedy.SchedyDB()
experiment = db.get_experiment('MinimizeSimple')
for job in experiment.all_jobs():

print('Id:', job.job_id)
print('Status:', job.status)
print('Hyperparameters:')
for name, value in job.hyperparameters.items():

print('- {}: {}'.format(name, value))
print('Results:')
for name, value in job.results.items():

print('- {}: {}'.format(name, value))
print()

You might be wondering:

There are a lot of results. Can’t we sort these jobs from the best to the worst?

Well of course! He’re how you would do it:

schedy list -t MinimizeSimple -s result

+--------+----------+----------+------------+-----------+
| id | status | x | y | result |
|--------+----------+----------+------------+-----------|
NavIrw	DONE	1	2	5
OP7aGw	DONE	-12.5107	-0.683612	156.985
-bPmlQ	DONE	15.0542	3.27561	237.36
mL2NXw	DONE	18.0392	-13.1687	498.828
06wn6w	DONE	27.7519	0.301546	770.257
8_7e5Q	DONE	24.3572	19.2384	963.389
MQmuTw	DONE	27.3775	-31.1913	1722.43
gRjRQA	DONE	-47.0694	-25.1969	2850.42
gqfFQg	DONE	-35.5846	-46.4451	3423.41

(continues on next page)

6 Chapter 1. Installation and setup

Schedy Documentation, Release 0.1.0a1

(continued from previous page)

5Jz0hA	DONE	-60.2291	-19.56	4010.13
M4m6CA	DONE	-66.6737	41.7379	6187.44
ZM3nww	DONE	66.9189	-52.3469	7218.33
csui0g	DONE	71.7953	49.0019	7555.74
b6T0TA	DONE	70.9641	-70.5859	10018.3
0jjY2Q	DONE	95.2792	36.0534	10378
Wjz2Wg	DONE	81.5054	-66.08	11009.7
yFvyFQ	DONE	-41.0681	96.7539	11047.9
m0f9vA	DONE	-80.614	-72.4938	11754
NiHt6A	DONE	79.5122	-74.5573	11881
n8tNMQ	DONE	77.8921	80.532	12552.6
IOHsSw	DONE	-82.2053	-82.4315	13552.7
+--------+----------+----------+------------+-----------+

Once you are done, you can remove the experiment, so that it does not appear in your listings later, as this is just an
experiment for the tutorial.

schedy rm MinimizeSimple
You could also remove a single job using:
schedy rm MinimizeSimple NavIrw

. . . or, in Python:

import schedy

db = schedy.SchedyDB()
db.get_experiment('MinimizeSimple').delete()
Or, to delete a specific job:
db.get_experiment('MinimizeSimple').get_job('NavIrw').delete()

However, do not hesitate to keep your real experiments in the database, if you want to keep track of them. You don’t
have to remove them if you don’t want to!

1.2.2 Schedy as a scheduler

The scripts created in this tutorial can be found in our GitHub repository .

Schedy was primarily designed to be used as a scheduler, that is to say a service that orchestrates a cluster of workers
by telling them which hyperparameters to try. The simplest way to do that is by creating a queue of jobs. Each of them
will be pulled by a worker, which will try the set of hyperparameters, and report how it performed.

Let’s use the same problem as before, that is to say the minimization of x^2 + y^2. First, we will create an
experiment.

schedy add MinimizeManual manual

. . . or, in Python:

import schedy

db = schedy.SchedyDB()
experiment = schedy.ManualSearch('MinimizeManual')
db.add_experiment(experiment)

Let’s create a worker using the Schedy Python API.

1.2. Tutorials 7

https://github.com/incalia/schedy-client/tree/master/examples/scheduler

Schedy Documentation, Release 0.1.0a1

import schedy
import time

db = schedy.SchedyDB()
experiment = db.get_experiment('MinimizeManual')
while True:

try:
with experiment.next_job() as job:

x = job.hyperparameters['x']
y = job.hyperparameters['y']
result = x ** 2 + y ** 2
job.results['result'] = result

except Exception as e:
print(e)
time.sleep(60)

As you can see, this is just a script that pulls jobs from Schedy, computes the results, and pushes the jobs back to
Schedy. In case of crash it will just keep on trying. Here’s a quick explanation of it in more details:

import schedy
import time

db = schedy.SchedyDB()
experiment = db.get_experiment('MinimizeManual')
while True:

We initialize Schedy and retrieve the experiment we just created, then start an infinite loop in which we’ll handle
incoming jobs.

try:
with experiment.next_job() as job:

x = job.hyperparameters['x']
y = job.hyperparameters['y']
result = x ** 2 + y ** 2
job.results['result'] = result

We pull the next job, and start working on it. The with statement is there so that we always report to Schedy whether
the job has crashed or succeeded. The results will only be pushed to Schedy at the end of the with statement. If you
wanted to report intermediary results to Schedy before the end of the‘‘with‘‘ statement, you could call job.put().

except Exception as e:
print(e)
time.sleep(60)

If something failed, print what went wrong and wait a minute before retrying. If everything was fine, pull the next job
immediately.

You can run the worker (i.e. this script) in another terminal, in the background, on the nodes of your cluster. . . You
might notice it starts by printing errors like this one:

HTTP Error None:
> No job left for experiment MinimizeManual.

This is fine, as you do not have enqueued any job to your experiment yet. You can keep the script running, as it will
detect the new job as soon as we enqueue it (or in the worst-case scenario, 60 seconds after that).

Let’s ask the worker to compute the result using x = 1 and y = 2.

8 Chapter 1. Installation and setup

Schedy Documentation, Release 0.1.0a1

schedy push MinimizeManual -p x 1 y 2

. . . or, in Python:

import schedy

db = schedy.SchedyDB()
experiment = db.get_experiment('MinimizeManual')
job = experiment.add_job(hyperparameters={'x': 1, 'y': 2})

After at most 60 seconds, the worker should have computed the result and reported back. You can see the result using:

schedy list -t MinimizeManual
Or, if you only want to see the results of the job you just pushed instead of the
→˓whole list:
schedy show MinimizeManual <job-id>

The id of the job was given to you when you pushed it. It is a sequence of random characters that should look like this:
ExhnhQ.

You should see something like this:

+--------+----------+-----+-----+----------+
| id | status | x | y | result |
|--------+----------+-----+-----+----------|
| ExhnhQ | DONE | 1 | 2 | 5 |
+--------+----------+-----+-----+----------+

If you don’t, and the status is still QUEUED, just wait a few seconds until the worker pulls the experiment.

Schedy will always make sure that only one worker will work on a given job (multiple workers will never pull the
same job).

But do I always have to push my jobs by hand? What if I want to do a systematic search (e.g. random
search)?

Don’t worry we’ve got you covered. Just go to the next tutorial!

1.2.3 Random search

The scripts created in this tutorial can be found in our GitHub repository .

A simple example

In the last tutorial, we learned how to create a manual scheduler. When using a manual scheduler, you have a worker
(or a pool of workers) treating jobs that you submit to a queue manually. This is useful for manual finetuning, when
you know which hyperparameters you would like to try.

However, in many cases, you would like to explore the space of hyperparameters automatically, using a black-box
optimization algorithm for instance. This is where automatic schedulers become useful.

Random search is one of the most basic schedulers there are: it will simply create jobs, whose hyperparameters will be
randomly picked. The distribution of these hyperparameters must be chosen by yourself. Using the previous example
(finding the values of x and y that minimize x^2 + y^2), you could define these distributions using your instincts.
For instance, we’ll make x and y follow a normal distribution, centered around 0 with a standard deviation of 5 for x,
and 2 for y (yes, this is totally arbitrary).

1.2. Tutorials 9

https://github.com/incalia/schedy-client/tree/master/examples/random_search

Schedy Documentation, Release 0.1.0a1

schedy add MinimizeRandom random x normal '{"mean": 0, "std": 5}' y normal '{"mean":
→˓0, "std": 2}'

. . . or, in Python:

import schedy

db = schedy.SchedyDB()
distributions = {

'x': schedy.random.Normal(0, 5),
'y': schedy.random.Normal(0, 2),

}
experiment = schedy.RandomSearch('MinimizeRandom', distributions)
db.add_experiment(experiment)

As you can see, we’re using a random scheduler this time, instead of a manual one. And we’re defining the random
variables immediately after this. The parameters of each distribution are supplied using JSON notation. We’ll talk
more about the supported distributions later.

The worker file does not change much:

import schedy
import time

db = schedy.SchedyDB()
experiment = db.get_experiment('MinimizeRandom')
for i in range(20):

try:
with experiment.next_job() as job:

x = job.hyperparameters['x']
y = job.hyperparameters['y']
result = x ** 2 + y ** 2
job.results['result'] = result

except Exception as e:
print(e)
Wait a minute before issuing the next request
time.sleep(60)

As you can see all we changed was the name of the experiment. We also changed the infinite loop to a finite loop,
because the random search scheduler will continuously send new jobs to us. Because we are able to perform a task in
a few nanoseconds, an infinite loop would create several thousand jobs per second and spam the database (remember,
we’re not trying to optimize a neural network here, we’re just minimizing x^2 + y^2).

Once again, you can start the worker, then list your results using:

schedy list -t MinimizeRandom

+--------+----------+------------+------------+-----------+
| id | status | x | y | result |
|--------+----------+------------+------------+-----------|
2WDn_w	DONE	-0.836867	-0.71981	1.21847
m4hoTw	DONE	-1.15003	-0.83331	2.01698
l26a6g	DONE	0.862245	1.27614	2.372
ZDmNqw	DONE	-2.52887	0.429102	6.57931
LMEOaQ	DONE	2.86853	-0.742761	8.78014
iKCzuw	DONE	2.47215	1.95058	9.91631
E6K6Ew	DONE	-2.90947	1.81924	11.7746

(continues on next page)

10 Chapter 1. Installation and setup

Schedy Documentation, Release 0.1.0a1

(continued from previous page)

hRaPOQ	DONE	2.63032	3.00305	15.9369
Tby5Og	DONE	-3.68871	1.66496	16.3787
b0pp7g	DONE	1.76621	4.14727	20.3194
NZQw7w	DONE	4.92685	0.71905	24.7909
sMUVuA	DONE	5.58645	1.50509	33.4737
zLxjYA	DONE	6.70355	0.0705488	44.9426
hDi9uw	DONE	-6.75093	1.57475	48.0549
oMcmeQ	DONE	-7.17896	0.100174	51.5475
fF8NHQ	DONE	7.20394	0.692157	52.3758
tKwlHw	DONE	9.02237	0.156419	81.4276
m9G7GA	DONE	8.18227	3.95599	82.5994
7MgmuA	DONE	10.0929	-2.78685	109.634
l8L6xQ	DONE	-10.6514	-0.970788	114.395
+--------+----------+------------+------------+-----------+

Available distributions

Because this is a toy problem, using arbitrary normal distributions does not have a lot of impact. But in practice, the
distributions you choose for your hyperparameters could change how fast you find a good solution.

In order to help you in this regard, Schedy offers several type of distributions. The following is a short description of
these distributions (see also: API reference).

Uniform distribution

Values will be uniformly distributed in the interval [low, high).

Example:

One hyperparameter (x) with values ranging from 2.1 (included) to 5 (excluded)
schedy add Test random x uniform '{"low": 2.1, "high": 5}'

Normal distribution

Values will be distributed following a normal distribution, centered around mean with a standard deviation of std.

Example:

schedy add Test random x normal '{"mean": 2.1, "std": 5}'

LogUniform distribution

Values will be distributed between low and high, such that log(value) is uniformly distributed between log(low)
and log(high).

This might be useful for hyperparameters that only have an influence when they change their order of magnitude (e.g.
learning rates for neural networks).

Example:

schedy add Test random x loguniform '{"low": 0.000001, "high": 0.1}'

1.2. Tutorials 11

Schedy Documentation, Release 0.1.0a1

Choice distribution

Values will be picked randomly in a set of values. You can optionally provide weights for these values, to make
some of them more likely to be suggested by Schedy than others. The values can be numbers, strings, booleans,
strings, arrays or objects, and you can mix those.

Simple example:

schedy add Test random x choice '{"values": [2, 4, 8, 10]}'

Advanced example:

schedy add Test random x choice '{"values": [false, 1, "two", {"key": "three", "key2
→˓": 3}, [4, "four"]], "weights": [0.1, 0.2, 0.3, 0.3, 0.1]}'

Constant distribution

The value will always be the same. The value can be a number, a string, a boolean, an array or an object. This can be
useful to pass configuration parameters to the workers, for instance.

schedy add Test random x const 0 config const '{"log_dir": "/var/log", "schedy_rocks
→˓": true}'

1.2.4 Population based training

Population Based Training (PBT) allows you to train your models in a smarter way. It takes care of finding not only
the best set of hyperparameters, but it also able to find the best hyperparameters schedule during training. For instance,
having a fixed learning rate during training is often suboptimal, so PBT helps you find out when and how you should
change your learning rate.

If you want to use Population Based Training with Schedy, you only need to know the following:

PBT is an improvement over random search: it is able to focus on the most promising jobs using to strategies:

• An exploit strategy, in which the least promising jobs are thrown away, and replaced by copies of the most
promising ones. This allows you not to waste resources on the wrong jobs.

• An explore strategy, that tries new values for the hyperparameters of the most promising jobs during training.
For instance, this is what allows you to find the optimal learning rate schedule of a neural network.

An example using PBT to finetune an Image Recognition neural network can be found on our GitHub repository.

Creating an experiment

An experiment using Population Based Training can be created this way:

import schedy
db = schedy.SchedyDB()
experiment = schedy.PopulationBasedTraining(

'MNIST with PBT',
schedy.pbt.MAXIMIZE,
'max_accuracy',
exploit=schedy.pbt.Truncate(),
explore={

(continues on next page)

12 Chapter 1. Installation and setup

https://arxiv.org/pdf/1711.09846.pdf
https://github.com/incalia/schedy-client/tree/master/examples/pbt

Schedy Documentation, Release 0.1.0a1

(continued from previous page)

'learning_rate': schedy.pbt.Perturb(),
'dropout_rate': schedy.pbt.Perturb(),

},
initial_distributions={

'num_layers': schedy.random.Choice(range(1, 10)),
'activations': schedy.random.Choice(['relu', 'tanh']),
'kernel_size': schedy.random.Choice([3, 5, 7]),
'num_filters': schedy.random.Choice([2, 4, 8, 16, 32, 64, 128, 256, 512]),
'learning_rate': schedy.random.LogUniform(1e-6, 1e-1),
'dropout_rate': schedy.random.Uniform(0.0, 0.8),

},
population_size=20,

)
db.add_experiment(experiment)

The first argument (MNIST with PBT) is the name of the experiment.

The second argument tells Schedy that we are trying to maximize (schedy.pbt.MAXIMIZE) the result specified
in the third argument, the max_accuracy obtained by the network.

The argument called exploit tells us that we are using the Truncate strategy to exploit results (i.e. if we are working
on a job that scored in the bottom 20%, explore a job from the top 20% instead, see schedy.pbt.Truncate).

The argument called explore tells us that we are using the Perturb strategy to explore the learning rate and the
dropout rate. This strategy multiplies the values of these hyperparameters by a random number (see schedy.pbt.
Perturb).

Remember the exploration modifies the value of your hyperparameters during training so you should only use it when
it makes sense. For instance, it is possible to change the value of the learning rate while training (it does not change the
model in itself), but it is not possible to change the number of layers (it usually does not make sense to create/remove
weights while training).

Using schedy.pbt.Truncate as your exploit strategy, and schedy.pbt.Perturb as your explore strategy
is usually a sensible default.

The argument called initial_distributions tells Schedy how to pick values for the initial jobs, as those are
basically created using random search. The available distributions are the same as the ones used for random search.
The next argument, population_size, specifies the number of initial jobs that should be created before starting
to exploit/explore.

Note: Specifying the population size and the initial distributions is optional. You can also create the initial jobs by
hand, using schedy push in the command line or schedy.Experiment.add_job() . This allows you to
choose the initial value of your hyperparameters by hand, instead of using random search.

Creating the worker

Creating a worker that will work efficiently with PBT requires a few more steps than other experiment types (e.g.
Random Search).

Let’s have a little reminder. When using random search, the basic worker followed these steps:

import schedy

db = schedy.SchedyDB()
experiment = db.get_experiment('MyExperiment')
with experiment.next_job() as job:

model = create_model(job)

(continues on next page)

1.2. Tutorials 13

Schedy Documentation, Release 0.1.0a1

(continued from previous page)

train(model) # Full training until convergence
job.results = evaluate(model)

When using PBT, you should be doing something along those lines instead:

import schedy

db = schedy.SchedyDB()
experiment = db.get_experiment('MyExperiment')
with experiment.next_job() as job:

model = create_model(job)
if 'model_path' in job.results:

model.load(job.results['model_path'])
partial_train(model) # Partial training for a limited amount of time
job.results = evaluate(model)
model_save_path = 'dump_dir/' + job.id + '.mdl'
model.save(model_save_path)
job.results['model_path'] = model_save_path

For every job it receives, the worker follows these three simple steps:

• Try to reload the model if it exists

• Train the model a bit more

• Save the model

As you can see, instead of training the model until convergence, you should only train it for a limited amount of
time (e.g. five epochs, 30 minutes. . .). You should then save your model to a location that can be accessed by all
workers (here we suppose that all workers have accessed to the dump_dir directory, and we save the model as
dump_dir/<job_id>.mdl). You should also record the location of your model into the job’s results.

The reason for this is that Schedy might choose to ask another worker to resume the work on your job later, by copying
the job’s hyperparameters and results to a new job, and sending it to a new worker. This is why this worker starts by
checking whether there is a result called model_path, and if there is, it reloads the weights from this location.

Everything else is handled by Schedy. All you need to do is to reload the model if it exists, to train it a bit more, then
to save it.

We provide examples here, and a more detailed description of the PBT experiments in the API reference, here and
here.

1.3 API Reference

1.3.1 SchedyDB

class schedy.SchedyDB(config_path=None, config_override=None)
SchedyDB is the central component of Schedy. It represents your connection the the Schedy service.

Parameters

• config_path (str or file-object) – Path to the client configuration file. This
file contains your credentials (email, API token). By default, ~/.schedy/client.json is used.
See Installation and setup for instructions about how to use this file.

• config_override (dict) – Content of the configuration. You can use this to if you do
not want to use a configuration file.

14 Chapter 1. Installation and setup

https://github.com/incalia/schedy-client/tree/master/examples/pbt
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Schedy Documentation, Release 0.1.0a1

add_experiment(exp)
Adds an experiment to the Schedy service. Use this function to create new experiments.

Parameters exp (schedy.Experiment) – The experiment to add.

Example

>>> db = schedy.SchedyDB()
>>> exp = schedy.ManualSearch('TestExperiment')
>>> db.add_experiment(exp)

get_experiment(name)
Retrieves an experiment from the Schedy service by name.

Parameters name (str) – Name of the experiment.

Returns An experiment of the appropriate type.

Return type schedy.Experiment

Example

>>> db = schedy.SchedyDB()
>>> exp = db.get_experiment('TestExperiment')
>>> print(type(exp))
<class 'schedy.experiments.ManualSearch'>

get_experiments()
Retrieves all the experiments from the Schedy service.

Returns Iterator over all the experiments.

Return type iterator of schedy.Experiment

1.3.2 Experiments

Base class

class schedy.Experiment(name, status=’RUNNING’)
Base-class for all experiments.

Parameters

• name (str) – Name of the experiment. An experiment is uniquely identified by its name.

• status (str) – Status of the experiment. See Experiment status.

add_job(**kwargs)
Adds a new job to this experiment.

Parameters

• hyperparameters (dict) – A dictionnary of hyperparameters values.

• status (str) – Job status. See Job status. Default: QUEUED.

• results (dict) – A dictionnary of result values. Default: No results (empty dictio-
nary).

1.3. API Reference 15

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

Schedy Documentation, Release 0.1.0a1

Returns The instance of the new job.

Return type schedy.Job

next_job()
Returns a new job to be worked on. This job will be set in the RUNNING state. This function handles
everything so that two workers never start working on the same job.

Returns The instance of the requested job.

Return type schedy.Job

all_jobs()
Retrieves all the jobs belonging to this experiment.

Returns An iterator over all the jobs of this experiment.

Return type iterator of schedy.Job

get_job(job_id)
Retrieves a job by id.

Parameters job_id (str) – Id of the job to retrieve.

Returns Instance of the requested job.

Return type schedy.Job

push_updates()
Push all the updates made to this experiment to the service.

delete(ensure=True)
Deletes this experiment.

Parameters ensure (bool) – If true, an exception will be raised if the experiment was deleted
before this call.

Experiment status

Experiment.RUNNING = 'RUNNING'
Status of a running experiment.

Experiment.DONE = 'DONE'
Status of a completed (or paused) experiment.

Manual search

class schedy.ManualSearch(name, status=’RUNNING’)
Bases: schedy.experiments.Experiment

Represents a manual search, that is to say an experiment for which the only jobs returned by schedy.
Experiment.next_job() are jobs that were queued beforehand (by using schedy.Experiment.
add_job() for example).

Base-class for all experiments.

Parameters

• name (str) – Name of the experiment. An experiment is uniquely identified by its name.

• status (str) – Status of the experiment. See Experiment status.

16 Chapter 1. Installation and setup

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Schedy Documentation, Release 0.1.0a1

Random search

class schedy.RandomSearch(name, distributions, status=’RUNNING’)
Bases: schedy.experiments.Experiment

Represents a random search, that is to say en experiment that returns jobs with random hyperparameters when
no job was queued manually using schedy.Experiment.add_job().

If you create a job manually for this experiment, it must have only and all the hyperparameters specified in the
distributions parameter.

Parameters

• name (str) – Name of the experiment. An experiment is uniquely identified by its name.

• distributions (dict) – A dictionary of distributions (see schedy.random), whose
keys are the names of the hyperparameters.

• status (str) – Status of the experiment. See Experiment status.

Population Based Training

class schedy.PopulationBasedTraining(name, objective, result_name, exploit, explore={},
initial_distributions={}, population_size=None, sta-
tus=’RUNNING’, max_generations=None)

Bases: schedy.experiments.Experiment

Implements Population Based Training (see paper).

You have two ways to specify the initial jobs for Population Based training. You can create them manu-
ally using schedy.Experiment.add_job(), or you can specify the initial_distributions and
population_size parameters.

If you create a job manually for this experiment, it must have at least the hyperparameters specified in the
explore parameter.

Parameters

• name (str) – Name of the experiment. An experiment is uniquely identified by its name.

• objective (str) – The objective of the training, either schedy.pbt.MINIMIZE (to
minimize a result) or schedy.pbt.MAXIMIZE (to maximize a result).

• result_name (str) – The name of the result to optimize. This result must be present in
the results of all RUNNING jobs of this experiment.

• exploit (schedy.pbt.ExploitStrategy) – Strategy to use to exploit the results
(i.e. to focus on the most promising jobs).

• explore (dict) – Strategy to use to explore new hyperparameter values. The keys of
the dictionary are the name of the hyperparameters (str), and the values are the strategy
associated with the hyperparameter (schedy.pbt.ExploreStrategy). Values for the
omitted hyperparameters will not be explored. This parameter is optional: if you do not
specify any explore strategy, only exploitation will be used.

• initial_distributions (dict) – The initial distributions for the hyperparameters,
as dictionary of distributions (see schedy.random) whose keys are the names of the
hyperparameters. This parameter optional, you can also create the initial jobs manually. If
you use this parameter, make sure to use population_size as well.

1.3. API Reference 17

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://arxiv.org/pdf/1711.09846.pdf
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Schedy Documentation, Release 0.1.0a1

• population_size (int) – Number of initial jobs to create, before starting to ex-
ploit/explore (i.e. size of the population). It does not have to be the number of jobs you
can process in parallel. The original paper used values between 10 and 80.

• status (str) – Status of the experiment. See Experiment status.

• max_generations (int) – Maximum number of generations to run before marking the
experiment the experiments as done (Experiment status). When the maximum number of
generations is reached, subsequent calls to schedy.Experiment.next_job() will
raise schedy.errors.NoJobError, to indicate that the job queue is empty.

1.3.3 Jobs

Job class

class schedy.Job(job_id, experiment, hyperparameters, status=’QUEUED’, results={}, etag=None)
Represents a job instance belonging to an experiment. You should not need to create it by hand. Use
schedy.Experiment.add_job(), schedy.Experiment.get_job(), schedy.Experiment.
all_jobs() or schedy.Experiment.next_job() instead.

Jobs object are context managers, that it to say they can be used with a with statement. They will be put in the
RUNNING state at the start of the with statement, and in the DONE or CRASHED state at the end (depending
on whether an uncaught exception is raised within the with block). See schedy.Job.__enter__() for
an example of how to use this feature.

Parameters

• job_id (str) – Unique id of the job.

• experiment (schedy.Experiment) – Experiment containing this job.

• hyperparameters (dict) – A dictionnary of hyperparameters values.

• status (str) – Job status. See Job status.

• results (dict) – A dictionnary of results values.

• etag (str) – Value of the entity tag sent by the backend.

PRUNED = 'PRUNED'
Status of a job that was abandonned because it was not worth working on.

put(safe=True)
Puts a job in the database, either by creating it or by updating it.

This function is always called at the end of a with block.

Parameters safe (bool) – If true, this operation will make sure not to erase any content that
would have been put by another Schedy call in the meantime. For example, this ensures that
no two workers overwrite each other’s work on this job because they are working in parallel.

try_run()
Try to set the status of the job as RUNNING, or raise an exception if another worker tried to do so before
this one.

delete(ensure=True)
Deletes this job from the Schedy service.

Parameters ensure (bool) – If true, an exception will be raised if the job was deleted before
this call.

18 Chapter 1. Installation and setup

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Schedy Documentation, Release 0.1.0a1

__enter__()
Context manager __enter__method. Will try to set the job as CRASHED if the job has not been modified
by another worker concurrently.

Example:

>>> db = schedy.SchedyDB()
>>> exp = db.get_experiment('Test')
>>> with exp.next_job() as job:
>>> my_train_function(job)

If my_train_function raises an exception, the job will be marked as CRASHED. Otherwise it will be
marked as DONE. (See py:meth:Job.__exit__.)

Note that since schedy.Experiment.next_job() will always return a RUNNING job, this method
will never raise schedy.errors.UnsafeUpdateError in this case.

__exit__(exc_type, exc_value, traceback)
Context manager __exit__ method. Will try to set the job status as CRASHED if an exception was raised
in the with block. Otherwise, it will try to set the job status as DONE. It will also push all the updates that
were made locally to the Schedy service (by calling Job.put() for you).

Job status

Job.QUEUED = 'QUEUED'
Status of a queued job. Queued jobs are returned when calling schedy.Experiment.next_job().

Job.RUNNING = 'RUNNING'
Status of a job that is currently running on a worker.

Job.CRASHED = 'CRASHED'
Status of job that was being processed by a worker, but the worker crashed before completing the job.

Job.DONE = 'DONE'
Status of a completed job.

1.3.4 Random distributions

class schedy.random.LogUniform(low, high)
LogUniform distribution. Values are sampled betweend low and high, such that log(value) is uniformly
distributed between log(low) and log(high).

Parameters

• low (float) – Minimal value (inclusive).

• high (float) – Maximum value (exclusive).

class schedy.random.Uniform(low, high)
Uniform distribution. Values will be uniformly distributed in the interval [low, high).

Parameters

• low (float) – Minimal value (inclusive).

• high (float) – Maximum value (exclusive).

class schedy.random.Choice(values, weights=None)
Choice distribution. Values will be picked randomly in a set of values. You can optionally provide weights for
these values, to make some of them more likely to be suggested by Schedy than others.

1.3. API Reference 19

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Schedy Documentation, Release 0.1.0a1

Parameters

• values (list) – Possible values that can be picked. They can be numbers, strings,
booleans, strings, lists or dictionaries, and you can mix those.

• weights (list) – Weight associated with each value. If provided, the length of
weights must be the same as that of values.

class schedy.random.Normal(mean, std)
Normal distribution.

Parameters

• mean (float) – Desired mean of the distribution.

• std (float) – Desired standard deviation of the distribution.

class schedy.random.Constant(value)
“Constant” distribution. Will always yield the same value.

Parameters value – The value of the samples that will be returned by this distribution. Can be a
number, string, boolean, string, list or dictionary.

1.3.5 Population Based Training

See schedy.PopulationBasedTraining for a description of the experiment type.

schedy.pbt.MINIMIZE = 'min'
Minimize the objective

schedy.pbt.MAXIMIZE = 'max'
Maximize the objective

class schedy.pbt.Truncate(proportion=0.2)
Truncate exploit strategy: if the selected candidate job is in the worst n%, use a candidate job in the top n%
instead.

Parameters proportion (float) – Proportion of jobs that are considered to be “best” jobs, and
“worst” jobs. For example, if proportion = 0.2, if the selected candidate job is in the
bottom 20%, it will be replaced by a job in the top 20%. Must satisfy 0 < proportion <=
0.5.

class schedy.pbt.Perturb(min_factor=0.8, max_factor=1.2)
Perturb explore strategy: multiply the designated hyperparameter by a random factor, sampled from a uniform
distribution.

Parameters

• min_factor (float) – Minimum value for the factor (inclusive).

• max_factor (float) – Maximum value for the factor (exclusive).

1.3.6 Errors

exception schedy.errors.SchedyError
Base class for all Schedy exceptions.

exception schedy.errors.HTTPError(body, code, *args)
Base class for exceptions caused by a transaction with the service.

Parameters

20 Chapter 1. Installation and setup

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

Schedy Documentation, Release 0.1.0a1

• body (str) – Error message.

• code (int or None) – HTTP status code.

• args (list) – Other arguments passed to Exception.

exception schedy.errors.ClientError(body, code, *args)
Exception caused by the client side.

Parameters

• body (str) – Error message.

• code (int or None) – HTTP status code.

• args (list) – Other arguments passed to Exception.

exception schedy.errors.ClientRequestError(body, code, *args)
Exception caused by the content of the request.

Parameters

• body (str) – Error message.

• code (int or None) – HTTP status code.

• args (list) – Other arguments passed to Exception.

exception schedy.errors.AuthenticationError(body, code, *args)
Authentication error, access to the resource is forbidden.

Parameters

• body (str) – Error message.

• code (int or None) – HTTP status code.

• args (list) – Other arguments passed to Exception.

exception schedy.errors.ReauthenticateError(body, code, *args)
Authentication error, the client should retry after authenticating again.

Parameters

• body (str) – Error message.

• code (int or None) – HTTP status code.

• args (list) – Other arguments passed to Exception.

exception schedy.errors.ResourceExistsError(body, code, *args)
The resource cannot be created because it exists already.

Parameters

• body (str) – Error message.

• code (int or None) – HTTP status code.

• args (list) – Other arguments passed to Exception.

exception schedy.errors.UnsafeUpdateError(body, code, *args)
The resource cannot be updated safely because it has been modified by another client since its state was retrieved,
so updating it could overwrite these modifications.

Parameters

• body (str) – Error message.

1.3. API Reference 21

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str

Schedy Documentation, Release 0.1.0a1

• code (int or None) – HTTP status code.

• args (list) – Other arguments passed to Exception.

exception schedy.errors.NoJobError(body, code, *args)
The request could not return any job.

Parameters

• body (str) – Error message.

• code (int or None) – HTTP status code.

• args (list) – Other arguments passed to Exception.

exception schedy.errors.UnhandledResponseError(body, code, *args)
The response could not be parsed or handled.

Parameters

• body (str) – Error message.

• code (int or None) – HTTP status code.

• args (list) – Other arguments passed to Exception.

exception schedy.errors.ServerError(body, code, *args)
Server-side exception.

Parameters

• body (str) – Error message.

• code (int or None) – HTTP status code.

• args (list) – Other arguments passed to Exception.

1.3.7 Advanced

schedy.core.NUM_AUTH_RETRIES = 2
Number of retries if the authentication fails.

You can also set schedy.core.Retry.BACKOFF_MAX to set the maximum backoff time for a failed request.

1.4 Frequently Asked Questions

1.4.1 There’s something I want to ask you, how can I contact you?

Feel free to contact us using the chat integrated in our website!

1.4.2 Can I use string/array/dictionaries as hyperparameters?

Yes you can. However, when using the command-line, you most likely want to put single quotes around the value,
because JSON notation uses reserved Bash caracters.

For instance:

22 Chapter 1. Installation and setup

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#Exception
https://schedy.io/

Schedy Documentation, Release 0.1.0a1

Notice that you have to surround strings with double-quotes, because
that's how JSON strings work
schedy push MyExperiment -p my_string_param '"string value"'
schedy push MyExperiment -p my_array_param '["stuff", true, 6]'
schedy push MyExperiment -p my_dict_param '{"key0": "value0", "key1": 42}'

1.4.3 I think I found a bug. How can I report it?

First of all, we want to thank you for contributing! You can report bugs on our GitHub tracker.

1.4. Frequently Asked Questions 23

https://github.com/incalia/schedy-client/issues

Schedy Documentation, Release 0.1.0a1

24 Chapter 1. Installation and setup

CHAPTER 2

Other

• Alphabetical index

• Modules index

25

Schedy Documentation, Release 0.1.0a1

26 Chapter 2. Other

Python Module Index

s
schedy.errors, 20
schedy.random, 19

27

Schedy Documentation, Release 0.1.0a1

28 Python Module Index

Index

Symbols
__enter__() (schedy.Job method), 18
__exit__() (schedy.Job method), 19

A
add_experiment() (schedy.SchedyDB method), 14
add_job() (schedy.Experiment method), 15
all_jobs() (schedy.Experiment method), 16
AuthenticationError, 21

C
Choice (class in schedy.random), 19
ClientError, 21
ClientRequestError, 21
Constant (class in schedy.random), 20
CRASHED (schedy.Job attribute), 19

D
delete() (schedy.Experiment method), 16
delete() (schedy.Job method), 18
DONE (schedy.Experiment attribute), 16
DONE (schedy.Job attribute), 19

E
Experiment (class in schedy), 15

G
get_experiment() (schedy.SchedyDB method), 15
get_experiments() (schedy.SchedyDB method), 15
get_job() (schedy.Experiment method), 16

H
HTTPError, 20

J
Job (class in schedy), 18

L
LogUniform (class in schedy.random), 19

M
ManualSearch (class in schedy), 16
MAXIMIZE (in module schedy.pbt), 20
MINIMIZE (in module schedy.pbt), 20

N
next_job() (schedy.Experiment method), 16
NoJobError, 22
Normal (class in schedy.random), 20
NUM_AUTH_RETRIES (in module schedy.core), 22

P
Perturb (class in schedy.pbt), 20
PopulationBasedTraining (class in schedy), 17
PRUNED (schedy.Job attribute), 18
push_updates() (schedy.Experiment method), 16
put() (schedy.Job method), 18

Q
QUEUED (schedy.Job attribute), 19

R
RandomSearch (class in schedy), 17
ReauthenticateError, 21
ResourceExistsError, 21
RUNNING (schedy.Experiment attribute), 16
RUNNING (schedy.Job attribute), 19

S
schedy.errors (module), 20
schedy.random (module), 19
SchedyDB (class in schedy), 14
SchedyError, 20
ServerError, 22

T
Truncate (class in schedy.pbt), 20
try_run() (schedy.Job method), 18

29

Schedy Documentation, Release 0.1.0a1

U
UnhandledResponseError, 22
Uniform (class in schedy.random), 19
UnsafeUpdateError, 21

30 Index

	Installation and setup
	Getting started
	Tutorials
	API Reference
	Frequently Asked Questions

	Other
	Python Module Index

