

ScanScripts

[image: project]
This GitHub repository [https://github.com/tomography/scanscripts]
provides a framework for running experiment scripts at various
beamline at the Advanced Photon Source.

Content

	Install

	Sector 32-ID Scripts

	Sector 32-ID TXM

	API reference

	Examples

Install

This section covers the basics of how to download and install
ScanScripts [https://github.com/tomography/scanscripts].We recommend you
to install the Anaconda Python [http://continuum.io/downloads]
distribution.

Contents:

	Installing from source

	Beamline Configuration

Installing from source

Clone the
ScanScripts [https://github.com/tomography/scanscripts]
from GitHub [https://github.com] repository:

git clone https://github.com/tomography/scanscripts.git project

then:

cd project
python setup.py install

Beamline Configuration

The scanscripts library looks for a file in the top director (eg
~/TXM/scanscripts) called beamline_config.conf. This file
should contain configuration details for how the beamline is
setup. This allows easy configuration changes without having to modify
library code. See the documentation for each beamline for more details
on which options are supported:

	Sector 32-ID Configuration

Sector 32-ID Scripts

General Features

All the scan scripts below can be executed in one of three ways.

	Through the tomography.sh graphical user interface (GUI)

	From the command line interface (CLI)

	Directly from a python interpreter

The mechanisms behind the GUI and command-line interfaces are
identical. Every argument in the GUI parameter panel is also present
as a long argument on the command-line:

$ energy-scan --Energy_End 8.5 --Energy_Start 8.3 --ExposureTime 1.5 --SampleXOut 0.1

The programatic python versions start with run_. They often have
slightly differet parameters to the GUI/CLI implementation, allowing
for more precise control.

>>> import aps_32id
>>> import numpy as np
>>> aps_32id.run_energy(energies=np.linspace(8.3, 8.5, num=101))

Logging

These scripts (except for move_energy) uses the standard library
logging module to save logs with file names matching the
HDF5 data files. The default level is logging.INFO, but this can
be changed by using the Log_Level variable:

$ energy-scan --Log_Level 10

or the log_level parameter:

>>> import numpy as np
>>> import logging
>>> import aps_32id
>>> aps_32id.run_energy_scan(energies=np.linspace(8.3, 8.5, 100), log_level=logging.DEBUG)

The log levels are the same as those defined in the logging
module. They get set to the root logger, so logging.UNSET results in
all messages being sent through. The special value -1 causes no
changes to the logging configuration.

Logging levels for the Log_Level variable

	Level

	Value

	(no change)

	-1

	logging.UNSET

	0

	logging.DEBUG

	10

	logging.INFO

	20

	logging.WARNING

	30

	logging.ERROR

	40

	logging.CRITICAL

	50

Move Energy

	GUI:

	run/move_energy.py

	Command-line:

	$ move-energy

	Python:

	>>> aps_32id.move_energy()

The move_energy script provides a way to change
the energy of the beamline. If the parameter constant_mag is
truthy, the detector will move to maintain a constant level of
magnification. The equivalent function
move_energy() can be used
programatically.

Energy Scan

	GUI:

	run/energy_scan.py

	Command-line:

	$ energy-scan

	Python:

	>>> aps_32id.run_energy_scan()

The energy_scan script collects 2D frames over a
range of energies, as well as the corresponding flat-field and
dark-field images. The equivalent function
run_energy_scan() lets this script be
called programatically. The variable dictionary contains parameters
for Energy_Start, Energy_End and Energy_Step. If more
control is needed (eg, non-evenly spaced energies), then the function
should be used with the energies argument. The helper function
energy_range() allows easy construction of a unique
list of energies.

from aps_32id import run_energy_scan
from scanlib import energy_range
import numpy as np

Create a list of energies from energy ranges
energies = energy_range(
 # (start, end, step)
 (8250, 8290, 10),
 (8290, 8300, 2),
 (8300, 8380, 1),
 (8380, 8500, 10),
)

Describe position for sample and flat-field frames
(x, y, z, θ°)
out_pos = (0.2, None, None, 0)
sample_pos = (0, None, None, 0)

Execute the scan
run_energy_scan(energies=energies, out_pos=out_pos, sample_pos=sample_pos)

Tomography Step Scan

	GUI:

	run/tomo_step_scan.py

	Command-line:

	$ tomo-step-scan

	Python:

	>>> aps_32id.run_tomo_step_scan()

The tomo_step_scan script collects a tomogram as
well as flat-field and dark-field images. The variable dictionary
entries SampleStart_Rot, SampleEnd_Rot, Projections
control which angles get run. If more control is needed, the
run_tomo_step_scan() function
with the angles parameter can be used. It is not a requirement
that the angles be equally spaced.

import numpy as np

from aps_32id import run_tomo_step_scan

Create the list of angles to scan
angles = np.linspace(0, 180, 361)

Describe positions for sample and white-field position
(x, y, z, θ°)
out_pos = (0.2, None, None, 0)
sample_pos = (0, None, None, 0)

Execute the scan
run_tomo_step_scan(angles=angles, sample_pos=sample_pos, out_pos=out_pos)

Tomography Fly Scan

	GUI:

	run/tomo_fly_scan.py

	Command-line:

	$ tomo-fly-scan

	Python:

	>>> aps_32id.run_tomo_fly_scan()

The tomo_fly_scan script is similar to
tomo_step_scan except it does not come to a
complete stop when collecting projection. The timing must be uniform,
so only equally spaced angles are allowed, even in the python function
form.

Mosaic Tomography Fly Scan

Warning

This function has not yet replaced the “old style” script at the
beamline.

The mosaic_tomo_fly_scan script and
mosaic_tomo_fly_scan() are
similar to tomo_step_scan except multiple fields
of view are collected.

Roll-Your-Own Scripts

Those with a sense of adventure can write their own scripts for
Sector 32. It’s highly recommended to become familiar with the
Sector 32-ID TXM and Examples pages.

Sector 32-ID TXM

Note

This code is under active development and may change at any
time. If you encounter issues, or documentation bugs, please
submit an issue [https://github.com/tomography/scanscripts/issues].

This page describes the features of the
aps_32id.txm.NanoTXM class, and a few supporting
classes. The NanoTXM class is the primary
interface for controlling the Transmission X-ray Microscope (TXM) at
beamline 32-ID-C. There is also a complimentary
aps_32id.txm.MicroTXM.

A core design goal is to keep as much of the complexity in the
NanoTXM class, which leaves the scripts to
handle high-level details. It also allows for better unit and
integration testing. When creating new scripts, it is recommended to
put all interactions to process variables (PVs) in methods of the
NanoTXM class. This may seem silly for
single PV situations, but will make the script more readable. A
hypothetical example:

Not readable at all: what does that address even mean??
PV('32idcTXM:SG_RdCntr:reset.PROC').put(1, wait=True)

Better, but still not great: what does 1 mean?
txm.Reset_Theta = 1

Best, even though this method definition would only have one line
txm.reset_theta()

Sector 32-ID Configuration

The following configuration options can be set in the
beamline_config.conf file under the [32-ID-C] heading:

	has_permit (yes|no)

	If has_permit is “no”, then the script will not attempt to
change the X-ray source, monochromator, shutters, etc. This allows
testing of scripts while the B-hutch is operating without risking
interferance.

	stage (NanoTXM|MicroCT)

	Controls which stage/optics/shutters to use for manipulating the
sample. MicroCT uses the front stage and NanoTXM uses the
rear stage.

	zone_plate_drn (int)

	The width, in nm, of the outermost zone of the zone-plate of the
zone-plate (\(\Delta r_n\)).

	zone_plate_diameter (int)

	The total diameter, in µm, of the zone-plate.

	zone_plate_drift_x (float)

	Adjusts the zoneplate x position by this amount for every unit
change of zoneplate z. When properly set, this will keep the sample
centered when changing energy.

	zone_plate_drift_y (float)

	Adjusts the zoneplate y position by this amount for every unit
change of zoneplate z. When properly set, this will keep the sample
centered when changing energy.

[32-ID-C]
has_permit = True
Either NanoTXM or MicroCT
stage = NanoTXM
Correct for zoneplate drift when changing energies
zone_plate_drn = 50
zone_plate_diameter = 180
zone_plate_drift_x = 0.
zone_plate_drift_y = 0.

Internally, these options are parsed in
aps_32id.txm.txm_config() using the standard library’s
configparser package [https://docs.python.org/3/library/configparser.html]. To make scripts easier to read, it is best to
read the configuration only inside methods of
NanoTXM (or subclasses). The configuration
values can be read in the following manner:

cfg = txm_config()['32-ID-C']
zp_drn = cfg.getfloat('zone_plate_drn')
has_permit = cfg.getboolean('has_permit')

Stopping Scans Gracefully

When a scan script ends, we want the instrument to return to a
usable configuration even if an exception occurred. Using the
run_scan() context manager, this
becomes easy. At the start of the context, this manager saves certain
configuration details about instrument; when exiting the context for
any reason the configuration is restored, the CCD is set to
“continuous mode”, and any extra logging is stopped:

import logging
import aps_32id

txm = aps_32id.NanoTXM()

with txm.run_scan():
 # Setup the microscope as desired
 txm.setup_hdf_writer()
 txm.start_logging(logging.INFO)
 txm.setup_detector()
 # Now do experiment stuff

Process Variables

Process variables (PVs), though the pyepics package are the way
python controls the actuators and sensors of the instrument. There are
two ways to interact with process variables:

	The pv_put() method on a
NanoTXM object.

	A TxmPV descriptor on the
NanoTXM class (or subclass).

The second option handles more of the underlying complexity, but
understanding it requires a good grasp of the first option. The
NanoTXM.pv_put() method is a
wrapper around pyepics.PV.put(), and accepts similar
arguments:

These two sets of statements have the same effect

Using the epics PV class
epics.PV('my_great_pv').put(1, wait=True)

Using the TXM method
my_txm = TXM()
my_txm.pv_put('my_great_pv', 1, wait=True)

Behind the scenes, there is some extra magic so the txm can
coordinate PVs that work together.

Manually supplying the PV name and options each time is cumbersome, so
the TxmPV descriptor can be used to
define PVs at import time. Set instances of the
TxmPV class as attributes on a
NanoTXM subclass, then assign and retrieve
values directly from the attribute:

from aps_32id import NanoTXM
from scanlib import TxmPV

class ExampleTXM(NanoTXM):
 # Define a PV during import time
 my_awesome_pv = TxmPV('cryptic:pv:string', dtype=float, wait=True)
 # More PV definitions go here

Now we can use the PV attribute of the txm class
my_txm = ExampleTXM()
Retrieve the current value
Equivalent to ``float(epics.PV('cryptic:pv:string').get())``
curr_value = my_txm.my_awesome_pv
Set the value
Equivalent of epics.PV('cryptic:pv:string').put(2.718, wait=True)
my_txm.my_awesome_pv = 2.718

The advantage here is that boilerplate, such as type-casting and
blocking, can be defined once then forgotten. This approach also lets
you define PVs that should not be changed when the B-hutch is being
operated, by passing permit_required=True to the TxmPV
constructor. More on this below.

Waiting on Process Variables

Sometimes it is necessary to set one PV then wait on a different PV to
confirm the new value. The tomo.32id.txm.TXM.wait_pv() method
will poll a specified PV until it reaches its target value. It accepts
the attribute name of a PV, not the actual PV name itself. It may be
necessary to use the wait=False argument on the first PV to avoid
blocking forever:

class MyTXM(TXM):
 motor_pv = TxmPV('txm:motorA', wait=False
 sensor_pv = TxmPV('txm:sensorA')

txm = MyTXM()
First set the actuator to the desired value
new_position = 3.
txm.motor_pv = new_position
This will block until the sensor reaches the target value
tmx.wait_pv('sensor_pv', new_position)

Waiting on Multiple Process Variables

Warning

This feature should be considered experimental. It has been know to
break during some operations, most notably setting the undulator
gap.

By default, calling the pv_put() method
will block execution until the put call has completed. This means
that setting several PVs becomes a serial operation. This is the
safest approach but is unnecessary in many situations. For example,
setting the x, y and z stage positions can be done simultaneously. You
can always use wait=False and handle the blocking yourself,
however this is not always straight-forward and may involve messy
callbacks. Using the wait_pvs() context
manager takes care of this. Any PVs that are set inside the context
will move immediately; if block=True (default) the manager will
wait for them to finish before leaving the context.

txm = TXM()

These move one at a time
txm.Motor_SampleY = 5
txm.Motor_SampleZ = 3

This waits while both motors move simultaneously
with txm.wait_pvs():
 txm.Motor_SampleY = 8
 txm.Motor_SampleZ = 9

These move in the background without blocking
with txm.wait_pvs(block=False):
 txm.Motor_SampleY = 3
 txm.Motor_SampleZ = 12

This table describes whether if and when a process variable blocks the
execution of python code and waits for the PV to achieve its target
value:

	Context manager

	pv_put(wait=True)

	pv_put(wait=False)

	No context

	Blocks now

	No blocking

	TXM().wait_pvs

	Blocks later

	No blocking

	TXM().wait_pvs(block=False)

	No blocking

	No blocking

Locking Shutter Permits

Sometimes it’s desireable to test portions of the codebase during
downtime while the B-hutch is operating. In order to do this, however,
it’s important to ensure that the shutters, undulator and
monochromator are not changed. Using the
TxmPV descriptors makes this easy: any
PV’s that should not be changed can be given the
permit_required=True argument to their constructor:

class MyTXM(TXM):
 SHUTTER_OPEN = 1
 my_shutter = TxmPV('32idc:shutter', permit_required=True)

 def open_shutter(self):
 """Opens the shutter so we can science!"""
 self.my_shutter = self.SHUTTER_OPEN

This will not do anything
my_txm = MyTXM()
my_txm.open_shutter()

This will control the PV as expected
my_txm = MyTXM(has_permit=True)
my_txm.open_shutter()

Note

There is no check that the C-hutch actually has permission to
open the shutter, etc. It’s controlled only by the has_permit
argument given to the TXM
constructor. Please be considerate.

Fast Shutter

The instrument is equipped with a “fast shutter” than protects the
specimen from excessive X-ray exposure. Calling
enable_fast_shutter() turns this feature
on. If using the run_scan() context manager
(recommended), the fast shutter is automatically disabled, otherwise
the disable_fast_shutter() method should be
called to return to normal behavior. The fast shutter respects
exposure_time() attribute.

API reference

project Modules:

	scanscripts
	aps_02bm package
	Subpackages
	aps_02bm.run package
	Module contents

	Submodules

	aps_02bm.macros_2bmb module

	aps_02bm.mosaic_tomo_fly_scan module

	aps_02bm.tomo_scan_lib module

	aps_02bm.tomo_step_scan module

	Module contents

	aps_32id package
	Subpackages
	aps_32id.run package
	Submodules

	aps_32id.run.energy_scan module

	aps_32id.run.mosaic_tomo_fly_scan module

	aps_32id.run.move_energy module

	aps_32id.run.tomo_fly_scan module

	aps_32id.run.tomo_step_scan module

	Module contents

	Submodules

	aps_32id.txm module

	Module contents

	scanlib package
	Submodules

	scanlib.exceptions_ module

	scanlib.tomo_scan_lib module

	scanlib.txm_pv module

	scanlib.tools module

	Module contents

scanscripts

	aps_02bm package
	Subpackages
	aps_02bm.run package
	Module contents

	Submodules

	aps_02bm.macros_2bmb module

	aps_02bm.mosaic_tomo_fly_scan module

	aps_02bm.tomo_scan_lib module

	aps_02bm.tomo_step_scan module

	Module contents

	aps_32id package
	Subpackages
	aps_32id.run package
	Submodules

	aps_32id.run.energy_scan module

	aps_32id.run.mosaic_tomo_fly_scan module

	aps_32id.run.move_energy module

	aps_32id.run.tomo_fly_scan module

	aps_32id.run.tomo_step_scan module

	Module contents

	Submodules

	aps_32id.txm module

	Module contents

	scanlib package
	Submodules

	scanlib.exceptions_ module

	scanlib.tomo_scan_lib module

	scanlib.txm_pv module

	scanlib.tools module

	Module contents

aps_02bm package

Subpackages

	aps_02bm.run package
	Module contents

Submodules

aps_02bm.macros_2bmb module

aps_02bm.mosaic_tomo_fly_scan module

aps_02bm.tomo_scan_lib module

aps_02bm.tomo_step_scan module

Module contents

aps_02bm.run package

Module contents

Run-time scripts for the 2-BM microscope.

aps_32id package

Subpackages

	aps_32id.run package
	Submodules

	aps_32id.run.energy_scan module

	aps_32id.run.mosaic_tomo_fly_scan module

	aps_32id.run.move_energy module

	aps_32id.run.tomo_fly_scan module

	aps_32id.run.tomo_step_scan module

	Module contents

Submodules

aps_32id.txm module

Module contents

aps_32id.run package

Submodules

aps_32id.run.energy_scan module

aps_32id.run.mosaic_tomo_fly_scan module

aps_32id.run.move_energy module

aps_32id.run.tomo_fly_scan module

aps_32id.run.tomo_step_scan module

Module contents

scanlib package

Submodules

scanlib.exceptions_ module

scanlib.tomo_scan_lib module

scanlib.txm_pv module

scanlib.tools module

Module contents

Examples

Sector 32-ID-C

An template TXM script is show below. It doesn’t actually collect any
data, but it does set up the TXM, open the shutters, close them again,
and tear down the TXM. The variableDict describes the parameters
that are presented to the user in the GUI when running this script. In
the example below, Several actions take place within a
run_scan() context manager. This
ensures that the current configuration is restored after the scan.

#!/bin/env python
"""An example script for controlling the sector 32 ID-C microscope."""

import logging

from scanlib import update_variable_dict
from aps_32id import NanoTXM

Prepare for logging data to a file, or whatever
log = logging.getLogger(__name__)

A dictionary with the options that can be used when invoking this script
variableDict = {
 'Parameter A': 0.1,
 'Parameter B': 505,
 # Logging: -1=no change, 0=UNSET, 10=DEBUG, 20=INFO, 30=WARNING, 40=ERROR, 50=CRITICAL
 'Log_Level': logging.INFO,
}

def getVariableDict():
 return variableDict

def run_my_experiment(param_a, param_b, log_level=20, txm=None):
 """Separate out the work-horse code so that it can be executed
 programatically. The ``txm`` parameter is intended for testing,
 where an instance of :py:class:`tests.tools.TXMStub` is used.

 Parameters
 ==========
 param_a :
 An experimental parameter.
 param_b :
 Another experimental parameter.
 log_level : logging.INFO
 How much detail to save to the logs.
 txm : NanoTXM, optional
 A NanoTXM object that represents the X-ray microscope. Useful
 for testing.

 """
 log.debug("Starting my experiment")
 # Create a TXM object to control the instrument
 if txm is None:
 txm = new_txm()
 # Run the experiment in this context manager so it stops properly
 with txm.run_scan():
 # Setup the microscope as desired
 txm.setup_hdf_writer()
 txm.start_logging(log_level)
 txm.setup_detector()
 txm.enable_fast_shutter() # Optional: reduces beam damage
 txm.open_shutters()
 # Now do some tomography or XANES or whatever
 pass
 # Close the shutters and shutdown
 txm.close_shutters()

def main():
 # The script was launched (not imported) so load the variable
 # dictionary from CLI parameters
 update_variable_dict(variableDict)
 # Start the experiment
 run_my_experiment(param_a=variableDict['Parameter A'],
 param_b=variableDict['Parameter B'],
 log_level=variableDict['Log_Level'])

if __name__ == '__main__':
 main()

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 aps_02bm	

 	
 	
 aps_02bm.run	

Index

 A

A

 	
 	aps_02bm (module)

 	
 	aps_02bm.run (module)

 _static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 ScanScripts

 		
 Install

 		
 Installing from source

 		
 Beamline Configuration

 		
 Sector 32-ID Scripts

 		
 General Features

 		
 Logging

 		
 Move Energy

 		
 Energy Scan

 		
 Tomography Step Scan

 		
 Tomography Fly Scan

 		
 Mosaic Tomography Fly Scan

 		
 Roll-Your-Own Scripts

 		
 Sector 32-ID TXM

 		
 Sector 32-ID Configuration

 		
 Stopping Scans Gracefully

 		
 Process Variables

 		
 Waiting on Process Variables

 		
 Waiting on Multiple Process Variables

 		
 Locking Shutter Permits

 		
 Fast Shutter

 		
 API reference

 		
 scanscripts

 		
 aps_02bm package

 		
 aps_32id package

 		
 scanlib package

 		
 Examples

 		
 Sector 32-ID-C

_images/aps-overhead.jpg

_static/ajax-loader.gif

