

    
      
          
            
  


Scanning SQUID measurement & control

scanning-squid [https://github.com/moler-group/scanning-squid] is an instrument control and data acquisition package for scanning SQUID (Superconducting QUantum Interference Device) microscopy developed in the Moler Group at Stanford University. It is based on the QCoDeS [http://qcodes.github.io/Qcodes/] data acquisition framework.

To install scanning-squid, see Getting Started.

Contact: Logan Bishop-Van Horn (logan.bvh [at] gmail [dot] com).


[image: Documentation Status]
 [https://scanning-squid.readthedocs.io/en/latest/?badge=latest]



Documentation:


	Getting Started
	Installation
	Windows

	Mac









	Microscope
	Microscope Components
	Attocubes

	Scanner

	SQUID

	DAQ

	Others Instruments









	Configuration Files
	Microscope Configuration

	Measurement Configuration





	Physical Units

	Measurements
	Capacitive touchdown

	Approaching the Sample

	Acquiring a Surface

	Scanning





	Plots
	ScanPlot

	TDCPlot





	Utility Functions & Classes

	DataSet Example
	Plotting

	Explore DataSet metadata

	Convert DataSet to arrays with real units

	Export data to a MAT file:





	Typical Workflow
	Preliminary Steps

	Initialize the Microscope

	Load the Measurement Configuration

	Approach the Sample

	Acquire a Surface

	Scan Over the Plane

	Move Around the Sample













          

      

      

    

  

    
      
          
            
  


Getting Started

scanning-squid [https://github.com/moler-group/scanning-squid] is an instrument control and data acquisition package for scanning SQUID (Superconducting QUantum Interference Device) microscopy. It is based on the QCoDeS [http://qcodes.github.io/Qcodes/] framework, and is designed to run in either a standalone Jupyter Notebook [http://jupyter.org/index.html], or in Jupyter Lab [http://jupyterlab.readthedocs.io/en/stable/].

Contact: Logan Bishop-Van Horn (logan.bvh [at] gmail [dot] com).


Installation

We recommend that you set up a conda env in which to run scanning-squid by following the steps below. This will install all of the packages on which scanning-squid depends.


Windows



	Download and install Anaconda [https://www.anaconda.com/download/#windows] (the latest Python 3 version).


	Download environment.yml [https://github.com/moler-group/scanning-squid/blob/master/environment.yml] from the scanning-squid repository


	Launch an Anaconda Prompt (start typing anaconda in the start menu and click on Anaconda Prompt)


	In the Anaconda Prompt, navigate to the directory containing environment.yml (cd <path-to-directory-containing-environment-file>)


	Run the following two commands in the Anaconda Prompt:



	conda env create -f environment.yml


	activate scanning-squid

















Mac



	Download and install Anaconda [https://www.anaconda.com/download/#macos] (the latest Python 3 version).


	Download environment.yml [https://github.com/moler-group/scanning-squid/blob/master/environment.yml] from the scanning-squid repository


	Launch a Terminal.


	In the Terminal, navigate to the directory containing environment.yml (cd <path-to-directory-containing-environment-file>)


	Run the following two commands in the Terminal:



	conda env create -f environment.yml


	source activate scanning-squid














After cloning the scanning-squid repository [https://github.com/moler-group/scanning-squid], to run scanning-squid from a Windows (Mac) machine, open the Anaconda Prompt (Terminal) and run activate scanning-squid (source activate scanning-squid), and launch a jupyter notebook or jupyter lab. Alternatively, on a Windows machine, you can launch a Jupyter Notebook from the start menu (just make sure the Jupyter Notebook icon says “(scanning-squid)” next to it).









          

      

      

    

  

    
      
          
            
  


Microscope

A physical scanning SQUID microscope is represented by an instance of the microscope.microscope.Microscope class (or liklely one of its subclasses, like microscope.susceptometer.SusceptometerMicroscope). A Microscope is a qcodes.station.Station [http://qcodes.github.io/Qcodes/api/station.html#qcodes.station.Station], to which we can attach components (instances of qcodes.Instrument or its subclasses) whose metadata we would like to save during a measurement.



[image: ../_images/microscope.jpg]





During a typical measurment (scan or capacitive touchdown), all settings/parameters of all instruments attached to the microscope are automatically queried and recorded, forming a “snapshot” of the microscope at the time of the measurement. This snapshot is saved along with a raw data file and a MATLAB .mat file containing data converted to real units. See Scan surface example for a demonstration of scanning a sample surface with a microscope.susceptometer.SusceptometerMicroscope.




	Microscope Components
	Attocubes

	Scanner

	SQUID

	DAQ

	Others Instruments










	
class microscope.microscope.Microscope(config_file: str, temp: str, ureg: Any = <pint.registry.UnitRegistry object>, log_level: Any = 20, log_name: str = None, **kwargs)

	Base class for scanning SQUID microscope.


	Parameters

	
	config_file – Path to microscope configuration JSON file.


	temp – ‘LT’ or ‘RT’, depending on whether the microscope is cold or not.
Sets the voltage limits for the scanner and Attocubes.


	ureg – pint UnitRegistry for managing physical units.


	log_level – e.g. logging.DEBUG or logging.INFO


	log_name – Log file will be saved as logs/{log_name}.log.
Default is the name of the microscope configuration file.


	**kwargs – Keyword arguments to be passed to Station constructor.









	
approach(tdc_params: Dict[str, Any], attosteps: int = 100) → None

	Approach the sample by iteratively stepping z Attocube and performing td_cap().


	Parameters

	
	tdc_params – Dict of capacitive touchdown parameters as defined
in measurement configuration file.


	attosteps – Number of z atto steps to perform per iteration. Default 100.













	
get_surface(x_vec: numpy.ndarray, y_vec: numpy.ndarray, tdc_params: Dict[str, Any]) → None

	Performs touchdowns on a grid and fits a plane to the resulting surface.


	Parameters

	
	x_vec – 1D array of x positions (must be same length as y_vec).


	y_vec – 1D array of y positions (must be same length as x_vec).


	tdc_params – Dict of capacitive touchdown parameters as defined
in measurement configuration file.













	
remove_component(name: str) → None

	Remove a component (instrument) from the microscope.


	Parameters

	name – Name of component to remove.










	
set_lockins(measurement: Dict[str, Any]) → None

	Initialize lockins for given measurement.


	Parameters

	measurement – Dict of measurement parameters as defined
in measurement configuration file.










	
td_cap(tdc_params: Dict[str, Any], update_snap: bool = True) → Tuple[Any]

	Performs a capacitive touchdown.


	Parameters

	
	tdc_params – Dict of capacitive touchdown parameters as defined
in measurement configuration file.


	update_snap – Whether to update the microscope snapshot. Default True.
(You may want this to be False when getting a plane or approaching.)






	Returns

	
	data, tdc_plot
	DataSet and plot generated by the touchdown Loop.









	Return type

	Tuple[qcodes.DataSet, plots.TDCPlot]














	
class microscope.susceptometer.SusceptometerMicroscope(config_file: str, temp: str, ureg: Any = <pint.registry.UnitRegistry object>, log_level: Any = 20, log_name: str = None, **kwargs)

	Scanning SQUID susceptometer microscope class.


	Parameters

	
	config_file – Path to microscope configuration JSON file.


	temp – ‘LT’ or ‘RT’, depending on whether the microscope is cold or not.
Sets the voltage limits for the scanner and Attocubes.


	ureg – pint UnitRegistry for managing physical units.


	log_level – e.g. logging.DEBUG or logging.INFO


	log_name – Log file will be saved as logs/{log_name}.log.
Default is the name of the microscope configuration file.


	**kwargs – Keyword arguments to be passed to Station constructor.









	
get_prefactors(measurement: Dict[str, Any], update: bool = True) → Dict[str, Any]

	For each channel, calculate prefactors to convert DAQ voltage into real units.


	Parameters

	
	measurement – Dict of measurement parameters as defined
in measurement configuration file.


	update – Whether to query instrument parameters or simply trust the
latest values (should this even be an option)?






	Returns

	
	prefactors
	Dict of {channel_name: prefactor} where prefactor is a pint Quantity.









	Return type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], pint.Quantity]










	
scan_surface(scan_params: Dict[str, Any]) → None

	Scan the current surface while acquiring data in the channels defined in
measurement configuration file (e.g. MAG, SUSCX, SUSCY, CAP).


	Parameters

	scan_params – Dict of scan parameters as defined
in measuremnt configuration file.



	Returns

	None














	
class microscope.sampler.SamplerMicroscope(config_file: str, temp: str, ureg: Any = <pint.registry.UnitRegistry object>, log_level: Any = 20, log_name: str = None, **kwargs)

	Scanning SQUID sampler microscope class.


	
iv_mod_tek(ivm_params: Dict[str, Any]) → Tuple[Dict[str, Any]]

	Measures IV characteristic at different mod coil voltages.


	Parameters

	ivm_params – Dict of measurement parameters as definted in config_measurements json file.



	Returns

	
	data_dict, metadict
	Dictionaries containing data arrays and instrument metadata.









	Return type

	Tuple[Dict]










	
iv_tek_mod_daq(ivm_params: Dict[str, Any]) → None

	Performs digital feedback on mod coil to measure flux vs. delay.

AFG ch1 is used for pulse generator bias.
AFG ch2 is used for comparator bias.
DG ch1 is used for pulse generator trigger.


	Parameters

	ivm_params – Dict of measurement parameters as definted in config_measurements json file.



	Returns

	
	data_dict, metadict
	Dictionaries containing data arrays and instrument metadata.









	Return type

	Tuple[Dict]




















          

      

      

    

  

    
      
          
            
  


Microscope Components

A Microscope is made up of several qcodes.Instrument objects used to control and acquire data from physical instruments.


Attocubes

The instruments.atto.AttocubeController interfaces via GPIB with the Attocube hardware (e.g. an ANC300 controller [http://www.attocube.com/attocontrol/motion-controllers/anc300/]). It enforces stepping voltage limits based on the current temperature mode (either 'LT' or 'RT').



	
class instruments.atto.AttocubeController(atto_config: Dict, temp: str, ureg: Any, timestamp_fmt: str, **kwargs)

	Base class for Attocube controller instrument.


	Parameters

	
	atto_config – Configuration dict loaded from microscope configuration json file.


	temp – ‘LT’ or ‘RT’, depending on whether the attocubes are at room temp. or low temp.


	ureg – pint UnitRegistry instance, used for managing physical units.


	timestamp_fmt – Timestamp format to be used for logging.


	**kwargs – Keyword arguments to be passed to VisaInstrument constructor.









	
ask_raw(cmd: str) → str

	Query instrument with cmd and return response.


	Parameters

	cmd – Command to write to controller.



	Returns

	
	response
	Response of Attocube controller to the query cmd.









	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
check_response(response: str) → None

	Raise an exception if controller responds with ‘ERROR’.


	Parameters

	response – Response from controller.










	
clear_instances()

	Remove instrument instance.






	
step(axis: Union[int, str], steps: int) → None

	Performs a given number of Attocube steps. steps > 0 corresponds to stepu (up),
steps < 0 corresponds to stepd (down).


	Parameters

	
	axis – Either axis label (str, e.g. ‘y’) or index (int, e.g. 2)


	steps – Number of steps to perform (>0 for ‘u’, <0 for ‘d’)













	
stop(axis: Union[int, str]) → None

	Stops all motion along axis and then grounds the output.


	Parameters

	axis – Either axis label (str, e.g. ‘y’) or index (int, e.g. 2)










	
write_raw(cmd: str) → str

	Write cmd and don’t wait for response.


	Parameters

	cmd – Command to write to controller.














	
class instruments.atto.ANC300(atto_config: Dict, temp: str, ureg: Any, timestamp_format: str, **kwargs)

	ANC300 Attocube controller instrument.


	
initialize() → None

	Initialize instrument with parameters from self.metadata.










	
class instruments.atto.ANC150(atto_config: Dict, temp: str, ureg: Any, timestamp_format: str, **kwargs)

	ANC150 Attocube controller instrument.


	
initialize() → None

	Initialize instrument with parameters from self.metadata.















Scanner

The scanner.Scanner represents the x, y, z scanner that controls the relative motion between the sample and the SQUID. It enforces voltage limits based on the current temperature mode (either 'LT' or 'RT'). A scanner.Scanner instance creates and closes nidaqmx [https://nidaqmx-python.readthedocs.io/en/latest/] DAQ analog ouput and input tasks as needed to drive the scanner and sense its current position.



	
class scanner.Scanner(scanner_config: Dict[str, Any], daq_config: Dict[str, Any], temp: str, ureg: Any, **kwargs)

	Controls DAQ AOs to drive the scanner.


	Parameters

	
	scanner_config – Scanner configuration dictionary as defined
in microscope configuration JSON file.


	daq_config – DAQ configuration dictionary as defined
in microscope configuration JSON file.


	temp – ‘LT’ or ‘RT’ - sets the scanner voltage limit for each axis
based on temperature mode.


	ureg – pint UnitRegistry, manages units.









	
check_for_td(tdc_plot: Any, data_set: Any, counter: Any) → None

	Check whether touchdown has occurred during a capacitive touchdown.


	Parameters

	
	tdc_plot – plots.TDCPlot instance, which contains current data and parameters
of the touchdown Loop.


	data_set – DataSet containing capacitance data generated by Loop.


	counter – utils.Counter intance to keep track of which point in the Loop we’re at.













	
clear_instances()

	Clear scanner instances.






	
control_ao_task(cmd: str) → None

	Write commands to the DAQ AO Task. Used during qc.Loops.


	Parameters

	cmd – What you want the Task to do. For example,
self.control_ao_task(‘stop’) is equivalent to self.ao_task.stop()










	
get_pos() → numpy.ndarray

	Get current scanner [x, y, z] position.


	Returns

	
	pos
	Array of current [x, y, z] scanner voltage.









	Return type

	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]










	
get_td_height(tdc_plot: Any, task: bool = True) → None

	If a touchdown has occurred, finds the z voltage at which it occurred.


	Parameters

	
	tdc_plot – plots.TDCPlot instance containing data from touchdown.


	task – True if get_td_height is being called as a qcodes Task (no return value allowed).
Default True.













	
goto(new_pos: List[float], retract_first: Optional[bool] = False, speed: Optional[str] = None, quiet: Optional[bool] = False) → None

	Move scanner to given position.
By default moves all three axes simultaneously, if necessary.


	Parameters

	
	new_pos – List of [x, y, z] scanner voltage to go to.


	retract_first – If True, scanner retracts to value determined by self.temp,
then moves in the x,y plane, then moves in z to new_pos. Default: False.


	speed – Speed at which to move the scanner (e.g. ‘2 V/s’) in DAQ voltage units.
Default set in microscope configuration JSON file.


	quiet – If True, only logs changes in logging.DEBUG mode.
(goto is called many times during, e.g., a scan.) Default: False.













	
goto_start_of_next_line(scan_grids: Dict[str, numpy.ndarray], counter: Any) → None

	Moves scanner to the start of the next line to scan.


	Parameters

	
	scan_grids – Dict of {axis_name: axis_meshgrid} from utils.make_scan_grids().


	counter – utils.Counter instance, determines current line of the grid.













	
load_surface(fname: str, function: Optional[str] = 'multiquadric', smooth: Optional[float] = 0) → None

	
	Loads a previously acquired sample surface; updates self.metadata[‘plane’], self.metadata[‘td_grid’],
	and self.surface_interp.






	Parameters

	
	fname – Full file path for .mat file containing measured surface.


	function – String defining the radial basis function for scipy.interpolate.Rbf (e.g. ‘cubic’ or ‘linear’).
Default: ‘multiquadric’, the scipy default value.


	smooth – Smoothing factor for scipy.interpolate.Rbf. smooth=0 means exact interpolation. Only uses smoothing
if function=’linear’. Default: 0.













	
make_ramp(pos0: List, pos1: List, speed: Union[int, float]) → numpy.ndarray

	Generates a ramp in x,y,z scanner voltage from point pos0 to point pos1 at given speed.


	Parameters

	
	pos0 – List of initial [x, y, z] scanner voltages.


	pos1 – List of final [x, y, z] scanner votlages.


	speed – Speed at which to go to pos0 to pos1, in DAQ voltage/second.






	Returns

	
	ramp
	Array of x, y, z values to write to DAQ AOs to move
scanner from pos0 to pos1.









	Return type

	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]










	
retract(speed: Optional[str] = None, quiet: Optional[bool] = False) → None

	Retracts z-bender fully based on whether temp is LT or RT.


	Parameters

	speed – Speed at which to move the scanner (e.g. ‘2 V/s’) in DAQ voltage units.
Default set in microscope configuration JSON file.










	
scan_line(scan_grids: Dict[str, numpy.ndarray], ao_channels: Dict[str, int], daq_rate: Union[int, float], counter: Any, reverse=False) → None

	Scan a single line of a plane.


	Parameters

	
	scan_grids – Dict of {axis_name: axis_meshgrid} from utils.make_scan_grids().


	ao_channels – Dict of {axis_name: ao_index} for the scanner ao channels.


	daq_rate – DAQ sampling rate in Hz.


	counter – utils.Counter instance, determines current line of the grid.


	reverse – Determines scan direction (i.e. forward or backward).






















SQUID

The squids.SQUID and subclasses like squids.Susceptometer record SQUID parameters and metadata.



	
class squids.SQUID(squid_config: Dict[str, Any], **kwargs)

	SQUID sensor base class. Simply records sensor metadata.
No gettable or settable parameters.


	Parameters

	
	squid_config – SQUID configuration dict.
Simply added to instrument metadata.


	**kwargs – Keyword arguments passed to Instrument constructor.













	
class squids.Susceptometer(squid_config: Dict[str, Any], **kwargs)

	Records SQUID susceptometer metadata.


	Parameters

	
	squid_config – SQUID configuration dict.
Simply added to instrument metadata.


	**kwargs – Keyword arguments passed to Instrument constructor.


















DAQ

Instances of the instruments.daq.DAQAnalogInputs instrument are created only as needed for a measurement, and removed once the measurement is completed. This ensures that the DAQ hardware resources are available when needed. A instruments.daq.DAQAnalogInputs instrument has a single gettable parameter, instruments.daq.DAQAnalogInputVoltages, which aqcuires a given number of samples from the requested DAQ analog input channels.



	
class instruments.daq.DAQAnalogInputVoltages(name: str, task: Any, samples_to_read: int, shape: Sequence[int], timeout: Union[float, int], **kwargs)

	Acquires data from one or several DAQ analog inputs.


	Parameters

	
	name – Name of parameter (usually ‘voltage’).


	task – nidaqmx.Task with appropriate analog inputs channels.


	samples_to_read – Number of samples to read. Will be averaged based on shape.


	shape – Desired shape of averaged array, i.e. (nchannels, target_points).


	timeout – Acquisition timeout in seconds.


	**kwargs – Keyword arguments to be passed to ArrayParameter constructor.









	
get_raw()

	Averages data to get self.target_points points per channel.
If self.target_points == self.samples_to_read, no averaging is done.










	
class instruments.daq.DAQAnalogInputs(name: str, dev_name: str, rate: Union[int, float], channels: Dict[str, int], task: Any, min_val: Optional[float] = -5, max_val: Optional[float] = 5, clock_src: Optional[str] = None, samples_to_read: Optional[int] = 2, target_points: Optional[int] = None, timeout: Union[int, float, None] = 60, **kwargs)

	Instrument to acquire DAQ analog input data in a qcodes Loop or measurement.


	Parameters

	
	name – Name of instrument (usually ‘daq_ai’).


	dev_name – NI DAQ device name (e.g. ‘Dev1’).


	rate – Desired DAQ sampling rate per channel in Hz.


	channels – Dict of analog input channel configuration.


	task – fresh nidaqmx.Task to be populated with ai_channels.


	min_val – minimum of input voltage range (-0.1, -0.2, -0.5, -1, -2, -5 [default], or -10)


	max_val – maximum of input voltage range (0.1, 0.2, 0.5, 1, 2, 5 [default], or 10)


	clock_src – Sample clock source for analog inputs. Default: None


	samples_to_read – Number of samples to acquire from the DAQ
per channel per measurement/loop iteration.
Default: 2 (minimum number of samples DAQ will acquire in this timing mode).


	target_points – Number of points per channel we want in our final array.
samples_to_read will be averaged down to target_points.


	timeout – Acquisition timeout in seconds. Default: 60.


	**kwargs – Keyword arguments to be passed to Instrument constructor.









	
clear_instances()

	Clear instances of DAQAnalogInputs Instruments.










	
class instruments.daq.DAQAnalogOutputVoltage(name: str, dev_name: str, idx: int, **kwargs)

	Writes data to one or several DAQ analog outputs.


	Parameters

	
	name – Name of parameter (usually ‘voltage’).


	dev_name – DAQ device name (e.g. ‘Dev1’).


	idx – AO channel inde.


	**kwargs – Keyword arguments to be passed to ArrayParameter constructor.









	
get_raw()

	Returns last voltage array written to outputs.










	
class instruments.daq.DAQAnalogOutputs(name: str, dev_name: str, channels: Dict[str, int], **kwargs)

	Instrument to write DAQ analog output data in a qcodes Loop or measurement.


	Parameters

	
	name – Name of instrument (usually ‘daq_ao’).


	dev_name – NI DAQ device name (e.g. ‘Dev1’).


	channels – Dict of analog output channel configuration.


	**kwargs – Keyword arguments to be passed to Instrument constructor.









	
clear_instances()

	Clear instances of DAQAnalogOutputs Instruments.















Others Instruments


Lockins


	SR830 driver courtesy of QCoDeS [http://qcodes.github.io/Qcodes/].



	
class qcodes.instrument_drivers.stanford_research.SR830.SR830(name, address, **kwargs)

	This is the qcodes driver for the Stanford Research Systems SR830
Lock-in Amplifier










	Driver for a single Zurich Instruments HF2LI [https://www.zhinst.com/products/hf2li] “lockin channel”.







Temperature Controllers

Lakeshore temperature controllers.



	
class instruments.lakeshore.Model_331(name, address, **kwargs)

	Lakeshore Model 331 Temperature Controller Driver
Controlled via sockets
Adapted from QCoDeS Lakeshore 336 driver






	
class instruments.lakeshore.Model_335(name, address, **kwargs)

	Lakeshore Model 335 Temperature Controller Driver
Controlled via sockets
Adapted from QCoDeS Lakeshore 336 driver






	
class instruments.lakeshore.Model_340(name, address, active_channels={'A': 'cernox', 'B': 'diode'}, **kwargs)

	Lakeshore Model 340 Temperature Controller Driver
Controlled via sockets
Adapted from QCoDeS Lakeshore 336 driver






	
class instruments.lakeshore.Model_372(name, address, active_channels={'ch1': '50K Plate', 'ch2': '3K Plate'}, **kwargs)

	Lakeshore Model 372 Temperature Controller Driver
Controlled via sockets
Adapted from QCoDeS Lakeshore 336 driver











SourceMeters

Keithley SourceMeters.



	
class instruments.keithley.Keithley_2400(name, address, **kwargs)

	QCoDeS driver for the Keithley 2400 voltage source.


	
reset()

	Reset the instrument. When the instrument is reset, it performs the
following actions.


Returns the SourceMeter to the GPIB default conditions.

Cancels all pending commands.

Cancels all previously send *OPC and *OPC?


















Arbitrary Function Generators

Tektronix AFG3000 series.



	
class instruments.afg3000.AFG3000(name, address, **kwargs)

	Qcodes driver for Tektronix AFG3000 series arbitrary function generator.

Not all instrument functionality is included here.
By default, most parameters are not queried during a snapshot.
Logan Bishop-Van Horn (2018)


	
clear_instances()

	Clear instances of AFG3000 Instruments.















Digital Delay Generators

Stanford Research DG645.



	
class instruments.dg645.DG645(name, address, **kwargs)

	Qcodes driver for SRS DG645 digital delay generator.

Not all instrument functionality is included here.
Logan Bishop-Van Horn (2018)


	
calibrate() → None

	Run auto-calibration routine.






	
clear_instances()

	Clear instances of DG645 Instruments.






	
local() → None

	Go to local.






	
remote() → None

	Go to remote.






	
reset() → None

	Reset instrument.






	
save_settings(location: int) → None

	Save instrument settings to given location.


	Parameters

	location – Location to which to save the settings (in [1..9]).










	
self_test() → None

	Run self-test routine.






	
trigger() → None

	Initiates a single trigger if instrument is in single shot mode.






	
wait() → None

	Wait for all prior commands to execute before continuing.















Heater Power Supply

AIM & Thurlby Thandar PSU (BlueFors warmup heater).



	
class instruments.heater.EL320P(name, address, **kwargs)

	Qcodes driver for AIM & Thurlby Thandar EL320P power supply.
















          

      

      

    

  

    
      
          
            
  


Configuration Files

Parameters of both the microscope itself and of measurements it will perform are defined in JSON [https://realpython.com/python-json/] files. These parameters are loaded into memory as an OrderedDict [https://docs.python.org/3/library/collections.html#collections.OrderedDict] using utils.load_json_ordered() so that they are accessible to the Microscope.


Microscope Configuration

Example configuration file for a microscope.susceptometer.SusceptometerMicroscope.


{
    "instruments": {
        "daq": {
            "model": "NI USB-6363",
            "name": "Dev1",
            "channels": {
                "analog_inputs": {
                    "MAG": 0,
                    "SUSCX": 1,
                    "SUSCY": 2,
                    "CAP": 3,
                    "x": 4,
                    "y": 5,
                    "z": 6},
                "analog_outputs": {"x": 0,"y": 1,"z": 2}
            },
            "rate": "1 MHz",
            "max_rate": {
                "analog_inputs": {
                    "1 channel": "2 MHz",
                    "multichannel": "1 MHz",
                    "comment": "Multichannel value is aggregate for all ai channels."},
                "analog_outputs": {
                    "1 channels": "2.86 MHz",
                    "2 channels": "2.00 MHz",
                    "3 channels": "1.54 MHz",
                    "4 channels": "1.25 MHz",
                    "comment": "Max ao rates are per channel."
                }
            }
        },
        "lockins": {
            "SUSC": {
                "model": "SR830",
                "address": "GPIB0::12::7::INSTR"},
            "CAP": {
                "model": "SR830",
                "address": "GPIB0::28::7::INSTR"
            }
        },
        "atto": {
            "name": "atto",
            "model": "ANC300",
            "address": "ASRL1::INSTR",
            "timeout": 5,
            "terminator": "\r\n",
            "stopbits": 1,
            "baud_rate" : 38400,
            "axes": {"x": 1,"y": 2,"z": 3},
            "voltage_limits": {
                "RT":{"x": "25 V","y": "25 V","z": "40 V"},
                "LT":{"x": "60 V","y": "60 V","z": "60 V"}
            },
            "default_frequency": {"x": "100 Hz", "y": "100 Hz", "z": "100 Hz"},
            "constants":{
                "x": "-0.66 um",
                "y": "-0.55 um",
                "z": "0.2 um",
                "comment": "Approximate um/step at 3 K, 60 V. Sign is relative to scanner sign. 2018/02/22"},
            "history": {}
        },
        "ls372":{
            "name": "ls372",
            "address": "GPIB0::13::7::INSTR"
        },
        "ls331":{
            "name": "ls331",
            "address": "GPIB0::30::7::INSTR"
        },
        "scanner": {
            "name": "benders",
            "constants": {
                "x": "17 um/V",
                "y": "18 um/V",
                "z": "2 um/V",
                "comment": "um/V_daq (2018/02)"},
            "voltage_limits":{
                "RT":{"x": [-2, 2], "y": [-2, 2], "z": [-2, 2]},
                "LT":{"x": [-10, 10],"y": [-10, 10], "z": [-10, 10]},
                "unit": "V",
                "comment":"V_daq should never be outside of voltage_limits."},
            "voltage_retract":{"RT": "-2 V","LT": "-10 V"},
            "speed": {
                "value": "2 V/s",
                "comment":"Rate of movement of the scanner (when not scanning)."
            },
            "plane": {},
            "cantilever": {
                "calibration": "326 uV/pF",
                "comment":"CAP lockin X reading, freq = 6.821 kHz, amp = 1 V"
            }
        }
    },
    "SQUID": {
        "name": "SQUID",
        "type": "susceptometer",
        "description": "IBM deep-etched 0.3um susceptometer",
        "modulation_width": "0.19 V/Phi0",
        "FC_PU_mutual": "0 Phi0/A",
        "feedback": {
            "type": "Red Pitaya + pyrpl"
        },
        "dimensions": {
            "PU_ri": "0.3 um",
            "PU_ro": "0.5 um",
            "FC_ri": "1.0 um",
            "FC_ro": "1.5 um"
        }
    },
    "info": {
        "timestamp_format":"%Y-%m-%d_%H:%M:%S"
    }
}











Measurement Configuration

Example configuration file for microscope.susceptometer.SusceptometerMicroscope measurements.


{
    "scan": {
        "fname": "scan",
        "surface_type": "plane",
        "fast_ax": "x",
        "range": {"x": "5 V", "y": "5 V"},
        "center": {"x": "0 V", "y": "0 V"},
        "height": "-0.2 V",
        "scan_rate": "10 pixels/s",
        "scan_size": {"x": 50, "y": 50},
        "channels": {
            "MAG": {
                "label": "Magnetometry",
                "gain": 10,
                "filters": {
                    "lowpass": {"cutoff": "100 kHz", "slope": "12 dB/octave"},
                    "highpass": {"cutoff": "0 Hz","slope": "0 dB/octave"}
                },
                "unit": "mPhi0",
                "unit_latex": "m$\\Phi_0$"
            },
            "SUSCX": {
                "lockin": {
                    "name": "SUSC",
                    "amplitude": "1 V",
                    "frequency": "131.79 Hz"
                },
                "label": "Susceptibility",
                "gain": 10,
                "r_lead": "1 kOhm",
                "unit": "Phi0/A",
                "unit_latex": "$\\Phi_0$/A"
            },
            "SUSCY": {
                "lockin": {
                    "name": "SUSC"
                },
                "label": "Susceptibility (out of phase)",
                "gain": 10,
                "r_lead": "1 kOhm",
                "unit": "Phi0/A",
                "unit_latex": "$\\Phi_0$/A"
            },
            "CAP": {
                "lockin": {
                    "name": "CAP",
                    "amplitude": "1 V",
                    "frequency": "6.281 kHz"
                },
                "label": "Capacitance",
                "gain": 1,
                "unit": "fF",
                "unit_latex": "fF"
            }
        }
    },
    "td_cap": {
        "fname": "td_cap",
        "dV": "0.1 V",
        "range": ["-9.5 V","9.5 V"],
        "channels": {
            "CAP": {
                "lockin": {
                    "name": "CAP",
                    "amplitude": "1 V",
                    "frequency": "6.281 kHz"
                },
                "label": "Capacitance",
                "gain": 1,
                "unit": "fF",
                "unit_latex": "fF"
            },
            "SUSCX": {
                "lockin": {
                    "name": "SUSC",
                    "amplitude": "1 V",
                    "frequency": "131.79 Hz"
                },
                "label": "Susceptibility",
                "gain": 10,
                "r_lead": "1 kOhm",
                "unit": "Phi0/A",
                "unit_latex": "$\\Phi_0$/A"
            },
            "SUSCY": {
                "lockin": {
                    "name": "SUSC"
                },
                "label": "Susceptibility (out of phase)",
                "gain": 10,
                "r_lead": "1 kOhm",
                "unit": "Phi0/A",
                "unit_latex": "$\\Phi_0$/A"
            }
        },
        "constants": {
            "max_slope": "0.8 fF/V",
            "max_delta_cap": "5 fF",
            "max_slope": "3 fF/V",
            "max_delta_cap": "15 fF",
            "initial_cap":"0 pF",
            "nfitmin":10,
            "nwindow":30,
            "ntest":8,
            "wait_factor":2
        }
    }
}














          

      

      

    

  

    
      
          
            
  


Physical Units

scanning-squid knows about physical units thanks to pint [http://pint.readthedocs.io/en/latest/], a package designed to operate on and manipulate physical quantities.

pint is based around the UnitRegistry, an object that knows a set of physical units and the relationships between them.


[1]:






from pint import UnitRegistry
ureg = UnitRegistry()







We can use the our instance of UnitRegistry (here called ureg) to convert a dimensionless number like 2 into a dimensionful quantity like 2 \(\mu\)V, or parse a string like '2 uV' into a Quantity with a magnitude of 2 and unit of microvolt.


[2]:






print(2 * ureg('uV'))













2 microvolt







[3]:






v = ureg.Quantity('2 uV')
print(v)













2 microvolt






ureg knows how units are related to one another:


[4]:






print(v.to('mV'))













0.002 millivolt







[5]:






fJ = ureg.Quantity('483.6 MHz / uV') # a.c. Josephson effect
print(fJ)
print(fJ * v)
print((fJ * v).to('GHz'))
print(fJ * ureg.Quantity('1 nA') * ureg.Quantity('1 ohm'))
print((fJ * ureg.Quantity('1 uA') * ureg.Quantity('1 ohm')).to('MHz'))













483.6 megahertz / microvolt
967.2 megahertz
0.9672000000000001 gigahertz
483.6 megahertz * nanoampere * ohm / microvolt
483.6 megahertz






ureg doesn’t by default know what a \(\Phi_0\) is, but we can teach it:


[6]:






with open('squid_units.txt', 'w') as f:
    f.write('Phi0 = 2.067833831e-15 * Wb\n')
ureg.load_definitions('./squid_units.txt')








[7]:






phi0 = ureg('Phi0')








[8]:






print(phi0)
print(phi0.to('gauss * um**2'))
print(phi0.to('aT * acre'))













1 Phi0
20.67833831 gauss * micrometer ** 2
0.5109708237305385 acre * attotesla







[ ]:


















          

      

      

    

  

    
      
          
            
  


Measurements

The primary measurements for microscope.microscope.Microscope and microscope.susceptometer.SusceptometerMicroscope include


	Capacitive touchdown


	Approaching the Sample


	Acquiring a Surface


	Scanning at a given height over the surface of a sample





Capacitive touchdown



See also

microscope.microscope.Microscope.td_cap(), scanner.Scanner.check_for_td(), scanner.Scanner.get_td_height(), and plots.TDCPlot.






In a capacitive touchdown, we sweep the scanner z position (scanner.Scanner.position_z) and measure the cantilever capacitance via a capacitance bridge and the CAP_lockin. If there is a change in the slope of capacitance as a function of DAQ AO voltage above some prescribed threshold (e.g. 1 fF/V), a touchdown has been detected. The measurement parameters (usually loaded into an OrderedDict called tdc_params) for a capacitive touchdown are defined in the Measurement Configuration file as follows:


{
    "td_cap": {
        "fname": "td_cap",
        "dV": "0.1 V",
        "range": ["-9.5 V","9.5 V"],
        "channels": {
            "CAP": {
                "lockin": {
                    "name": "CAP",
                    "amplitude": "1 V",
                    "frequency": "6.281 kHz"
                },
                "label": "Capacitance",
                "gain": 1,
                "unit": "fF",
                "unit_latex": "fF"
            },
            "SUSCX": {
                "lockin": {
                    "name": "SUSC",
                    "amplitude": "1 V",
                    "frequency": "131.79 Hz"
                },
                "label": "Susceptibility",
                "gain": 10,
                "r_lead": "1 kOhm",
                "unit": "Phi0/A",
                "unit_latex": "$\\Phi_0$/A"
            },
            "SUSCY": {
                "lockin": {
                    "name": "SUSC"
                },
                "label": "Susceptibility (out of phase)",
                "gain": 10,
                "r_lead": "1 kOhm",
                "unit": "Phi0/A",
                "unit_latex": "$\\Phi_0$/A"
            }
        },
        "constants": {
            "max_slope": "0.8 fF/V",
            "max_delta_cap": "5 fF",
            "initial_cap":"0 pF",
            "nfitmin":10,
            "nwindow":30,
            "ntest":8,
            "wait_factor":2
        }
    }
}








The algorithm for performing a capacitive touchdown is as follows:



	Sweep scanner.position_z through tdc_params['range'] with DAQ voltage steps given by tdc_params['dV'] and use the DAQ to measure the X output of CAP_lockin. After each change in DAQ AO voltage, allow the lockin to settle for max(CAP_lockin.time_constant(), SUSC_lockin.time_constant()) * tdc_params['constants']['wait_factor'].


	If at any point the capacitance is greater than tdc_params['constants']['max_delta_cap'] (i.e. if the capacitance bridge is very unbalanced), or if the pre-touchdown slope is greater than tdc_params['constants']['max_slope'], something has gone wrong, so abort the touchdown.


	Once tdc_params['constants']['nwindow'] points have been acquired, partition the last tdc_params['constants']['nwindow'] points into two subsets (with the boundary not lying within tdc_params['constants']['nfitmin'] of either end of the window). For each allowed partition boundary point, fit a line to each of the two subsets, and select the boundary point that minimizes the RMS of the fit residuals.


	If the absolute value of the difference in slope between the two best-fit lines exceeds tdc_params['constants']['max_slope'], a touchdown has occurred.


	If a touchdown is detected, repeat the fitting routine in step 4 to find the touchdown point, and exit the loop.


	If no touchdown is detected over the whole tdc_params['range'], exit the loop.







The microscope.microscope.Microscope.td_cap() will break its qcodes.Loop if either scanner.Scanner.break_loop or scanner.Scanner.td_has_occurred is True. The former is set to True if: any of the safety limits are exceeded, the touchdown is interrupted by the user, or a touchdown is detected. The latter is only set to True if a touchdown is detected.



Note

Whenever scanner.Scanner.break_loop is set to True, the scanner will be retracted to the voltage prescribed by the microscope’s temperature mode ('LT' or 'RT').




Note

It is very important to find a low-noise regime for the capacitance measurment in order to avoid false touchdowns or not detecting a real touchdown. It seems the most effective knob to turn in order fix noise problems is CAP_lockin.frequency. In the Bluefors 3K system, scatter of < 1 fF is typical and acceptable.









Approaching the Sample



See also

Approach & get sample surface example, microscope.microscope.Microscope.approach() and Capacitive touchdown.






The initial approach of the sample is done by iteratively performing capacitive touchdowns and instruments.atto.AttocubeController.step() towards the sample in the z direction until a touchdown is detected. The basic flow of microscope.microscope.Microscope.approach() goes as follows:



	Run microscope.microscope.Microscope.td_cap() to see if the SQUID is already close to the sample.


	If no touchdown is detected, while the microscope.microscope.Microscope.td_cap() loop is not broken:



	Perform the requested number of z Attocube steps towards the sample


	Run microscope.microscope.Microscope.td_cap()









	If the loop was broken because a touchdown was detected, run microscope.microscope.Microscope.td_cap() to confirm that a touchdown occurred.










Acquiring a Surface



See also

Approach & get sample surface example, utils.make_scan_grids(), utils.make_xy_grids(), and Capacitive touchdown.






In order to scan, we must know where the sample surface is. To acquire a surface, we perform capacitive touchdowns on a grid of x, y positions and fit a plane to the measured touchdown heights. The resulting fit coefficients are stored in the dictionary scanner.Scanner.metadata['plane'], which has keys 'x', 'y', and 'z'. The sample plane for given x and y grids is then given by:


coeffs = scanner.Scanner.metadata['plane']
sample_plane = x_grid * coeffs['x'] + y_grid * coeffs['y'] + coeffs['z']








This means that coeffs['x'] and coeffs['y'] are the x and y gradients of the sample plane in DAQ voltage units, and coeffs['z'] is the touchdown height at the origin [x_position, y_position] == [0, 0]. To scan, say, 0.5 V above the sample surface, the z-axis scan grid is simply sample_plane - 0.5.



Note

The sample topography (i.e. touchdown voltage vs. x,y voltage) and plane are saved in a .mat file, and can be loaded into the program using scanner.Scanner.load_surface().




Note

When you perform a touchdown at the origin [x_position, y_position] == [0, 0], scanner.Scanner.metadata['plane'] is automatically updated with the new touchdown voltage.




Note

This plane is trusted until the Attocubes are moved by atto.AttocubeController.step(), at which point atto.AttocubeController.surface_is_current is set to False, and you will not be able to scan until you’ve acquired a new plane or manually set atto.surface_is_current = True.






For samples that are not flat and therefore not well-approximated by a plane, there is the option to instead scan parallel to a surface formed by interpolating the touchdown points, by setting "surface_type": "surface" in the Measurement Configuration file. The scanner.Scanner.surface_interp object is an instance of scipy.interpolate.Rbf [https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.Rbf.html#scipy.interpolate.Rbf], which forms a radial basis function representation of multi-dimensional data (similar to spline interpolation, but more general). To see what the expected touchdown voltage at point x, y is, one can simply run scanner.Scanner.surface_interp(x,y).



Warning

Calculation of of the Rbf representation of the scan array (array of voltages to be written to the DAQ AOs during a scan) is very memory intensive. If the DAQ sampling rate is too high or the scan is too large or slow, you will get a MemoryError.




Warning

It is easy to introduce measurement artifacts when scanning an interpolated surface, particularly for measurements that are very sensitive to SQUID-sample separation (e.g. local susceptibility). You should only use this functionality if you can be reasonably sure you are not introducing artifacts.









Scanning



See also

plots.ScanPlot




Note

When measuring susceptibility while scanning, it is very important to choose the susceptibility lockin frequency and scan parameters such that each pixel corresponds to an integer number of lockin periods, so as to avoid beating/aliasing effects.






See Scan surface example for a demonstration of scanning a plane with a microscope.susceptometer.SusceptometerMicroscope.







          

      

      

    

  

    
      
          
            
  


Plots


ScanPlot

This is the plot that is displayed during the course of a scan. It shows magnetometry, susceptibility (in and out of phase), and cantilever capacitance data as a function of x,y scanner voltage in the units requested in the Measurement Configuration file. The plot is saved as a png file to the DataSet location after each line of the scan. The last five lines of data are displayed below the colorplot, with the most recent line in red.



[image: ../_images/scanplot_example.png]



	
class plots.ScanPlot(scan_params: Dict[str, Any], ureg: Any, **kwargs)

	Plot displaying acquired images in all measurement channels, updated live during a scan.


	Parameters

	
	scan_params – Scan parameters as defined in measurement configuration file.


	prefactors – Dict of pint quantities defining conversion factor from
DAQ voltage to real units for each measurement channel.


	ureg – pint UnitRegistry, manages units.









	
init_empty()

	Initialize the plot with all images empty. They will be filled during the scan.






	
save(fname=None)

	Save plot to png file.


	Parameters

	fname – File to which to save the plot.
If fname is None, saves to data location as {scan_params[‘fname’]}.png










	
update(data_set: Any, loop_counter: Any, num_lines: Optional[int] = 5, offline: Optional[bool] = False) → None

	Update the plot with updated DataSet. Called after each line of the scan.


	Parameters

	
	DataSet – active data set, with a new line of data added with each loop iteration.


	loop_counter – utils.Counter instance, lets us know where we are in the scan.


	num_lines – Number of previous linecuts to plot, including the line just scanned.
Currently can only handle num_lines <= 5.


	offline – False if this is being called during a scan.






















TDCPlot

This is the plot that is displayed during a touchdown. It shows cantilever capacitance and susceptibility (in and out of phase) as a function of z scanner voltage in the units requested in the Measurement Configuration file. The plot is saved as a png file to the DataSet location at the end of the measurement.



[image: ../_images/tdcplot_example.png]



	
class plots.TDCPlot(tdc_params: Dict[str, Any], ureg: Any)

	Plot displaying capacitance as a function of z voltage, updated live during a scan.


	Parameters

	
	tdc_params – Touchdown parameters as defined in measurement configuration file.


	ureg – pint UnitRegistry, manages units.









	
init_empty()

	Initialize the plot with no data.






	
save(fname=None)

	Save plot to png file.


	Parameters

	fname – File to which to save the plot.
If fname is None, saves to data location as {tdc_params[‘fname’]}.png










	
update(data_set: Any) → None

	Update plot with data from data_set.


	Parameters

	data_set – DataSet generated by Loop in Microscope.td_cap().






















          

      

      

    

  

    
      
          
            
  


Utility Functions & Classes

utils is a module containing useful classes and functions that come up in the course of a scanning SQUID experiment.



	
class utils.Counter

	Simple counter used to keep track of progress in a Loop.






	
utils.fit_line(x: Union[list, numpy.ndarray], y: Union[list, numpy.ndarray]) → Tuple[numpy.ndarray, float]

	Fits a line to x, y(x) and returns (polynomial_coeffs, rms_residual).


	Parameters

	
	x – List or np.ndarry, independent variable.


	y – List or np.ndarry, dependent variable.






	Returns

	
	p, rms
	Array of best-fit polynomial coefficients, rms of residuals.









	Return type

	Tuple[np.ndarray, float [https://docs.python.org/3/library/functions.html#float]]










	
utils.load_json_ordered(filename: str) → collections.OrderedDict

	Loads json file as an ordered dict.


	Parameters

	filename – Path to json file to be loaded.



	Returns

	
	odict
	OrderedDict containing data from json file.









	Return type

	OrderedDict










	
utils.make_scan_grids(scan_vectors: Dict[str, Sequence[float]], slow_ax: str, fast_ax: str, fast_ax_pts: int, plane: Dict[str, float], height: float) → Dict[str, Any]

	Makes meshgrids of scanner positions to write to DAQ analog outputs.


	Parameters

	
	scan_vectors – Dict of {axis_name: axis_vector} for x, y axes (from make_scan_vectors).


	slow_ax – Name of the scan slow axis (‘x’ or ‘y’).


	fast_ax – Name of the scan fast axis (‘x’ or ‘y’).


	fast_ax_pts – Number of points to write to DAQ analog outputs to scan fast axis.


	plane – Dict of x, y, z values defining the plane to scan (provided by scanner.get_plane).


	height – Height above the sample surface (in DAQ voltage) at which to scan.
More negative means further from sample; 0 means ‘in contact’.






	Returns

	
	scan_grids
	{axis_name: axis_scan_grid} for x, y, z, axes.









	Return type

	Dict










	
utils.make_scan_surface(surface_type: str, scan_vectors: Dict[str, Sequence[float]], slow_ax: str, fast_ax: str, fast_ax_pts: int, plane: Dict[str, float], height: float, interpolator: Optional[Callable] = None)

	Makes meshgrids of scanner positions to write to DAQ analog outputs.


	Parameters

	
	surface_type – Either ‘plane’ or ‘surface’.


	scan_vectors – Dict of {axis_name: axis_vector} for x, y axes (from make_scan_vectors).


	slow_ax – Name of the scan slow axis (‘x’ or ‘y’).


	fast_ax – Name of the scan fast axis (‘x’ or ‘y’).


	fast_ax_pts – Number of points to write to DAQ analog outputs to scan fast axis.


	plane – Dict of x, y, z values defining the plane to scan (provided by scanner.get_plane).


	height – Height above the sample surface (in DAQ voltage) at which to scan.
More negative means further from sample; 0 means ‘in contact’.


	interpolator – Instance of scipy.interpolate.Rbf used to interpolate touchdown points.
Only required if surface_type == ‘surface’. Default: None.






	Returns

	
	scan_grids
	{axis_name: axis_scan_grid} for x, y, z, axes.









	Return type

	Dict










	
utils.make_scan_vectors(scan_params: Dict[str, Any], ureg: Any) → Dict[str, Sequence[float]]

	Creates x and y vectors for given scan parameters.


	Parameters

	
	scan_params – Scan parameter dict


	ureg – pint UnitRegistry, manages units.






	Returns

	
	scan_vectors
	{axis_name: axis_vector} for x, y axes.









	Return type

	Dict










	
utils.make_xy_grids(scan_vectors: Dict[str, Sequence[float]], slow_ax: str, fast_ax: str) → Dict[str, Any]

	Makes meshgrids from x, y scan_vectors (used for plotting, etc.).


	Parameters

	
	scan_vectors – Dict of {axis_name: axis_vector} for x, y axes (from make_scan_vectors).


	slow_ax – Name of scan slow axis (‘x’ or ‘y’).


	fast_ax – Name of scan fast axis (‘x’ or ‘y’).






	Returns

	
	xy_grids
	{axis_name: axis_grid} for x, y axes.









	Return type

	Dict










	
utils.moving_avg(x: Union[List, numpy.ndarray], y: Union[List, numpy.ndarray], window_width: int) → Tuple[numpy.ndarray]

	Given 1D arrays x and y, calculates the moving average of y.


	Parameters

	
	x – x data (1D array).


	y – y data to be averaged (1D array).


	window_width – Width of window over which to average.






	Returns

	
	x, ymvg_avg
	x data with ends trimmed according to width_width, moving average of y data









	Return type

	Tuple[np.ndarray]










	
utils.next_file_name(fpath: str, extension: str) → str

	
	Appends an integer to fpath to create a unique file name:
	fpath + {next unused integer} + ‘.’ + extension






	Parameters

	
	fpath – Path to file you want to create (no extension).


	extension – Extension of file you want to create.






	Returns

	
	next_file_name
	Unique file name starting with fpath and ending with extension.









	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
utils.scan_to_arrays(scan_data: Any, ureg: Optional[Any] = None, real_units: Optional[bool] = True, xy_unit: Optional[str] = None) → Dict[str, Any]

	Extracts scan data from DataSet and converts to requested units.


	Parameters

	
	scan_data – qcodes DataSet created by Microscope.scan_plane


	ureg – pint UnitRegistry, manages physical units.


	real_units – If True, converts z-axis data from DAQ voltage into
units specified in measurement configuration file.


	xy_unit – String describing quantity with dimensions of length.
If xy_unit is not None, scanner x, y DAQ ao voltage will be converted to xy_unit
according to scanner constants defined in microscope configuration file.






	Returns

	
	arrays
	Dict of x, y vectors and grids, and measured data in requested units.









	Return type

	Dict










	
utils.scan_to_mat_file(scan_data: Any, real_units: Optional[bool] = True, xy_unit: Optional[bool] = None, fname: Optional[str] = None, interpolator: Optional[Callable] = None) → None

	Export DataSet created by microscope.scan_surface to .mat file for analysis.


	Parameters

	
	scan_data – qcodes DataSet created by Microscope.scan_plane


	real_units – If True, converts z-axis data from DAQ voltage into
units specified in measurement configuration file.


	xy_unit – String describing quantity with dimensions of length.
If xy_unit is not None, scanner x, y DAQ ao voltage will be converted to xy_unit
according to scanner constants defined in microscope configuration file.


	fname – File name (without extension) for resulting .mat file.
If None, uses the file name defined in measurement configuration file.


	interpolator – Instance of scipy.interpolate.Rbf, used to interpolate touchdown points.
Default: None.













	
utils.td_to_arrays(td_data: Any, ureg: Optional[Any] = None, real_units: Optional[bool] = True) → Dict[str, Any]

	Extracts scan data from DataSet and converts to requested units.


	Parameters

	
	td_data – qcodes DataSet created by Microscope.td_cap


	ureg – pint UnitRegistry, manages physical units.


	real_units – If True, converts data from DAQ voltage into
units specified in measurement configuration file.






	Returns

	
	arrays
	Dict of measured data in requested units.









	Return type

	Dict










	
utils.td_to_mat_file(td_data: Any, real_units: Optional[bool] = True, fname: Optional[str] = None) → None

	Export DataSet created by microscope.td_cap to .mat file for analysis.


	Parameters

	
	td_data – qcodes DataSet created by Microscope.td_cap


	real_units – If True, converts data from DAQ voltage into
units specified in measurement configuration file.


	fname – File name (without extension) for resulting .mat file.
If None, uses the file name defined in measurement configuration file.













	
utils.to_real_units(data_set: Any, ureg: Any = None) → Any

	
	Converts DataSet arrays from DAQ voltage to real units using recorded metadata.
	Preserves shape of DataSet arrays.






	Parameters

	
	data_set – qcodes DataSet created by Microscope.scan_plane


	ureg – Pint UnitRegistry. Default None.






	Returns

	
	data
	ndarray like the DataSet array, but in real units as prescribed by
factors in DataSet metadata.









	Return type

	np.ndarray










	
utils.validate_scan_params(scanner_config: Dict[str, Any], scan_params: Dict[str, Any], scan_grids: Dict[str, Any], pix_per_line: int, pts_per_line: int, temp: str, ureg: Any, logger: Any) → None

	Checks whether requested scan parameters are consistent with microscope limits.


	Parameters

	
	scanner_config – Scanner configuration dict as defined in microscope configuration file.


	scan_params – Scan parameter dict as defined in measurements configuration file.


	scan_grids – Dict of x, y, z scan grids (from make_scan_grids).


	pix_per_line – Number of pixels per line of the scan.


	pts_per_line – Number of points per line sampled by the DAQ (to be averaged down to pix_per_line)


	temp – Temperature mode of the microscope (‘LT’ or ‘RT’).


	ureg – pint UnitRegistry, manages physical units.


	logger – Used to log the fact that the scan was validated.






	Returns

	None
















          

      

      

    

  

    
      
          
            
  


DataSet Example


[2]:






import qcodes as qc
import pprint as pp
import utils
from plots import ScanPlotFromDataSet
%matplotlib notebook
from IPython.display import Image








[3]:






data = qc.load_data('data/2018-06-06/#002_scan_09-29-05')








[4]:






data








[4]:






DataSet:
   location = 'data/2018-06-06/#002_scan_09-29-05'
   <Type>   | <array_id>             | <array.name> | <array.shape>
   Setpoint | benders_position_x_set | position_x   | (50,)
   Setpoint | index0_set             | index0       | (50, 4)
   Setpoint | index1_set             | index1       | (50, 4, 50)
   Measured | daq_ai_voltage         | voltage      | (50, 4, 50)








Plotting

Generate interactive plot like the one created during the scan:


[5]:






scan_plot = ScanPlotFromDataSet(data)

















Display plot as image (not interactive):


[6]:






Image(filename=data.location + '/' + data.metadata['loop']['metadata']['fname'] + '.png')








[6]:






[image: ../_images/examples_DataSetExample_8_0.png]







Explore DataSet metadata


[7]:






print(list(data.metadata.keys()))
print(list(data.metadata['station'].keys()))
print(list(data.metadata['loop']['metadata'].keys()))













['station', 'loop', '__class__', 'location', 'arrays', 'formatter', 'io']
['instruments', 'parameters', 'components', 'default_measurement']
['fname', 'dir', 'fast_ax', 'range', 'center', 'height', 'scan_rate', 'scan_size', 'channels', 'prefactors']






Measurement loop metadata


[8]:






pp.pprint(data.metadata['loop']['metadata']['channels'])













{'CAP': {'ai': 3,
         'gain': 1,
         'label': 'Capacitance',
         'lockin': {'amplitude': '1 V',
                    'frequency': '18.437 kHz',
                    'name': 'CAP'},
         'unit': 'fF',
         'unit_latex': 'fF'},
 'MAG': {'ai': 0,
         'filters': {'highpass': {'cutoff': '0 Hz', 'slope': '0 dB/octave'},
                     'lowpass': {'cutoff': '30 kHz', 'slope': '12 dB/octave'}},
         'gain': 1,
         'label': 'Magnetometry',
         'unit': 'mPhi0',
         'unit_latex': 'm$\\Phi_0$'},
 'SUSCX': {'ai': 1,
           'gain': 1,
           'label': 'Susceptibility',
           'lockin': {'amplitude': '1 V',
                      'frequency': '131.79 Hz',
                      'name': 'SUSC'},
           'r_lead': '1 kOhm',
           'unit': 'Phi0/A',
           'unit_latex': '$\\Phi_0$/A'},
 'SUSCY': {'ai': 2,
           'gain': 1,
           'label': 'Susceptibility (out of phase)',
           'lockin': {'name': 'SUSC'},
           'r_lead': '1 kOhm',
           'unit': 'Phi0/A',
           'unit_latex': '$\\Phi_0$/A'}}







[9]:






data.metadata['loop']['metadata']['prefactors']








[9]:






{'MAG': '1.0 Phi0 / volt',
 'SUSCX': '0.02 Phi0 * kiloOhm / volt ** 2',
 'SUSCY': '0.02 Phi0 * kiloOhm / volt ** 2',
 'CAP': '1.5337423312883435e-07 picofarad / microvolt'}







Instrument snapshots


[10]:






SUSC_snap = data.metadata['station']['instruments']['SUSC_lockin']
for name, param in SUSC_snap['parameters'].items():
    if 'value' in param.keys():
        print(name, param['value'], param['unit'])













IDN {'vendor': 'Stanford_Research_Systems', 'model': 'SR830', 'serial': 's/n53956', 'firmware': 'ver1.07'}
timeout 5.0 s
phase -144.83 deg
reference_source internal
frequency 131.79 Hz
ext_trigger TTL rising
harmonic 1
amplitude 1.0 V
input_config a
input_shield float
input_coupling AC
notch_filter off
sensitivity 0.2 V
reserve normal
time_constant 0.01 s
filter_slope 24 dB/oct
sync_filter off
X_offset [0.0, 0]
Y_offset [0.0, 0]
R_offset [0.0, 0]
aux_in1 -0.000333333 V
aux_out1 -0.423 V
aux_in2 0.004 V
aux_out2 0.107 V
aux_in3 0.005 V
aux_out3 0.0 V
aux_in4 0.0126667 V
aux_out4 0.0 V
output_interface GPIB
ch1_ratio none
ch1_display X
ch2_ratio none
ch2_display Y
X 0.0 V
Y -7.62945e-06 V
R 0.0 V
P 0.0 deg
buffer_SR 1 Hz
buffer_acq_mode single shot
buffer_trig_mode OFF
buffer_npts 0









Convert DataSet to arrays with real units

Leave everything in DAQ voltage units


[11]:






arrays = utils.scan_to_arrays(data, real_units=False)








[12]:






for name, array in arrays.items():
    print((name, array.units))













('X', <Unit('volt')>)
('Y', <Unit('volt')>)
('x', <Unit('volt')>)
('y', <Unit('volt')>)
('MAG', <Unit('volt')>)
('SUSCX', <Unit('volt')>)
('SUSCY', <Unit('volt')>)
('CAP', <Unit('volt')>)






Convert \(z\)-data to real units, but leave \(x\) and \(y\) as voltages


[13]:






arrays = utils.scan_to_arrays(data, real_units=True)








[14]:






for name, array in arrays.items():
    print((name, array.units))













('X', <Unit('volt')>)
('Y', <Unit('volt')>)
('x', <Unit('volt')>)
('y', <Unit('volt')>)
('MAG', <Unit('milliPhi0')>)
('SUSCX', <Unit('Phi0 / ampere')>)
('SUSCY', <Unit('Phi0 / ampere')>)
('CAP', <Unit('femtofarad')>)






Convert \(z\)-data to real units and \(x\), \(y\) to \(\mu\mathrm{m}\):


[15]:






arrays = utils.scan_to_arrays(data, real_units=True, xy_unit='um')








[16]:






for name, array in arrays.items():
    print((name, array.units))













('X', <Unit('micrometer')>)
('Y', <Unit('micrometer')>)
('x', <Unit('micrometer')>)
('y', <Unit('micrometer')>)
('MAG', <Unit('milliPhi0')>)
('SUSCX', <Unit('Phi0 / ampere')>)
('SUSCY', <Unit('Phi0 / ampere')>)
('CAP', <Unit('femtofarad')>)







[17]:






print((arrays['x'].magnitude[0], arrays['x'].units))













(-34.0, <Unit('micrometer')>)






Convert \(z\)-data to real units and \(x\), \(y\) to \(\mathrm{nm}\):


[18]:






arrays = utils.scan_to_arrays(data, real_units=True, xy_unit='nm')








[19]:






for name, array in arrays.items():
    print((name, array.units))













('X', <Unit('nanometer')>)
('Y', <Unit('nanometer')>)
('x', <Unit('nanometer')>)
('y', <Unit('nanometer')>)
('MAG', <Unit('milliPhi0')>)
('SUSCX', <Unit('Phi0 / ampere')>)
('SUSCY', <Unit('Phi0 / ampere')>)
('CAP', <Unit('femtofarad')>)







[20]:






print((arrays['x'].magnitude[0], arrays['x'].units))













(-33999.999999999993, <Unit('nanometer')>)









Export data to a MAT file:


[21]:






utils.scan_to_mat_file(data, real_units=True, xy_unit='um')








[22]:






utils.scan_to_mat_file(data, real_units=True, xy_unit=None)








[23]:






utils.scan_to_mat_file(data, real_units=False)








[ ]:




















          

      

      

    

  

    
      
          
            
  


Typical Workflow


Preliminary Steps


	Align SQUID at room temperature.


	Move the SQUID vertically far from the sample using the Attocubes.


	Cool down your fridge.


	Test and tune the SQUID once it is cold.


	Measure and record the scanner and Attocube capacitances.


	Check the cantilever capacitance.


	Create a directory on the data acquisition computer to hold all of the data and documentation for the cooldown.


	In this directory, create Microscope Configuration and Measurement Configuration JSON files, then launch a Jupyter Notebook.


	In the Notebook, import any modules you’ll need during the cooldown and add the scanning-squid repository to your path.







Initialize the Microscope


	Initialize the microscope from the Microscope Configuration file.


	If something goes wrong, you can always restart the Jupyter Notebook kernel and/or re-initialize the microscope.







Load the Measurement Configuration


	Load the Measurement Configuration file using utils.load_json_ordered().


	When you make changes to this file, be sure to re-load it.







Approach the Sample


	See: Approaching the Sample.


Note

If the initial touchdown occurs at negative z scanner voltage, consider using the Attocubes to move such that touchdown occurs at a positive voltage. This way, if something goes wrong and the DAQ analog outputs go to 0 V, the SQUID will not be slammed into the sample.




Warning

This is the most dangerous/uncertain part of most measurements. If the capacitance is very noisy or the cantilever is not well-constructed, you risk not detecting the touchdown and crashing the SQUID into the sample using the Attocubes.










Acquire a Surface


	See: Acquiring a Surface







Scan Over the Plane


	Define your scan parameters in the Measurement Configuration then reload the file using utils.load_json_ordered().


	Start Scanning, sit back, and enjoy the ScanPlot!







Move Around the Sample


	Use the instruments.atto.AttocubeController to move around the sample, keeping in mind the angle between SQUID and sample so as not to accidentally crash.


	Unless the sample is very flat, it will be necessary to acquire a new plane after moving the Attocubes.


	If the sample is very flat and you still trust the old plane after moving the Attocubes, you can perform a single Capacitive touchdown at the origin and manually set atto.surface_is_current = True to update the plane.










          

      

      

    

  

    
      
          
            

   Python Module Index


   
   i | 
   m | 
   p | 
   q | 
   s | 
   u
   


   
     		 	

     		
       i	

     
       	[image: -]
       	
       instruments	
       

     
       	
       	   
       instruments.afg3000	
       

     
       	
       	   
       instruments.atto	
       

     
       	
       	   
       instruments.daq	
       

     
       	
       	   
       instruments.dg645	
       

     
       	
       	   
       instruments.heater	
       

     
       	
       	   
       instruments.keithley	
       

     
       	
       	   
       instruments.lakeshore	
       

     		 	

     		
       m	

     
       	[image: -]
       	
       microscope	
       

     
       	
       	   
       microscope.microscope	
       

     
       	
       	   
       microscope.sampler	
       

     
       	
       	   
       microscope.susceptometer	
       

     		 	

     		
       p	

     
       	
       	
       plots	
       

     		 	

     		
       q	

     
       	[image: -]
       	
       qcodes	
       

     
       	
       	   
       qcodes.instrument_drivers.stanford_research.SR830	
       

     		 	

     		
       s	

     
       	
       	
       scanner	
       

     
       	
       	
       squids	
       

     		 	

     		
       u	

     
       	
       	
       utils	
       

   



          

      

      

    

  

    
      
          
            

Index



 A
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 


A


  	
      	AFG3000 (class in instruments.afg3000)


      	ANC150 (class in instruments.atto)


      	ANC300 (class in instruments.atto)


  

  	
      	approach() (microscope.microscope.Microscope method)


      	ask_raw() (instruments.atto.AttocubeController method)


      	AttocubeController (class in instruments.atto)


  





C


  	
      	calibrate() (instruments.dg645.DG645 method)


      	check_for_td() (scanner.Scanner method)


      	check_response() (instruments.atto.AttocubeController method)


      	clear_instances() (instruments.afg3000.AFG3000 method)

      
        	(instruments.atto.AttocubeController method)


        	(instruments.daq.DAQAnalogInputs method)


        	(instruments.daq.DAQAnalogOutputs method)


        	(instruments.dg645.DG645 method)


        	(scanner.Scanner method)


      


  

  	
      	control_ao_task() (scanner.Scanner method)


      	Counter (class in utils)


  





D


  	
      	DAQAnalogInputs (class in instruments.daq)


      	DAQAnalogInputVoltages (class in instruments.daq)


  

  	
      	DAQAnalogOutputs (class in instruments.daq)


      	DAQAnalogOutputVoltage (class in instruments.daq)


      	DG645 (class in instruments.dg645)


  





E


  	
      	EL320P (class in instruments.heater)


  





F


  	
      	fit_line() (in module utils)


  





G


  	
      	get_pos() (scanner.Scanner method)


      	get_prefactors() (microscope.susceptometer.SusceptometerMicroscope method)


      	get_raw() (instruments.daq.DAQAnalogInputVoltages method)

      
        	(instruments.daq.DAQAnalogOutputVoltage method)


      


  

  	
      	get_surface() (microscope.microscope.Microscope method)


      	get_td_height() (scanner.Scanner method)


      	goto() (scanner.Scanner method)


      	goto_start_of_next_line() (scanner.Scanner method)


  





I


  	
      	init_empty() (plots.ScanPlot method)

      
        	(plots.TDCPlot method)


      


      	initialize() (instruments.atto.ANC150 method)

      
        	(instruments.atto.ANC300 method)


      


      	instruments.afg3000 (module)


      	instruments.atto (module)


  

  	
      	instruments.daq (module)


      	instruments.dg645 (module)


      	instruments.heater (module)


      	instruments.keithley (module)


      	instruments.lakeshore (module)


      	iv_mod_tek() (microscope.sampler.SamplerMicroscope method)


      	iv_tek_mod_daq() (microscope.sampler.SamplerMicroscope method)


  





K


  	
      	Keithley_2400 (class in instruments.keithley)


  





L


  	
      	load_json_ordered() (in module utils)


  

  	
      	load_surface() (scanner.Scanner method)


      	local() (instruments.dg645.DG645 method)


  





M


  	
      	make_ramp() (scanner.Scanner method)


      	make_scan_grids() (in module utils)


      	make_scan_surface() (in module utils)


      	make_scan_vectors() (in module utils)


      	make_xy_grids() (in module utils)


      	Microscope (class in microscope.microscope)


      	microscope.microscope (module)


  

  	
      	microscope.sampler (module)


      	microscope.susceptometer (module)


      	Model_331 (class in instruments.lakeshore)


      	Model_335 (class in instruments.lakeshore)


      	Model_340 (class in instruments.lakeshore)


      	Model_372 (class in instruments.lakeshore)


      	moving_avg() (in module utils)


  





N


  	
      	next_file_name() (in module utils)


  





P


  	
      	plots (module), [1]


  





Q


  	
      	qcodes.instrument_drivers.stanford_research.SR830 (module)


  





R


  	
      	remote() (instruments.dg645.DG645 method)


      	remove_component() (microscope.microscope.Microscope method)


  

  	
      	reset() (instruments.dg645.DG645 method)

      
        	(instruments.keithley.Keithley_2400 method)


      


      	retract() (scanner.Scanner method)


  





S


  	
      	SamplerMicroscope (class in microscope.sampler)


      	save() (plots.ScanPlot method)

      
        	(plots.TDCPlot method)


      


      	save_settings() (instruments.dg645.DG645 method)


      	scan_line() (scanner.Scanner method)


      	scan_surface() (microscope.susceptometer.SusceptometerMicroscope method)


      	scan_to_arrays() (in module utils)


      	scan_to_mat_file() (in module utils)


      	Scanner (class in scanner)


      	scanner (module)


  

  	
      	ScanPlot (class in plots)


      	self_test() (instruments.dg645.DG645 method)


      	set_lockins() (microscope.microscope.Microscope method)


      	SQUID (class in squids)


      	squids (module)


      	SR830 (class in qcodes.instrument_drivers.stanford_research.SR830)


      	step() (instruments.atto.AttocubeController method)


      	stop() (instruments.atto.AttocubeController method)


      	Susceptometer (class in squids)


      	SusceptometerMicroscope (class in microscope.susceptometer)


  





T


  	
      	td_cap() (microscope.microscope.Microscope method)


      	td_to_arrays() (in module utils)


      	td_to_mat_file() (in module utils)


  

  	
      	TDCPlot (class in plots)


      	to_real_units() (in module utils)


      	trigger() (instruments.dg645.DG645 method)


  





U


  	
      	update() (plots.ScanPlot method)

      
        	(plots.TDCPlot method)


      


  

  	
      	utils (module)


  





V


  	
      	validate_scan_params() (in module utils)


  





W


  	
      	wait() (instruments.dg645.DG645 method)


  

  	
      	write_raw() (instruments.atto.AttocubeController method)


  







          

      

      

    

  

    
      
          
            
  


Approach & Acquiring a Plane


[1]:






%matplotlib notebook
import sys
sys.path.append(r'C:\Users\BF4K\Documents\GitHub\scanning-squid\scanning-squid')
import utils








[2]:






from microscope.susceptometer import SusceptometerMicroscope








[3]:






config_file = 'config_susceptometer.json'
m = SusceptometerMicroscope(config_file, 'RT', log_name='approach_get_plane')













INFO:2018-06-18_13:23:04:microscope:Logging started.
INFO:2018-06-18_13:23:04:microscope:Initializing microscope object using file config_microscope.json.
INFO:2018-06-18_13:23:04:atto:Initializing Attocube controller.
INFO:2018-06-18_13:23:06:microscope:Attocube controller successfully added to microscope.












attocube ANC300 controller version 1.1.0-1304 2013-10-17 08:16












INFO:2018-06-18_13:23:06:scanner:Moved scann