Scaner Documentation
Release 1.7

A. Pascual Saavedra

February 07, 2017

Contents

1 What is Scaner? 3
1.1 Architecture o o e e e e e e e e e e e e e e e e 3
1.2 MOTC . . o e e e e e e 4
2 Installation 5
2.1 Building Scaner e e e e e e e 5
2.2 RUNNing SCaner e e e e e e e e e e e e e e e 5
3 API Schema 7
3.1 Schemes e e e e e e e e e 7
4 API Usage 9
4.1 POST/AWEEES . . v v v v e 9
42 GET/AWEELS . . o o o e 9
4.3 GET /tweets/{tweetld}/metrics e e e e e e e e e e e e 11
4.4 GET /tweets/{tweetld}/history e e e e e e 11
45 GET/USEIS o o e e e e e e e 12
4.6 GET /users/{userld}/metrics e e e e e e e e e e 14
4.7 GET /users/{userld}/metwork e e e e e 14
4.8 GET/communities v v v v it e 15
4.9 Adding more tweets for the same topic oL 16
5 Maetrics 17
5.1 DIrect MEtriCs . . v v v v o o e 17
5.2 IndireCt MetriCs v v v v v e 17
6 Metrics Usage 19
6.1 Searching for Relevant Tweets and Users 19
6.2 TweetRatio. e 20
6.3 Influence L e 20
6.4 Follow Relation e 21
6.5 Relevance e e e e e e e e e 21
7 Demo 23

Scaner Documentation, Release 1.7

Contents:

Contents 1

Scaner Documentation, Release 1.7

2 Contents

CHAPTER 1

What is Scaner?

SCANER: Social Context Analysis aNd Emotion Recognition is a platform to collect and analyse social context, i.e
context of users and content in social media.

The platform is able to extract and process social media information data from Twitter, allowing us to analyse and
process different metrics from tweets and users. To perform the test of the platform, it includes models of users and
tweets. It creates the appropriate relationships between users and their related tweets, it calculates their influences and
makes this information available through a REST API.

1.1 Architecture

The modular architecture of Scaner allows retrieving, storing and processing large amounts of information. The
independent task system and API further contribute to decouple the modules in the platform.

* OrientDB stores all the amount of data that we needed and easily edges the information to create graphs.

* The crawler has been able to extract the necessarry information from Twitter, being only limited by the Twitter
API rate limit. Scaner uses bitter to implement this task.

* The task manager process all this information.

https://github.com/balkian/bitter

Scaner Documentation, Release 1.7

Message Broker

Tasks

Processing | Emotion 4

Scraper
Cramiey | and Metrics | Annotation l'edIS
A /

Tasks for
Celery to
execute

')

c ..

d . Workers
=~ QrientDE
y

1.2 More

For more information visit http://scaner.readthedocs.io/en/latest/
1.2.1 Acknowledgement

This development has been partially funded by the European Union through the MixedEmotions Project (project
number H2020 655632), as part of the RIA ICT 15 Big data and Open Data Innovation and take-up programme.

MixedEmotions

4 Chapter 1. What is Scaner?

http://scaner.readthedocs.io/en/latest/
http://mixedemotions-project.eu
http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/index.html

CHAPTER 2

Installation

Scaner requires docker and docker-compose to work. You can download Docker here

Docker-compose can be easily installed through pip.

’$ pip install docker-compose

2.1 Building Scaner

First of all, you need to clone the Github repository:

$ git clone git@github.com:gsi-upm/scaner
$ cd scaner

Once cloned, we need to build the docker image:

‘$ docker—-compose build

Then, it is necessary to populate OrientDB schema.

‘$./populate_schema.sh

2.2 Running Scaner

Now the image is ready to run:

’$ docker—-compose up

https://docs.docker.com/engine/installation/

Scaner Documentation, Release 1.7

6 Chapter 2. Installation

CHAPTER 3

APl Schema

Base URL.: /api/vl1, Version: 1.0.0

Default request content-types: application/json

Default response content-types: application/json

3.1 Schemes

3.1.1 Tag: users

API call

Description

GET /users/{userld}

Obtain information of a particular user

GET /users/{userld }/emotion

Obtain the emotion of a user

GET /users/{userld }/sentiment

Obtain the sentiment of a user

GET /users/{userld }/metrics

Obtain the metrics of a user

GET /users

Obtain list of available users

GET /users/{userld }/network

Obtain social network of a user

3.1.2 Tag: tweets

API call

Description

GET /tweets/{tweetld }

Obtain information of a particular tweet

DELETE /tweets/{tweetld}

Delete a tweet from the database

GET /tweets/{tweetld }/history

Obtain the history of a particular tweet

GET /tweets/{tweetld }/sentiment

Obtain the sentiment of a tweet

GET /tweets/{tweetld }/emotion

Obtain the emotion of a tweet

GET /tweets/{tweetld }/metrics

Obtain the metrics of a tweet

GET /tweets

Obtain list of available tweets

POST /tweets

Add a tweet to the database

3.1.3 Tag: topics

API call Description

GET /topics Obtain list of available topics

GET /topics/{topicld} Obtain information of a particular topic
GET /topics/{topicld}/network | Obtain social network of a topic

Scaner Documentation, Release 1.7

3.1.4 Tag: tasks

API call Description
GET /tasks Obtain the list of tasks
GET /tasks/{taskld} | Obtain the status of a particular task

3.1.5 Tag: communities

API call

Description

GET /communities/{ communityld}

Obtain information of a particular community

GET /communities/{ communityld }/emotion

Obtain the emotion of a community

GET /communities/{ communityld }/sentiment

Obtain the sentiment of a community

GET /communities

Obtain list of available communities

GET /communities/{ communityld }/users

Obtain users that conforms a community

Chapter 3. APl Schema

CHAPTER 4

APl Usage

4.1 POST /tweets

Example request:

POST /api/vl/tweets/ HTTP/1.1

Host: localhost
'Content-Type':

'application/json',
'Accept':

'application/json'

Example respond:

HTTP/1.1 200 OK
'Content-Type':

:'application/json',
'Vary':"Accept'

"metadata": { "parameters": {},
"url": "http://localhost
"result": "Tweet added to DB."
}

:5000/api/vl/tweets"},

4.2 GET /tweets

Example request:

GET /api/vl/tweets?limit=1 HTTP/1.1
Host: localhost

'"Accept': 'application/json'

Example respond:

HTTP/1.1 200 OK

'Content-Type': 'application/json'
'Vary':'Accept'

{
"metadata": {
"count": 20,
"parameters": {

Scaner Documentation, Release 1.7

}I
"url": "http://localhost:5000/api/vl/tweets"
}I
"statuses": |
{
"created_at":
"entities": {
"hashtags": [

"Mon Dec 15 23:29:35 +0000 2014",

1,
"symbols": [

]!
"urls": [
{
"display_url":
"expanded_url":
"indices": [
19,
41
]I

"url":

"bit.ly/1AeESXb",
"http://bit.ly/1ReESXb",

"http://t.co/1JWX4VDvmz"
}
I

"user_mentions": [

]

}I

"id": 000000000000,

"id_str": "00000000000O",

"lang": "ja",

"metadata": {
"iso_language_code": "ja",
"result_type": "recent"

br

"text": " http://t.co/1JWX4VDvmz",
"timestamp_ms": 1418686175.0,
"topics": [

"bigdata"
J 14
"user": {

"created_at":
"followers_count":
"following": null,
"friends_count": 7277,
"id": 0000000000,
"id_str": "0000000000",
"lang": "ja",
"protected": 0,
"screen_name":
"statuses_count":

"Tue Sep 02 01:27:55+0000
7254,

2014",

Mhxkxkxx",

9328

Query parameters:

 query (f) fields: Comma-separated list of fields to retrieve e.g ‘screen_name’

‘following’

10

Chapter 4. API Usage

Scaner Documentation, Release 1.7

* query (1) limit: Get only this many users per request by default limit is 20 tweets
e query (t) topic: Only retrieve users related to a certain topic e.g ‘LaboralKutxa’

3

* query (s) sort_by: Sort users using this criterion. Prepending a minus sign reverses the order. e.g. ‘-
tweet_count’.

4.3 GET /tweets/{tweetld}/metrics

Example request:

GET /api/vl/tweets/{tweetId}/metrics HTTP/1.1
Host: localhost

'Content-Type': 'application/json'

'"Accept': 'application/json'™"®

Example respond:

HTTP/1.1 200 OK
'Content-Type':'application/json'
'Vary':'Accept'

"metadata": {

"parameters": {

}I

"url": "http://localhost:5000/api/v1/tweets/0000000000000/metrics™"
}o
"result": {

"complete": true,

"date": "2016-12-07",

"id": 0000000000000,
"influence": 0.496603800169,
"lastMetrics": true,
"relevance": 0.10244804983,
"timestamp": 1481107250.4926267,
"topic": "bigdata"

}

Path parameters:

* path (t) tweetld (required): Tweet id to filter by

4.4 GET /tweets/{tweetld}/history

Example request:

GET /api/vl/tweets/{tweetId}/history HTTP/1.1
Host: localhost

'Content-Type': 'application/json',

'"Accept': 'application/json'™"®

Example respond:

4.3. GET /tweets/{tweetld}/metrics 11

Scaner Documentation, Release 1.7

HTTP/1.1 200 OK
'Content-Type': 'application/json'
'Vary':'Accept'

"metadata": {
"parameters": {

by

"url": "http://localhost:5000/api/v1/tweets/000000000000000/history"

}I
"result": [
{

"complete": true,
"date": "2016-12-07",
"id": 000000000000000,
"influence": 0.496603800169,
"lastMetrics": true,
"relevance": 0.10244804983,
"timestamp": 1481107250.4926267,
"topic": "bigdata"

"complete": true,

"date": "2016-12-05",

"id": 000000000000000,
"influence": 0.0,

"lastMetrics": false,
"relevance": 0.0,

"timestamp": 1480940543.4212337,
"topic": "bigdata"

}

Path parameters:

* path (t) tweetld (required): Tweet id to filter by

4.5 GET /users

Example request:

GET /api/vl/users?limit=3 HTTP/1.1
Host: localhost

'Content-Type': 'application/json'
'"Accept': 'application/json'™"®

Example respond:

HTTP/1.1 200 OK
'Content-Type':'application/json'
'Vary':'Accept'
{

"metadata": {
"count": 3,
"parameters": {

12

Chapter 4. API Usage

Scaner Documentation, Release 1.7

by

"url": "http://localhost:5000/api/vl1/users"
}I
"users": [
{
"community": 1156,
"created_at": "Mon Nov 10 16:10:39 +0000 2014",
"followers_count": 7,
"friends_count": 23,
"id": 0,
"id_stxr": "O",
"lang": "ru",
"protected": "O0O",
"screen_name": "sxxxx",
"statuses_count": 38,
"topics": [
"bigdata"
]
}I
{
"community": 560,
"created_at": "Mon Nov 10 19:57:30 +0000 2014",
"followers_count": 3,
"friends_count": 12,
"id": 1,
"id_str": "1",
"lang": "ru",
"protected": "O0O",
"screen_name": "xxx*xx",
"statuses_count": 56,
"topics": [
"bigdata"
]
}V
{
"community": 4,
"created_at": "Sun Jan 17 16:12:59 +0000 2010",
"followers_count": 930,
"friends_count": 1154,
"id": 2,
"id_str": "2",
"lang": "ja",
"protected": "O0O",
"screen_name": "xxxx",
"statuses_count": 20637,
"topics": [
"bigdata"

Query parameters:
e query (f) fields: Comma-separated list of fields to retrieve e.g ‘screen_name’ ‘following’
e query (1) limit: Get only this many users per request by default limit is 20 tweets

* query (t) topic: Only retrieve users related to a certain topic e.g ‘LaboralKutxa’

4.5. GET /users 13

Scaner Documentation, Release 1.7

e query (s) sort_by: Sort users using this criterion. Prepending a minus sign reverses the order. e.g.

tweet_count’.

4.6 GET /users/{userld}/metrics

Example request:

3

GET /api/vl/users/{userId}/metrics HTTP/1.1
Host: localhost

'Content-Type': 'application/json'
'"Accept': 'application/json'™’®

Example respond:

HTTP/1.1 200 OK
'Content-Type':'application/json'
'Vary':'Accept'

"metadata": {

"parameters": {},

"url": "http://localhost:5000/api/v1/users/59390872/metrics"
}I
"result": {

"complete": true,

"date": "2016-12-07",

"followRelationScore": 0.140941982233,
"followers": 43017,

"following": 43445,

"id": 59390872,

"impact": 0.000002767175,

"influence": 1,
"influenceUnnormalized": 0.00499198376,
"lastMetrics": true,

"relevance": 2.105912,
"statuses_count": 39233,

"timestamp": 1481114116.3879638,
"topic": "bigdata",

"tweetRatio": 0.00015293248,

"voice": 0.030976330457,

"voice_r": 0.00000003215

}

Path parameters:

e path (t) userld (required):User id to filter by

4.7 GET /users/{userld}/network

Example request:

GET /api/vl/users/{userId}/network
HTTP/1.1 Host: localhost
'Content-Type': 'application/json'
'Accept': 'application/json'

14 Chapter 4. API Usage

Scaner Documentation, Release 1.7

Example respond:

4.8 GET /communities

Example request:

GET /api/vl/communities/ HTTP/1.1
Host: localhost

'Content-Type': 'application/json'
'"Accept': 'application/json'

Example respond:

HTTP/1.1 200 OK
'Content-Type':'application/json'
'Vary':'Accept'

{

"communities": [
{
"emotion": "Jjoy",
"id": 0,
"sentiment": "positive",
"user_count": 12
}I
{
"emotion": "joy",
"id": 1,
"sentiment": "positive",
"user_count": 32
}I
{
"emotion": "joy",
"id": 2,
"sentiment": "positive",
"user_count": 8
}
1,
"metadata": {
"count": 3,
"parameters": {
}I
"url": "http://localhost:5000/api/vl/communities"

}

Query parameters:
* query (f) fields: Comma-separated list of fields to retrieve e.g ‘screen_name’ ‘following’
e query () limit: Get only this many users per request by default limit is 20 tweets
* query (t) topic: Only retrieve users related to a certain topic e.g ‘LaboralKutxa’

e query (s) sort_by: Sort users using this criterion. Prepending a minus sign reverses the order. e.g. ‘-
tweet_count’.

4.8. GET /communities 15

Scaner Documentation, Release 1.7

4.9 Adding more tweets for the same topic

Once Scaner has calculated the metrics for a certain topic, the tool allows to retrieve instant information of relevance

of a tweet in that topic.

Example request:

POST /api/vl/tweets/ HTTP/1.1
Host: localhost

'Content-Type': 'application/json'
'Accept': 'application/json'"’®

Example respond:

HTTP/1.1 200 OK
'Content-Type': 'application/Jjson'
'Vary':'"'Accept'

"metadata": {

"parameters": {

br

"url": "http://localhost:5000/api/v1/tweets"
}I
"result": {

"result": "Tweet added to DRBR",

"topic": "bigdata",

"tweet_relevance": "0.010244804983"

16 Chapter 4. API Usage

CHAPTER 5

Metrics

Internally, metrics are classified in two different types: direct and indirect metrics.

5.1 Direct metrics

Direct metrics are directly obtainable from the extracted data, such as the number of followers a user has. The Social
Context Analysis module obtains direct metrics as soon as new social media content is stored in the database, and these
metrics are updated when new information arrive. For instance, the Social Context module is configured to refetch
general information about users periodically, so these metrics would be updated as well.

5.2 Indirect metrics

Indirect metrics are obtained through data processing, for example User Influence. These metrics are calculated
periodically, as they have a high processing cost and require accessing all the information in the database.

5.2.1 User relevance

‘We define the user relevance score based in the tweet rate, the user influence and follow relation score of each user.

Tweet Rate (TR) score

This metric measures the proportion of tweets related to the topic that a user posts or retweets. Some of the topic-
related users usually retweet tweets relevant to the topic originally posted by others, which means they play a role of
“filter” searching for valuable relevant tweets and sharing them with their followers.

User Influence (Ul) score and Tweet Influence (TI) score

How much each tweet is paid attention to by others is measured according to the retweet and reply activities and the
follow relation. Based on this idea, we define not only the Ul score of each user but also “tweet influence (TI) score”
of each tweet. The Ul score of each user is calculated using the TI score of the user’s tweets and retweets, and the TI
score of each tweet is calculated using the UI score of users who pay attention to the tweet.

17

Scaner Documentation, Release 1.7

Follow Relation (FR) score

A reference graph consisting of user nodes and directed edges each of which connects two of the user nodes, called
“follow relation graph”, is created from the follow relation.

5.2.2 Tweet relevance

They describe a method for finding relevant tweets to the target topic.

Voice and Impact score calculation
In order to judge the relevance of each tweet to the target topic, we have the following assumptions about tweets
relevant to the topic (relevant tweets).

1. The relevant tweets are posted or retweeted by the topic-related users.

2. The relevant tweets are paid attention to (retweeted or replied to) by many topic-related users.

The Impact score is used for the estimation based on the first idea, and the Voice score is used for the estimation based
on the second idea.

Tweet Ranking

The tweet relevance score of each tweet is calculated from the Voice score and the Impact score, then select the top-M
tweets ranked by the tweet relevance score as the tweets relevant to the target topic.

18 Chapter 5. Metrics

CHAPTER 6

Metrics Usage

6.1 Searching for Relevant Tweets and Users

Suppose we have 3 twitter users: Manu, Alberto and Rodrigo. This three users are expressing their opinions about a
concrete topic in Twitter, i.e about nuclear energy. They have published tweets concerning this topics and they follow
each other as it is shown in the following graph.

= Retweet

= Follows y \ Created_DY

== Created_by (\I
=== Retweeted by

Alberto

(This data can easily be loaded in Scaner tool using “populate_db.py” script).

19

Scaner Documentation, Release 1.7

Now let’s find more information about this data. The metrics used are based on Noro et al. article [Noro et al, 2016].
o Tweet Ratio

e Influence

Follow Relation
e Relevance
* Voice

e Impact

6.2 Tweet Ratio

To calculate Tweet ratio of each user Scaner takes the lapse of time of the tweets data introduced and relations the
number of tweets published in that lapse with the number of tweets related to the topic that are in the Scaner database.

Let’s calculate Rodrigo’s tweet ratio. To do so we choose two intervals of time to measure (t0 y t1). In t0 Rodrigo
had 300 tweets in his timeline. In t1 Rodrigo had 333 tweets. Of this 33 new tweets, 3 of them are related to nuclear
energy topic and that is the data in Scaner. So the tweet Ratio was:

import numpy as np

statuses_count_t0 = 300
statuses_count_tl = 333
tweets_in_scaner = 3

#TWEET RATIO
TR = tweets_in_scaner/ (statuses_count_tl-statuses_count_t0)
TR

‘0.09090909090909091

6.3 Influence

To find out the influence of users and tweet in this data we need to create three matrix: on one hand with the number
of tweets created by the users, on the other, with the retweets and replies and the last matrix with the replies and the
tweets created, retweeted or replied by the followers of the users. Then Scaner calculate the influence. This influence
is normalized assigning 1 to the maximum influence value.

For our example above, Rodrigo would be the most influence user, so Rodrigo’s influence is 1. The influence vector
calculated. We could observe that the second most influent was Alberto, that is because Alberto has retweeted a tweet
from Rodrigo.

[UI_Rodrigo UI_Manu UI_Alberto]
UI_vector = np.array([l, 0.6, 0.8])
UI_vector

array ([1. , 0.6, 0.87)

To find out the influence of each tweet the process is the same, the matrix are the same and the results are correlated
to the user influence.

20 Chapter 6. Metrics Usage

Scaner Documentation, Release 1.7

6.4 Follow Relation

Follow Relation shows information about the amount of follows an user has. We can see in the graph that Alberto
has the most amount of Follows arrows, so the follow relation is 1 for Alberto. The follow Relation of Rodrigo is the
lowest. That’s because Rodrigo has only one user in the data that follow him. Let’s probe this suposition calculating
Scaner Follow Relation vector:

[FR_Rodrigo FR _Manu FR_Alberto]
FR_vector = np.array([0.54054,0.7702, 17])
FR_vector

|array([0.54054, 0.7702 , 1. 1)

6.5 Relevance

6.5.1 User Relevance

User relevance is calculated with a ponderated sum of the previous ones. Each metric has a weight depending its
importance. For example, user relevance of Rodrigo will be:

w_tr = 0.4

w_i = 0.4

w_fr = 0.2

user_relevance = TR*x+w_tr + UI_vector[0]*+w_1i + FR_vector[0]+*w_fr
user_relevance

’1.9674710190829381

6.5.2 Voice

The voice of an user is calculated according to the quantity of tweets and retweets the user has. There are two types
of this score, voice of tweets, and voice of retweets. The calculation of both are equivalent. Here we are going to
calculate the voice of Manuel in nuclear energy topic:

Tweet = 1

sigma = 1

TI = 0.37500000161 # Calculated together with Manuel user influence
Sumatorio_tweets = 1

Voice_tweet = (1/(1+1))*1*TI

Voice_tweet

’0.187500000805

6.5.3 Impact

The impact score is calculated related to the user influence and the interactions of the user in the tweets collected
(Related interactions: retweets and replies). For example the impact score of Alberto would be:

UI_Alberto = 0.8 #Calculated above

d = 0.15 # Dumping factor

Relate_Alberto = 1 # Alberto has retweeted one tweet
Sigma = 1 # Smoothing parameter

6.4. Follow Relation 21

Scaner Documentation, Release 1.7

Number_tweets = 4

IMPACT = (UI_Alberto/ (Relate_Alberto+Sigma))*(1l-d) + (UI_Alberto/4)*d
IMPACT

[0.37

6.5.4 Tweet relevance

Tweet relevance is the main phase of Scaner. The porpuse of this score is to find the relevance of a new introduced
tweet in Scaner instantaneously based on the scores calculated above. This score allow us to rank the new tweets in
real time. Let’s make an easy example.

Imagine that we introduce another tweet retweeted by Alberto. We don’t need to recalculate the tweet influence score
of this new tweet. We calculate the tweet relevance as follows:

Voice_retweet_Alberto = 0.5

VR_t 0.5

IR t = 0.37

alpha = 0.4

Tweet_relevance = alpha*VR_t + (l-alpha)*IR_t
Tweet_relevance

0.42200000000000004

Noro, T., Ru, F,, Xiao, F., & Tokuda, T. 2016. Searching for relevant based on topic- related user activities. Journal of
Web Engineering, 15 (3&4), 249-276,.

22 Chapter 6. Metrics Usage

CHAPTER 7

Demo

There is a demo available on http://scaner-demo.cluster.gsi.dit.upm.es/, this demo has a sintetic dataset. You can

explore all the posibilities of the Scaner API.

{3 swagger http://scaner cluster.gsi dit upm es/apifv1/swagger json

SCANER API

MIT

tasks
topics
tweets

users

[BASE URL: /api/vl | Ap1 VERSION: 1.0.0]

Show/Hide

Show/Hide

Show/Hide

Show/Hide

List Operations

List Operations

List Operations

List Operations

Expand Operations

Expand Operations

Expand Operations

Expand Operations

23

http://scaner-demo.cluster.gsi.dit.upm.es/

	What is Scaner?
	Architecture
	More

	Installation
	Building Scaner
	Running Scaner

	API Schema
	Schemes

	API Usage
	POST /tweets
	GET /tweets
	GET /tweets/{tweetId}/metrics
	GET /tweets/{tweetId}/history
	GET /users
	GET /users/{userId}/metrics
	GET /users/{userId}/network
	GET /communities
	Adding more tweets for the same topic

	Metrics
	Direct metrics
	Indirect metrics

	Metrics Usage
	Searching for Relevant Tweets and Users
	Tweet Ratio
	Influence
	Follow Relation
	Relevance

	Demo

